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Abstract
We compute the E-polynomials of the moduli spaces of reptatiens of the
fundamental group of a complex curve of germis= 3 into SL(2,C), and also of
the moduli space of twisted representations. The case afsggr- 1, 2 has already
been done in [12]. We follow the geometric technique inticatliin [12], based on
stratifying the space of representations, and on the asatfsthe behaviour of the
E-polynomial under fibrations.

1. Introduction

Let X be a smooth complex projective curve of gemus 1, and letG be a com-
plex reductive group. Th&-character variety oiX is defined as the moduli space of
semisimple representations of(X) into G, that is,

ﬁ[Ai’ B = Id}//G.

For complex linear group& = GL(n,C), SL(n,C), the representations af;(X) into G
can be understood &S-local systemsE — X, hence defining a flat bundIE which
has dege = 0. A natural generalization consists of allowing bundEsof non-zero
degreed. The G-local systems orX correspond to representatiops m1(X —{po}) —
G, where pp € X is a fixed point, ando(y) = ¢nld, y a loop aroundpy and ¢, a
primitive n-th root of unity, giving rise to the moduli space of twistegpresentations

g
MYG) = {(Al, Bi ..., Ag By) € G¥ | []IA, B] = ezﬂﬁd/”m}//e.
i=1

M(G) = {(Al, B, ..., A, By) € G®

The spaceM?(G) is known in the literature as the Betti moduli space. Thigcsp
is closely related to two other spaces: the de Rham and Dalbeenduli spaces. The
de Rham moduli spac®?(G) is the moduli space parameterizing flat bundles, i.e.,
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(E, V), whereE — X is an algebraic bundle of degreeand rankn (and fixed de-
terminant in the cas& = SL(n, C)), and V is an algebraic connection oX — {po}
with a logarithmic pole atpp, with residue—(d/n)ld. The Riemann—Hilbert corres-
pondence [3, 20] gives an analytic isomorphism (but not ayelahic isomorphism)
DY(G) = MY(G). The Dolbeault moduli spact’(G) is the moduli space o6-Higgs
bundles E, ®), consisting of an algebraic bundle — X of degreed and rankn
(also with fixed determinant in the ca&= SL(n,C)), and a homomorphisrn®: E —

E ® Kx, known as the Higgs field (in the casg= SL(n,C), the Higgs field has trace
0). In this situation the theory of harmonic bundles [2, 18leg a homeomorphism
MYG) = HI(G).

When gcdf, d) = 1 these moduli spaces are smooth and the underlying differen
tiable manifold is hyperké&hler, but the complex structulesnot correspond under the
previous isomorphisms. The cohomology of these moduli spéas been computed in
several particular cases, mostly from the point of view & tholbeault moduli space
H9(G). Poincaré polynomials fo& = SL(2,C) were computed by Hitchin in his sem-
inal paper on Higgs bundles [11] and f@& = SL(3,C) by Gothen in [8]. More re-
cently the case o = GL(4, C) has been solved in [6]. A recursive formula for the
motive of the moduli space of Higgs bundles of arbitrary ramid degree coprime to
the rank has been given in [7] and formulas for the number a@ftpaof these spaces
over finite fields of sufficiently large characteristic haveeb computed in [17, 18] for
arbitrary rank and degree. In particular, these resulte dgine Betti numbers of the
character variety.

Hausel and Rodriguez-Villegas started the computationhef E-polynomials of
G-character varieties focusing dad@ = GL(n, C), SL(n, C) and PGL(, C) using arith-
metic methods inspired by the Weil conjectures. In [9] theyamed the E-polynomials
of MY(G) for G = GL(n,C) in terms of a simple generating function. Following these
methods, Mereb [16] studied the case of BIX) giving an explicit formula for the E-
polynomial in the cas& = SL(2,C), while for SL({n, C) these polynomials are given
in terms of a generating function. He proved also that theolgrmials for SL{, C)
are palindromic and monic.

Logares, Newstead and the second author [12] introducedmejeic technique to
compute the E-polynomial of character varieties by usingti§ications and also han-
dling fibrations which are locally trivial in the analyticgology but not in the Zariski
topology. The main results of [12] are explicit formulae toe E-polynomials of char-
acter varieties foiG = SL(2,C) andg = 1, 2. They also deal with “twisted” charac-
ter varieties in which the holonomy around the puncture is diagonalizable (in this
case there is no correspondence with a de Rham or Dolbeadltlimspace as men-
tioned above).

The purpose in this paper is to give another step in the ge@meichnique of
[12] to the case ofy = 3. We prove the following
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Theorem 1. Let X be a complex curve of genus=g3. Then the E-polynomials
of the character varieties are

e(M(SL(2,0))) = q**— 49" + 749 + 3754° + 169" + 9* + 1,
o(MUSL(2,C)) = q'*—4q™° + 60° — 252" — 149° — 2529° + 6q" — 49” + 1,

where q= uv.

The new input consists of using the mag(SL(2,C)) — C3 given by (A1, By,
Az, By, Ag, Ba) > (11, 1o, t3), t = tr([ A, Bi]), to stratify conveniently the space of repre-
sentations in SL(Z;)8. This leads us to analyse a fibration over a two-dimensioasisb
(the surfaceC in Fig. 1), for which we have to compute the E-polynomial. fdiere
the arguments of [12] about Hodge monodromy fibrations over-dimensional bases
have to be extended to general bases (see Theorem 2). In sbeota1(SL(2, C))
we also have to deal with reducible representations. Thanaggts used in [12, Sec-
tion 8.2.2] to compute the E-polynomial of the irreducibleds give an increasingly
large number of strata as the genus increases. So here wa ademative route (sug-
gested by the ideas in [14]), consisting of computing theoB#momial of the irreducible
locus by subtracting the E-polynomial of the subset of rédgacepresentations.

As a byproduct of our analysis, we obtain the behaviour of Ergolynomial of

the parabolic character varietgs(= SL(2,C))
l_[[Alv BI] - O )\’ }//

when A varies inC — {0, £1}, for the caseg = 2. This is given by the following
formula

M*(G) = {(Al, By, ..., Ag, Bg) € G¥

RMY =(©@®+q"—29°—29° +49* —20° —29° + q + 1)T

1)
+15@° — 29* + g*)N,

which means that the E-polynomial of the invariant part & tohomology is the poly-
nomial accompanyingl', and the E-polynomial of the non-invariant part is the poly-
nomial accompanyingN. This monodromy is of interest from the point of view of
mirror symmetry [10] and answers a question raised to thhoasitby Tamas Hausel.
After finishing and submitting a first version of this papdre tauthors have man-
aged to complete the computation of E-polynomials of characarieties for surfaces
of general genug > 3 in [15]. The case provided here cannot however be subsumed
in [15], since it serves as the starting point of induction tbe genus carried there.
Moreover, this specific case @ = 3 has special features and has to be treated by
an ad hocmethod (it is the only case that needs the analysis of Hodgeodromy
representations over a 2-dimensional basis).
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2. E-polynomials

Our main goal is to compute the Hodge—Deligne polynomial lof2SC)-character
varieties. We will follow the methods in [12], so we colleanse basic results from
[12] in this section.

2.1. E-polynomials. We start by reviewing the definition of E-polynomials. A
pure Hodge structure of weight consists of a finite dimensional complex vector space
H with a real structure, and a decompositidn= &, _,, , H™9 such thatH9P = HP4,
the bar meaning complex conjugation bn A Hodge structure of weighk gives rise to
the so-called Hodge filtration, which is a descending firat= = . , HSk=s, We
define GE(H) := FP/FP+l = HPk-p,

A mixed Hodge structure consists of a finite dimensional dempector space
H with a real structure, an ascending (weight) filtration € W 1 C Wy C --- C H
(defined overR) and a descending (Hodge) filtratidh such thatF induces a pure
Hodge structure of weight on each Gf(H) = Wx/Wi_1. We define

HP9 = GrEGr), ,(H)

and writehP@ for the Hodge number A9 := dim HP9,

Let Z be any quasi-projective algebraic variety (maybe non-¢moonon-compact).
The cohomology groupkl(Z) and the cohomology groups with compact suppdf{Z)
are endowed with mixed Hodge structures [4, 5]. We definedHbdge numbersf Z by

hkPa(Z) = hPI(H(Z)) = dim GG

v HE(2).

The Hodge-Deligne polynomial, or E-polynomial is defined as

&(2) = e(Z)(u, v) i= Y (~1)hEPAZ)uPS,

p.q.k

Whenh&P? =0 for p # q, the polynomiale(Z) depends only on the produat.
This will happen in all the cases that we shall investigateehén this situation, it is
conventional to use the variabtgp= uv. If this happens, we say that the varietydf
balanced typeFor instanceg(C") = q".

The key property of Hodge—Deligne polynomials that perntiisir calculation is
that they are additive for stratifications &@. If Z is a complex algebraic variety and
Z = ||, Zi, where allZ; are locally closed inz, thene(Z) = Y., &(Z)).

There is another useful property that we shall use oftenhéfd is an action of
Z, on X, then we have polynomials(X)™, e(X)~, which are the E-polynomials of
the invariant and anti-invariant parts of the cohomologyXgfrespectively. More con-
cretely, e(X)* = e(X/Z;) and &(X)~ = e(X) — &(X)*. Then if Z, acts onX and on
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Y, we have the equality (see [12, Proposition 2.6])
&) (X x Y)/Zz) = &(X)"e(Y)" + e(X) e(Y) .
2.2. Fibrations. We have to deal with fibrations
(3) F>z5B

that are locally trivial in the analytic topology. We want ¢ompute the E-polynomial

of the total space in terms of the polynomials of the base &edfiber. The fibration
defines a local syster#X, whose fibers are the cohomology groub(Fy), where

b e B, F, = 77 %(b). The fibers possess mixed Hodge structures, and the swsspac
Wi (HX(Fp)) are preserved by the holonomy. We will assume from now @i Ehis

of balanced type, so &HE(Fy) = HEPP(F,). Associated to the fibration, there is a
monodromy representation:

(4) p: m1(B) — GL(HEPP(F)).

Suppose that the monodromy grolip= im(p) is an abelian and finite group. Then
Hck‘p'p(F) are modules over the representation riR(l"). So there is a well defined
element, theHodge monodromy representatjon

®) R(Z) := ) (—L*HEPP(F)gP € R(D)[d].

As the monodromy representation (4) has finite image, thera finite covering
B, — B such that the pull-back fibration

e

Z
(6) ” l x
B

—_

W <— N

0

has trivial monodromy.

Let S;,..., Sy be the irreducible representations lof(there areN = #I" of them,
and all of them are one-dimensional). These are generafoR(I0) as a free abelian
group. We write the Hodge monodromy representation of (5) as

R(Z) = a1(q)S + - - - + an (@) S

Theorem 2. Suppose that Bis of balanced type. Then Z is of balanced type.
Moreover there are polynomialsi6), ..., sn(q) € Z[q] (only dependent on B, and
', but not on the fibration or the fibgrsuch that

&(Z) = a(@)s1(aq) + - - - + an(@)sn(a),
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for R(Z) = a1(@)S + - - - + an(@)Sv.

Proof. The Leray spectral sequence of the fibration (3) Baserm
@) E;"(2) = Hi(B, H{'(F))

and abuts toHX(Z). By [1], E'j'm(Z) has a mixed Hodge structure fgr> 2, and
the differentialsd; are compatible with the mixed Hodge structure. There&(Z) =
e(H (2)) = e(E;7(2)).

The mixed Hodge structure associated=0in (6) is the product mixed Hodge
structureE'Z’m(Z’) = H!(B,) ® HM(F). By our assumptionB, and F are of balanced
type, soZ’ is of balanced type. There is a meﬁlﬁ'm(Z’) — E'Z’m(Z), which preserves
the mixed Hodge structures. This map is surjective Zs of balanced type.

By definition,

R(Z) =) (-1"HIPP(F)aP = au(@)S + -+~ + an(@)Sv.

The local system§ — B are 1-dimensional and have a mixed Hodge structure. When
we pull-back§ — B to B,, we get trivial local systems. Hence there is a surjec-
tion H.(B,) — H.(B, S) and it has the induced mixed Hodge structure. 8 (B,
HZ (F)) = e(H{ (B, R(2))) = X_ai(@)e(H (B, §)). We defines(q) = e(H{ (B, §)) to
have the statement. O

Write (S) =s(q), 1 <i < N. So there is &[q]-linear map

e: R(IN[q] — Z[q]

satisfying the property tha#(R(Z)) = e(2).

A trivial application of Theorem 2 happens when Z — B is a fibre bundle
with fibre F such that the action af((B) on H(F) is trivial. Then R(Z) = e(F)T,
where T is the trivial local system an&(Z) = e(F)e(B) (this result appears in [12,
Proposition 2.4]).

The hypothesis that the action af(B) on HJ(F) is trivial holds in particular in
the following cases:

e B is irreducible andr is locally trivial in the Zariski topology.

e 1 is a principalG-bundle withG a connected algebraic group.

e Z is aG-space with isotropyH < G such thatG/H — Z — B is a fiber bundle,
and G is a connected algebraic group.

We can also recover easily the result in [12, Propositio®]2.which is the main
tool used in [12].
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Corollary 3. Let B=C —{qs, ..., q}. Suppose that Bis a rational curve.
Then €Z) = (q — 1)e(F)™ — (I — 1)e(F), where €F)"™ denotes the E-polynomial of
the invariant part of the cohomology of F.

Proof. LetI" be the monodromyN =#I", and S =T, S, ..., Sy the irreducible
representations, wheré denotes the trivial representation. We only need to see that
e(T)=q—1 ande(§) = —(I — 1) for i > 2. Given that, ifR(Z) =aT + ) ., &85,
thene(F)™V =a, e(F)=a+ Y a, ande(Z) = (q-DNa-(1-1)> a =(q—-1)a-—

(I —1)(a+ Y &), as required.

For the trivial representation, it is clear thelT) = e(B) = q —1I.

Now let S be a (one-dimensional) irreducible representationofLet T' be the
image of S: I' — C*, and lete = #I". Take thee-cover associated to this group, —
B. ThenT acts onB with quotient B. Clearly, B is a rational curve (the quotient
I' - I" produces a covering maB, — B, and B, is a rational curve by assumption).
Then we have a fibratiolY — B — B, whereY is a finite set ofe points. Clearly,
RB) =T+>5_,S,, for somei, € {2,..., N}, where§, = S.

The coveringB — B can be extended to a ramified coveripg P! — P. The
Hurwitz formula then says that2 = e(—2) + r, wherer is the degree of the ram-
ification divisor. Theng (qy, ..., q, co) hase(l + 1) —r points. ThereforeB =
P! — o Y(qy, ..., q, o0) has

eB)=q+1—el +1)+r
=q+1-el+1)+@2e—2)=(q—1)—(e—1)(1 —1).

The formula in Theorem 2 says thetB) = (4 —1) + Y_;_,S,. Therefore} "} _,s, =
—(e—1)(1 - 1).

This happens for all choices of coverings associated tephesentations, ..., Sy.
Hences = —(1 — 1), foralli =2,..., N. O

Another case that we are going to use later is the following.

Corollary 4. Let (3) be a fibration over B= C* x C* with finite monodromy
such that F is of balanced type. Then Z is also of balanced &ypkits E-polynomial
is given by

&(Z) = (g — 1)%e(F)™.

Proof. First note thatr1(B) = Z x Z, so the monodromy”, being a quotient
Z x Z — I', must be abelian. Moreover, there is some 0 such thatZ,, x Z, — T,
and the covering associated Zp, x Z, is of balanced type (i€* x C* again). Hence
B, is of balanced type, since there are coveriiysx C* — B, — C* x C*. Now let
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S be an irreducible representation 8&(I'). If S= T, the trivial representation, then
e(T) = &(B) = (q— 172 )

If Sis a non-trivial representation, then take the coverhg> B associated t@&.
Again there are coveringg* x C* — B, — B — B = C* x C*. The Hodge mono-
dromy representation associatedBas T + Z%:z S, where§, = S. In cohomology
HZ(C*xC*) — HC*(I%) — HZ(B) are surjections, but the composition is an isomorphism
(multiplication byn). Thereforee(R(B)) = e(B) = (q—1)?, ande(}_5_, S,) = 0. This
happens for all choices @, so it must bes(S) = 0, for any irreducible non-triviab. [

2.3. Building blocks. We need to recall some E-polynomials from [12] which
serve as building blocks for the E-polynomials of charaetaieties for any genug >
2. They are basically associated to the casg of 1. First, we have thag(SL(2,C)) =
q® — g ande(PGL(2,C)) = g° — g. Consider the following subsets of SL@):

e [Ep:= conjugacy class o 1 0). It hase(Ep) = 1.

01
e E; := conjugacy class o Bl _01) It hase(E;) = 1.
e E, := conjugacy class of), = (é %) It is E; =~ PGL(2,C)/U, with U =

{(é 31) ‘ ye C]. It hase(E,) = g2 — 1.
e [Ej3:= conjugacy class ofl_ = (_01 _11). It is E3 =~ PGL(2,C)/U and e(Eg)
g% — 1.

e E,4, :=conjugacy class of, = (é Agl ) wherei € C—{0,4+1}. Note thatE,, =

E4,-1, since the matriceg, and §,-1 are conjugate. We havk,, =~ PGL(2,C)/D,

whereD = {(é X(_)l) ‘ X € (C*}. Soe(Esy) = 9% + Q.
e We also need the sdf, := {A € SL(2,C) | Tr(A) # £2}, which is the union of
the conjugacy classeg&,,;, » € C — {0, £1}. This hase(Es) = g —29% —q.

Now consider the map

f: SL(2,C)?> - SL(2,C),
(A, B)—~ [A B] = ABA1B

Note that f is equivariant under the action of SL@) by conjugation on both spaces.
We stratify X = SL(2, C)? as follows:

o Xo:= fYEo),
e Xp:= fﬁl(E]_),
° Xy 1= f_l(Ez),
o Xz:= fYEy),
o Xi:= fYEy).

We also introduce the varieties™1(C) for fixed C € SL(2,C) and define accordingly
o Xp:= f}J,). If we take (A, B) € Xy, there existsP € PGL(2,C) such that
P[A,B]P~1 = J,, so there is a fibratiot) — PGL(2,C)x X, — X5 given by (A, B) —
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(PAPL, PBP1). We gete(Xs) = (g2 — 1)e(X»).
e Xz:= f~YJ.). Similarly, there is a fibratiord — PGL(2,C) x X3 — X3, and
&(X3) = (9% — 1)e(Xa).
o Xy, := &), for A # 0, £1. We define alsoXs, = f1(Ws,). There is a
fibration D — PGL(2,C) x X4, — Xa,, ande(Xs,;) = (° + q)e(X4,).

It will also be convenient to define
o« XK= {(A, B, 1) \ [A B] = (g A91), for somei. # 0, £1, A, B € SL(Z,C)}.
There is an action oZ, on X4 given by interchanging4, B, 1) — (Py APy, P, 1B P,
A1), with Py = ((1) é) The setX4/Z, coincides with the union of alXy;.
The Hodge-Deligne polynomials computed in [12] are as ¥alo

e(Xo) = q* +49° - g* — 4q,
e(X)) =q’—aq,
e(X2) = q° - 29° - 3q,
e(Xs) = q° + 307,
&(X45) = 9> +39° — 39 — 1.
There is a fibration
X4 — B=C—{0, +1}.

Let yp, ¥-1, y1 be loops around the points 6;1, 1, respectively. The monodromies
aroundyy, y_1 are trivial, and the monodromy aroung is of order 2. So the mono-
dromy group isI" = Z, and the Hodge monodromy representation is computed in [12,
Theorem 6.1],

(8) R(Xs) = (@ - )T + (30 — 3g)N,
whereT is the trivial representation and the non-trivial one. Then Corollary 3 gives
) &(Xs) = (q—3)a—2b=q"—3q°— 69>+ 59 + 3.

(where we have writterR(X4) = aT +bN, a = g° — 1, b = 39% — 3q).
Taking the quotient byZ,, we have the fibration

X4/Zy — B = (C = {0, £1})/Z, = C — {+2},

and the Hodge monodromy representation is a representafitime groupl’ = Z, x
Z,, generated by the loopg », v» around the points-2, 2, respectively. The Hodge
monodromy representation is computed in [12, Theorem 7.1],

(10) R(X4/Z2) = 4T —30S + 30°S2 — S,
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whereT is the trivial representatiorf., is the representation that is non-trivial around
the loopysr and § = S, ® S. Now writing R(Xs/Z,) = aT +bS + ¢S, +dS,
Corollary 3 says that

(11)  e(X4/Zy) =(q—1)a—(@a+b+c+d)=0qg*—2q°—39%+3q + 1.

Note that if R(Xs/Z,) = aT +bS + ¢S, +dS, then R(Xs) = (a+d)T + (b + )N,
which agrees with (8).
To recovere(X,4), we note that

X4 = (X4 x PGL(2,C)/D)/Zo>.

By [12, Proposition 3.2], we have thafPGL(2,C)/D)* = g? ande(PGL(2,C)/D)” =
g. Using (2),
e(Xa) = g°e(Xa)" + qe(Xa)”
(12) = 0°e(Xa/Z2) + A(e(Xs) — &(Xa/Z5))
= (0° — 9)e(Xa/Z2) + qe(Xa).

Now using (11) and (9) we get
&(Xq) = 0° —29° — 49* + 39° + 2.

3. E-polynomial of the twisted character variety

We start by computing the E-polynomial of the twisted chtawariety M* =
MY(SL(2,C)) for a curve X of genus 3. This space can be described as the quotient

(13) Mt = W/PGL(2,C),
where
W = {(Aq, By, Ag, By, Ag, Bs) € SL(2,C)° | [Aq, Bi][ Az, Bo][ As, Bs] = —Id}.

Notice that we only need to consider a geometric quotiemigesiall representations
are irreducible: if there was a common eigenveatoior (A, B, A, By, As, B3), we
would obtain that P, Bi](v) = [A2, Bo]J(v) = [As, Bs](v) = v and therefore
[A1, Bi][ Az, Bo][ A, Bs](v) = v # —ld(v) = —v.

To compute the E-polynomial of the moduli space, we will tifyahe space into lo-
cally closed subvarieties and compute the E-polynomial athe stratum, since
E-polynomials are additive with respect to stratificationge stratify the spac&V ac-
cording to the possible values of the traces of the commsgtai simplify the notation,
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Fig. 1. The cubic surfac€.

we write [Ag, Bi] = &1, [Az, Bo] = &, [As, B3] = &. Consider the map
F:W—C?
(A1, By, Az, By, Az, B3) = (ty, t2, t3) = (tr &1, tré&a, tré&s).

We are interested in the following condition: §, &, & share an eigenvectar
with eigenvaluek; in each case, then in a suitable basis

el = (5 e = () el = ()

and therefore, a3 = —Id, we obtain thatiyi,13 = —1. Other possibility is that
has eigenvalue.; for &;, A, for & and ;! for &, yielding Aia51 = —1, etc. Work-
ing out all possibilities, we have thgt, &, & can share an eigenvector when
(14) Az = —Ada, A3 = —AT'Az, Az = —AgA;l, or Az =-A7tAazh
Equivalently, in terms of the traces, when

(15) 2+ t2 + t2 + titots = 4.

This defines a (smooth) cubic surfaGec C3, depicted in Fig. 1.

Lemma 5. &1, &, & share an eigenvector if and only (fy, to, t3) € C.

Proof. We have already seen the if part. For the only if pasternhat if ¢1,t,,t3)
satisfies (15) then the eigenvalukg A,, A3 satisfy one of the four relations in (14).
Changing somé.; by 17! if necessary, we can suppose thgt= —i;io.
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Suppose that somg is diagonalizable. Without loss of generality, we suppdse i

YERY . _(ab
0 ){1). Write & = (C d)' Then we have the

g,lz_sé_ - _ )»]_ 0 a b —_ Ala )»]_b
3 152 0 »t)\c d Alc apid )0

We get the equations = a+d andts = tr& = tré;t = —aa— a7ld. Hencex, +

At =a+d and i+ A7t = pma+atd. If Aq # £1, it must bea = Ay, d = 4,

thusad = 1 and hencébc = 0, which implies that the matrices share an eigenvector.

If A1 = £1, then&; = +£Id, and &, = +£&3, so the matrices share their eigenvectors.
Now suppose that none of thg are diagonalizable, so they are of Jordan type.

Let v; be the only eigenvector (up to scalar multiples) &f If & do not share an

is £1, and choose a basis with = (
equation

eigenvector, then, vp is a basis, on whictk; = /\1((1) tl)) & = )\.2(2:' S) where

A € {£1). Then’;‘g1 = —A1A2< lJerC i’) hencet; = 203 = -2\ 112 = —A1A2(2+ bC).

So bc = 0, which is a contradiction. O

We stratify the spac&V according to the traces d&f, &, £&. Consider the planes
ti = +2 and the cubic surfac€ above. Then consider as well the intersections of
these seven subvarieties. This gives the required stedific We shall compute the E-
polynomials of the chunk ofV lying above each of these strata, starting by the lower-
dimensional ones (points) and going up in dimension.

We shall use some of the polynomials computed in Section? &+112] which
correspond to some of the strata of the spaces of repreisaistédr the case of a curve
of genusg = 2. We shall point out which stratum we use each time.

3.1. Special points. The intersections of three planes, or of the cubic and two
planes, is the collection of eight points given Ry, €, t3) = (£2, £2, £2). Let W,
be the subset ofA;, B1, Ay, By, Az, B3s) € W with traces given by these possibilities.
Note that ift; = 2 then& = Id or & is of Jordan typel,; analogously, iftt = —2
then& = —Id or & is of Jordan typel_.
o Wi = {(t1, tr, t3) = (2, 2, 2} = F((2, 2, 2)). Theng are all of Jordan type (if
& = Id thené&xés = —Id, soé, = —égl andt, = —t3). Choosing an adequate basis, we
can assume thatd, B;] = J,, so [A, Bo][ Az, B3] = —(J4)~ = J_. This set has been
determined in [12, StraturZs, Section 12]. It has polynomiaje(Xy)2. Therefore

e(Wi1) = qe(X2)’e(PGL(2,C)/V)
=g -6q"" + 29" + 349° — 129° - 829" — 189° + 549° + 27",

o Wi ={(t, to, t3) = (2, 2,—2)} = F71((2, 2,-2)) and the cyclic permutations (ac-
counting for three cases). H; = Id, then [A;, By][ A3, Bs] = —Id, with t;, = 2 and
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t3=—2. If & =1d then&; = —Id; and if & ~ J; thené&; ~ J_, so the E-polynomial is
e(Xo)(e(Xo)e(X1) + e(PGL(2,C)/U)e(X2)e(X3). If & ~ J,, then choosing an adequate
basis, we can assume thai[ B;] = J,, so that Pz, By][As, B3] = —(J,) 1 = J_.
This set has been determined in [12, Stratdm Section 12] to beq—2)e(X2)e(X3)+
e(X2)e(X1) + e(Xa)e(Xo). Therefore, multiplying by 3 because of the three cyclic
permutations,

e(Wi2) = 3e(Xo)(&(Xo)e(X1) + e(PGL(2,C)/U)e(X2)e(X3))
+ 3e(X2)((q — 2)e(X2)e(Xs) + e(X2)e(X1) + &(X3)e(Xo))e(PGL(2,C)/U)
=9q"? + 279 — 6991° — 199° — 2798 + 1869" + 129° — 42g9* — 2193

o Wiz = {(t, 1o, t3) = (—2,-2,2)} = F1((-2,-2, 2)) and cyclic permutations (which
account for three cases). As in the caseWf;, & is of Jordan type, and in a suit-
able basis we can writé; = J_, so [A, Bi][A, By] = —J-! = J,. This set has
been determined in [12, Stratu@s, Section 11] and it has polynomiale(X,)e(Xs).
Therefore

e(Wy3) = 306(X3)°e(X,)e(PGL(2,C)/U)
=392 + 129** — 219"° — 1209° — 63q° + 108" + 81q°.

o Wiy = {(t,tr,t3) = (=2,-2,—-2)} = F1((—2,-2,-2)). There are two possibilities
for &. If & ~ J_, then choosing an adequate basis, we can assumeAha,| = J_,
S0 [Az, By][ As, Bs] = —(J_)~ = J,. This set has been determined in [12, Stratdgm
Section 11] to bed — 2)e(X3)? + 2e(X3)e(X1). If & = —Id, then [A, By][ Az, B3] =
Id, with t, = —2, andt3 = —2. This case produces the contributie(X)(e(X1)? +
e(PGL(2,C)/U)e(X3)?). Therefore

e(Waa) = e(Xa)((q — 2)e(X3) + 2e(X3)e(X1))e(PGL(2,C)/U)
+ e(X1)(e(X1)? + e(PGL(2,C)/U)e(X3)?)
— q12 + 1(1.411 + Zmlo _ 12q9 _ 9%8 _ 27q7 + 72q6 + 3(x]5 _ q3.

Adding all up, we obtain

e(W]_) — 14q12 + 4mll _ 62q10 _ 290]9
— 2019 + 1859”7 + 2649° + 84q° — 15q* — 229°.

3.2. Special lines. The intersection of two of the planes are the ligésg, t,,t3) =
(£2,£2,13), t3 € C—{+2}}, and the cyclic permutations of these. The intersectiomef o
of the planes and the cubic surface is given by the litgs- +£2,t, = Ftz3 € C —{+2}}
and the cyclic permutations. We denote Wy the portion of W lying over these lines,
and we stratify in the following sets:
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e W, given byt; =2, t, = +2 andt; € C — {+2}. Note that if& = Id then
&3 = —Id, with tr&; = +2 and tg3 # +£2, a contradiction. The#; is of Jordan type.
Choosing an adequate basis, we can assumeéthat J.. Then [A, By][ Az, B3] =
—(J34)t = J_, where trg; = +£2 and tré3 # £2. This set has been computed in [12,
Stratum Z,4, Section 12] and it has E-polynomigle(Xy) + e(X3))e(Xa/Z>). So

e(Wa1) = &(X2)e(PGL(2,C)/U)q(e(X2) + &(Xa))e(Xa/Z>)
= 2q%% — 7q%2 — 139" + 479" + 409°
—1039® - 58" + 93¢° + 389° — 309" — 9¢°.
e W, given byt; = -2, t, = £2 andtz € C — {+2}. Analogous computations give
e(Ws) = &(X3)e(PGL(2,C)/U)d(e(Xz) + &(X3))e(Xa/Z>)
— 2q13 + 3q12 _ 22q11 _ 27q10 + 61q9
+ 589% — 689" — 43q° + 279° + 99*.
o Wy given bytl =2 andt, = —t3 € C — {£2}. If & = Id, Exé3 = —Id, t, = —t3 75
+2. This is computed in [12, Stratul,, Section 9],e(W;) = q°—2q®—7q" —18q° +
24q° + 289* — 179° — 892 — g. On the other hand, if; ~ J,, using an adequate basis,

we haveé; = J,, &é3 = —J;l = J andt, = —t3 # £2. This is computed in [12,
Stratum Zs, Section 12]

e(Wa3) = &(Xo)e(Wa) + e(X2)e(PGL(2,C)/U)e(Zs)
— 2q13 _ 3q12 _ 17qll _ 63:110 + 115-49
+ 1420% — 193y — 889° + 99¢° + 179* — 69> — 50°.
e Wy, given byt]_ =-2,thb =13 75 +2. If & = —Id, then Exk3 = Id, with =13 75
+2. This is computed in [12, Straturvy, Section 8], however it has a misprint and
the correct polynomial ig(Ys) = q°—29%+ 297 —189°+69° + 289* —8q3—8g2—q. If

&1 ~ J_, then in a suitable basisé; = J; with t, = t3 # +2 again, which is computed
in [12, StratumZs, Section 11]. So:

e(Was) = e(X1)e(Ya) + &(X3)e(PGL(2,C)/U)e(Zs)
— q13 + q12 _ 15qll _ 43q10_ 4m9 + 24&18
+ 269" — 2420° + 119° + 439* + 179° + ¢
Considering the possible permutations, and adding thelympmials of the strata,
we get
e(W,) = 3e(Whaq) + 3e(Why) + 3e(Wa3z) + 3e(Way)
= 21g"% — 18q*? — 201g9"* — 2584%° + 528°
+ 10119 — 879 — 840y° + 525° + 1179* + 60° — 129°.
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3.3. Special planes. Now consider the planes given by the equatiftis= £2},
from which we remove the previous strata. We do the dase +2 and multiply by
three the result to account for the three cases 1, 2, 3. The planes are given by
ty = £2, wherety, t3 # +2 andt, # Ft3. Note that it cannot bé&; = +Id, since this
would imply t, = Ft3. We have the following cases:

e Wjsy given by & ~ J,. This implies that, in a suitable basigé; = J_, together
with the previous restrictions for the traces. This is the gieen in [12, StratumZg,
Section 12], so

e(Ws1) = e(X2)e(PGL(2,C)/U)e(Ze)
— ql4 _ 7ql3 + 6q12 + 4&111 _ 3@10 _ 211qg + 94q8
+3519" - 103° - 218° + 289* + 39° + 99>
e Wj, given by & ~ J_. This implies that, in a suitable basigé; = J,., together

with the restrictionst,, t3 # £2, t, # t3. This is the set given in [12, Straturfg,
Section 11]. Therefore

e(Ws2) = e(X3)e(PGL(2,C)/U)e(Zg)
— q14 _ 2ql3 _ 1&:112 + 17qll + 71q10 _ 33‘:]9 _ 194:18
+ 749" + 1749° — 479° — 3609 — 99°.
The total contribution of the planes is
e(Wa) = 3(e(Wa1) + &(Wsp))
= 6q'*—279"° - 309" + 189%™ + 10&'° — 73%° - 3000°
+ 1275 + 2139° — 7950° — 249* + 900° + 279
3.4. The cubicC. One eigenvector. We now deal with the part oW lying
over the cubic surfac€, with t;,t;,t3 % £2. As we saw in Lemma 5, this corresponds
to the case that;, &, &3 share (at least) one eigenvector.
We deal now with the case whekg, &, and &; share just one eigenvector (up to

scalar multiples), which we denote hy Using it as the first vector of a basis that
diagonalizess;, we can arrange that

_(» O S n 1 ST
w0 an(3 0) we(5 B) e=(7 L)

where A = i1, u = A, are the eigenvalues df;, & associated to the eigenvector

Our choice of basis for the above expressionstégfé,, & gives us a slice for the
PGL(2,C)-action, since their stabilizer is trivial. So we shall ymieed to multiply by
e(PGL(2,C)) after computing the E-polynomial of the space

{(A1, By, Az, By, Ag, B3 € SL(2,C)° | [A, Bl =§,i=1,...,3
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where &y, &, &3 satisfy (16). This set can be regarded as a fibration

Z - B={( u) € (C)V|ruprn#+£1},
with fiber

)(4')L X X4'p’ X X4‘_)51M71.

To compute its E-polynomial, we would like to extend the filoa to the six curves.,
w, Aw = £1 and apply Corollary 4. We cannot extend the fibration; h@weve can
extend the local system defining the Hodge monodromy fibrat®y (8), the Hodge
monodromy fibrationR(X,) is trivial over A = 41, and it is of order 2 ovei = 0.
Consider the projections:

71 B— C* — {£1},
(A, ) = 4,

7. B— C* — {£1},
(A, ) = e,

3. B— C* — {£1},
(o) =2t

Then
Z = 71} (Xa) x 75 (Xg) x 15 (Xa).

The Hodge monodromy fibratioR(Z) can be extended (locally trivially) over the lines
A =41, u = +1 andiu = +1, to a Hodge monodromy fibratioR(Z) over B =
C* x C*. Moreover, the monodromy arournnd= 0 andu = 0 is of order two. The
corresponding group i¥ = Z, x Z, and the representation ring is generated by rep-
resentationsT, Nj, N2, N1 = N; ® Ny, whereT is the trivial representationl\; is
the representation with non-trivial monodromy around thigio of the first copy of
C*, and N, is the representation with non-trivial monodromy around tmigin of the
second copy ofC*.

Pulling back the Hodge monodromy representationXaf given in (8), we have
that R(w; (Xa)) = aT + bNy, R(m5(Xs)) = aT + bN, and R(w(Xs)) = aT + bNy,
wherea = q® —1, b = 32— 3q. So the Hodge monodromy representationZofs

R(Z) = (@aT + bNy) ® (aT + bN,) ® (@T + bNyo)
= @+ b*T + (@%b + ab?)N; + (a®b + ab?)N, + (a’b + ab?)Ny,.
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We extendR(Z) to a Hodge monodromy fibratioR(Z) over B = C* x C* with
the same formula, and compute its E-polynomial, applyingoCary 4,
e(R(2)) = (q - 1ye(F)™ = (a — 1)%(@@° + b°)
= (@ - D%(@® - 1)° + (3a° — 30)°)
— qll _ 2q10 + q9 + 24q8
— 12997 + 2679° — 2679° + 1299* — 24q° — g% + 29 — 1.
Now we substract the contribution d®(Z) over the linesh = +1, © = +1 and
A= +1.

e Consider the curve defined by= 1, u # +1. The fibration has the Hodge mono-
dromy of a fibration ovelC* — {+1} with fiber

X4J»o X X4,lt X X4’_IL—1

This has Hodge monodromy representation equad(Xy ;,)R(X4) ® t*R(X4), where
7(n) = —pu~. This is equal to
&(Xa,,) R(Xa) ® T*R(Xa) = &(Xa,,,)R(Xa) ® R(Xs)
= e(X4,)@T +bN) ® (aT + bN)
= &(X1,,)((@ + b)T + (2ab)N).

Using Corollary 3 and (9), we get that the contribution equal

&(Xa)((@ — 3)(@” + b?) — 2(2ab))

17
a7 = q'°— 15q° — 360" — 249° + 300y° — 2384* — 609° + 3992 + 200 + 3.

e The computation fo. = —1, u # +1 is analogous and gives the same quantity.
e By symmetry, the contribution for = £+1, and foriu = £+1 is the same as for
A = +1. So we have to multiply (17) by 6.
e The contribution of the four pointsH{(1, +1) is 4e(X4,,)° = 49° + 360% + 7297 —
120° — 2889° + 28&* + 12093 — 729% — 369 — 4.
Therefore, the E-polynomial of the original fibration is:
&(Z) = e(R(2))
—6(q'° — 159 — 369" — 249° + 300y° — 23&4* — 609° + 3992 + 20q + 3)
- 4e(x4,)»o)3
— qll _ 8q10 _ 3q9 + 7&18
+ 159" +5310° — 1779° + 1209* + 2169° — 163 — 829 — 15



662 J. MARTINEZ AND V. MUNOZz

and
e(Ws) = e(PGL(2,C))e(2)
— ql4_ 8q13 _ 4q12 + 8mll + l&:{lo + 453_19 _ 179@8
+ 678y + 1995° — 1372° — 2989* + 1489° + 829% + 15.
3.5. The cubicC. Two eigenvectors. Suppose now thatty to, t3) € C and &,

&, & share two eigenvectors. Then they can all be simultanealialyonalized. With
respect to a suitable basis, we have that:

mel= (5 0) me=(4 %)

e— 121yt 0
O ]

This defines a fibratiol — B := {(A, u) € (C*)? | A, u, A # +1}, with fiber
)_(4,A X )_(4'11 X )_(4'_)\71M71.

The stabilizer oféy, &, & is D x Z,, where D are the diagonal matrices and tie-
action is given by the simultaneous permutation of the eiglkms, i.e., by conjugation

by Py = (8 (1)) Therefore the stratum we are analysing is

Ws =~ Z = (Z x PGL(2,C)/D)/Z5.

The action on the basis & — B takes {, u) to (A1, x 1), producing a fibration

7 7= 7/2,
|
B—— B = B/Z,.

If we write

T - B/ —> C*/Zz,

(A, ) = A,

o B — C*/Zz,
(19)

A, w) =,
m3: B' — C*/Z,,
(o)At t
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(Z, acts onC* by x ~ x~1), we can obtain three pullback bundles

ZI/ —_—> )_(4/Z2

! I

B —s (C* — {£1})/Z,

i =1,2,3, such thaZ’ =~ Z x Z, x Zy = 7} (Xa/Z2) x 75(Xa/Z2) x T*mi(Xa/Z2),
with f(x) = —x. )
As a consequence, if we writR(Xs/Zy) = aT +bS + ¢S, +dS, as in (10),
the Hodge monodromy representation is
R(Z) = 77 (R(Xa/Z2)) ® 73 (R(Xa/Z2)) ® f*73(R(Xa/2Z2))
=@T +bS +cS,+dS)
® (aT + b + ¢S, +dF) ® @T +cS" +bS% +dS")
=a’T +a’hg +a’cs, +a%dg +a%hs +ars ® S
+abcg ®S, +abdg ® S +a’cS, +abcs,® S,
+as,® S, +acds,® S +a%dS +abdg ® S,
+acd$® S, +ad’S ® § +a*cS" +abcg ® S}
+ac’s,®S" +acdd ® S +abc ® S +bcS ® S ® S
+bPS®S,®S" +bcd$ @S ®S" +ads,® S
+b8,88 ®S"+c°8,89,0S5" +c¢dS,®F ®S)”
+acd$®S  +bcdg S @S +cdgS,®S"
+cd’Y ® § ® S +a’bSY +ab’S; ® S +abcS, ® S
+abdg ® S +ab’S; ® S% +b°S © &' ® S
+bhcS®S,®S, +bdS ® § © S
+abcs,®S% +b%cS,® @S, +bdS,®F,®SY
+bcd3,® S ®S% +abd$ ® S +bdF S ®SY
+bcd$®S,®S% +bd’S® S ®S% +a%dS" +abdg ® §*
+acd9,® " +adl’S ® " +abd$ ® §* +bdS ® S @ *
+bedg® 9, ® §" +bd’S; ® § ® §* +acdS, ® §*
+bcdS, 08 ®S" +c2dS,® 9,8 ' +cd’S,® F ®
+adl’§ e S +bdP§ e S ® S +cd’Y ® I, ® §*
+d°%® Y 05"

(20)



664 J. MARTINEZ AND V. MUNOZz

where§ = 7(S), & =n5(S) and S = 75(S). To obtain the E-polynomial of the
total space, we need to substitute each representatiornsbgs#ociated E-polynomial,
by Theorem 2.

Proposition 6. We have
e M=6S088s")=eS$®,®5,) =9"-6q+9,
¢ P =¢eS,88,05L) =e5,85 ®S")=-2q+86,
o &Sy =e,®,)=-9+5,
fora, b,c=A, u, Au.

Proof. Recall that the basis B = {(A, u) € (C*)? | A, u, A # +1}/Z,. We
compute the E-polynomial of each representation case by cas
e ¢(T). Using (2), we compute((C — {0, +1})?/Z>) = (q — 2)* + 1, sincee(C —
{0,£1)* =q—2 ande(C — {0, £1})~ = —1. Also e({(x, u) € (C— {0, £1})? | ap =
+1}/Z;) = 2¢((C —{0,+1})/Z2) = 2(d—2). Soe&(T) = &(B') = q°~4q+5—(29—4) =
q®>—6q +9.
e &F). SinceS§ = 7;(S), we need to compute the E-polynomial of the pullback
bundle of the fibrationC — {0, £1} — C — {£2} that mapsi — A + A~%, and which
has Hodge monodromy representation equal t¢ &. The pullback bundle is

Eg C Eg = (C —{0,£1}) x (C — {0,+1})) ———— C — {0, £1}

: :

B'c B'=(C —{0, +1}) x (C — {0, +1})/Z, —*> C — {+2} = (C — {0, £1})/Z>

where g(A) = A + A~ and p is the quotient map.Es, = p~%(B’), and B’ = B’ —

{(t, 1) | A = £1}. Thene(Es,) = (q—3), e(p *({(t, w) | An = £1})) = e({(r, p) €
(C—{0,£1})? | in = £1}) = 2(q—3). Soe(Es) =&(T +§) = (q—-3P-2(q-3) =
g’ — 8q + 15. Finally,

oS)) = ofT + §) —e(T) = —29 +6.

The diagram still commutes if we changg by 7, or 73, so we infer thatSé >~
§ =~ ﬁ" as local systems. This implies that certain reductions carmbde: since
S®F,=F (@a= A pu ru), wheneverS;, S or " appear in a tensor product we
can switch one by another in order to simplify the expresskor example:

S35 23503 0F 2S5,
§09,08 205,90 =5,

and so on. In fact, we deduce from this that, for all repreg@nts R that appear in
(20), eithere(R) = &(S), e(R) = e(S},), &R) = (S, ® S.,) or &R) = (S}, ®



E-POLYNOMIALS OF SL(2,C)-CHARACTER VARIETIES 665

S, ® S_ﬁ;’;), as any representation whe® appears can be simplified to one of these
expressions.

e ¢(S',). To obtaine(S',), we take the pullback under the ma&p— {£2, 0} —

C — {%2}, x — x2 — 2, which ramifies at-2. The pullback fibration is

Xx=y+yleC—{+20

Es, C Es, = { (y, w) }

(Y, 1) ~ (y71, nh)

| =

BCB ={[(x=y" W]} — x¥*-2=y"+y?=1+1"eC—{+2}

where p(y, 1) = (Y%, 1) € B, y € C —{0,+1,++/—1}. Thereforee(Es ) = (q—3)(q—
2)+ 2. Substracting the contribution corresponding to the twpehnbolas{y?u = +1},
which has E-polynomial 2(— 3), we gete(Es,) =e(T +S",) =(q—3)@—2) +2—
2(q—-3)=09%2—-7q + 14, and

eS,) =eT+S",)—¢T)=-q+5.

The diagram fore(S}) is similar:

X=y+yleC—{+2 0

(D) }
(y! /'L) ~ (yilv /’Lil)

l [

BCB ={[(A=—yY nl} — 2-X*=y"+y?=1+1"eC—{£2

ESZCE_QZ{

but now p(y, n) = (—y? u). Since Es, =~ Es,, we obtain thate(S}) = &(S",) and
analogous computations yield thetS.,) = e(S},) = e(S4).

e ¢e(S,®5). To compute the E-polynomial of this representation, we use the
fibration with Hodge monodromy representatioh ¢ S',) ® (T + S,), which cor-
responds to the fibered product of two copies of the pullbdotation Es ,, one with
A = y?, the other withu = 2. The total space is

Ee,,CEs,, - {( (y, 1) (*. 2 )}

v~y L) 2~z
— B’ C B = {[» ul},

wherex = y2 u=22and (,2) ~ (yL z?1), y,ze C — {0, +1, £/-1}. The
E-polynomial ise(ESH) = (q — 3)® + 4. Recall that we need to substract the con-
tribution of the (now four) hyperbolas given bz = +1} and {yz= ++/—1}. The
action (y, z) ~ (y~1,z1) acts on each of the first two hyperbolas giving a contrilsutio
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of 2(g — 3), whereas it interchanges the last two, which giges 5. We gete((T +
S)R(T+9,)=eEs, ,) =@—-3+4—2(—3)—(q—5)=9?>—9q + 24 and
&S, ® S, =e((T + ) @ (T + 5)) —eT) — &(S,) — &S
=q°—9q9+24—(0°-69+9)-2(-q +5)=—q+5.

Computing the different fibered products Bk, and Es, gives us

(S =e5,0)=e6F®S)=—-q+5.

Changing the projection does not alter the computationsg($%, ® Siz) =—-q+5,
fora, b=A, u, Ap.

e &S,®5,®S"%). Tocompute this E-polynomial, we can compute the E-paiyiab
of the representation(+ $) (T + ) ® (T + %“), which corresponds to the fibered
product of three copies dEs ,. The total space of this fibered product is given by

( (y, 1) (. 2) (w, 27 )
o)~y ™) (g~ Gz (wo A ~ (w T A) )

wherer =y, u =24 au=w? andyz= 4w, y,z w € C — {0, +1, £+/-1} and
(y, 2) ~ (y%, z71). Taking into account the two possible signs for and substracting
the contribution from the hyperbolas B, we obtain that the E-polynomial is ¢ —
9q + 24). This implies that

&S, ® S, ®S%)
= (T + S ® (T + ) ® (T + 5%)) —e(T) - 3e(S,) — 3e(S, ® §)
=2(Q°—-99+24)—(q*— 69 + 9)— 6(—q +5) = g°> — 69 + 9 = &(T).
An analogous computation gives the same polynomiale{® ® S, ® Sf’g) and cyclic
permutations of signs.
e eS,®S,®S)). As we did in the previous case, to compute the E-polynomial

it suffices to take the fibered product of two copieskx, and Es,. The total space
is again parametrized by

( (y, 1) (*, 2) (w, 271 )
(y1 /’L) ~ (y71! /J“il), ()"l Z) ~ ()"71! Zil), (w! )"71) ~ (w71! )‘) ,

where nowx = y2, =72 andiu = —w?, y,z,w € C —{0,+1,++/—1}. In particular,
this implies thatyz = +/—1w and yz = —v/—1w, which gives two components that
get identified under thé,-action given by ¥, z, w) ~ (y~%, z7%, w™?1). Therefore, the
quotient is parametrized byy(z) € (C — {0, £1, £+/—1})?, which producesd — 5)2.
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Substracting the four hyperbolas, we get that the E-polyabof the fibered product
is (0 — 5)> — 4(q —5) = g% — 14q + 45. So
os,®9,®S")
=e((T +S) ® (T + F) ® (T + §) — &(T) — 3e(S,) — 3e(S, ® )
= (4° — 14q + 45)— (9* — 60 + 9) — 6(—q + 5) = —2(q — 3) = &(S). O
Substituting the values just obtained for the E-polynoroiaévery irreducible rep-
resentation in (20), and the valuas= g3, b = —3q, ¢ = 392, d = —1, we obtain the
E-polynomial of the total fibration
&(Z2/2;) = &(Z') = e(R(Z)))
(21) =q' - 6%+ 549® — 129" 4 18%°
—915¢° + 6669* + 1539 — 819% — 43q — 6.

Using the formula (12), we get that

e(Ws) = &(2) = (9° — 9)e(Z) + qe(2)
— ql3 _ 6q12 _ 2qll + 51q10 + 12q9 + 21&18
— 573" — 1999° + 6969° — 189" — 1259 — 4509 — 9q.
3.6. Generic case. Let us finally deal with the casé; (t2,t3) ¢ C, tj % +2, which

corresponds to the open subkkin (C*)2 defined by those representations whége,,
&3 are diagonalizable and do not share an eigenvector. Chpadiasis that diagonalizes

£, note that, if we writet, = (i 3) then

(5 22 de=( %)

£y = (—A;ld aib )

Al —aa

so that

and bc # 0 (see Lemma 5). Conjugating by a diagonal matrix, we cannassthat
b=1 Ast;=a+d andtz3 = —rja— Azld, we have that, d are determined by the
values of {;, t3); and c is determined by the equation dgt=ad —bc = 1. We see
that for fixed @4, t2, t3), &, b, ¢, d are fully determined, and so agg, &s.

Consider theZ, x Z, x Z,-cover given by {1,42,43) — (t1,t2,13) over (C —{0,+1})°.
Let E be the pull-back fibration. The fiber oveka( A», A3) is isomorphic to

Xapy X Xgpy X Xgjge
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Let (Aq, B1, Az, By, A, Bg) € E. Then [Ag, Bi] = &1, [Az, Bo] = &, [As, Bs] = &3, where
a= a()‘l! )\21 )‘3)1 b= 1! C= C()"l: )\21 )\3)1 d= d()"l: )\21 )\3) Take Q = Q()\lv )\2; )‘13);

. A2 O A3 O
S = (A1, A2, A3) matrices such thaQ=1£,Q = ( 02 )51) and S1&S = ( d°’ Agl>'
Then @(Al, B1, Ao, By, Ag, B3) = (Aj_, B4, QilAgQ, Qfl BzQ, glAgs, gl B3S) identifies
E with the subset 0fX; x X4 x X4 where (1, ts, t3) ¢ C. The second and third copies
of Z, act as the standar@,-action on the second and third copiesXf, respectively.
The action of the first copy o, is more delicate: it acts as conjugation By =
(g é) sendingé; = ()‘01 K(I)l) > (kél }3), £ = ("é‘ é) > (g ;) Then under
the isomorphism®, it acts by conjugation byQ *PyQ (resp.SP,S) on the second
(resp. third) factor ofX4. This matrix is easily computed to be diagonal, so the action
is (homologically) trivial.

The conclusion is thaE/Z, x Z, x Z, is isomorphic to the open set of,/Z, x
)_(4/Z2 X )_(4/Z2, where (1, to, tg) ¢ C.

Now we need to compute the E-polynomial Bf= (Xa/Z2 x X4/Z» x Xa/Z3) N
{(ty, to, t3) € C}. Here we can parametriz@ = {(x, n) € (C*)% | A, u, A # +1}/Z.
The fiber over X, w) is isomorphic t0X4; x X4, % Xz_;-1,-1, hence this space is
isomorphic toZ’, studied in (18). Using (21), we get

e(Ws) = e(PGL(2,C))(e(X4/Z2)* — &(Z"))
— q15 _ 7q14 + 8q13 + 44q12 _ 105q11 _ 109110 + 9q9
+ 106&% — 666q" — 1182° + 85° + 2389* — 929° — 5202 — 7q.

3.7. Final result. If we add all the E-polynomials of the different strata, we ge

e(W) = e(Wy) + e(Ws) + e(Ws) + e(Wy) + e(Ws) + e(Ws)
=q"®—5q¢" + 10g™ — 254" — 209° + 209" + 2529° — 109> + 5¢° — q.

Then

e(M') = e(W)/e(PGL(2,C))
=q%?— 49 + 60° — 25297 — 149° — 2529° + 60" — 49° + 1.

This agrees with the result in [16], obtained by arithmetietimods.

REMARK 7. As the referee kindly pointed out, the arithmetic methddgeloped
by Hausel and Rodriguez-Villegas in [9] may be used for themmatation of the E-
polynomials of some of the strata, even in those cases wiherenbnodromy around
the puncture is not semisimple. It would require the use afratter tables for SL(Z)
and [9, Proposition 2.3.2]; this was the approach taken byebléo obtain in [16] the
E-polynomial of the moduli space(M*(SL(n, C))). However, these non-semisimple
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cases do not appear in the literature and a detailed anatysiseded when the GIT
quotient is not smooth, as it is the case fbt(SL(2,C)) in the next section.

4. Hodge monodromy representation for the genus 2 charactevariety

We introduce the following sets associated to the reprasiens of a genus 2 com-
plex curve, and give the E-polynomials computed in [12]:
e Yo:={(As, By, A, By) € SL(2,C)* | [Ay, B1][ A2, Bo] = Id}. Thene(Yo) = q° +
q® + 1297 + 29° — 3gq* — 129° — q, by [12, Section 8.1].
[] Yl = {(A]_, B]_, Az, Bz) € SL(Z,C)4 | [Al, Bl][Az, Bz] = —|d} Then e(Yl) = qg —
397 —30q° + 309* + 39° — q, by [12, Section 9].
o« V= {(Al, Bi, Ag, By) € SL(2,C)? \ [A, Bi[Ag, By = J, = (é 1)} e(Y) =
q° — 397 — 49° — 399° — 49* — 1593, by [12, Section 11].
o Vo= [(Au Bi Ao B) € SL2.O)* | [Aw Bil[ Az Bol = 3= (" 1)} Then
e(Ya) = q° — 3q97 + 15q° + 60° + 4509*, by [12, Section 12].
o Yy = {(AL B1, Az, By) ‘ [Ag, Bi][ A2, Bo] = (g A(_)l)}, for » # 0, £1. Then
e(Ya,) = q° —3q” + 159° — 399° + 399* — 159° + 392 — 1, by [12, Section 10].

Let Y4 := {(AL B1, Az, Bz, 1) € SL(2,C)* x C* | [Ag, Bi][ Az, Bo] = (g k(_)l),

A #0, il}. We have a fibration

Y, — C —{0, +1}.
If we take the quotient by th&,-action there is another fibration
Y4/Zy — C — {£2}.

We are interested in the Hodge monodromy representa{ivg) and R(Ys/Z).

Proposition 8. R(Y.) = (q° — 3q” + 6q° — 6g* + 392 — 1)T + (15q° — 450° +
45q9* — 150°)N.

Proof. We follow the stratificatioY, ;, = |_]i7=1 Zi given in [12, Section 10], and
study the behaviour of each stratum whewaries inC — {0, +1} to obtain the Hodge

monodromy representation of,. Let & = (g Ac_)l). As in [12, Section 10], we write

a b

v=[Bz,A2]=(C d), a=[A1,Bﬂ=év=()‘a - )

A~ ald
andt; = trv, t, = tr 8. Note that everyt(, t;, A) determinesa, d by

Ch-ay -t
T e R
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Thenbc = ad - 1.

We look at the strata:
e 73, corresponding td; = £2, t, = +2. In this case, botlv, § are of Jordan type.
If we take the basis given byu;, u,}, whereu; is an eigenvector fon and u, an

eigenvector fors, then
b= 1 x 5 — 10
~\o 1) " \y 1

for certainx, y € C*. Now, sincesv™ = (6 Agl)’ we obtain that + 171 = 2—xy.

We can fixx = 1 by rescaling the basis, sp is fixed and there is ho monodromy
around the origin. Therefore

R(Z1) = e(Z1)T = (q — 1)(e(X2) + &(X3))’T
= (49" - 159° + 5¢* + 159° — 99)T,
where T is the trivial representation.
e Z,, corresponding td; =2, t, = A+A"% andt, = 2, t; = A+A1. We focus on the
first case. In this situatiofc = 0, so there are three possibilities: eithes= ¢ =0 (in

which casev =1Id) orb=0,c# 0 orb # 0, c = 0 (in either case there is a parameter
in C* and v is of Jordan type). In every situatiom, has trivial monodromy, whereas

8~ ()6 Agl)' This contributesR(X,). Therefore

R(Zz) = 2(e(Xo) +2( ~ De(X2)R(Xa)
= (69" —4q° — 60° — 29" + 49° + 60° — 4q)T
+ (189° — 309> — 69 + 309° — 129°)N.
e Zs given byt; = -2, tp = —A—1"t andt, = -2, t; = —A—A~L. This is analogous
to the previous case, so
R(Zs) = 2(e(X1) + 2(q — 1)&(X3))R(Xa)
= (49" + 109° — 129° — 6q* — 10g° + 1297 + 2q)T

+ (129° + 189° — 669” + 309° + 60%)N.
o 74, defined byt; =2, t, # 2,2 + At andt, = 2, t; # £2, 1 + A1, Both
cases are similar, so we do the first case. For éady, t;) move in a punctured line
{(t, t) | t1 = 2, to # £2, 1 + 171}, wherev is of Jordan form and is of diagonal

type, with tracet,. Both families can be trivialized, giving a contribution efX»)
and e(X4/Z,). The missing fiber)_<4,k over A + A1, which needs to be removed, has
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monodromy representatioR(X,4) as A varies. Therefore
R(Z4) = 2(0 — 1)e(X2)(e(Xa/Z2) T — R(X4))

= (29® — 129" + 109° + 360° — 260* — 360° + 149° + 12q)T
+ (—60° + 249° — 129" — 24q° + 189°)N.

The factor —1) corresponds to the fact that ndwe # 0, so there is the extra freedom
given by C*.

o Zs, defined byt; = -2, t, # 2, —A — At andt, = -2, t; # +2, -1 — AL,
Similarly to Z4, we obtain

R(Zs) = 2(q — 1)e(X3)(e(Xa/Z2)T — R(Xa4))
= (20% — 2q" — 249° + 129° + 349* — 109 — 1297)T
+ (—69° — 6g° + 300* — 189°)N.

e Zg. This stratum corresponds to the €, to) | t1, to # +2,ad = 1}, which is a
hyperbolaH;, for everyi. Sincebc = 0, we get a contribution of @— 1, arising from
the disjoint caseb =c=0; b= 0, c # 0; andb # 0, c = 0. ParametrizingH, by

a parameten € C* — {£1, £1~1} as in [12, Section 10], we obtain a fibration over
C* —{£1, £~} whose fiber oven is X4, x X4, for fixed A. When . varies over
C* — {41}, note that we can extend the local system trivially to theesas u = +1.
This extension can be regarded as a local system over thd $&f @) € C* x C*

252 )_(4xm*)_(4—>(C* XC*,

wherem: C* x C* — C* maps {, u) — Aun. The Hodge monodromy representation of
Zg belongs toR(Z, x Z,)[q] (with generatorsNy, N, denoting the representation which
is not trivial over the generator of the fundamental groughsf first and second copy
of C* respectively, andN;» = N1 ® N,). Since R(Xs) = (q° — 1)T + (392 — 3q)N,
we get

Re=xc+(Ze) = (9% — 1T + (39 — 3)N2) ® ((9° — 1)T + (39° — 3q)N12)
= (q° — 1°T + (39* — 30)°Ny
+(39% — 39)(@® — N2 + (39% — 30)(q° — 1)Nz2.
We write this asR¢«xc+(Zg) = aT + bN;y + cN, + dNpo. To obtain the Hodge mono-
dromy representation overe C*, we use the projection;: C*xC* — C*, (A,u) — A.

ThenT — &(T)T, N2 — e(N2)T, Ni — &(T)N, Ni2 — e(N2)N for the representations.
Using thate(T) = g — 1 ande(N,) = 0 and substracting the contribution from the sets
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u = +1,+171, which yield 4(X4,)R(X4), we get

R(Ze) = ag(T)T + be(T)N + ce(No)T + de(N2)N — 4e(X4,,) R(Xa)
= (@’ —59° - 129° + 109* + 109° + 1297 — 11q — 5)T
+ (—39° - 519* + 999° — 339> — 129)N
and
R(Zs) = (29 — 1)R(Ze)
= (29® — 119" — 199° + 329° + 109* + 149® — 349> 4+ q + 5)T
+ (—69°® —999° + 24%* — 165¢° + 992 + 12q)N.

e 77, corresponding to the open stratum given by the settoftd) such thatt; #
+2,i =1,2 and {;, t;) ¢ H,. If we forget atzout the_ conditionty( t;) € H;, Z7 is a
fibration over {;, t;) with fiber isomorphic t0Xa,, x Xa,,. i = ui + ufl, i=1,2.

Its monodromy is trivial, as the local system is trivial whervaries. The contribution
over H,, already computed in the previous stratumR&g). So we get

R(Z7) = (q — 1)(e(X4/Z2)*T — R(Ze))
= (° — 60° + 89" + 279° — 419° — 219* + 23¢° + 269* — 11q — 6)T
+ (39° + 48q° — 1503* + 139° — 2192 — 12q)N.

Adding all pieces, we get

R(Ys) = (@° - 34" + 69° - 6" + 39> — 1)T
+ (159° — 450° + 459" — 150°)N. O

Dividing by q — 1, we get the formula (1).
We want to compute the Hodge monodromy representatiovy¢if.,. We have the
following.

Lemma 9. The Hodge monodromy representation(YR/Z;) is of the form
R(Ys/Zy) = aT +bS + ¢S, + dS, for some polynomials &, ¢, d € Z[q].

Proof. The Hodge monodromy representati®fY./Z,) lies in the representation
ring of the fundamental group of — {+2}. Under the double cove€ — {0, £1} —
C —{+2}, it reduces toR(Y4). By Proposition 8,R(Y,) is of order 2. HenceR(Ya/Z-)
has only monodromy of order 2 over the loops, around the pointst2. This is the
statement of the lemma. O
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To computea,b,c,d € Z[q], we compute the E-polynomial of the twisted SL(3;
character variety (13) in another way. Stratify

W := {(Aq, B1, A, By, Ag, Bg) € SL(2,C)® | [Aq, Bi[ Az, B] = —[As, Bg]}

as follows:
. Wé = {(A]_, B1, Ao, By, As, B3) | [Aly B]_][Az, BZ] = —[Bg, A3] = Id}. Then
e(Wp) = e(Yo)e(X1)
— ql2 + qll + 11q10 + q9 _ 12q8
_ 5q7 _ 12q6 + 3q5 + 11q4 + q2.

o W] = {(Aq, By, Az, Bz, A3, B3) [ [Aq, B1][ Az, Bo] = —[Bs, As] = —Id}. Then

e(Wy) = e(Y1)e(Xo)
— q13 + 4q12 . 4q11 . 46q1°— 117q9 + 72q8
+ 243" — 18q° — 1249° — 169* + o + 49°.

° Wé = {(Al, B1, A, By, As, B3) | [Al. Bl][AZv BZ] = —[Bg, A3] ~ Ji} Then

&(W;) = &(PGL(2,C)/U)e(Y2)e(Xa)
— ql4 + 3ql3 _ 4q12 _ 1&111 _ 4&:]10 _ 108:]9 + 24q8
+ 7607 + 279° + 450°.

o W; = {(Ay, By, Ay, By, A3, B3) | [A1, Bi][ A2, B2] = —[B3, As] ~ J_}. Then

e(Ws) = e(PGL(2,C)/U)e(Ys)e(X2)
— q14 _ 2ql3 _ 7q12 + 2&:111 _ gqlo _ 3&:]9 _ 9&:]8
— 123" + 108° + 135°.

e W, = {(AL B1, A2, B2, As, Bs) | [A1, Bi][ Az, By] = —[Bs, As] ~ (g )21),
%40, il}.
o W, = {(AL B1, Az, By, Az, B3, 1) | [A1, Bi][ A2, By] = —[Bs, Ag] = (g )LQJ_);
%0, :I:l].

o W, = {(AL Bi, Az, By, Ag, Bg) | [A1, Bil[Az, Bl = —[Bs, As] = (6 )21 )}
where A # 0, £1.
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Using the formula in Section 3.7,
e(W,) = e(W) — e(Wp) — e(W) — e(W;) — e(W5)
=q"° - 29" - 79" + 69" + 69" — 160y*° + 2379° + 9q°
—1719" + 1479° — 699° + 59 + 49° — 5¢° — q.
For the last stratum, note that:
V_VA/LA = Y4,)\ X )_(4’_)“
So R(W,/Z;) = R(Y4/Z3) ® R(t* X4/Zy), wheret: C— {42} — C—{=£2}, 7(X) = —x.
Then
R(W,/Z2) = R(Ya/Z2) ® T*R(X4/Z>)
=@T+bS+cS,+dS) ®@°T +30°S -39S, — S)
= (g*a+39°b—3gc—d)T + (3g%°a+g°b—c— 3qd)S
+ (—=3ga— b+ g3c 4+ 39%d)S » + (—a— 3gb + 39%c + ¢3d)S
=aT+bS+cS,+dS.
Using (12), we get
(W) = (0% — a)e(W,/Z2) + qae&(W,)
= (@®—a)((@—2)a — (b’ + ¢ +d)) +q((a—3)@ +d) —2(0' + ),
which gives us the equation
e(W;) = a(@® — 29° — 49" + 39° + 29) + b(29° — 79° - 34° + 79° + q)S

(22)
+ ¢(—9° — 49* + 49% + ) + d(-59* — ¢° + 50 + q).

We can obtain another equation if we recall that

Y, = {(AL B1, A2, Bp)

[As, Bill Ao, Byl ~ (g 2 ) A £0, j:l}.

Using that SL(2C)* = ||*_, Vi, we obtain that:
e(Ya) = e(SL(2,C)") — &(Yo) — &(Y1) — &(Y2) — &(Ya)
— q12 _ qul_ 4q10 + 6q9 _ 6q8
+ 189" — 60° — 189° + 150* — 6° + 2.
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But the E-polynomial ofY, can again be obtained using the Hodge monodromy repre-
sentationR(Y4/Z,), using (12),

e(Ys) = (92 — 9)e(Ya/Z2) + q&(Ya)
(23) = (@*—a)((a—2)a—(b+c+d)) +a((@—3)@a+d)—2(b +c))
= (0° - 29> — g)a— (9° + q)(b + c) — 2qd.

Finally, two more equations arise from the E-polynomial b tfiber of Y4/Z, —
C - {£2},

(24) e(Ys;) =a+b+c+d,

and from the Hodge monodromy representatR({Ys) = (q° —3q” + 69° —6q* + 392 —
1)T + (15q° — 459° + 45q* — 159°%)N given in Proposition 8. Sinc®(Ys) = (a+d)T +
(b + c)N, we get the equation

(25) a+d=0q°-3q" +69°>—6q* + 39° — 1.
From equations (22), (23), (24) and (25), we find
a=9"-3q" +69°
b = —4509° — 150°,
¢ = 15q° + 45¢%,
d = —6q* + 39 - 1.
We have proved:

Proposition 10. R(Y4/Z2) = (q° — 3q” + 60°)T — (459° + 150°)S, + (159° +
450Y)S 2 + (—69* + 30° — 1)S.

5. E-polynomial of the character variety of genus 3

Let M = M(SL(2,C)) be the character variety of a genus 3 complex cutye.e.,
the moduli space of semisimple representations of its fometdal group into SL(20).
It can be defined as the space

M =V//PGL(2,C),

where
V = {(A1, By, Az, By, Ag, Bs) € SL(2,C)® | [Ay, Bi][ Az, Bo][ As, B3] = Id}.

We stratify V as follows:
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Vo = {(Aq, By, Az, By, Az, B3) | [A1, B1][ Az, Bs] = [Bs, Ag] = Id}. Then

(Vo) = e(Yo)e(Xo)
ql3 + 5q12 + 1&-411 + 45:110 _ 8q9 _ 5&:]8

—32q97 — 459° + 23q° + 449" + q° + 402,

e Vi ={(A1, By, Ay, By, Az, B3) | [A1, B1][ Az, Bo] =[Bgs, As] = —Id}. Then

e(V1) = e(Y1)e(X1)
— qu _ 4q10 _ 3m9 + 3q8
+ 6097 + 39° — 309° — 49* + g°.

L4 V2 = {(All Bll AZ! BZ! A3! B3) | [All Bl][A21 BZ] = [B3l A3] ~ ‘]+}

(V) = e(PGL(2,C)/U)e(Y2)e(Xo)
— q14_ 2q13 _ 7q12 + 4q11 _ 1&10 + 84q9 + 132:18
— 449" — 650° — 42q° — 45q*.
e V3= {(A1 By, Az, By, As, B3) | [A1, Bi][Az, Bo] = [Bs, As] ~ J_}.
(V) = e(PGL(2,C)/U)e(Ya)e(Xs)
— ql4 + 3q13_4q12 + 3qll + 54q10 + 57q9 + 84q8
- 639’ —135°.

o Vi= {(Al, B1, A2, By, Az, Bs) ‘ [A1, B1][ A2, B2] = [Bs, Ag] ~ <g Agl)’ A # 0,:l:1}.
For computinge(Y,4), we define

Vi = {(AL Bi1, Az, By, Ag, By)

[A1, Bi][ Az, Bo] = [Bs, As] = (g ;31 )}

for A # 0,%1. There is a fibration/; — C — {0, £1} with fiber V,,. Note thatV,, =
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Y4,;\ X >_(4,x, SO

R(Va/Z2) = R(Ya/Z2) ® R(X4/Z5)
= ((@®— 39" + 69°)T — (450° + 150°) S + (159° + 450%)S »
+(-69" +39° - 1)) ® (@°T -34S + 39°S2 — S)
— (qlz _ 3q10 + 51q8 + 270_]6 + 51q4 _ 3q2 +1)T
+(—39'°—369° - 669° — 360" — 399)S
+ (39™ +60° + 639" + 639° + 60° + 39)S.»
+(-q° - 18" - 18x° - ¢°)S,

which we write asR(V4/Z;) = 4T + bS + €S, +dS. If we apply (12),

e(Va) = q(9? — 29 — 1)a —q(q + 1)(b + & — 2qd
— g5 — 2% — 7% + 6922 + 51q%! — 70920 + 19° — 1719°
— 21697 + 237° — 249° + 59* + 49% — 59° — q.

From this

e(V) = (Vo) + e(V1) + e(V) + &(V3) + e(Va)
(26) =q"®—5q"+q'? + 739™ + 99"° + 295° — 50°
— 2957 — 50° — 730° + 5¢° — q.

5.1. Contribution from reducibles. To compute the E-polynomial oM =
M(SL(2,C)), we need to take a GIT quotient and differentiate betwesstucible and
irreducible orbits.

In [12, Section 8], this analysis is done in the caseyef 2, by stratifying the set
of irreducible orbits, and computing the E-polynomial otlkeatratum. The number of
strata increases rapidly with the genus. Thereforegfer3 we are going to follow the
method in [14] which consists on computing the E-polynonafithe reducible locus
(which has fewer strata) and substracting it from the total.

A reducible representation given by{, By, Ax, By, Az, Bs) is S-equivalent to

(27)

A O A O A O M O A O e O

0 A2 ) N0 )00 At )P o at) Lo agt) Lo agt))
under the equivalence relations( Az, Az, As, As, Ae) ~ (AT, 231, 431, 471, A5t Agh)
given by the permutation of the eigenvectors. Under theoacti— A1 we have that



678 J. MARTINEZ AND V. MUNOZz

e(C*)* =q, eC*)” = —1, so we obtain
e(M™) = e((C*)°/22)

— e + (3) e e
+ (§) e e ) + @ery
=q° +15q* + 150% + 1.

A reducible representation happens when there is a comngamegctor. So in a
suitable basis, it is

(28)
Al g A2 @ A3 @z Ay Ay As as As 3p
oAt )'\o )P oAzt ) No Azt ) Noazt) N0 agt))

This is parametrized byd* x C)®. The condition B, Bi][ A2, Bo][As, B3] = Id is
rewritten as

22(:2 — 1)ap — 11 (A2 — L)ag + 2a(A2 — L)y

(29)
— 23(AF — 1)ag + Ae(A3 — 1)as — As(A5 — 1)as = 0.

There are four cases:

. Ry given by Ql, ap, az, a4, as, aﬁ) € (()\.1 — A.Il, Ao — )\51, A3 — )\.gl, Ay — )\Zl, A —
Azt he — Agh)) and @, Az, As, Aa, As, Ae) # (£1, £1, £1, £1, £1, +£1). Then we
can conjugate the representation (28) to the diagonal f@&mn). (In this case we can
suppose alg; = 0, and the stabilizer are the diagonal matrie2s PGL(2,C). There
is an action ofZ, given by interchanging of the two basis vectors, and if wetevri
A:= (C*® —{(&1,%1,41,41,+1,£1)}, the stratum is A x PGL(2,C)/D)/Z,. Note
that e(A)* = q® + 15g* + 1592 — 63, e(A)~ = e(A) — e(A)* = —(69° + 209° + 6q),
and e(PGL(2,C)/D)* = ¢?, PGL(2,C)/D)” =g. So

e(Ry) = q° + 99° — 50" — 699°.

e Ry given by @y, &, as, as, @, a) ¢ (A1 — A7h A2 — A5% Az — Azt Aa— At As —

Ast Ae — Agh)) and @i, Az, A, A4, As, Ag) # (£1, £1, £1, +£1, +1, £+1). Then (29)
determines a hyperpland C C®, and the condition foray, a,, as, as, as, a) defines a
linel Cc H. If U =~ D xU denotes the upper triangular matrices, we have a surjective
map Ax (H — 1) x PGL(2,C) — R, and the fiber is isomorphic to’. So

e(Ry) = ((a — 1)° — 64)@> — a)(a®* — )/(a® — q)
— q12 _ 5qll + 9q10 _ 5q9 _ 6q8
+ 149" — 789° — 583° + 59 — 9q° + 699° + 63.
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° R3, given by @1,)\.2,)\.3,)\.4,)\.5,)\.6) = (:l:l,:l:l,:l:l,:l:l,:l:l,:i:l), (al,ag,ag,a4,a5,a6) =
(0,0,0,0,0, 0). This is the case whefe = B = +Id, i = 1, 2, 3, which gives 64
points. Therefore

e(Rs) = 64.
e Ry, given by Q1,A2,A3,A4,A5,h6) = (+1,£1,£1,+1,41,41), (a1,8,83,84,85,8¢) 7#
(0,0,0,0,0,0). In this case, there is at least a matrix oflaortype. The diagonal
matrices act projectivizing the sedy( ap, ag, a4, as, ag) € C — {(0, 0, 0, 0, 0, O) and the
stabilizer is isomorphic tdJ. So
&(Rs) = 64e(P°)e(PGL(2,C)/V)
= 64q’ + 649° — 64q — 64.

Adding all up, we have

o(V'®) = &(R) + &(Ry) + &(Rs) + &(Ra)
— qu _ 5q11 4 9q10_ 5q9 _ 5q8 + 7&17 _ 5q6 _ 5&15 _ 9q3 —q,

and hence

o(V") = e(V) — (V")
= ' —5¢"° + 78q™ + 300° — 37" — 15¢° + 149°,

and thus
e(M'™) = e(V'")/e(PGL(2,C))
— q12 _ 4q10 + 74q8 + 374:16 + q4 _ 14q2

Finally, we have

e(M) = e(M™) + e(M™)
=q*?— 49 + 749® + 37M° + 169 + g% + 1.
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