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Abstract

This paper continues our study on the initial-boundary value problem for a semilinear para-
bolic equation of fourth order which has been presented by Johnson-Orme-Hunt-Graff-
Sudijono-Sauder-Orr [12] to describe the large-scale features of a growing crystal surface under
molecular beam epitaxy. In the preceding paper [1], we already constructed a dynamical system
generated by the problem and verified that the dynamical system has a finite-dimensional at-
tractor (especially, every trajectory has nonempty w-limit set) and admits a Lyapunov function
(of the form (3.1)). This paper is then devoted to showing longtime convergence of trajectory.
We shall prove that every trajectory converges to some stationary solution as ¢ — oo.

As a matter of fact, we have obtained in [10] the similar result for the equation but under the
Neumann like boundary conditions % = (,%A u = 0 on the unknown function u. In this paper,
we want as in [1] to handle the Dirichlet boundary conditions u = Z—Z = 0, maybe physically
more natural conditions than before.

1. Introduction

We are concerned with the initial-boundary value problem for a fourth order nonlinear
parabolic equation

ou Vu
2—:—A2 - V — — A i Q 09 k)
PP (1+|Vu|2) moax(0.e
1.1
(1.1) w2 _ g on Q% (0, ),
on
u(x, 0) = u(x) in Q,

in a two-dimensional bounded domain Q. Such a problem was presented by Johnson-Orme-
Hunt-Graft-Sudijono-Sauder-Orr[12] in order to describe the growing process of a crystal
surface under molecular beam epitaxy. For the physical backgrounds, see [6, 14, 16, 20],
Here, u = u(x, t) denotes a displacement of surface height from the standard level at position
x € Qand time ¢t > 0.
In the papers [7, 8, 9, 10], we already studied the same equation but under the Neu-
ou

mann like boundary conditions 3 = %Au = 0. In such a case, it is possible to reduce the

fourth order differential operator 4% into a product (—4)? of the negative Laplace operator
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—4 equipped with the usual Neumann boundary conditions which is a positive definite self-
adjoint operator of L,(€2). But these boundary conditions seem to be somewhat artificial. In
this paper, we want to handle the same equation but under the Dirichlet boundary conditions
% = 0. Because of loss of any convenient reductions of the fourth order operator to a
second order one, we have to handle a very fourth order elliptic operator.

In the preceding paper [1], we have already constructed a dynamical system generated
by (1.1) having a finite-dimensional attractor and showed that the dynamical system admits
a Lyapunov function of the form (3.1) whose values are monotone decreasing along trajec-
tories. This paper is then devoted to showing longtime convergence of trajectories to some
stationary solution of (1.1) depending on initial functions. As in [10], we will employ the
theory of L.ojasiewicz-Simon inequality in infinite-dimensional spaces, We cannot, however,
apply this theory to the present problem by any parallel arguments to [10]. Some modifi-
cations are needed. These modifications may be rather significant in the sense that, thanks
to these, one can prove the same longtime convergence of solutions for the Keller-Segel
equations, too. Remember that the Lyapunov function for the Keller-Segel equations also
contains a logarithmic function, see [15].

In proving the longtime convergence for (1.1), the property that A%u € Ly(Q) together with
conditions u = % = 0 on 9Q implies Vi € C(Q) is indispensable for verifying analyticity of
the function u — fQ log(1 + |Vu|*)dx. For this reason, we will assume that Q is a rectangular

domain

u=

(1.2) Q={(x1,x); 0<x; <, 0< x <} (¢; >0and ¢, > 0)

or a C* bounded domain. Then, if A%u € L,(Q) with u = % = 0 on 9Q, then u € H*(Q) and
hence u € CX(Q).

Throughout this paper, Q is a rectangular or C*, bounded domain in R?. The outer normal
vector of boundary at x € 9Q is denoted by n(x). For 1 < p < oo, L,(Q) is the space of real
valued L, functions in Q. For s > 0, H*(Q) is the real Sobolev space in £ with exponent s.
Form=0,1,2,..., C’”(ﬁ) is a space of real valued functions on Q of class C™.

Even when Q is of the from (1.2), one can verify the similar results on the Sobolev spaces
H*(Q) as for the C* domains. In fact, when Q is a bounded domain with Lipschitz boundary,
the trace operator u > uq is defined and is continuous from H'(Q) into L,(9Q) (see [11,
Theorem 1.5.1.3] and notice that H'(Q) = W21 (2)). When Q is a bounded domain with
Lipschitz boundary, there exists a linear operator £ extending functions u in Q to functions
Eu in R? that is continuous from HI’?(Q) into H;”(Rz) for every integer m = 0,1,2,... and
every 1 < p < oo (cf. [21, Theorem 1.33]). This then yields that the Sobolev embedding
theorems in the whole space R? hold true even in the Q. Finally, usual integration by parts
is available even in Q of the from (1.2), because, for any fixed 0 < x, < ¢», the function
u(-, x,) for u € H'(Q) is defined on the interval (0, £,) and hence one can use the integration
by parts for the variable x;. It is the same for the variable x,.
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2. Dynamical System

2.1. Abstract Formulation. We rewrite (1.1) into the form

dt
u(0) = uo,

du
@.1) {—+Au=f(u), 0<t<oo,

in the underlying space X = L,(Q). Here, A is a realization of aA* in Ly(Q) under the
Dirichlet boundary conditions.
In fact, A is defined in the following way. Consider the symmetric sesquilinear form

a(u,v) = afAu - Avdx, u, Ve HS(Q).
Q

Here, Hé(Q) is the closure of C°(€2) (space of infinitely differentiable functions in Q with
compact support) in H*(Q). If u € H3(€), then Vu € H}(Q); consequently, u satisfies % = 0
on 0Q. Since it is clear that u = 0 on 0Q, u € HS(Q) implies that u satisfies the Dirichlet
boundary conditions in (1.1). Furthermore, the convexity of Q2 when Q is given by (1.2), or
the C* regularity of 0Q in the alternative case yields that

lullze < Clldull,, u € H*(Q) N HY(Q).

This shows that the form a(u,v) is coercive on Hg(Q). Consequently, a(u,v) determines
a linear operator A from H}(Q) into H™*(Q) by the formula a(u,v) = (Au, V)2 (see
[5]), where H%(Q) denotes the dual space of HS(Q) and these spaces compose a triplet
H3(Q) C Ly(Q) € H Q).

The operator A thus defined is considered as a realization of a4” in H~2(Q) under the
Dirichlet boundary conditions which is a densely defined, closed operator in H=2() with
domain D(A) = H%(Q). Furthermore, its part in L,(€) denoted by A (= A,) is defined by

02 {D(A) = {u € Hy(Q); Au € Ly(Q)},

Au = Au.

Whence, A is a realization of a4? in L,(Q) under the Dirichlet boundary conditions. It is
easily seen that A is a positive definite self-adjoint operator of L,(£2).

Proposition 2.1. The domain of A given by (2.2) can actually be characterized as D(A) =
HY(Q)N HS(Q). Furthermore,

(2.3) llullgs < CllAullr,, u € D(A).

Proof. If u € H*Q) N H}(Q), then a(u,v) = (ad*u,v) for any v € H}(Q). Therefore,
u € D(A). This shows that it is the case in general that H*(Q) N H}(Q) c D(A). So, what
we have to prove is the converse inclusion H*(Q) N H3(Q) > D(A).

Let us first prove this in the case where ( is rectangular. We use the Fourier expansion
for the function of L,(€2). Any function u € L,(2) can be expanded as a series

(o)
Z . o . nr
u= Uy SIN — X - SIN — X
14 %)
mn=1

with Fourier coefficients u,,, satisfying Y., , [m|* < 0. Then,
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2 212
T (2] ] sin 22k, - sin
in the distribution sense. So, if 4%u € L,(), then there exists a double sequence f;,, satis-
fying 3., |fl* < 00 such that

mr\? mrz_2
umn:l( )+(—)} s 1<m,n< co.

(o]

Nu = Z Upn

mun=1

o %)

This yields that for k = 0,1,2,3,4, DDy u € L,(Q) as may be evident for k = 0,2, 4. For
k=1,3,say k = 1, we have

0 3
mn [ nm mn nm

Dngu = - Z Upyn— | — | cos —x; - cos —x».
0\, 2 0>

myn=1

So, since cos ”;T”xl - COS %xz are mutually orthogonal in €, it is seen that

282
1D\ Diul? 66 > (mr (nr\’|(mn 2+ nm\’ ? ol <
ully, = — — = |l — mnl|” < 00,
e Ty a\e) |\a 6

m,n=1

Furthermore,

D1 D3I, < C > foml® < ClAull,.
m,n=1
Hence, 4%u € L,(Q) implies u € H*(Q).

Second, let us consider the case where Q is a C* bounded domain. In this case, we have to
appeal to a definitive existence result for the higher order elliptic operators. Among others,
the arguments due to Tanabe [17, Section 3.8] are very comprehensible (cf. also [18, Section
5.2]). It is then asserted that for any f € L,(L2), there exists a unique solution u € H*(Q)
for which it holds that #?u = fin Q and u = % — () on IQ together with [[ully+ < ClIfllL,,

on
C > 0 being some constant. Furthermore, since u = % = 0 on 0Q implies u € Hé(Q), we
see that u € H*(Q) N H3(Q) (C D(A)) and Au = f. Then, since A is one-to-one from D(A)
onto L,(Q), D(A) must coincide with H*(Q) N H(Q). o

Proposition 2.2. For the square root A’ of A, it holds true that D(A%) = HS(Q) together
with the estimate

(2.4) lull2 < ClIlAZull,,  u € D(A?).

Proof. Note that a(u, v) is symmetric. It is then known (cf. [21, Theorem 2.34]) that the
domain of the square root of the operator obtained from a symmetric form coincides with its
form domain, i.e., HS(Q). O

By the interpolation of (2.3) and (2.4) (cf. [21, Chapter 16]), it is immediately verified
that for % <6<,

(2.5) D(A%) c HY(Q) N H3(Q).
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On the other hand, for 0 < 0 < %,
D(A%) c H¥(Q).
It also holds true that for any 0 < 6 < 1,
(2.6) llullgso < ClIA Ml u € D(A”).

The nonlinear operator f(u) is defined by
Vu
= V.| —
Ju) = —u (1 " IVuI2)
Au VIVul* - Vu
1+ Vul>  (1+|Vu?)?|

=—H

By direct calculations (as in the proof of [7, Proposition 2]) we observe that

Ilf @) = f@lz, < Clllu = vllg2 + (lulle2 + [lolle2)lwe = vl ]-

In view of the inequality (2.6) (with 6 = le and 6 = %) and the embedding H %(Q) - Cz(ﬁ),
it is verified that

Q7 W) - f)ll, < CHIA = v)llz, + (AT ully, + ATl )IAT (= v)llL, ).

By the theory of abstract semilinear parabolic equations (see [21, Theorem 4.1]), we can
state that, for any uy € D(Aﬁ) C H'(Q), there exists a unique local solution to (2.1) in the
function space:

u € C([0, Ty D(A®)) N C' (0, Ty I; La(€)) N C((O, Ty, ]; D(A)),
T,, > 0 being determined by the norm ||A%u0|| 1, alone.

2.2. Global solutions. In order to extend the local solution constructed above to a global
solution, we show a priori estimate for the local solutions of (2.1). Consider a local solution
u which is defined on interval [0, T,]:

(2.8) u € C([0,T,]: D(AT) N C'((0, T, J; La(€)) N C((0, T, 1; D(A)).
We can then prove the following estimates.

Proposition 2.3. There exist positive constants 6 and C such that, for any local solution
u in the space (2.8), it holds true that

(2.9) AT UL, < e ATugll,, +C,  0<t<T,.
Here, 6 and C are independent of the interval [0, T,;] on which u is defined.

Proof. Consider the inner product of the equation of (2.1) and A%u(t). Then, since % =0
on 09, it follows that

d 1 2 3 2 —Vu
E||A4u(t)”Lz +IATu@Ilz, = —p L [V ' (1 + |Vul?

Vu 1
= ——— |- VAzu(t)d
ﬂjg;(1+|vu|2) 2u(t)dx

)} Az u(t)dx
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JTR
< EHVAZM([)”LZ-
Noting that ||VA%u||L2 < C||A%Lt||L2 and ||A%u||L2 < CIIA%ullLZ, we conclude that
d 1 1
EnAm(r)ni + 0l A u(nllf, < C

with some constant 6 > 0. Solving this differential inequality, we obtain (2.9). |

By the standard arguments we can then construct for any ug € D(A%), a unique global
solution to (2.1) in the function space:

u € C([0,00): D(A$) N C'((0, 0): Ly(€0) N C((0, 00): HH(Q) N HH(Q)).
The global solution u as well satisfies the same estimates
(2.10) AT u@)l, < e ATull, +C, 0 <t<oo,
@2.11) IAu(®)ll, < C(E3 + DlAfugll,,  0<t< oo,

However, as shown in [1] (cf. also [7]), there is a local solution u to (2.1) for any initial
value uy € Ly(€2). Indeed, we can apply [21, Theorem 4.1] again but to the Cauchy problem

dt

d—u+Au:F(u), 0<t< oo,
u(0) = uy,

formulated in the space X = H2(Q). Here, A is the realization of a4?> in H>(Q) with
domain D(A) = Hg(Q), and the nonlinear operator F(u) = —uV - (1+|Vv”u|2) is treated as a
mapping from H(') (Q) into H~'(Q) which is uniformly Lipschitz continuous. By the facts that
D(.A%) = [,(Q) and D(.A%) C H(l)(Q), the condition [21, (4.2)] is fulfilled with exponents
B= % andn = %. Consequently, for any uy € L,(€), there exists a unique local solution such
that

u € C([0, Ty, 1; La(Q) N CH((0, Ty, 1; H2(Q)) N C((0, T, 1; HA(Q)).

Take now time 7y € (0,7,,); then, uy = u(ty) € D(A) = D(A%) - D(Afl»); thereby, we can
extend this local solution to a global one by considering (2.1) under the substituted initial
condition u(ty) = up.

Ultimately, we conclude the following existence result. For any initial function uy €
Lr(Q), (2.1) possesses a unique global solution in the function space:

(2.12) u € C([0, 00); Ly(Q)) N C'((0, 00); Ly(Q)) N C((0, 00); H(Q) N H5(Q)).

For 0 < t < oo, set S(H)ug = u(t;uy), where u(t; up) is the global solution of (2.1) for
initial value uy € Ly(€2). Then, S (¢) defines a family of nonlinear operators acting on L,(£2)
with the semigroup property S(z + s) = S(®)S(s) and S(0) = I. Moreover, the mapping
G : [0, 00) X Lr(Q) — L(Q2) defined by G(t, up) = S (*)up is continuous, i.e., S () is a contin-
uous semigroup on L,(Q). In this way, (2.1) generates a dynamical system (S (¢), L,(Q)).

Let ug € Ly(Q). In view of (2.11), the trajectory {S (f)up; 1 <t < oo} is a bounded subset
of H*(Q). Consequently, it is a relatively compact subset of L,(Q). In particular, its w-limit
set
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w(uy) = {u; It, T oo such that S(t,)uy — u in Lr(Q)}
is a nonempty set. In addition, if S (¢,)uy — u in L,(€2), then it automatically observed that
(2.13) S(t)uy - u in H(Q)
forany 0 < s < 4.
As verified in [1], (S (?), Lo()) has furthermore a finite-dimensional attractor which at-
tracts every trajectory at an exponential rate (cf, [2, 19, 21]).

3. Lyapunov Function

It is already proved by [1] that the following function
1
(3.1 ) = 5 f [aldul® — ulog(1 + [Vul»)]dx,  ue Hj(Q),
Q

becomes a Lyapunov function of our dynamical system (S (), L,(£2)).
In what follows, we will consider @ to be a function from Hg(Q) to R (although ® may
be defined on the whole space H*(Q)). We furthermore handle it in the triplet

(3.2) H3(Q) C Ly(Q) ¢ H(Q) = HY(Q)'.

This section is then devoted to verifying various properties of the derivatives @'(u) €
L(H3(Q),R) = H*(Q) and ©”(u) € LIH*(Q), H*(Q)).

3.1. Differentiability of ®(i). Let us begin with showing differentiability of ®(u).

Proposition 3.1. ®: Hg(Q) — Ris differentiable with the derivative ®'(u) = Au—F(u) €
H™2(Q) foru e HS(Q). Here, F(u) = —uV- (1+\VTMM|2) is a nonlinear operator from Hg(Q) into
H'(Q) (c H(Q)).

Proof. For u, h € Hg(Q), we have
4G + WIIF, = Aull7, = 2(4u, Ah) + (4h, Ah).
Therefore,
(3.3) 4G + WIZ, = Mullf, = 264, hy oy = 4RI,
In the meantime, for a.e. x € ), we have

log({1 + |[V[u(x) + ~()]*} = log{1 + [Vu(x)*}

1
_ f L togl1 + V[u(x) + Bh()IP)do
o do

~ f] 2Vu(x) - Vh(x) + 26|Vh(x)]?
Jo 1+ |VIux) + 6h(x)]P

Moreover, since
1 3 1 B 20Vu(x) - Vh(x) + 8?|Vh(x)|?
1+ |V[u(x) + 0012 1+ [Vu)P {1+ |V[u) + 0h()]PY1 + [Vu(x)]?)’
it follows that
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2Vu(x) - Vh(x)

log{1 +[V[u(x) + h(x)I} ~ log{1 + [Vu()P} - —— Vu(x)P

< C{IVR(x))> + [VR(x)|*).

Therefore, integration in Q yields that

< C{lIVAIlZ, + IVAIlZ, }.

f [log{l + |V(u + )} = log{l + |Vu*} - 2Vu - Vh ] dx
Q

1+ |Vul?
We here use Galiardo-Nireberg’s inequality ([21, Theorem 1.37]) to obtain that
1 1 1 1 1 3
IVAllL, < CIVAI VAN, < CliAll AN, < CllAll, AL,

Hence,

(3.4) ’ fg [log(1 + [V(u + WP} = log{1 + [Vul*}| dx + 2V - (57 ) h}Hle[l)’
< Clihll, (1Rl + N1AIL,)-
Combining (3.3) and (3.4), we conclude that
|D(u + 1) = O(u) = (Au = F(u), ) g2y < CUIARIZ, + allz, (WAl + 1R

This shows that ®(u) is differentiable and the derivative is given by ®'(u) = Au — F(u) for
any u € Hé(Q). m|

On the domain D(A) (C H*(Q)), however, it is possible to observe that ®(u) is differen-
tiable in somewhat weak topology.

Proposition 3.2. If u € D(A), then ' (u) = Au — f(u) € L,(Q). In addition, when the
variable h also runs only in D(A), it holds true that

(3.5 D+ h) = D) = (Au = fw), D] < ClAll, (Wl + 1Al + IAlE,)-

Proof. Since u € D(A) implies Au — F(u) = Au — f(u), the first assertion is obvious. In
addition, for & € D(A), we observe that

147, = (4h, Ah) = (A4, DPENEES (APh, k) < AllgsllAll .-
Hence, (3.5) is also verified. ]
Let ug € Ly(Q2). Let {u(z); 0 < t < oo} be the trajectory starting from uy and w(up) be its

w-limit set. As an immediate consequence of (3.5), we observe that ®(u(t)) is differentiable
for t > 0 with the derivative

(3.6) %(D(u(t)) = —llAu(r) = fu)I,-
Indeed, we apply (3.5) with u = u(¢) and h = u(t + At) — u(t). Then,

O(u(t + A1) — O(u(1)) u(t + At) - u(t))

At

At
u(t + Ar) — u(t)
At

- (Au(t) = fu(),

<C (lllgs + Wll + 1Al[3,0).-

Ly
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As u(t + At) — u(t) — 0 in H*(Q) due to (2.12), we obtain (3.6). Therefore, along the
trajectory u(t), the values of ® are monotone decreasing. Furthermore, if u € w(up), then

3.7) O(@) = lim O(u(z,) = inf  O(u(r).

In particular, @ takes a constant value on the w-limit set w(ug).

It is well known that w(ug) is an invariant set of S (7). Indeed, if u € w(uy), then there
exists #, T oo such that S(t,)uyp — u in Lp(€2). Then, S(t + t,)uy = S@)S(t)uy — S(Hu;
hence S (H)u € w(uy), i.e., S (Hw(up) C w(uy). Conversely, we have S (t,)uy = S()S (t, — Hug
for all ¢#, such that ¢, > t. Since S(z, — f)uy is a relatively compact subset of L,(Q), it is
possible to assume that S (¢, — Huy — v € w(up) in Lr(Q), i.e., u = S(¢)v. This means that
w(ugy) C S(H)w(uy).

For any u € w(up), consider the trajectory S(f)u. As verified, S(H)u € w(up); there-
fore, (3.7) implies that O(S(H)u) = D(u); consequently, %CD(S (Hu) = 0; in particular,
%(I)(S (O)u) = 0. Equality (3.6) then provides that Au — f(u) = 0. By virtue of Proposi-
tion 3.1, this is equivalent to ®’(x) = 0. We have thus verified the following proposition.

Proposition 3.3. For any uy € L,(Q), its w-limit set w(uy) consists of critical points of ®.
In particular, if u € w(ug) then ®' (u) = 0.

Let us next show that ®(u) is twice differentiable.

Proposition 3.4. @’ :HS(Q) — H™2(Q) is Fréchet differentiable with the derivative
O (u) = A — F'(u), where F’'(u) is the Fréchet derivative of F : Hé(Q) — H2(Q) which
was introduced above. Precisely, for u € HS(Q), F'(u) € E(HS(Q), H™%(Q)) is given by

Vh 2(Vu - Vh)Vu
1+ Va2~ (1 + |VuP)?

(3.8) F'(u)h = —uV - ( ) h € HX(Q).

Proof. Noting that V is a bounded linear operator from L,(Q) into H~!(Q), let us consider

%. For u, h € H;(Q), we have
V(u+ h) Vu (1 +|Vu)Vh —2(Vu - VR)Vu — [Vh*Vu
L+ |Vu+hP 1+|Vu? (1 +|V(u+ (A + |Vul?)

Here, as seen before,

1 1 2Vu - Vh + |Vh]?

L+ Vu+h)P? 1+ |Vu]? - (1 +|V(u+hEA +|Vu)

Therefore, it follows that

V(u+h) Vu (1 + |Vul>)Vh — 2(Vu - Vh)Vu ) 3
— — < C(Vh Vh
1+|Vu+hP? 1+|Vul? (1 + |Vul?)? < CUVAF + IVAF),
and hence
V(u+h) B Vu B (1 + |Vul>)Vh — 2(Vu - Vh)Vu
L+ |Vu+mP?  1+|Vu? (1 +|Vul?)? L

< CAIVAIZ, +1IVAI,) < CAlAlG + IAIL,).

This shows the operator u — is Fréchet differentiable from Hg(Q) into L, (Q). m|

Vu
1+[Vul?
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3.2. Gradient Estimates of ®'(u). Let uy € L,(Q) and let u € w(up). As shown by
Proposition 3.3, we know that ®’(u) = 0. The goal of this subsection is to establish the
Lojasiewicz-Simon inequality for ®’(u) at u that plays a crucial role in proving convergence
of u(?) to u. That is, there exists some exponent 0 < 6 < % for which it holds true that

(3.9) I (W)l > DId(u) = ©@)|' ™, u e Uu),

here U(u) denotes a neighborhood of % in HS(Q) and D > 0 is some constant. For this
purpose, we will follow the methods devised by Chill [4] in which the underlying space
must be divided into a sum of the critical manifold and its supplement.

Put L = ®”(u). As verified by Proposition 3.4, L = A — F’(u) is a linear operator from
HS(Q) into H72(Q). As a general result of the calculus of variations (see [3, Théoréme 5.1.1,
p. 65]), or as is directly verified from (3.8), L is a symmetric operator, i.e.,

(3.10) (Lit, V) oy = Ctts Lo gy, u, v € H(Q).

In addition, L is observed to be a Fredholm operator. Indeed, writing L = [/-F’(u).A~ HA,
we rather consider the operator I — K acting on H=2(Q), where K = 7' () A™'. As R(K) C
L,(Q), K is a compact operator of H~2(Q). Therefore, by virtue of the Riesz-Schauder the-
ory, K(I - K) is a finite-dimensional subspace of H~>(Q). In addition, R(/ — K) is a closed
subspace of H~2(Q) with finite-codimension such that dim (I — K) = codim R(I - K) = N.
Since A is an isomorphism from Hé(Q) onto H%(Q), it follows that (L) is a finite-
dimensional subspace of Hg(Q) and R(L) is a closed subspace of H=2(Q) with dim (L) =
codim R(L) = N. That is, L satisfies the conditions of Fredholm operator.

Since KC(L) is a finite-dimensional space, we can regard it as a closed subspace of any
space of triplet HS(Q) C L,(Q) ¢ H%(Q). Furthermore, by the same reason, these topolo-
gies are mutually equivalent. In the arguments below, we may not clarify the topology of
K (L) when it is easily presumed by the contexts.

We introduce the orthogonal projection P: L,(Q) — K(L) in L,(€2). We have a direct
sum L,(Q) = Hy + K(L), where Hy = (I — P)L,(Q) is the orthogonal supplement of X(L)
in L,(€). We notice that P is a bounded operator from Hg(Q) into itself. So, P induces a
projection from Hg(Q) onto X(L) and a topological direct sum Hé(Q) = H, + K(L), where
H, = (- P)HS(Q) is a topological supplement of (L) in HS(Q). On the other hand, it
is easy to see that |Pfl|g-—= < CJ|fllg- for all f € L,(€2). This means that P can be extend
by continuation over the space H2(Q). Clearly, P is a bounded operator from H~2(Q) into
itself and induces a projection from H~2(Q) onto XC(L) which yields another topological
direct sum H2(Q) = H_, + K(L), H., = (I — P)H%(Q) being a topological supplement of
K(L) in H2(Q). It is also clear that P is symmetric in the sense that

(3.11) (Pu, @) 2 = s PQ) s 4 € H(Q), ¢ € HA(Q).

By definition, LP = 0 on Hg(Q); then, (3.10) and (3.11) provide that PL = LP = 0 on
H3(Q); in particular, L = (I — P)L on H}(Q). This concludes that R(L) ¢ H_,. But we
remember that codim R(L) = N = codim H_;. Therefore, R(L) and H_, must coincide and
consequently

(3.12) L must be an isomorphism from H, onto H_j.
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Following [4], we set the critical manifold by
S = {u € H}(Q); (I - P)® (u) = 0}.

Then, S is verified to be a C'-manifold of dimension N in a neighborhood of %. Indeed,
apply the implicit function theorem to the operator G : Hé(Q) — H_; given by G(u, up) =
(I = P)D'(uy + up) for uy € Hr, up € K(L). Then, since D1G(u1,uz) = (I — P)D” (1),
(3.12) yields that DG(u) = Ly, is an isomorphism. So, in a neighborhood of u, S can be
represented as

S ={(g(u2), u2); up € K(L), g: K(L) — H,},

g being a C! mapping defined in a neighborhood of #, € KC(L), where & = 1, + i,.
According to [4, Theorem 2], we can state the following proposition.

Proposition 3.5. Assume that the restriction of ® on S satisfies (3.9) in a subset U N S,
where U is some neighborhood of u in Hé(Q), with exponent 0 € (0, %]. Then, @ itself
satisfies (3.9) in a neighborhood of u in Hé(Q) with the same exponent 6.

The desired inequality (3.9) on S can generally be verified, as mentioned in [4, Corollary
3], from analyticity of the Lyapunov function ®(u). This is, however, not true in the present
case, for the correspondence u — fQ log(1 + [Vu[*)dx is not analytic in H3(€2) due to the fact
that H'(Q) ¢ C(Q). So, we have to utilize upper shifting of spaces.

Let0 < & < % be arbitrarily fixed. We introduce the domains D(A'*) and D(A?).
Naturally, D(A'**) ¢ D(A) = HX(Q) and D(A®) ¢ H*(Q). Since A" = AA®, A is
an isomorphism from D(A'*¥) onto D(A?). Then, by the same reason as before, P is a
bounded operator from D(.A'*#) into itself and induces a topological direct sum D(A'*¢) =
H, . + K(L), where H, . = (I — P)YD(A'*#). Similarly, P is a bounded operator from D(A?)
into itself and induces a topological direct sum D(A®) = H_,. + K(L), where H_,, =
(I = P)D(A?). Obviously, H, . ¢ Hy and H_, . € H_,. We can verify that (3.12) still holds
true in the shifted spaces.

Proposition 3.6. L is an isomorphism from H, . onto H_; .

Proof. As L is a bounded operator from D(A!*#) into D(A?), so is from H,, into D(A?).
So, it suffices to prove that L(H,.) = H_».. Let ¢ € L(H,.); then, ¢ = Luand u = (I — P)v
with some v € D(A'*®); therefore, ¢ = (I — P)Lv € H_»,. Meanwhile, let ¢ € H_,_; then,
¢ = L(I-P)u = Lu with some u € D(A); furthermore, Au = F'(u)u+¢ € D(A?); therefore,
u € D(A"™®) and ¢ = L(I — P)u € L(H,,). O

We furthermore verify analyticity of ®(u) for u € D(A'*9).

Proposition 3.7. ®: D(A'*®) — R is analytic.

Proof. Notice that D(A!*%) = D(A7*%) ¢ H2*¢(Q) due to (2.5). Hence, u € D(A'**)
implies Vi € C(Q). Then, for small variable h € D(A'*%), it is possible to develop

2Vu-Vh + |Vh|2)

2N\ _ 2
log(1 +[V(u+ h)fY) = log(1 + VuP’) + log 1 + ==~
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1! (ZVu -Vh+ |Vh|2)”
n

(&) (_
= log(1 + |[Vul*) + >
; 1+ |Vul

This directly yields analyticity of u — [, log(1 +[Vu[*)dx on D(A'*). o

It is now ready to show the inequality (3.9) on S. We first observe that S actually lies in
D(A'*?). Indeed, if u € S, then @' (1) = PD’(u); therefore, Au = F(u) + PO'(u) € Lr(Q);
hence, by definition, u € D(A) = D(A%). Thus, S = {u € D(A'*®); (I — P)®'(u) = 0}.
As before, S is determined by the operator G : DA — H_,. given by G(uj,uy) =
(I = P)D'(uy + up) for uy € Hrp up € K(L). As we know that D\G(u) = L, is an
isomorphism, S can be represented in a neighborhood of u as

S = {(g(u2), u2); up € K(L), g: K(L) — Hr e}

Now, as @ is analytic, g is also analytic in a neighborhood of u,, where u = u; + u,, which
means that S is an analytic manifold. Remembering that @ is analytic on D(A'*?), we next
apply Lojasiewicz’ classical result [13] in finite-dimensional spaces to ®;s. Then, for some
exponent 8 € (0, %],

10" (w)l|g-> > ClOu) — OG@)|' ™

for u in a neighborhood of # and on §'.
As stated above, Proposition 3.5 thus provides the desired inequality (3.9) in a neighbor-
hood of the whole space Hé(Q) of u.

4. Convergence Results

Let up € L,(Q) and u € w(up). Due to (2.13), there exists a sequence £, T co such that
u(t,) = uin Hé(Q). We can then show that, once the trajectory approaches sufficiently close
to u, it must remain in a neighborhood forever.

Proposition 4.1. Let r > 0 be the radius for which the gradient inequality (3.9) holds
true in the ball B (u; r) and let ty be such that u(ty) € B¥ (@ r). Then, if u(t) € B (u; r)
foreveryt € [ty, T], where T (> ty) is any time, then it holds that

(4.1) llu®) — utn)llgz < ClP(ulty) - O@)]:  foreveryt € [y, Tl,
here C > 0 is a constant independent of T.

Proof. Forty <t < T,
i d1e — av1o-1 i
7 [O(u(D)) — OW)]” = O[D(u(t)) — O(u)] y tq>(u(t))
d
= O[O u(t) — D))" (CD'(M(I)), d—L;(t))

d
= —0[D(u(r)) — O@)]" IO’ u(@)lL, 71:(’)

L,

Here we used the equality %(t) = —Au(t) + f(u(t)) = -0’ (u(?)). By virtue of (3.9),

‘%@(“@) — 0@)]” 2 C[Ou(n) ~ D@ 10" ()|l %(r) %(r)

ch
Ly

Ly
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Integration in [y, t] yields that

[0t - @ - [9ue) - o@) > € [

ds.
L,
Therefore,
"1l du
4.2) IIu(t)—u(tN)Ilesf d_(s) ds
In s Ly

< CH{[D(uty)) — D@’ - [D(u(?) — P@)1%).

Hence, [lu(r) = u(ty)llz, < C™'[®(u(ty)) — ©@)°.
We next apply the estimate

1 1
iz < CllAully llull;,, — u € D(A),

(which follows from (2.4)) to u(t) — u(ty). Then, in view of (2.11), we conclude (4.1). O

Choose a time ty so that ||u(ty) — ﬁ||yg < 5 and C[D(u(ty) - @(ﬁ)]g < 3, here C is the
constant obtained in (4.1). Then, if u(¢) € B (u;r) for every t € [ty, T], T (= ty) being any
time, then

la(e) = Tl < laCe) = wCewly + ) = il
—q _ 2r
< ClO(u(ty)) = P)]> + |lu(ty) — ullp < 3
2
ie.,u(t) e B (u; Z) for ty < t < T. This means that the trajectory staring from uj is trapped

in BH (u; r) for all £ > ty.
We now arrive at the main result.

Theorem 4.1. Let uy € L,(Q) and u € w(ug). Let ty be the time chosen above. Then,
4.3) llu(t) = ullr, < ClDO(u(r)) — (ID(E)]H for every t € [ty, ).

Proof. We already know that, for all 7y <t < oo, u(t) € BH; (u; ). So, the same argument
as in the proof of Proposition 4.1 is available to u(¢) for every ¢ > ty. Let ty <t < t,,, where
t, is the sequence introduced above. Then, by the same way as for (??), we obtain that

lu(t,) — u(®)llz, < CH{IDw(D) — D@1’ — [D(u(t,)) — ©@)]%).

Fixing 1, let #, tend to infinity. Then, in view of (3.7), (4.3) is verified. m]

5. Numerical Results

Let us conclude this paper with illustrating some numerical examples. We treat (1.1) in
the square domain Q = (0, 1) x (0, 1). The coefficients a and u are fixed as a = 1 and u = 40,
respectively. We shall choose initial functions as

(5.1) uo(x1, X2) = 0.1[sin(3.14kx) X sin(3.14x2)],  (x1,2%) € Q,

where k is a positive integer varying from 1 to 4. These are a perturbation of the null
stationary solution u = 0 which is a unique homogeneous stationary solution to (1.1).
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In Figures 1,3,5 and 7 below, the graphs show development of a surface that is determined
by the solution u = u(xy, xp,¢) in the 3-dimensional space for (x;, x,, u#) at each indicated
time 7. As observed, the surface consists of a few waves that a number of ridges (u > 0) and
hollows (1 < 0) of almost similar shape line up regularly one after the other.

First, let k = 1 in (5.1). The dynamics of the solution is illustrated by Figure 1. The small
initial perturbation grows into a single wave. The graph of the Lyapunov function is given
by Figure 2. At time about + = 120, the values of the Lyapunov function are stabilized. In
view of Theorem 4.1, this suggests that a final profile of the trajectory may be given by that
of time t = 120.

(©)r=380 ) r=120

Fig.1. Dynamics for k = 1

-002

-003

00

-005

~006

-0

=008

Fig.2. Lyapunov function for k = 1

Secondly, let k = 2 in (5.1). As Figure 3 shows, the perturbation grows in this case into
parallel waves. The profile of the solution is stabilized about time # = 180. The graph of the
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(c)t=120

=002

-0 |

Fig.3. Dynamics for k = 2

(d)r=180

L L . L " . P
0 i 60 L1 (1] 1 un 158 180 o

Fig.4. Lyapunov function for k = 2

Lyapunov function is given by Figure 4.
Thirdly, consider the case where k = 3 in (5.1). As seen by Figure 5, the initial pertur-
bation grows into triple waves. Figure 6 illustrates the graph of the Lyapunov function of

trajectory.

703

Finally, let £ = 4 in (5.1). For a while, the small perturbation grows into four waves.
Gradually, the states of four waves become unstable. Ultimately, one wave disappears and
the trajectory converges to a stationary solution whose profile is the same as that of the case
where k = 3, see Figures 7 and 8. Notice that in both cases the profiles of final states admit

18 ridges in each wave.
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(c)t =160 (d) r =240

Fig.5. Dynamics for k = 3
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Fig.6. Lyapunov function for k = 3

(@t=0 (b) t =100
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A '-“'"}?'m'iﬁli; I .'-Jlih' i

(c) t =200 (d) t =300

Fig.7. Dynamics for k = 4

085 \
086 \
087 ~~—
T
—
e W6 0 B0 1 FIC ]

Fig.8. Lyapunov function for k = 4
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