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Abstract
This paper continues our study on the initial-boundary value problem for a semilinear para-

bolic equation of fourth order which has been presented by Johnson-Orme-Hunt-Graff-
Sudijono-Sauder-Orr [12] to describe the large-scale features of a growing crystal surface under
molecular beam epitaxy. In the preceding paper [1], we already constructed a dynamical system
generated by the problem and verified that the dynamical system has a finite-dimensional at-
tractor (especially, every trajectory has nonempty ω-limit set) and admits a Lyapunov function
(of the form (3.1)). This paper is then devoted to showing longtime convergence of trajectory.
We shall prove that every trajectory converges to some stationary solution as t → ∞.

As a matter of fact, we have obtained in [10] the similar result for the equation but under the
Neumann like boundary conditions ∂u

∂n =
∂
∂nΔu = 0 on the unknown function u. In this paper,

we want as in [1] to handle the Dirichlet boundary conditions u = ∂u
∂n = 0, maybe physically

more natural conditions than before.

1. Introduction

1. Introduction
We are concerned with the initial-boundary value problem for a fourth order nonlinear

parabolic equation

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∂u
∂t
= −aΔ2u − μ∇ ·

( ∇u
1 + |∇u|2

)
in Ω × (0,∞),

u =
∂u
∂n
= 0 on ∂Ω × (0,∞),

u(x, 0) = u0(x) in Ω,

in a two-dimensional bounded domain Ω. Such a problem was presented by Johnson-Orme-
Hunt-Graff-Sudijono-Sauder-Orr[12] in order to describe the growing process of a crystal
surface under molecular beam epitaxy. For the physical backgrounds, see [6, 14, 16, 20],
Here, u = u(x, t) denotes a displacement of surface height from the standard level at position
x ∈ Ω and time t ≥ 0.

In the papers [7, 8, 9, 10], we already studied the same equation but under the Neu-
mann like boundary conditions ∂u

∂n =
∂
∂nΔu = 0. In such a case, it is possible to reduce the

fourth order differential operator Δ2 into a product (−Δ)2 of the negative Laplace operator
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−Δ equipped with the usual Neumann boundary conditions which is a positive definite self-
adjoint operator of L2(Ω). But these boundary conditions seem to be somewhat artificial. In
this paper, we want to handle the same equation but under the Dirichlet boundary conditions
u = ∂u

∂n = 0. Because of loss of any convenient reductions of the fourth order operator to a
second order one, we have to handle a very fourth order elliptic operator.

In the preceding paper [1], we have already constructed a dynamical system generated
by (1.1) having a finite-dimensional attractor and showed that the dynamical system admits
a Lyapunov function of the form (3.1) whose values are monotone decreasing along trajec-
tories. This paper is then devoted to showing longtime convergence of trajectories to some
stationary solution of (1.1) depending on initial functions. As in [10], we will employ the
theory of Łojasiewicz-Simon inequality in infinite-dimensional spaces, We cannot, however,
apply this theory to the present problem by any parallel arguments to [10]. Some modifi-
cations are needed. These modifications may be rather significant in the sense that, thanks
to these, one can prove the same longtime convergence of solutions for the Keller-Segel
equations, too. Remember that the Lyapunov function for the Keller-Segel equations also
contains a logarithmic function, see [15].

In proving the longtime convergence for (1.1), the property that Δ2u ∈ L2(Ω) together with
conditions u = ∂u

∂n = 0 on ∂Ω implies ∇u ∈ (Ω) is indispensable for verifying analyticity of
the function u �→ ∫

Ω
log(1+ |∇u|2)dx. For this reason, we will assume that Ω is a rectangular

domain

(1.2) Ω = {(x1, x2); 0 < x1 < �1, 0 < x2 < �2} (�1 > 0 and �2 > 0)

or a 
4 bounded domain. Then, if Δ2u ∈ L2(Ω) with u = ∂u

∂n = 0 on ∂Ω, then u ∈ H4(Ω) and
hence u ∈ 2(Ω).

Throughout this paper, Ω is a rectangular or 4, bounded domain in R2. The outer normal
vector of boundary at x ∈ ∂Ω is denoted by n(x). For 1 ≤ p ≤ ∞, Lp(Ω) is the space of real
valued Lp functions in Ω. For s ≥ 0, Hs(Ω) is the real Sobolev space in Ω with exponent s.
For m = 0, 1, 2, . . ., m(Ω) is a space of real valued functions on Ω of class m.

Even when Ω is of the from (1.2), one can verify the similar results on the Sobolev spaces
Hs(Ω) as for the 4 domains. In fact, whenΩ is a bounded domain with Lipschitz boundary,
the trace operator u �→ u|∂Ω is defined and is continuous from H1(Ω) into L2(∂Ω) (see [11,
Theorem 1.5.1.3] and notice that H1(Ω) = W1

2 (Ω)). When Ω is a bounded domain with
Lipschitz boundary, there exists a linear operator E extending functions u in Ω to functions
Eu in R2 that is continuous from Hm

p (Ω) into Hm
p (R2) for every integer m = 0, 1, 2, . . . and

every 1 ≤ p ≤ ∞ (cf. [21, Theorem 1.33]). This then yields that the Sobolev embedding
theorems in the whole space R2 hold true even in the Ω. Finally, usual integration by parts
is available even in Ω of the from (1.2), because, for any fixed 0 < x2 < �2, the function
u(·, x2) for u ∈ H1(Ω) is defined on the interval (0, �1) and hence one can use the integration
by parts for the variable x1. It is the same for the variable x2.
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2. Dynamical System

2. Dynamical System2.1. Abstract Formulation.
2.1. Abstract Formulation. We rewrite (1.1) into the form

(2.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
du
dt
+ Au = f (u), 0 < t < ∞,

u(0) = u0,

in the underlying space X = L2(Ω). Here, A is a realization of aΔ2 in L2(Ω) under the
Dirichlet boundary conditions.

In fact, A is defined in the following way. Consider the symmetric sesquilinear form

a(u, v) = a
∫
Ω

Δu · Δv dx, u, v ∈ H2
0(Ω).

Here, H2
0(Ω) is the closure of ∞0 (Ω) (space of infinitely differentiable functions in Ω with

compact support) in H2(Ω). If u ∈ H2
0(Ω), then ∇u ∈ H1

0(Ω); consequently, u satisfies ∂u
∂n = 0

on ∂Ω. Since it is clear that u = 0 on ∂Ω, u ∈ H2
0(Ω) implies that u satisfies the Dirichlet

boundary conditions in (1.1). Furthermore, the convexity of Ω when Ω is given by (1.2), or
the 

4 regularity of ∂Ω in the alternative case yields that

‖u‖H2 ≤ C‖Δu‖L2 , u ∈ H2(Ω) ∩ H1
0(Ω).

This shows that the form a(u, v) is coercive on H2
0(Ω). Consequently, a(u, v) determines

a linear operator  from H2
0(Ω) into H−2(Ω) by the formula a(u, v) = 〈u, v〉H−2×H2

0
(see

[5]), where H−2(Ω) denotes the dual space of H2
0(Ω) and these spaces compose a triplet

H2
0(Ω) ⊂ L2(Ω) ⊂ H−2(Ω).
The operator  thus defined is considered as a realization of aΔ2 in H−2(Ω) under the

Dirichlet boundary conditions which is a densely defined, closed operator in H−2(Ω) with
domain () = H2

0(Ω). Furthermore, its part in L2(Ω) denoted by A (= |L2 ) is defined by

(2.2)

⎧⎪⎪⎨⎪⎪⎩(A) = {u ∈ H2
0(Ω); u ∈ L2(Ω)},

Au = u.

Whence, A is a realization of aΔ2 in L2(Ω) under the Dirichlet boundary conditions. It is
easily seen that A is a positive definite self-adjoint operator of L2(Ω).

Proposition 2.1. The domain of A given by (2.2) can actually be characterized as (A) =
H4(Ω) ∩ H2

0(Ω). Furthermore,

(2.3) ‖u‖H4 ≤ C‖Au‖L2 , u ∈ (A).

Proof. If u ∈ H4(Ω) ∩ H2
0(Ω), then a(u, v) = (aΔ2u, v) for any v ∈ H2

0(Ω). Therefore,
u ∈ (A). This shows that it is the case in general that H4(Ω) ∩ H2

0(Ω) ⊂ (A). So, what
we have to prove is the converse inclusion H4(Ω) ∩ H2

0(Ω) ⊃ (A).
Let us first prove this in the case where Ω is rectangular. We use the Fourier expansion

for the function of L2(Ω). Any function u ∈ L2(Ω) can be expanded as a series

u =
∞∑

m,n=1

umn sin
mπ
�1

x1 · sin
nπ
�2

x2

with Fourier coefficients umn satisfying
∑

m,n |umn|2 < ∞. Then,
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Δ2u =
∞∑

m,n=1

umn

⎡⎢⎢⎢⎢⎢⎣
(
mπ
�1

)2

+

(
nπ
�2

)2⎤⎥⎥⎥⎥⎥⎦
2

sin
mπ
�1

x1 · sin
nπ
�2

x2

in the distribution sense. So, if Δ2u ∈ L2(Ω), then there exists a double sequence fmn satis-
fying

∑
m,n | fmn|2 < ∞ such that

umn =

⎡⎢⎢⎢⎢⎢⎣
(
mπ
�1

)2

+

(
nπ
�2

)2⎤⎥⎥⎥⎥⎥⎦
−2

fmn, 1 ≤ m, n < ∞.

This yields that for k = 0, 1, 2, 3, 4, Dk
1D4−k

2 u ∈ L2(Ω) as may be evident for k = 0, 2, 4. For
k = 1, 3, say k = 1, we have

D1D3
2u = −

∞∑
m,n=1

umn
mπ
�1

(
nπ
�2

)3

cos
mπ
�1

x1 · cos
nπ
�2

x2.

So, since cos mπ
�1

x1 · cos nπ
�2

x2 are mutually orthogonal in Ω, it is seen that

‖D1D3
2u‖2L2

=
�1�2

4

∞∑
m,n=1

⎧⎪⎪⎨⎪⎪⎩mπ
�1

(
nπ
�2

)3 ⎡⎢⎢⎢⎢⎢⎣
(
mπ
�1

)2

+

(
nπ
�2

)2⎤⎥⎥⎥⎥⎥⎦
−2⎫⎪⎪⎬⎪⎪⎭

2

| fmn|2 < ∞.

Furthermore,

‖D1D3
2u‖2L2

≤ C
∞∑

m,n=1

| fmn|2 ≤ C‖Δ2u‖2L2
.

Hence, Δ2u ∈ L2(Ω) implies u ∈ H4(Ω).
Second, let us consider the case whereΩ is a 4 bounded domain. In this case, we have to

appeal to a definitive existence result for the higher order elliptic operators. Among others,
the arguments due to Tanabe [17, Section 3.8] are very comprehensible (cf. also [18, Section
5.2]). It is then asserted that for any f ∈ L2(Ω), there exists a unique solution u ∈ H4(Ω)
for which it holds that Δ2u = f in Ω and u = ∂u

∂n = 0 on ∂Ω together with ‖u‖H4 ≤ C‖ f ‖L2 ,
C > 0 being some constant. Furthermore, since u = ∂u

∂n = 0 on ∂Ω implies u ∈ H2
0(Ω), we

see that u ∈ H4(Ω) ∩ H2
0(Ω) (⊂ (A)) and Au = f . Then, since A is one-to-one from (A)

onto L2(Ω), (A) must coincide with H4(Ω) ∩ H2
0(Ω). �

Proposition 2.2. For the square root A
1
2 of A, it holds true that (A

1
2 ) = H2

0(Ω) together
with the estimate

(2.4) ‖u‖H2 ≤ C‖A 1
2 u‖L2 , u ∈ (A

1
2 ).

Proof. Note that a(u, v) is symmetric. It is then known (cf. [21, Theorem 2.34]) that the
domain of the square root of the operator obtained from a symmetric form coincides with its
form domain, i.e., H2

0(Ω). �

By the interpolation of (2.3) and (2.4) (cf. [21, Chapter 16]), it is immediately verified
that for 1

2 ≤ θ ≤ 1,

(2.5) (Aθ) ⊂ H4θ(Ω) ∩ H2
0(Ω).
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On the other hand, for 0 ≤ θ < 1
2 ,

(Aθ) ⊂ H4θ(Ω).

It also holds true that for any 0 ≤ θ ≤ 1,

(2.6) ‖u‖H4θ ≤ C‖Aθu‖L2 , u ∈ (Aθ).

The nonlinear operator f (u) is defined by

f (u) = −μ∇ ·
( ∇u
1 + |∇u|2

)

= −μ
[
Δu

1 + |∇u|2 −
∇|∇u|2 · ∇u
(1 + |∇u|2)2

]
.

By direct calculations (as in the proof of [7, Proposition 2]) we observe that

‖ f (u) − f (v)‖L2 ≤ C[‖u − v‖H2 + (‖u‖2 + ‖v‖2 )‖u − v‖H1 ].

In view of the inequality (2.6) (with θ = 1
4 and θ = 7

8 ) and the embedding H
7
2 (Ω) ⊂ 

2(Ω),
it is verified that

(2.7) ‖ f (u) − f (v)‖L2 ≤ C[‖A 1
2 (u − v)‖L2 + (‖A 7

8 u‖L2 + ‖A
7
8 v‖L2 )‖A

1
4 (u − v)‖L2 ].

By the theory of abstract semilinear parabolic equations (see [21, Theorem 4.1]), we can
state that, for any u0 ∈ (A

1
4 ) ⊂ H1(Ω), there exists a unique local solution to (2.1) in the

function space:

u ∈ ([0, Tu0 ];(A
1
4 )) ∩ 

1((0, Tu0 ]; L2(Ω)) ∩ ((0, Tu0 ];(A)),

Tu0 > 0 being determined by the norm ‖A 1
4 u0‖L2 alone.

2.2. Global solutions.
2.2. Global solutions. In order to extend the local solution constructed above to a global

solution, we show a priori estimate for the local solutions of (2.1). Consider a local solution
u which is defined on interval [0, Tu]:

(2.8) u ∈ ([0, Tu];(A
1
4 )) ∩ 

1((0, Tu]; L2(Ω)) ∩ ((0, Tu];(A)).

We can then prove the following estimates.

Proposition 2.3. There exist positive constants δ and C such that, for any local solution
u in the space (2.8), it holds true that

(2.9) ‖A 1
4 u(t)‖L2 ≤ e−δt‖A 1

4 u0‖L2 +C, 0 ≤ t ≤ Tu.

Here, δ and C are independent of the interval [0, Tu] on which u is defined.

Proof. Consider the inner product of the equation of (2.1) and A
1
2 u(t). Then, since ∂u

∂n = 0
on ∂Ω, it follows that

d
dt
‖A 1

4 u(t)‖2L2
+ ‖A 3

4 u(t)‖2L2
= −μ

∫
Ω

[
∇ ·

( ∇u
1 + |∇u|2

)]
A

1
2 u(t)dx

= μ

∫
Ω

( ∇u
1 + |∇u|2

)
· ∇A

1
2 u(t)dx
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≤ μ
2
‖∇A

1
2 u(t)‖L2 .

Noting that ‖∇A
1
2 u‖L2 ≤ C‖A 3

4 u‖L2 and ‖A 1
4 u‖L2 ≤ C‖A 3

4 u‖L2 , we conclude that

d
dt
‖A 1

4 u(t)‖2L2
+ δ‖A 1

4 u(t)‖2L2
≤ C

with some constant δ > 0. Solving this differential inequality, we obtain (2.9). �

By the standard arguments we can then construct for any u0 ∈ (A
1
4 ), a unique global

solution to (2.1) in the function space:

u ∈ ([0,∞);(A
1
4 )) ∩ 

1((0,∞); L2(Ω)) ∩ ((0,∞); H4(Ω) ∩ H2
0(Ω)).

The global solution u as well satisfies the same estimates

‖A 1
4 u(t)‖L2 ≤ e−δt‖A 1

4 u0‖L2 +C, 0 ≤ t < ∞,(2.10)

‖Au(t)‖L2 ≤ C(t−
3
4 + 1)‖A 1

4 u0‖L2 , 0 < t < ∞.(2.11)

However, as shown in [1] (cf. also [7]), there is a local solution u to (2.1) for any initial
value u0 ∈ L2(Ω). Indeed, we can apply [21, Theorem 4.1] again but to the Cauchy problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

du
dt
+u =  (u), 0 < t < ∞,

u(0) = u0,

formulated in the space  = H−2(Ω). Here,  is the realization of aΔ2 in H−2(Ω) with
domain () = H2

0(Ω), and the nonlinear operator  (u) = −μ∇ ·
( ∇u

1+|∇u|2
)

is treated as a
mapping from H1

0(Ω) into H−1(Ω) which is uniformly Lipschitz continuous. By the facts that
(

1
2 ) = L2(Ω) and (

3
4 ) ⊂ H1

0(Ω), the condition [21, (4.2)] is fulfilled with exponents
β = 1

2 and η = 3
4 . Consequently, for any u0 ∈ L2(Ω), there exists a unique local solution such

that

u ∈ ([0, Tu0 ]; L2(Ω)) ∩ 
1((0, Tu0 ]; H−2(Ω)) ∩ ((0, Tu0 ]; H2

0(Ω)).

Take now time t0 ∈ (0, Tu0 ); then, ũ0 = u(t0) ∈ () = (A
1
2 ) ⊂ (A

1
4 ); thereby, we can

extend this local solution to a global one by considering (2.1) under the substituted initial
condition u(t0) = ũ0.

Ultimately, we conclude the following existence result. For any initial function u0 ∈
L2(Ω), (2.1) possesses a unique global solution in the function space:

(2.12) u ∈ ([0,∞); L2(Ω)) ∩ 
1((0,∞); L2(Ω)) ∩ ((0,∞); H4(Ω) ∩ H2

0(Ω)).

For 0 ≤ t < ∞, set S (t)u0 = u(t; u0), where u(t; u0) is the global solution of (2.1) for
initial value u0 ∈ L2(Ω). Then, S (t) defines a family of nonlinear operators acting on L2(Ω)
with the semigroup property S (t + s) = S (t)S (s) and S (0) = I. Moreover, the mapping
G : [0,∞) × L2(Ω)→ L2(Ω) defined by G(t, u0) = S (t)u0 is continuous, i.e., S (t) is a contin-
uous semigroup on L2(Ω). In this way, (2.1) generates a dynamical system (S (t), L2(Ω)).

Let u0 ∈ L2(Ω). In view of (2.11), the trajectory {S (t)u0; 1 ≤ t < ∞} is a bounded subset
of H4(Ω). Consequently, it is a relatively compact subset of L2(Ω). In particular, its ω-limit
set
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ω(u0) = {u; ∃tn ↑ ∞ such that S (tn)u0 → u in L2(Ω)}
is a nonempty set. In addition, if S (tn)u0 → u in L2(Ω), then it automatically observed that

(2.13) S (tn)u0 → u in Hs(Ω)

for any 0 < s < 4.
As verified in [1], (S (t), L2(Ω)) has furthermore a finite-dimensional attractor which at-

tracts every trajectory at an exponential rate (cf, [2, 19, 21]).

3. Lyapunov Function

3. Lyapunov Function
It is already proved by [1] that the following function

(3.1) Φ(u) =
1
2

∫
Ω

[a|Δu|2 − μ log(1 + |∇u|2)]dx, u ∈ H2
0(Ω),

becomes a Lyapunov function of our dynamical system (S (t), L2(Ω)).
In what follows, we will consider Φ to be a function from H2

0(Ω) to R (although Φ may
be defined on the whole space H2(Ω)). We furthermore handle it in the triplet

(3.2) H2
0(Ω) ⊂ L2(Ω) ⊂ H−2(Ω) = H2

0(Ω)′.

This section is then devoted to verifying various properties of the derivatives Φ′(u) ∈
(H2

0(Ω),R) = H−2(Ω) and Φ′′(u) ∈ (H2(Ω),H−2(Ω)).

3.1. Differentiability of Φ(u).
3.1. Differentiability of Φ(u). Let us begin with showing differentiability of Φ(u).

Proposition 3.1. Φ: H2
0(Ω)→ R is differentiable with the derivativeΦ′(u) = u− (u) ∈

H−2(Ω) for u ∈ H2
0(Ω). Here,  (u) = −μ∇ ·

( ∇u
1+|∇u|2

)
is a nonlinear operator from H2

0(Ω) into
H−1(Ω) (⊂ H−2(Ω)).

Proof. For u, h ∈ H2
0(Ω), we have

‖Δ(u + h)‖2L2
− ‖Δu‖2L2

= 2(Δu, Δh) + (Δh, Δh).

Therefore,

(3.3) ‖Δ(u + h)‖2L2
− ‖Δu‖2L2

− 2〈Δ2u, h〉H−2×H2
0
= ‖Δh‖2L2

.

In the meantime, for a.e. x ∈ Ω, we have

log{1 + |∇[u(x) + h(x)]|2} − log{1 + |∇u(x)|2}

=

∫ 1

0

d
dθ

log{1 + |∇[u(x) + θh(x)]|2}dθ

=

∫ 1

0

2∇u(x) · ∇h(x) + 2θ|∇h(x)|2
1 + |∇[u(x) + θh(x)]|2 dθ.

Moreover, since

1
1 + |∇[u(x) + θh(x)]|2 =

1
1 + |∇u(x)|2 −

2θ∇u(x) · ∇h(x) + θ2|∇h(x)|2
{1 + |∇[u(x) + θh(x)]|2}(1 + |∇u(x)|2)

,

it follows that
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1 + |∇u(x)|2

∣∣∣∣∣
≤ C{|∇h(x)|2 + |∇h(x)|4}.

Therefore, integration in Ω yields that∣∣∣∣∣∣
∫
Ω

[
log{1 + |∇(u + h)|2} − log{1 + |∇u|2} − 2∇u · ∇h

1 + |∇u|2
]

dx

∣∣∣∣∣∣ ≤ C{‖∇h‖2L2
+ ‖∇h‖4L4

}.

We here use Galiardo-Nireberg’s inequality ([21, Theorem 1.37]) to obtain that

‖∇h‖L4 ≤ C‖∇h‖ 1
2
L2
‖∇h‖ 1

2

H1 ≤ C‖h‖ 1
2

H1‖h‖
1
2

H2 ≤ C‖h‖ 1
4
L2
‖h‖ 3

4

H2 .

Hence,

(3.4)
∣∣∣∣∣
∫
Ω

[
log{1 + |∇(u + h)|2} − log{1 + |∇u|2}

]
dx + 2〈∇ ·

( ∇u
1+|∇u|2

)
, h〉H−1×H1

0

∣∣∣∣∣
≤ C‖h‖L2 (‖h‖H2 + ‖h‖3H2 ).

Combining (3.3) and (3.4), we conclude that

|Φ(u + h) − Φ(u) − 〈u −  (u), h〉H−2×H2
0
| ≤ C[‖Δh‖2L2

+ ‖h‖L2 (‖h‖H2 + ‖h‖3H2 )].

This shows that Φ(u) is differentiable and the derivative is given by Φ′(u) = u −  (u) for
any u ∈ H2

0(Ω). �

On the domain (A) (⊂ H4(Ω)), however, it is possible to observe that Φ(u) is differen-
tiable in somewhat weak topology.

Proposition 3.2. If u ∈ (A), then Φ′(u) = Au − f (u) ∈ L2(Ω). In addition, when the
variable h also runs only in (A), it holds true that

(3.5) |Φ(u + h) − Φ(u) − (Au − f (u), h)| ≤ C‖h‖L2 (‖h‖H4 + ‖h‖H2 + ‖h‖3H2 ).

Proof. Since u ∈ (A) implies u −  (u) = Au − f (u), the first assertion is obvious. In
addition, for h ∈ (A), we observe that

‖Δh‖2L2
= (Δh, Δh) = 〈Δ2h, h〉H−2×H2

0
= (Δ2h, h) ≤ ‖h‖H4‖h‖L2 .

Hence, (3.5) is also verified. �

Let u0 ∈ L2(Ω). Let {u(t); 0 ≤ t < ∞} be the trajectory starting from u0 and ω(u0) be its
ω-limit set. As an immediate consequence of (3.5), we observe that Φ(u(t)) is differentiable
for t > 0 with the derivative

(3.6)
d
dt
Φ(u(t)) = −‖Au(t) − f (u(t))‖2L2

.

Indeed, we apply (3.5) with u = u(t) and h = u(t + Δt) − u(t). Then,∣∣∣∣∣∣Φ(u(t + Δt)) − Φ(u(t))
Δt

−
(
Au(t) − f (u(t)),

u(t + Δt) − u(t)
Δt

)∣∣∣∣∣∣
≤ C

∥∥∥∥∥u(t + Δt) − u(t)
Δt

∥∥∥∥∥
L2

(‖h‖H4 + ‖h‖H2 + ‖h‖3H2 ).
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As u(t + Δt) − u(t) → 0 in H4(Ω) due to (2.12), we obtain (3.6). Therefore, along the
trajectory u(t), the values of Φ are monotone decreasing. Furthermore, if u ∈ ω(u0), then

(3.7) Φ(u) = lim
n→∞Φ(u(tn)) = inf

0<t<∞
Φ(u(t)).

In particular, Φ takes a constant value on the ω-limit set ω(u0).
It is well known that ω(u0) is an invariant set of S (t). Indeed, if u ∈ ω(u0), then there

exists tn ↑ ∞ such that S (tn)u0 → u in L2(Ω). Then, S (t + tn)u0 = S (t)S (tn)u0 → S (t)u;
hence S (t)u ∈ ω(u0), i.e., S (t)ω(u0) ⊂ ω(u0). Conversely, we have S (tn)u0 = S (t)S (tn − t)u0

for all tn such that tn ≥ t. Since S (tn − t)u0 is a relatively compact subset of L2(Ω), it is
possible to assume that S (tn − t)u0 → v ∈ ω(u0) in L2(Ω), i.e., u = S (t)v. This means that
ω(u0) ⊂ S (t)ω(u0).

For any u ∈ ω(u0), consider the trajectory S (t)u. As verified, S (t)u ∈ ω(u0); there-
fore, (3.7) implies that Φ(S (t)u) ≡ Φ(u); consequently, d

dtΦ(S (t)u) ≡ 0; in particular,
d
dtΦ(S (0)u) = 0. Equality (3.6) then provides that Au − f (u) = 0. By virtue of Proposi-
tion 3.1, this is equivalent to Φ′(u) = 0. We have thus verified the following proposition.

Proposition 3.3. For any u0 ∈ L2(Ω), its ω-limit set ω(u0) consists of critical points of Φ.
In particular, if u ∈ ω(u0) then Φ′(u) = 0.

Let us next show that Φ(u) is twice differentiable.

Proposition 3.4. Φ′ : H2
0(Ω) → H−2(Ω) is Fréchet differentiable with the derivative

Φ′′(u) =  − 
′(u), where 

′(u) is the Fréchet derivative of  : H2
0(Ω) → H−2(Ω) which

was introduced above. Precisely, for u ∈ H2
0(Ω),  ′(u) ∈ (H2

0(Ω),H−2(Ω)) is given by

(3.8) 
′(u)h = −μ∇ ·

( ∇h
1 + |∇u|2 −

2(∇u · ∇h)∇u
(1 + |∇u|2)2

)
, h ∈ H2

0(Ω).

Proof. Noting that ∇ is a bounded linear operator from L2(Ω) into H−1(Ω), let us consider
∇u

1+|∇u|2 . For u, h ∈ H2
0(Ω), we have

∇(u + h)
1 + |∇(u + h)|2 −

∇u
1 + |∇u|2 =

(1 + |∇u|2)∇h − 2(∇u · ∇h)∇u − |∇h|2∇u
(1 + |∇(u + h)|2)(1 + |∇u|2)

.

Here, as seen before,

1
1 + |∇(u + h)|2 =

1
1 + |∇u|2 −

2∇u · ∇h + |∇h|2
(1 + |∇(u + h)|2)(1 + |∇u|2)

.

Therefore, it follows that∣∣∣∣∣∣ ∇(u + h)
1 + |∇(u + h)|2 −

∇u
1 + |∇u|2 −

(1 + |∇u|2)∇h − 2(∇u · ∇h)∇u
(1 + |∇u|2)2

∣∣∣∣∣∣ ≤ C(|∇h|2 + |∇h|3),

and hence∥∥∥∥∥∥ ∇(u + h)
1 + |∇(u + h)|2 −

∇u
1 + |∇u|2 −

(1 + |∇u|2)∇h − 2(∇u · ∇h)∇u
(1 + |∇u|2)2

∥∥∥∥∥∥
L2

≤ C(‖∇h‖2L4
+ ‖∇h‖3L6

) ≤ C(‖h‖2H2 + ‖h‖3H2 ).

This shows the operator u �→ ∇u
1+|∇u|2 is Fréchet differentiable from H2

0(Ω) into L2(Ω). �
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3.2. Gradient Estimates of Φ′(u).
3.2. Gradient Estimates of Φ′(u). Let u0 ∈ L2(Ω) and let u ∈ ω(u0). As shown by

Proposition 3.3, we know that Φ′(u) = 0. The goal of this subsection is to establish the
Łojasiewicz-Simon inequality for Φ′(u) at u that plays a crucial role in proving convergence
of u(t) to u. That is, there exists some exponent 0 < θ ≤ 1

2 for which it holds true that

(3.9) ‖Φ′(u)‖H−2 ≥ D|Φ(u) − Φ(u)|1−θ, u ∈ U(u),

here U(u) denotes a neighborhood of u in H2
0(Ω) and D > 0 is some constant. For this

purpose, we will follow the methods devised by Chill [4] in which the underlying space
must be divided into a sum of the critical manifold and its supplement.

Put L = Φ′′(u). As verified by Proposition 3.4, L =  − 
′(u) is a linear operator from

H2
0(Ω) into H−2(Ω). As a general result of the calculus of variations (see [3, Théorème 5.1.1,

p. 65]), or as is directly verified from (3.8), L is a symmetric operator, i.e.,

(3.10) 〈Lu, v〉H−2×H2
0
= 〈u, Lv〉H2

0×H−2 , u, v ∈ H2
0(Ω).

In addition, L is observed to be a Fredholm operator. Indeed, writing L = [I− ′(u)−1],
we rather consider the operator I − K acting on H−2(Ω), where K = 

′(u)−1. As (K) ⊂
L2(Ω), K is a compact operator of H−2(Ω). Therefore, by virtue of the Riesz-Schauder the-
ory, (I − K) is a finite-dimensional subspace of H−2(Ω). In addition, (I − K) is a closed
subspace of H−2(Ω) with finite-codimension such that dim(I−K) = codim(I−K) = N.
Since  is an isomorphism from H2

0(Ω) onto H−2(Ω), it follows that (L) is a finite-
dimensional subspace of H2

0(Ω) and (L) is a closed subspace of H−2(Ω) with dim(L) =
codim(L) = N. That is, L satisfies the conditions of Fredholm operator.

Since (L) is a finite-dimensional space, we can regard it as a closed subspace of any
space of triplet H2

0(Ω) ⊂ L2(Ω) ⊂ H−2(Ω). Furthermore, by the same reason, these topolo-
gies are mutually equivalent. In the arguments below, we may not clarify the topology of
(L) when it is easily presumed by the contexts.

We introduce the orthogonal projection P : L2(Ω) → (L) in L2(Ω). We have a direct
sum L2(Ω) = H0 + (L), where H0 = (I − P)L2(Ω) is the orthogonal supplement of (L)
in L2(Ω). We notice that P is a bounded operator from H2

0(Ω) into itself. So, P induces a
projection from H2

0(Ω) onto (L) and a topological direct sum H2
0(Ω) = H2 +(L), where

H2 = (I − P)H2
0(Ω) is a topological supplement of (L) in H2

0(Ω). On the other hand, it
is easy to see that ‖P f ‖H−2 ≤ C‖ f ‖H−2 for all f ∈ L2(Ω). This means that P can be extend
by continuation over the space H−2(Ω). Clearly, P is a bounded operator from H−2(Ω) into
itself and induces a projection from H−2(Ω) onto (L) which yields another topological
direct sum H−2(Ω) = H−2 +(L), H−2 = (I − P)H−2(Ω) being a topological supplement of
(L) in H−2(Ω). It is also clear that P is symmetric in the sense that

(3.11) 〈Pu, ϕ〉H2
0 ,H

−2 = 〈u, Pϕ〉H2
0 ,H

−2 , u ∈ H2
0(Ω), ϕ ∈ H−2(Ω).

By definition, LP = 0 on H2
0(Ω); then, (3.10) and (3.11) provide that PL = LP = 0 on

H2
0(Ω); in particular, L = (I − P)L on H2

0(Ω). This concludes that (L) ⊂ H−2. But we
remember that codim(L) = N = codim H−2. Therefore, (L) and H−2 must coincide and
consequently

(3.12) L must be an isomorphism from H2 onto H−2.
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Following [4], we set the critical manifold by

S = {u ∈ H2
0(Ω); (I − P)Φ′(u) = 0}.

Then, S is verified to be a 
1-manifold of dimension N in a neighborhood of u. Indeed,

apply the implicit function theorem to the operator G : H2
0(Ω) → H−2 given by G(u1, u2) =

(I − P)Φ′(u1 + u2) for u1 ∈ H2, u2 ∈ (L). Then, since D1G(u1, u2) = (I − P)Φ′′(u)|H2 ,
(3.12) yields that D1G(u) = L|H2 is an isomorphism. So, in a neighborhood of u, S can be
represented as

S = {(g(u2), u2); u2 ∈ (L), g :(L)→ H2},
g being a 

1 mapping defined in a neighborhood of u2 ∈ (L), where u = u1 + u2.
According to [4, Theorem 2], we can state the following proposition.

Proposition 3.5. Assume that the restriction of Φ on S satisfies (3.9) in a subset U ∩ S ,
where U is some neighborhood of u in H2

0(Ω), with exponent θ ∈ (0, 1
2 ]. Then, Φ itself

satisfies (3.9) in a neighborhood of u in H2
0(Ω) with the same exponent θ.

The desired inequality (3.9) on S can generally be verified, as mentioned in [4, Corollary
3], from analyticity of the Lyapunov function Φ(u). This is, however, not true in the present
case, for the correspondence u �→ ∫

Ω
log(1+ |∇u|2)dx is not analytic in H2

0(Ω) due to the fact
that H1(Ω) � (Ω). So, we have to utilize upper shifting of spaces.

Let 0 < ε < 1
2 be arbitrarily fixed. We introduce the domains (1+ε) and (ε).

Naturally, (1+ε) ⊂ () = H2
0(Ω) and (ε) ⊂ H−2(Ω). Since 

1+ε = 
ε,  is

an isomorphism from (1+ε) onto (ε). Then, by the same reason as before, P is a
bounded operator from (1+ε) into itself and induces a topological direct sum (1+ε) =
H2,ε +(L), where H2,ε = (I − P)(1+ε). Similarly, P is a bounded operator from (ε)
into itself and induces a topological direct sum (ε) = H−2,ε + (L), where H−2,ε =

(I − P)(ε). Obviously, H2,ε ⊂ H2 and H−2,ε ⊂ H−2. We can verify that (3.12) still holds
true in the shifted spaces.

Proposition 3.6. L is an isomorphism from H2,ε onto H−2,ε.

Proof. As L is a bounded operator from (1+ε) into (ε), so is from H2,ε into (ε).
So, it suffices to prove that L(H2,ε) = H−2,ε. Let ϕ ∈ L(H2,ε); then, ϕ = Lu and u = (I − P)v
with some v ∈ (1+ε); therefore, ϕ = (I − P)Lv ∈ H−2,ε. Meanwhile, let ϕ ∈ H−2,ε; then,
ϕ = L(I−P)u = Lu with some u ∈ (); furthermore, u = 

′(u)u+ϕ ∈ (ε); therefore,
u ∈ (1+ε) and ϕ = L(I − P)u ∈ L(H2,ε). �

We furthermore verify analyticity of Φ(u) for u ∈ (1+ε).

Proposition 3.7. Φ :(1+ε)→ R is analytic.

Proof. Notice that (1+ε) = (A
1
2+ε) ⊂ H2+4ε(Ω) due to (2.5). Hence, u ∈ (1+ε)

implies ∇u ∈ (Ω). Then, for small variable h ∈ (1+ε), it is possible to develop

log(1 + |∇(u + h)|2) = log(1 + |∇u|2) + log
(
1 +

2∇u · ∇h + |∇h|2
1 + |∇u|2

)
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= log(1 + |∇u|2) +
∞∑

n=1

(−1)n−1

n

(
2∇u · ∇h + |∇h|2

1 + |∇u|2
)n

.

This directly yields analyticity of u �→ ∫
Ω

log(1 + |∇u|2)dx on (1+ε). �

It is now ready to show the inequality (3.9) on S . We first observe that S actually lies in
(1+ε). Indeed, if u ∈ S , then Φ′(u) = PΦ′(u); therefore, u =  (u) + PΦ′(u) ∈ L2(Ω);
hence, by definition, u ∈ (A) = (

3
2 ). Thus, S = {u ∈ (1+ε); (I − P)Φ′(u) = 0}.

As before, S is determined by the operator G :(1+ε) → H−2,ε given by G(u1, u2) =
(I − P)Φ′(u1 + u2) for u1 ∈ H2,ε u2 ∈ (L). As we know that D1G(u) = L|H2,ε is an
isomorphism, S can be represented in a neighborhood of u as

S = {(g(u2), u2); u2 ∈ (L), g :(L)→ H2,ε}.
Now, as Φ is analytic, g is also analytic in a neighborhood of u2, where u = u1 + u2, which
means that S is an analytic manifold. Remembering that Φ is analytic on (1+ε), we next
apply Łojasiewicz’ classical result [13] in finite-dimensional spaces to Φ|S . Then, for some
exponent θ ∈ (0, 1

2 ],

‖Φ′(u)‖H−2 ≥ C|Φ(u) − Φ(u)|1−θ

for u in a neighborhood of u and on S .
As stated above, Proposition 3.5 thus provides the desired inequality (3.9) in a neighbor-

hood of the whole space H2
0(Ω) of u.

4. Convergence Results

4. Convergence Results
Let u0 ∈ L2(Ω) and u ∈ ω(u0). Due to (2.13), there exists a sequence tn ↑ ∞ such that

u(tn)→ u in H2
0(Ω). We can then show that, once the trajectory approaches sufficiently close

to u, it must remain in a neighborhood forever.

Proposition 4.1. Let r > 0 be the radius for which the gradient inequality (3.9) holds
true in the ball BH2

0 (u; r) and let tN be such that u(tN) ∈ BH2
0 (u; r). Then, if u(t) ∈ BH2

0 (u; r)
for every t ∈ [tN , T ], where T (≥ tN) is any time, then it holds that

(4.1) ‖u(t) − u(tN)‖H2
0
≤ C[Φ(u(tN)) − Φ(u)]

θ
2 for every t ∈ [tN , T ],

here C > 0 is a constant independent of T .

Proof. For tN ≤ t ≤ T ,

d
dt

[Φ(u(t)) − Φ(u)]θ = θ[Φ(u(t)) − Φ(u)]θ−1 d
dt
Φ(u(t))

= θ[Φ(u(t)) − Φ(u)]θ−1
(
Φ′(u(t)),

du
dt

(t)
)

= −θ[Φ(u(t)) − Φ(u)]θ−1‖Φ′(u(t))‖L2

∥∥∥∥∥du
dt

(t)
∥∥∥∥∥

L2

.

Here we used the equality du
dt (t) = −Au(t) + f (u(t)) = −Φ′(u(t)). By virtue of (3.9),

− d
dt

[Φ(u(t) − Φ(u)]θ ≥ C[Φ(u(t)) − Φ(u)]θ−1‖Φ′(u(t))‖H−2

∥∥∥∥∥du
dt

(t)
∥∥∥∥∥

L2

≥ C
∥∥∥∥∥du

dt
(t)

∥∥∥∥∥
L2

.
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Integration in [tN , t] yields that

[Φ(u(tN)) − Φ(u)]θ − [Φ(u(t)) − Φ(u)]θ ≥ C
∫ t

tN

∥∥∥∥∥du
ds

(s)
∥∥∥∥∥

L2

ds.

Therefore,

‖u(t) − u(tN)‖L2 ≤
∫ t

tN

∥∥∥∥∥du
ds

(s)
∥∥∥∥∥

L2

ds(4.2)

≤ C−1{[Φ(u(tN)) − Φ(u)]θ − [Φ(u(t)) − Φ(u)]θ}.
Hence, ‖u(t) − u(tN)‖L2 ≤ C−1[Φ(u(tN)) − Φ(u)]θ.

We next apply the estimate

‖u‖H2
0
≤ C‖Au‖ 1

2
L2
‖u‖ 1

2
L2
, u ∈ (A),

(which follows from (2.4)) to u(t) − u(tN). Then, in view of (2.11), we conclude (4.1). �

Choose a time tN so that ‖u(tN) − u‖H2
0
≤ r

3 and C[Φ(u(tN) − Φ(u)]
θ
2 ≤ r

3 , here C is the

constant obtained in (4.1). Then, if u(t) ∈ BH2
0 (u; r) for every t ∈ [tN , T ], T (≥ tN) being any

time, then

‖u(t) − u‖H2
0
≤ ‖u(t) − u(tN)‖H2

0
+ ‖u(tN) − u‖H2

0

≤ C[Φ(u(tN)) − Φ(u)]
θ
2 + ‖u(tN) − u‖H2

0
≤ 2r

3
,

i.e., u(t) ∈ B
H2

0 (u; 2r
3 ) for tN ≤ t ≤ T . This means that the trajectory staring from u0 is trapped

in BH2
0 (u; r) for all t ≥ tN .

We now arrive at the main result.

Theorem 4.1. Let u0 ∈ L2(Ω) and u ∈ ω(u0). Let tN be the time chosen above. Then,

(4.3) ‖u(t) − u‖L2 ≤ C[Φ(u(t)) − Φ(u)]θ for every t ∈ [tN ,∞).

Proof. We already know that, for all tN ≤ t < ∞, u(t) ∈ BH2
0 (u; r). So, the same argument

as in the proof of Proposition 4.1 is available to u(t) for every t ≥ tN . Let tN ≤ t ≤ tn, where
tn is the sequence introduced above. Then, by the same way as for (??), we obtain that

‖u(tn) − u(t)‖L2 ≤ C−1{[Φ(u(t)) − Φ(u)]θ − [Φ(u(tn)) − Φ(u)]θ}.
Fixing t, let tn tend to infinity. Then, in view of (3.7), (4.3) is verified. �

5. Numerical Results

5. Numerical Results
Let us conclude this paper with illustrating some numerical examples. We treat (1.1) in

the square domain Ω = (0, 1)× (0, 1). The coefficients a and μ are fixed as a = 1 and μ = 40,
respectively. We shall choose initial functions as

(5.1) u0(x1, x2) = 0.1[sin(3.14kx1) × sin(3.14x2)], (x1, x2) ∈ Ω,
where k is a positive integer varying from 1 to 4. These are a perturbation of the null
stationary solution u ≡ 0 which is a unique homogeneous stationary solution to (1.1).
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In Figures 1,3,5 and 7 below, the graphs show development of a surface that is determined
by the solution u = u(x1, x2, t) in the 3-dimensional space for (x1, x2, u) at each indicated
time t. As observed, the surface consists of a few waves that a number of ridges (u > 0) and
hollows (u < 0) of almost similar shape line up regularly one after the other.

First, let k = 1 in (5.1). The dynamics of the solution is illustrated by Figure 1. The small
initial perturbation grows into a single wave. The graph of the Lyapunov function is given
by Figure 2. At time about t = 120, the values of the Lyapunov function are stabilized. In
view of Theorem 4.1, this suggests that a final profile of the trajectory may be given by that
of time t = 120.

(a) t = 0 (b) t = 40

(c) t = 80 (d) t = 120

Fig.1. Dynamics for k = 1

Fig.2. Lyapunov function for k = 1

Secondly, let k = 2 in (5.1). As Figure 3 shows, the perturbation grows in this case into
parallel waves. The profile of the solution is stabilized about time t = 180. The graph of the
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(a) t = 0 (b) t = 60

(c) t = 120 (d) t = 180

Fig.3. Dynamics for k = 2

Fig.4. Lyapunov function for k = 2

Lyapunov function is given by Figure 4.
Thirdly, consider the case where k = 3 in (5.1). As seen by Figure 5, the initial pertur-

bation grows into triple waves. Figure 6 illustrates the graph of the Lyapunov function of
trajectory.

Finally, let k = 4 in (5.1). For a while, the small perturbation grows into four waves.
Gradually, the states of four waves become unstable. Ultimately, one wave disappears and
the trajectory converges to a stationary solution whose profile is the same as that of the case
where k = 3, see Figures 7 and 8. Notice that in both cases the profiles of final states admit
18 ridges in each wave.
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(a) t = 0 (b) t = 80

(c) t = 160 (d) t = 240

Fig.5. Dynamics for k = 3

Fig.6. Lyapunov function for k = 3

(a) t = 0 (b) t = 100
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(c) t = 200 (d) t = 300

Fig.7. Dynamics for k = 4

Fig.8. Lyapunov function for k = 4
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[4] R. Chill: The Łojasiewicz-Simon gradient inequality on Hilbert spaces, Proc. 5th European-Maghrebian

Workshop on Semigroup Theory, Evolution Equations and Applications, 2006, 25–36.
[5] R. Dautray and J.L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology,

Vol. 2, Springer-Verlag, Berlin, 1988.
[6] G. Ehrlich and F.G. Hudda: Atomic view of surface self-diffusion: tungsten on tungsten, J. Chem. Phys. 44

(1966), 1039–1049.
[7] H. Fujimura and A. Yagi: Dynamical system for BCF model describing crystal surface growth, Vestnik

Chelyabinsk Univ. Ser. 3 Mat. Mekh. Inform. 10 (2008), 75–88.
[8] H. Fujimura and A. Yagi: Asymptotic behavior of solutions for BCF model describing crystal surface

growth , Int. Math. Forum 3 (2008), 1803–1812.
[9] H. Fujimura and A. Yagi: Homogeneous stationary solution for BCF model describing crystal surface

growth, Sci. Math. Jpn. 69 (2009), 295–302.
[10] M. Graselli, G. Mola and A. Yagi: On the longtime behavior of solutions to a model for epitaxial growth,

Osaka J. Math. 48 (2011), 987–1004.
[11] P. Grisvard: Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985.



706 S. Azizi, G. Mola and A. Yagi

[12] M.D. Johnson, C. Orme, A.W. Hunt, D. Graff, J. Sudijono, L.M. Sauder and B.G. Orr: Stable and unstable
growth in molecular beam epitaxy, Phys. Rev. Lett. 72 (1994), 116–119.
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