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Abstract
It is proved if an irreducible, strong Feller symmetric Markov process possesses a tightness

property, then its semi-group is an L2-compact operator. In this paper, applying this fact, we
prove probabilistically the compactness of Dirichlet-Laplacians and Schrödinger operators.

1. Introduction

1. Introduction
Let E be a locally compact separable metric space and m a positive Radon measure on

E with full support. Let X be an m-symmetric Markov process on E. We assume that
X is irreducible and has strong (resolvent) Feller property. Moreover, we assume that X
possesses the tightness property, i.e., for any ε > 0 there exists a compact set K such that
supx∈E R11Kc(x) ≤ ε. Here R1 is the 1-resolvent of X and 1Kc is the indicator function of the
complement of K. When X has these properties, we say in this paper that X belongs to Class
(T). One of the authors proved in [14] that if X belongs to Class (T), its semi-group turns out
to be a compact operator on L2(E; m) (Theorem 2.1). In this paper, we apply this criterion to
Dirichlet Laplacians ΔD and Schrödinger operators Δ − V with positive potential and show
probabilistically the compactness of these operators.

Let X = (Px, Bt) be the Brownian motion on Rd and XD the absorbing Brownian motion
on a domain D. We then prove that if D ⊂ Rd satisfies limx∈D,|x|→∞m(D ∩ B(x, 1)) = 0,
then XD is in Class (T) and consequently its semi-group is compact. Here m denotes the
Lebesgue measure and B(x,R) the ball centered at x with radius R. If x is the origin 0, we
write B(R) for B(0,R).

We denote by B0 the set of Borel sets B such that lim|x|→∞m(B ∩ B(x, 1)) = 0. In
[8], a Borel set in B0 is said to be thin at infinity. Let V be a positive Borel function on
R

d locally in the Kato class. Let XV = (PV
x , Bt) be the subprocess defined by PV

x (dω) =
exp

(
− ∫ t

0 V(Bs(ω))ds
)
Px(dω). We show that if the set DM := {x ∈ Rd | V(x) ≤ M} belongs

to B0 for any M > 0, then XV is in Class (T) and its semi-group, Schrödinger semi-group of
−Δ+V , is compact. This fact is proved in [11], [8] analytically, while it is done in this paper
probabilistically; the key to the proof of this fact is to show that the condition on V implies
the tightness property of XV .
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We apply Theorem 2.1 to time changed processes. Let X be an irreducible symmetric
Markov process with strong Feller property. We assume, in addition, that X is transient. We
then see that for a Green-tight measure μ with full fine support, the time-changed process X̌
by Aμt , the positive continuous additive functional in the Revez correspondence to μ, belongs
to Class (T). As a results, the space (F̌, ̌1 = (̌ + ( , )μ)) is compactly embedded in L2(E; μ),
where (̌ , F̌) is the Dirichlet form generated by X̌. Moreover, let (Fe, ) be the extended
Dirichlet space (Fe, ) associated with X, which turns out to be a Hilbert space under the
condition for X being transient. We then see that Fe is identical with F̌,  is equivalent to
̌1 and thus (Fe, ) is compactly embedded in L2(E; μ). Therefore, we can conclude that for
any Green-tight measure μ, the extended Dirichlet space (Fe, ) is compactly embedded in
L2(E; μ). This fact says that if μ is Green-tight with respect to 1-resolvent, then (F, 1 =

( + ( , )m)) is compactly embedded in L2(E; μ).
Applying this result to the Brownian motion, we see that if B ∈ B(Rd) satisfies that the

measure 1Bdx is Green-tight, then 1-order Sobolev space H1(Rd) is compactly embedded in
L2(Rd; 1Bdx). We see from [4, Lemma 6.11] that for a domain B, this is also necessary.

2. Preliminaries

2. Preliminaries
Let E be a locally compact separable metric space, EΔ = E ∪ {Δ} the one point com-

pactification of E, and m a positive Radon measure on E with full support. Let X =
(Ω,F, {Ft}t≥0, Xt, Px, ζ) be an m-symmetric Borel right process having left limits on (0, ζ).
Here ζ is the lifetime ζ(ω) = inf{s ≥ 0 | Xs(ω) = Δ} and Ω is specifically taken to be
the space of all right continuous functions from [0,∞] into EΔ with ω(t) = Δ for any
t ≥ ζ(ω) = inf{s ≥ 0 | w(s) = Δ} and ω(∞) = Δ. The random variable ζ is called the
lifetime which can be finite and Xt is defined by Xt(ω) = ω(t) for ω ∈ Ω, t ≥ 0. {Ft}t≥0 is the
minimal (augmented) admissible filtration.

Let {pt}t≥0 be the semi-group of X, pt f (x) = Ex( f (Xt)). By Lemma 1.4.3 in [5], {pt}t≥0

uniquely determines a strongly continuous Markovian semi-group {Tt}t≥0 on L2(E; m). We
define the Dirichlet form ( ,()) on L2(E; m) generated by X:

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
F =

{
u ∈ L2(E; m) | lim

t→0

1
t

(u − Ttu, u)m < ∞
}

(u, v) = lim
t→0

1
t

(u − Ttu, v)m for u, v ∈ F.

We denote by Fe the family of m-measurable functions u on X such that |u| < ∞ m-a.e. and
there exists an -Cauchy sequence {un} of functions in F such that limn→∞ un = u m-a.e.
We call Fe the extended Dirichlet space of ( ,F). Every u ∈ Fe has a quasi-continuous
version ũ ([5, Theorem 2.1.3]). In the sequel, we always assume that every function u ∈ Fe

is represented by its quasi-continuous version.
Let us denote by {Rα}α>0 the resolvent of X,

Rα f (x) = Ex

(∫ ∞

0
e−αt f (Xt)dt

)
, f ∈ Bb(E),

where Bb(E) is the space of bounded Borel functions on E. We now make three assumptions
on X:
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I. (Irreducibility) If a Borel set A is pt-invariant, i.e.,
∫

A pt1Acdm = 0 for any t > 0,
then A satisfies either m(A) = 0 or m(Ac) = 0. Here 1Ac is the indicator function of
the complement of A.

II. (Resolvent Strong Feller Property) Rα(Bb(E)) ⊂ Cb(E), α > 0, where Cb(E) is the
space of bounded continuous functions.

III. (Tightness Property) For any ε > 0, there exists a compact set K such that
supx∈E R11Kc(x) ≤ ε. Here 1Kc is the indicator function of the complement of K.

We here say that a Markov process belongs to Class (T) if it possess the properties I, II, III.

Remark 2.1. (i) If R11 ∈ C∞(E), then X is explosive and satisfies the assumption
III. In fact, it follows from the maximum property that

sup
x∈E

R11Kc(x) = sup
x∈Kc

R11Kc(x) ≤ sup
x∈Kc

R11(x).

Here C∞(E) is the set of continuous functions vanishing at infinity.
(ii) If C∞(E) is invariant under R1, R1(C∞(E)) ⊂ C∞(E), then R11 ∈ C∞(E) is equiv-

alent to III. In fact, assume III. For a compact set K, take a positive function g ∈
C∞(E) such that 1K ≤ g. We then see from the invariance of C∞(E) that 0 ≤
limx→∞ R11K(x) ≤ limx→∞ R1g(x) = 0. Hence for any ε > 0 there exists a compact
set K such that

lim sup
x→∞

R11(x) ≤ lim sup
x→∞

R11K(x) + lim sup
x→∞

R11Kc(x) ≤ sup
x∈E

R11Kc(x) ≤ ε,

which implies R11 ∈ C∞(E). Hence, if C∞(E) is invariant under R1 and X is con-
servative, R11 = 1, then X does not have the tightness property, in particular, the
Ornstein-Uhlenbeck process does not.

(iii) Assume that m is finite, m(E) < ∞ and that {pt}t≥0 is ultra-contractive, ‖pt‖1,∞ =
ct < ∞ for any t > 0. Here ‖ · ‖1,∞ is the operator norm from L1(E; m) to L∞(E; m).
Note that ct is non-increasing because ‖pt‖1,∞ ≤ ‖ps‖1,∞ · ‖pt−s‖∞,∞ ≤ ‖ps‖1,∞ for
0 < s < t. We then see that X has the tightness property III. Indeed, for any δ > 0
and a compact set K ⊂ Rd

R11Kc(x) ≤
∫ δ

0
e−t pt1Kc(x)dt +

∫ ∞

δ

e−t pt1Kc(x)dt ≤ (1 − e−δ) + cδ · m(Kc).

Hence for any ε > 0 ‖R11Kc‖∞ < ε, if δ > 0 and a compact set K satisfy 1−exp(−δ) <
ε/2 and cδ · m(Kc) < ε/2.

It follows from the assumption II that the resolvent kernel is absolutely continuous with
respect to m,

Rβ(x, dy) = Rβ(x, y)m(dy), for each α > 0, x ∈ E.

As a result, the transition probability pt(x, dy) is also absolutely continuous with respect
to m,

pt(x, dy) = pt(x, y)m(dy) for each t > 0, x ∈ E

([5, Theorem 4.2.4]). By [5, Lemma 4.2.4] the density Rβ(x, y) is assumed to be a non-
negative Borel function such that Rβ(x, y) is symmetric and β-excessive in x and in y. Under
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the absolute continuity condition, “quasi-everywhere” statements are strengthened to “ev-
erywhere” ones.

One of the authors proved the next theorem ([14, Theorem 4.1]).

Theorem 2.1 ([14]). If a Markov process X is in Class (T ), then its semi-group pt is
compact on L2(E; m).

We denote by S 00 the set of positive Borel measures μ such that μ(E) < ∞ and R1μ(x)(=∫
E R1(x, y)μ(dy)) is uniformly bounded in x ∈ E. A positive Borel measure μ on E is said to

be smooth if there exists a sequence {En}∞n=1 of Borel sets increasing to E such that 1En · μ ∈
S 00 for each n and

Px

(
lim
n→∞σE\En ≥ ζ

)
= 1, ∀x ∈ E,

where σE\En is the first hitting time of E \ En. The totality of smooth measures is denoted
by S 1.

If an additive functional {At}t≥0 is positive and continuous with respect to t for eachω ∈ Ω,
it is said to be a positive continuous additive functional (PCAF in abbreviation). By [5, The-
orem 5.1.7]1, there exists a one-to-one correspondence between positive smooth measures
and PCAF’s (Revuz correspondence): for each smooth measure μ, there exists a unique
PCAF {At}t≥0 such that for any positive Borel function f on E and γ-excessive function h
(γ ≥ 0), that is, e−γt pth ≤ h,

(2.2) lim
t→0

1
t
Eh·m

(∫ t

0
f (Xs)dAs

)
=

∫
E

f (x)h(x)μ(dx).

Here Eh·m( · ) = ∫
E Ex( · )h(x)m(dx). We denote by Aμt the PCAF corresponding to the smooth

measure μ.
We now introduce two classes of positive smooth measures which play a crucial role.

Definition 2.1. (i) A positive measure μ ∈ S 1 is said to be in the Kato class (in
notation, μ ∈ ), if

lim
β→∞ sup

x∈E

∫
E

Rβ(x, y)dμ(y) = 0.

A positive measure μ ∈ S 1

(ii) Suppose X is transient. A measure μ ∈  is said to be Green-tight (in notation,
μ ∈ ∞(R)), if for any ε > 0 there exists a compact set K such that

sup
x∈E

∫
Kc

R(x, y)dμ(y) ≤ ε.

If the measure μ(dx) = V(x)m(dx) is in  (resp. ∞), we also denote V ∈  (resp. ∞).

Note that if X is transient, then (Fe, ) is a Hilbert space. The next theorem is proved by
Stollmann-Voigt [13].

1In [5], the measure μ (resp. PCAF At) is said to be a smooth measure in the strict sense (resp. a PCAF in
the strict sense). We treat only smooth measures in the strict sense and PCAF’s in the strict sense, and omit the
term “in the strict sense”.
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Theorem 2.2. For μ ∈ ∞(R)

(2.3)
∫

E
u2(x)μ(dx) ≤ ‖Rμ‖∞ · (u, u), u ∈ Fe.

Here, Rμ(x) =
∫

E R(x, y)dμ(y).

Note that ‖Rμ‖∞ is finite by [2, Proposition 2.2]. Let X̌ = (P̌, X̌t) be the time-changed
process, that is, P̌x = Px, X̌t = Xτt , τt = inf{s > 0 : Aμs > t}. Define

F = {x ∈ X : Px(τ0 = 0) = 1}.
We call F the fine support of μ. Note that the 0-resolvent Ř of X̌ is written as

Ř f (x) =
∫

F
R(x, y) f (x)dμ(x), f ∈ L2(F; μ),

We then see from (2.3) that for μ ∈ ∞(R), (Fe, ) is continuously embedded in L2(E; μ)
and so Ř is a bounded operator on L2(F; μ).

Theorem 2.3 ([14]). Assume that a Markov process X satisfies I and II. If X is transient,
then for μ ∈ ∞(R), (Fe, ) is compactly embedded in L2(E; μ).

Theorem 2.3 is an extension of Theorem 2.1. Indeed, (F, 1) is a transient regular Dirich-
let space and its extended Dirichlet space equals (F, 1). Notice that the 1-resolvent R1 is
identical with the 0-resolvent of (F, 1). We then see from Theorem 2.3 that if μ is Green-
tight with respect to the 1-resolvent R1 (in notation, μ ∈ ∞(R1)), then (F, 1) is compactly
embedded in L2(E; μ). It is known in [2, Theorem 4.2] that if X is in Class (T), then m
belongs to ∞(R1). We then obtain Theorem 2.1 because the semi-group pt is compact if
and only if (F, 1) is compactly embedded in L2(E; m).

Corollary 2.1. Assume that a Markov process X satisfies I and II. If μ is a smooth measure
in ∞(R1), then (F, 1) is compactly embedded in L2(E; μ). In particular, if X is in Class
(T ), (F, 1) is compactly embedded in L2(E; m).

Theorem 2.3 and Corollary 2.1 tell us that the 0-resolvent and 1-resolvent of X̌ define
compact operators on L2(F; μ) respectively.

3. Dirichlet Laplacian

3. Dirichlet Laplacian
In this section, we deal with the Brownian motion X = (Px, Bt) on Rd and give, as an

application of Theorem 2.1, a sufficient condition for the compactness of semi-groups of
Dirichlet-Laplacians.

Lemma 3.1. Let pt be the semi-group of the Brownian motion. Then

‖pt‖p,∞ ≤ C
td/(2p) , p ≥ 1,

where ‖ · ‖p,∞ is the operator norm from Lp(Rd) to L∞(Rd).

Proof. Note that for f ∈ Lp(Rd),

|pt f (x)| ≤ (pt| f |p(x))1/p.
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Hence we have, on account of ‖pt‖1,∞ ≤ C/td/2

‖pt f ‖∞ ≤ ‖pt| f |p‖1/p∞ ≤ ‖pt‖1/p1,∞ · ‖| f |p‖1/p1 = ‖pt‖1/p1,∞ · ‖ f ‖p ≤
C

td/(2p) · ‖ f ‖p.
�

Let  the set of domains in Rd. We set

0 =

{
D ∈  | lim

x∈D,|x|→∞
m(D ∩ B(x, 1)) = 0

}
,

where m denotes the Lebesgue measure on Rd.
Denote by τB be the first exit time from a Borel set B, τB = inf{t > 0 | Bt � B}.
Lemma 3.2. If a domain D belongs to 0, then limx∈D,|x|→∞ pD

t 1(x) = 0 for any t > 0.

Proof. Note that for t > 0∫ t

0
1D∩B(x,1)c(Bs)ds ≤

∫ t

0
1B(x,1)c(Bs)ds ≤ (t − τB(x,1))+

(a+ = a ∨ 0) and that

{τD > t} ⊂
{∫ t

0
1D(Bs)ds = t

}
.

We then have for any 0 < ε < t

Px(τD > t) ≤ Px

(∫ t

0
1D∩B(x,1)(Bs)ds ≥ ε

)
+ Px

(∫ t

0
1D∩B(x,1)c(Bs)ds ≥ t − ε

)

≤ Px

(∫ t

0
1D∩B(x,1)(Bs)ds ≥ ε

)
+ Px

(
(t − τB(x,1))+ ≥ t − ε) .

By Lemma 3.1

Ex

(∫ t

0
1D∩B(x,1)(Bs)ds

)
≤

∫ t

0

C
sd/(2p) ds · m(D ∩ B(x, 1))1/p,

and
∫ t

0 1/sd/(2p)ds < ∞ for p > d/2. Hence the right-hand side above tends to 0 as |x| → ∞
in D by the assumption on D, and thus

lim
x∈D,|x|→∞

Px

(∫ t

0
1D∩B(x,1)(Bs)ds ≥ ε

)
= 0.

Noting that Px
(
(t − τB(x,1))+ ≥ t − ε) = P0(τB(1) ≤ ε), we have

lim sup
x∈D,|x|→∞

pD
t 1(x) = lim sup

x∈D,|x|→∞
Px(τD > t) ≤ P0(τB(1) ≤ ε)→ 0

as ε→ 0. �

From Lemma 3.2, we immediately obtain the next corollary.

Corollary 3.1. If a domain D belongs to 0, then limx∈D,|x|→∞ RD
1 1(x) = 0.

Lemma 3.3. If a domain D belongs to 0, then the absorbing BM on D is in Class (T ).
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Proof. The irreducibility I and the resolvent strong Feller property II follow from [5,
Exercise 4.6.3] and [3, Theorem 2.2] respectively.

Note that for a compact subset K of D

RD
1 1Kc = RD

1 1B(R)c∩Kc + RD
1 1B(R)∩Kc ≤ RD

1 1B(R)c∩Kc + R11D∩B(R)∩Kc .

We see that by the maximum principle

sup
x∈D

RD
1 1B(R)c∩Kc(x) = sup

x∈D∩B(R)c
RD

1 1B(R)c∩Kc(x) ≤ sup
x∈D∩B(R)c

RD
1 1(x)

and that by Corollary 3.1 the right-hand side above tends to 0 as R → ∞. Hence, for any
ε > 0 there exists R > 0 such that supx∈D RD

1 1B(R)c∩Kc(x) ≤ ε/2 for any compact subset
K ⊂ D.

Let {Kn}∞n=1 be an increasing sequence of compact subsets of D ∩ B(R) such that
limn→∞m(D ∩ B(R) ∩ Kc

n) = 0. Then by using the maximum principle again

lim
n→∞ sup

x∈D
R11D∩B(R)∩Kc

n (x) = lim
n→∞ sup

x∈Rd
R11D∩B(R)∩Kc

n (x) = 0.

Hence, supx∈D R11D∩B(R)∩Kc
n (x) ≤ ε/2 for a large n. Therefore, the tightness property III of

the absorbing BM on D is proved. �

We now obtain the next corollary as an application of Theorem 2.1.

Corollary 3.2. If a domain D belongs to 0, then the semi-group of the Dirichlet Lapla-
cian on D is compact.

4. Compact Embedding of the Sobolev Spaces

4. Compact Embedding of the Sobolev Spaces
At the first part of this section, the 1-resolvent is associated with the d-dimensional Brow-

nian motion.
We set

B0 =

{
B ∈ B(Rd) | lim

|x|→∞
m(B ∩ B(x, 1)) = 0

}
.

Note that for B ∈ B0

(4.1) lim
|x|→∞

m(B ∩ B(x,R)) = 0, ∀R > 0.

The 1-resolvent kernel of the d-dimensional Brownian motion (d ≥ 3) has the following
bound ([9, Theorem 6.23])2:

R1(x, y) 


⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1

|x − y|d−2 , |x − y| ≤ 1,

e−
√

2|x−y|

|x − y|(d−1)/2 , |x − y| ≥ 1.

Lemma 4.1. B belongs to B0 if and only if mB(•)(= m(B ∩ •)) is in ∞(R1).

2For positive functions f (z) and g(z) on some set Z, we write f 
 g if there exists a positive constant C such
that C−1 ≤ f (z)/g(z) ≤ C, ∀z ∈ Z.
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Proof. Suppose B ∈ B0. For R > l > 1

B1 = B(R)c ∩ B(x, l) ∩ B, B2 = B(R)c ∩ B(x, l)c ∩ B.

Since B(R)c ∩ B(x, l) = ∅ for x ∈ B(R − l), we have

R11B(R)c∩B(x) ≤ C1

∫
B1

1
|x − y|d−2 dy +C2

∫
B2

e−
√

2|x−y|

|x − y|(d−1)/2 dy

≤ C1 sup
x∈B(R−l)c

∫
B(x,l)∩B

1
|x − y|d−2 dy +C2

∫
B(x,l)c

e−
√

2|x−y|

|x − y|(d−1)/2 dy.

For any ε > 0, the second term of the right-hand side is less than ε/2 for a large l, and the
first term is less than ε/2 for a large R because B ∈ B0. Hence mB belongs to ∞(R1).

Suppose mB ∈ ∞(R1). Then for x ∈ B(R + 1)c∫
B(R)c

R1(x, y)mB(dy) ≥
∫

B(R)c∩B∩B(x,1)
R1(x, y)dy ≥ c1

∫
B∩B(x,1)

1
|x − y|d−2 dy

≥ c1m(B ∩ B(x, 1)),

and thus

lim sup
R→∞

sup
|x|≥R+1

m(B ∩ B(x, 1)) ≤ lim
R→∞ sup

x∈Rd

∫
B(R)c

R1(x, y)mB(dy) = 0.

�

We obtain the next corollary from Corollary 2.1.

Corollary 4.1. If B ∈ B0, then H1(Rd) is compactly embedded in L2(B).

Corollary 4.1 is known (cf. [4, Chapter X, Lemma 6.11, Lemma 6.12]). Moreover, it is
shown in [4, Lemma 6.11] that the condition for an open set D being in B0 is a necessary and
sufficient one for H1(Rd) being compactly embedded in L2(D). Hence we can summarize as
follows:

Theorem 4.1. Let D be a domain of Rd. The following statements are equivalent.

(i) D ∈ B0;
(ii) mD ∈ ∞(R1);

(iii) H1(Rd) is compactly embedded in L2(D).

4.1. Existence of Ground States.
4.1. Existence of Ground States. In the sequel, let us consider the symmetric α-stable

process on Rd, the Lévy process with generator −(−Δ)α/2, 0 < α ≤ 2, and denote it by
Xα = (Px, Xt). We suppose, in addition, the transience of Xα, d > α. The Dirichlet form
( , ) of Xα on L2(Rd) is expressed by


α(u, v) =

1
2

�
Rd×Rd

(u(y) − u(x))(v(y) − v(x))
Ad,α

|x − y|d+α dxdy,  = Hα/2(Rd),

where Hα/2(Rd) is the Sobolev space of order α/2 and

Ad,α =
α · 2α−1Γ(α+d

2 )

π
d
2Γ(1 − α2 )

, Γ(s) :=
∫ ∞

0
xs−1e−xdx.
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The transition density of Xα, p(t, x, y), satisfies

p(t, x, y) 
 t−
d
α ∧ t
|x − y|d+α ,(4.2)

and the 1-resolvent density R1(x, y)

R1(x, y) 

∫ |x−y|α

0
e−t t
|x − y|d+α dt +

∫ ∞

|x−y|α
e−tt−

d
α dt.

The first trem of the right-hand side above equals

1 − (1 + |x − y|α)e−|x−y|α
|x − y|d+α 


⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

|x − y|d−α , |x − y| ≤ 1,

1
|x − y|d+α , |x − y| ≥ 1,

and the second term is less than

e−|x−y|
α

∫ ∞

|x−y|α
t−

d
α dt =

α

d − α
e−|x−y|α

|x − y|d−α .

We then see that

(4.3) R1(x, y) 


⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

|x − y|d−α , |x − y| ≤ 1,

1
|x − y|d+α , |x − y| ≥ 1.

For V ∈ B+(Rd) let

M(r) = ess sup
x∈B(r)c

V(x)

and set

 =

{
V ∈ B+(Rd) | lim

|x|→∞
‖V1B(x,1)‖1 = 0, ∃r0 > 0 s.t. M(r0) < ∞

}
.

Corollary 4.2. If V is in  ∩, then V belongs to ∞(R1). In particular, if B ∈ B(Rd) is
in B0, then Hβ(Rd), 0 < β ≤ 1 is compactly embedded in L2(B).

Let

Vγ(x) =
1
|x|γ ∧ 1, γ > 0.

Lemma 4.2. Let R be the Green function of the transient symmetric α-stable process,
R(x, y) 
 1/|x − y|d−α. Then Vγ belongs to ∞(R) if and only if γ > α.

Proof. If γ > α, then Vγ ∈ ∞(R). Indeed, take p so that d/α > p > d/γ and let
q = p/(p − 1). For R > 1 > ε > 0∫

{|y|≥R}∩{|y−x|≥ε}
1

|x − y|d−α
1
|y|γ dy ≤

(∫
{|y−x|≥ε}

1
|x − y|(d−α)q

)1/q (∫
{|y|≥R}

1
|y|γp dy

)1/p

= ω1

(∫ ∞

ε

1
r(d−α)q−d+1 dr

)1/q (∫ ∞

R

1
rγp−d+1 dr

)1/p

.
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Since (d − α)q − d + 1 = (d − αp)/(p − 1) + 1 > 1 and γp − d + 1 > 1, the right hand side
tends to 0 as R→ ∞. Hence

lim sup
R→∞

sup
x∈Rd

∫
{|y|≥R}

1
|x − y|d−αVγ(y)dy ≤ sup

x∈Rd

∫
{|y|≥R}∩{|y−x|≤ε}

1
|x − y|d−αVγ(y)dy.

Since

lim
ε→0

sup
x∈Rd

∫
{|y|≥R}∩{|y−x|≤ε}

1
|x − y|d−αVγ(y)dy ≤ lim

ε→0
sup
x∈Rd

∫
{|y−x|≤ε}

1
|x − y|d−α dy = 0,

we have

lim
R→∞ sup

x∈Rd

∫
{|y|≥R}

1
|x − y|d−αVγ(y)dy = 0.

For γ ≤ α

sup
x∈Rd

∫
{|y|≥R}

1
|x − y|d−αVγ(y)dy ≥

∫
{|y|≥R}

1
|y|d−α

1
|y|γ dy

= ω1

∫ ∞

R

1
rγ−α+1 dr = ∞,

and thus Vγ � ∞(R). �

For any γ > 0, Vγ belongs to ∩ and so to ∞(R1) by Corollary 4.2. The lemma above
tells us that ∞(R) is strictly included in ∞(R1).

We see that for α < γ ≤ d, Vγ is in ∞(R) with
∫
Rd Vγ(x)dx = ∞. Combining Theorem

2.3 with Lemma 4.2, we see that if γ > α, then the extended Dirichlet space Hα/2e (Rd) is
compactly embedded in L2(Rd; Vγdx). However, we see that the embedding is not compact
if γ = α. Indeed, we see from Hardy’s inequality,∫

Rd
u2(x)

1
|x|α dx ≤ C

α(u, u)

that Hα/2e (Rd) is continuously embedded in L2(Rd; Vαdx). In other words, the 0-order resol-
vent operator Ř of the time-changed process by

∫ t
0 Vα(Xs)ds,

Řα f (x) = R(Vα f )(x)

is a bounded operator on L2(Rd; Vαdx) and so is

Tα f (x) :=
∫
Rd

Kα(x, y) f (y)dy, Kα(x, y) =

√
Vα(x)Vα(y)
|x − y|d−α

on L2(Rd) because of the unitary equivalence between Řα and Tα. Moreover, the compact
embedding of Hα/2e (Rd) into L2(Rd; Vαdx) is equivalent to the compactness of the operator
Tα on L2(Rd). The kernel Kα is called the Birman-Schwinger Kernel (cf. [12, Section 7.9]).
Note that the time changed operator Ř can be defined for a smooth measure μ by Rα( fμ);
however, Tα cannot be defined because the root of measure μ has no meaning.

Let ϕ0 = 1B(2)\B(1) and define

ϕn(x) = 2−
d(d−α)

2 nϕ0(2−(d−α)nx).
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Then we can check that ‖ϕn‖2 = ‖ϕ0‖2, ϕn converges L2-weakly to 0, and

(ϕn, Tαϕn) =
�

1≤|x|≤2,1≤|y|≤2

1
|x|α/2|x − y|d−α|y|α/2 dxdy.

If Tα is compact, then Tαϕn converges L2-strongly to 0 and (ϕn, Tαϕn) converges to 0 as
n→ ∞, which is contradictory. Hence, we have the next proposition.

Proposition 4.1. Suppose d > α. The extended Dirichlet space Hα/2e (Rd) is compactly
embedded in L2(Rd; Vγdx) if and only if γ > α.

Using Corollary 2.1, we show existence of ground states of Schrödinger operators. There
exists a decreasing function g on [0,∞) and R1(x, y) is written as

R1(x, y) = g(|x − y|).
and for V ∈  ∩ L1(Rd)∫

Rd
R1(x, y)V(y)dy =

∫
|x−y|≤ε

g(|x − y|)V(y)dy +
∫
|x−y|>ε

g(|x − y|)V(y)dy(4.4)

≤ k(ε) + g(ε)‖V‖1,
where

k(ε) = sup
x∈Rd

∫
|x−y|≤ε

g(|x − y|)V(y)dy.

It is known in [1] that

(4.5) V ∈  ⇐⇒ lim
ε↓0

k(ε) = 0.

Lemma 4.1 can be extended as follows:

Proposition 4.2. If V is in  ∩, then V belongs to ∞(R1).

Proof. For R > l > r0,∫
B(R)c

R1(x, y)V(y)dy =
∫

B(R)c∩B(x,l)c
g(|x − y|)V(y)dy +

∫
B(R)c∩B(x,l)

g(|x − y|)V(y)dy

≤ M(r0)ω1

∫ ∞

l
g(r)rd−1dr +

∫
B(R)c
g(|x − y|)(V1B(x,l))(y)dy,

where ω1 is the surface area of the unit sphere. By (4.4) the second term of the right-hand
side is less than

sup
x∈B(R−l)c

∫
Rd
g(|x − y|)(V1B(x,l))(y)dy ≤ sup

x∈B(R−l)c
(k(ε) + g(ε)‖V1B(x,l)‖1).

By the assumption V ∈  ,

lim sup
R→∞

sup
x∈Rd

∫
B(R)c

R1(x, y)V(y)dy ≤ M(r0)ω1

∫ ∞

l
g(r)rd−1dr + k(ε)

and by (4.5) the second term of the right-hand side tends to 0 as ε ↓ 0. Letting l ↑ ∞ leads
us to V ∈ ∞(R1). �
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Note that the equivalence (4.5) is valid for Xα(cf. [7]). Then the estimate (4.3) of R1 leads
us to Proposition 4.2 for Xα by the same argument.

Proposition 4.3. If V ∈  satisfies V1{V≥ε} ∈ L1(Rd) for any ε > 0, then V ∈ ∞(R1).

Proof. Since the 1-resolvent kernel R1(x, y) can be written as g(|x − y|),∫
B(R)c

R1(x, y)V(y)dy =
∫

B(R)c∩{V≥ε}
g(|x − y|)V(y)dy +

∫
B(R)c∩{V<ε}

g(|x − y|)V(y)dy

≤
∫

B(R)c∩{V≥ε}
g(|x − y|)V(y)dy + εω1

∫ ∞

0
g(r)rd−1dr.

Noting  ∩ L1(Rd) ⊂ ∞(R) by [16, Proposition 1], we have

lim sup
R→∞

sup
x∈Rd

∫
B(R)c

R1(x, y)V(y)dy ≤ εω1

∫ ∞

0
g(r)rd−1dr −→ 0, ε ↓ 0.

�
For V = V+ − V− ∈ loc − we define


V(u, u) =

1
2
D(u, u) +

∫
Rd

u2Vdx, u ∈ H1(Rd) ∩ L2(Rd; V+dx),

where D denotes the Dirichlet integral.

Corollary 4.3. Let V = V+ − V− ∈ loc − ∩  . If

(4.6) λ0 := inf
{


V(u, u) | u ∈ H1(Rd) ∩ L2(Rd : V+dx),
∫
Rd

u2dx = 1
}
< 0,

then a minimizer for λ0 exists.

Proof. Let γ0 be the positive constant such that

(4.7) inf
{


V+(u, u) + γ0(u, u)m |
∫
Rd

u2V−dx = 1, u ∈ H1(Rd) ∩ L2(Rd; V+dx)
}
= 1.

V− belongs to ∞(R1) ⊂ ∞(RV+
1 ) by Proposition 4.2 and a minimizer, ϕ0, in (4.7) exists by

Corollary 2.1. Put φ0 = ϕ0/‖ϕ0‖2. Then ‖φ0‖2 = 1, V(φ0, φ0) + γ0(φ0, φ0)m = 0 and thus

(4.8) inf
{


V(u, u) + γ0(u, u)m |
∫
Rd

u2dx = 1, u ∈ H1(Rd) ∩ L2(Rd; V+dx)
}
≤ 0.

We see from the same argument as in [15, Lemma 2.2] that

inf
{


V+(u, u) + γ0(u, u)m |
∫
Rd

u2V−dx = 1, u ∈ H1(Rd) ∩ L2(Rd; V+dx)
}
≥ 1

if and only if

inf
{


V(u, u) + γ0(u, u)m |
∫
Rd

u2dx = 1, u ∈ H1(Rd) ∩ L2(Rd; V+dx)
}
≥ 0.

Hence by combing (4.7) with (4.8) we conclude that

γ0 + inf
{


V(u, u) |
∫
Rd

u2dx = 1, u ∈ H1(Rd) ∩ L2(Rd; V+dx)
}
= 0,
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λ0 equals −γ0 and ϕ0/‖ϕ0‖2 is a minimizer for λ0. �

Suppose that V ∈ Ld/2(Rd) + L∞(Rd) on Rd vanishes at infinity, that is, it satisfies

(4.9) m({x | |V(x)| > ε}) < ∞ for all ε > 0.

Then it is known in [9, Theorem 11.5] that if, in addition, V satisfies (4.6), then a minimizer
exists. Note that V ∈  does not satisfy (4.9) in general. Indeed, for B ∈ B0 with m(B) = ∞,
V := 1B does not satisfy (4.9).

5. Schrödinger Semi-groups

5. Schrödinger Semi-groups
Recall that E is a locally compact separable metric space and m is a positive Radon

measure on E with full support. Let X be an m-symmetric Borel right process having left
limits on (0, ζ), where ζ is the life time (see section 2). In this section, we assume that X has
the properties I and II. We define the Schrödinger semi-group {pμt }t≥0 by

pμt f (x) = Ex

(
e−Aμt f (Xt)

)
, f ∈ Bb(E),

and consider the compactness of the operator pμt on L2(E; m).

Lemma 5.1. limx→∞ Rμ11(x) = 0 if and only if limx→∞ pμt 1(x) = 0 for any t > 0.

Proof. The “if” part is clear. Noting

Rμ11(x) =
∫ ∞

0
e−s pμs 1(x)ds ≥

∫ t

0
e−s pμs 1(x)ds ≥ te−t pμt 1(x),

we have this lemma. �

A measure μ is said to be in loc if 1Gμ is of Kato class for any relatively compact open
set G ⊂ E.

Theorem 5.1. Let μ ∈ loc. Assume that for any M > 0 there exists a Borel set DM such
that

(i) μ ≥ M · m on Dc
M,

(ii) for any t > 0 and any ε > 0

lim
|x|→∞
Px

(∫ t

0
1DM (Xs)ds > ε, t < ζ

)
= 0.

Then pμt is compact.

Proof. Owing to Remark 2.1 (i) and Lemma 5.1, it is sufficient to show that limx→∞ pμt 1(x)
= 0 for any t > 0.

Since{
ω ∈ Ω |

∫ t

0
1Dc

M
(Xs)ds ≥ t − ε, t < ζ

}
=

{
ω ∈ Ω |

∫ t

0
1DM (Xs)ds ≤ ε, t < ζ

}
,

we have
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pμt 1(x) = Ex

(
e−Aμt ;

∫ t

0
1DM (Xs)ds > ε, t < ζ

)

+ Ex

(
e−Aμt ;

∫ t

0
1Dc

M
(Xs)ds ≥ t − ε, t < ζ

)
.

(5.1)

It follows from the assumption (i) that if
∫ t

0 1Dc
M

(Xs)ds ≥ t−ε, then
∫ t

0 1Dc
M

(Xs)dAμs ≥ M(t−ε).
Hence the second term of (5.1) is less than exp(−M(t − ε)) and thus

lim sup
|x|→∞

pμt 1(x) ≤ e−M(t−ε)

by the assumption (ii). We have the desired claim by letting M to∞. �

In the sequel, let us consider the symmetric α-stable process on Rd, the Lévy process with
generator −(−Δ)α/2, 0 < α ≤ 2, and denote it by Xα = (Px, Xt). Let V be a positive function
on Rd in the local Kato class. Set

VM = {x ∈ Rd | V(x) ≤ M}.
Lemma 5.2. If VM ∈ B0, then

lim
|x|→∞

Px

(∫ t

0
1VM (Xs)ds > ε

)
= 0.

Proof. We have

Px

(∫ t

0
1VM (Xs)ds > ε

)
= Px

(∫ t

0
1VM∩B(x,R)(Xs)ds +

∫ t

0
1VM∩B(x,R)c(Xs)ds > ε

)

≤ Px

(∫ t

0
1VM∩B(x,R)(Xs)ds >

ε

2

)
+ Px

(∫ t

0
1VM∩B(x,R)c(Xs)ds >

ε

2

)
.

(5.2)

Note that by the same argument as in Lemma 3.1, the semi-group pt of Xα satisfies ‖pt‖p,∞ ≤
C/td/(αp). We then see that for p > d/α the first term of the right-hand side is dominated by

2
ε
Ex

(∫ t

0
1VM∩B(x,R)(Xs)ds

)
≤ C(ε, t) · m(VM ∩ B(x,R))1/p

and tends to 0 as |x| → ∞ on account of (4.1), where m means the Lebesgue measure on Rd.
Since

∫ t
0 1VM∩B(x,R)c(Xs)ds ≤ (t − τB(x,R))+, the second term of the right-hand side of (5.2)

is dominated by

Px(t − τB(x,R) > ε/2) = P0(τB(R) < t − ε/2) −→ 0

as R → ∞. Here τB(x,R) is the first exist time from B(x,R). Therefore, we have this lemma.
�

Lemma 5.2 is valid for any B ∈ 0. Combining Theorem 5.1 with Lemma 5.2, we have the
next theorem.

Theorem 5.2. Let V ∈ loc. If VM ∈ B0 for any M > 0, then the semi-group of (−Δ)α/2+V
is compact.

For the symmetric α-stable process, the compactness of pV
t is equivalent to

lim|x|→∞ pV
t 1(x) = 0 ([6, Lemma 9]). On account of Remark 2.1 (ii) and Lemma 5.1 we

have the next corollary.
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Corollary 5.1. For V ∈ loc, let XV be the subprocess of the symmetric α-stable pro-
cess by the multiplicative functional exp(− ∫ t

0 V(Xs)ds). Then the following statements are
equivalent.

(i) XV is in Class (T);
(ii) lim|x|→∞ pV

t 1(x) = 0;
(iii) pV

t is compact on L2(Rd).
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