
Sakamoto, S.
Osaka J. Math.
53 (2016), 621–636

SOME REMARKS ON THE HOMOGENEOUS BOLTZMANN
EQUATION WITH THE FRACTIONAL LAPLACIAN TERM

SHOTA SAKAMOTO

(Received October 24, 2014, revised May 11, 2015)

Abstract
We study the homogeneous Boltzmann equation with the fractional Laplacian

term. Working on the Fourier side we solve the resulting integral equation, and im-
prove a previous result by Y.-K. Cho. We replace the initial data space with a certain
spaceM� introduced by Morimoto, Wang, and Yang. This space preciselycaptures
the Fourier image of probability measures with bounded fractional moments, provid-
ing a more natural initial condition. We show existence of a unique global solution,
in addition to the expected maximal growth estimates and stability estimates. As a
consequence we obtain a continuous density solution of the original equation.

1. Introduction

We consider the spatially homogeneous Boltzmann equation with a diffusion term,
that is,

(1)

(

�t f (v, t)C Æp(�1)p=2 f (v, t) D Q( f, f )(v, t), (v, t) 2 R3
� (0,1),

f (v, 0)D f0(v),

where 0< p � 2 and Æp � 0 are constants. This equation is a variant of the homo-
geneous Boltzmann equation

(2)

(

�t f (v, t) D Q( f, f )(v, t), (v, t) 2 R3
� (0,1),

f (v, 0)D f0(v).

Equation (1) was recently studied by Cho [4]. He discussed the Fourier transform of
(1) and showed that if we take an initial datum from a certain space (which we shall
define later), then there exists a unique global solution on the Fourier side and this
solution satisfies a maximal stability estimate. The estimate is a consequence of the
diffusion term, so such an estimate is likely not valid for solutions of the Fourier trans-
form of (2). It should be noted that the initial data space used by Cho [4] may contain
“undesirable” data for this problem, that is, data which prevents us from inverting the
Fourier transformed problem back into the original one (see, for example, Remark 1
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(ii) of [4]). In order to avoid this obstruction, in this paper we instead use a more
suitable space introduced by Morimoto–Wang–Yang [7], as an initial data space. Us-
ing that space, we obtain the existence of a time-continuousunique global solution of
(1). Readers may refer to [4, 2, 3, 6, 7] and the references therein for historical progress
and recent research on these spaces.

We now discuss (1) in greater detail.f (v, t) is the density distribution of parti-
cles in rarefied gas with velocityv 2 R3 and time t > 0. The right-hand side of (1)
is defined by the Boltzmann collision operator corresponding to the the Maxwellian
molecule type cross section,

(3) Q( f, g)(v) D
Z

R

3

Z

S

2
b(k � � )( f 0

�

g0 � f
�

g) d� dv
�

,

where f 0
�

D f (v0
�

), g0 D g(v0), f
�

D f (v
�

), g D g(v), k D (v � v
�

)=(jv � v
�

j), and

v

0

D

v C v

�

2
C

jv � v

�

j

2
� , v

0

�

D

v C v

�

2
�

jv � v

�

j

2
� .

The Maxwellian molecule type cross sectionb(k � � ) in (3) is a non-negative func-
tion depending only on the deviation angle� D cos�1(k � � ). As in Villani [10], � is
customarily restricted to the range [0,�=2] by replacingb(k � � ) D b(cos�) with its
“symmetrized version”

(b(cos�)C b(cos(� � �)))1{0����=2}.

Since the physical modelb(cos�) coming from the inverse power laws has a singularity
near� D 0, that is,

(4) b(cos�) � K ��2�2s (0< s< 1, K > 0),

we shall throughout this note assume the following weak integrability condition

(5) 9�0 2 (0, 2] such that
Z

�=2

0
b(cos�) sin� sin�0

�

�

2

�

d� <1.

We note that (5) is satisfied for any cross sectionb with property (4) as long as�0 >

2s, althoughb(cos�) sin� is not integrable on [0,�=2]. These constraints coming from
the physical model will be used throughout the paper.

Next, we reformulate equation (1). By taking into account the Bobylev formula,
we apply the Fourier transform to (1) and obtain

(6)

(

(�t C Æpj� j
p)�(� , t) D B(�)(� , t), (� , t) 2 R3

� (0,1),

�(� , 0)D �0(� ),
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where�(� , t) D F [ f ( � , t)](� ),

B(�)(� ) D F [Q( f, f )](� ) D
Z

S

2
b

�

�

j� j

� �

�

[�(�C)�(��) � �(0)�(� )] d� ,

and�� D (��j� j� )=2. (Thus, in (6) we haveB(�)(� ,t)D B(�( � ,t))(� ) and we will use
similar abuse of notation in the sequel without further comment.) The corresponding
integral equation is

(7) �(� , t) D e�Æpj� j
pt
�0(� )C

Z t

0
e�Æpj� j

p(t�� )B(�)(� , � ) d� .

We assume thatf ( � , t) is a probability measure onR3 for every t > 0 at least, thus
�(� , t) is equal to

R

R

3
v

e�i v�� d f (v, t) and �(0, t) D 1.

Before we discuss known results concerning (6), consider first the Fourier trans-
form of (2), namely,

(8)

(

�t�(� , t) D B(�)(� , t), (� , t) 2 R3
� (0,1),

�(� , 0)D �0(� ).

We first introduce some functional spaces. Although only thethree-dimensional case
is introduced, we remark that the following spaces can be defined for any dimensional
case. DefineP

�

(R3) (� � 0) as the set of all probability measures onR3 with finite
moment of order�. In other words, if� 2 P

�

(R3) then� satisfies

Z

R

3
d�(v) D 1,

Z

R

3
jvj

� d�(v) <1.

When � � 1, we add on the condition

Z

R

3
v j d�(v) D 0 ( j D 1, 2, 3)

to the definition of P
�

(R3). Since we expect a solution of (2) to conserve its mass,
momentum, and energy, we thus normalize so that solutions are probability measures
with zero mean and finite moment of order 2 (or, finite variance). In order to establish
a solution with infinite energy, Cannone and Karch [2] invented spaces of characteristic
functions, namely

K D

�

� W R

3
! C �(� ) D

Z

R

3
e�i v�� d f (v), f 2 P0(R3)

�

,

K�

D

�

� 2 K k� � 1k
�

D sup
�2R

3

j�(� ) � 1j

j� j

�

<1

�

,
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and analysed the homogeneous Boltzmann equation with the Maxwellian molecule type
collision kernel.K� is a complete metric space endowed with the norm

k� �  k

�

D sup
�2R

3

j�(� ) �  (� )j

j� j

�

(�,  2 K�).

Since

{1} � K2
� K�1

� K�2
� K0

D K (0� �2 � �1 � 2),

the K�-valued solutions they established have infinite energy. This result was modi-
fied by Morimoto [6] by using finer calculations, and by Morimoto–Wang–Yang [7] by
introducing the space

M�

D

�

� 2 K k� � 1kM�

D

Z

R

3

j�(� ) � 1j

j� j

3C�
d� <1

�

.

When 0< � � � < 2, this is a complete metric space endowed with

dis
�,�(�,  ) D k� �  kM�

C k� �  k

�

,

k� �  kM�

D

Z

R

3

j�(� ) �  (� )j

j� j

3C�
d� (�,  2M�).

For any� 2 (0,2),M�

� F (P
�

(R3)) (¨K�). Moreover, if� ¤ 1, thenM�

D F (P
�

(R3)).
This is the reason whyM� is preferable toK� for our problem, because this space has
a simple interpretation: when we consider the original Boltzmann equation we can take
initial data fromP

�

(R3) and analyse the equation on the Fourier side. The result is The-
orem 1.4 in [7]. This theorem gives the existence of a unique global measure valued
solution of (2) inC([0,1)I P

�

(R3)) with a P
�

(R3)-valued initial datum.
Now let us recall some known results concerning (6). Using techniques from [2]

and [6] (in which (8) is studied) Cho [4] proved that (6) has a solution in S�(R3
�

[0,1)). A stability estimate and a maximum growth estimate were also shown. Here,
for all T > 0,

S�(R3
� [0, T ]) D {� 2 C([0, T ]IK�) j �(� , � ) 2 C([0, T ]),

�t�(� , � ) 2 C((0, T)) for 8� 2 R3},

S�(R3
� [0,1)) D

[

T>0

S�(R3
� [0, T ]).

We shall consider (7) with initial data�0 in M� (� 2 (0, 2)). We apply the tech-
nique developed in [7] to discuss (7). Our main theorems are the following.
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Theorem 1.1. Let �0 � � < p. Then for any�0 2M�, (7) has a classical solu-
tion � in

T �(R3
� [0,1)) D {� 2 C([0,1)IM�) j �(� , � ) 2 C([0,1)),

�t�(� , � ) 2 C((0,1)) for 8� 2 R3}.

This solution� satisfies the a priori estimate

(9) sup
�2R

3

eÆpj� j
pt
j�(� , t)j � 1 for each t� 0.

Since � in Theorem 1.1 satisfies�t�(� , � ) 2 C((0,1)), � is also a solution of
(6). (9) is a consequence of adding the diffusion termÆp(�1)p=2. When Æp D 0, (9)
just gives the obvious statementj�(� , t)j � 1 for any � and t . This makes difference
between (1) and (2).

In order to state our stability result, we introduce the notation T �

p (R3
� [0,1)) for

all elements ofT �(R3
� [0,1)) which satisfy (9). The following constants will also

be needed in the sequel. For 2s< �0 � � < p � 2, we define




�

D 2�
Z

�=2

0
b(cos�) sin�

�

cos�
�

�

2

�

C sin�
�

�

2

��

d� ,

�

�

D 2�
Z

�=2

0
b(cos�) sin�

�

cos�
�

�

2

�

C sin�
�

�

2

�

� 1

�

d� ,

�

�

D 2�
Z

�=2

0
b(cos�) sin� sin�

�

�

2

�

d� ,

Cp,� D

Z

R

3

1� e�j� j
p

j� j

3C�
d� D

4�

�

0

�

1�
�

p

�

,

where0 is the gamma function.

�

is used to discuss (7) under the cutoff assumption,
that is, whenb 2 L1(S2). Easily we see that
2 � 
� � 2
2. When we discuss the
equation under the non-cutoff assumption, we use�

�

and�
�

. In this case, 0� �
�

<

1 (see [2]) and 0� �
�

< 1 (due to (5)). The second identity forCp,�, which was
mentioned to us by Cho, shows thatCp,� is finite if and only if 0< � < p. The
identity is easy to prove using a change of variables followed by integration by parts.

Theorem 1.2. Under the assumptions ofTheorem 1.1,let �, 2 T �

p (R3
� [0,1))

be solutions of(7) with initial data �0,  0 2M� respectively. Then the following sta-
bility estimate holds:

keÆpj � j
pt (�( � , t) �  ( � , t))kM�

� e�� t
k�0 �  0kM� .

In particular, (7) has at most one solution inT �

p (R3
� [0,1)).
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Interpreting Theorem 1.2 in terms of the original equation yields the following result.

Theorem 1.3. Let �0 � � < p, � ¤ 1, and f0 2 P
�

(R3). Let � be the unique
global solution of (6) with initial datum �0 D F [ f0] 2 M� given by Theorems 1.1
and 1.2. Then f(v, t) D F�1[�( � , t)](v) is a unique global solution of(1) with ini-
tial datum f0. This inverse Fourier transform is well-defined. f(v, t) is a smooth
probability density ofv and tends to0 as jvj ! 1 for each t> 0. Moreover, f 2
C([0,1)I P

�

(R3)), where time continuity of f is interpreted in the following sense: for
any t0 > 0 and  2 C(R3) satisfyingj (v)j � C(1C jvj2)�=2 for some positive C,

lim
t!t0

Z

R

3
 (v) f (v, t) dv D

Z

R

3
 (v) f (v, t0) dv.

Note that a slightly stronger assumption is needed to establish a solution with the
same properties when� D 1 (see [7, Remark 1.5]).

The outline of this paper is as follows. We cite some lemmas inSection 2. We
modify some of them so that they are applicable to our problem. In Section 3 we prove
that under the cutoff assumption we have a global unique solution of (7), and deduce
an a priori estimate and a stability estimate. These resultsare used to discuss (7) under
the non-cutoff assumption in Section 4. The proof of main theorems are shown in this
section. In Section 5 we discuss non-existence of solutionsin the casep � � < 2.

2. Preliminaries

Under the cutoff assumption,Q is split into a gain termQC and a loss termQ�

in a self-evident way. We denote the Fourier transform of thegain termQC by

G(�)(� ) D
Z

S

2
b

�

�

j� j

� �

�

�(�C)�(��) d� .

First, we cite two lemmas from Morimoto–Wang–Yang [7].

Lemma 2.1 (Morimoto–Wang–Yang). Assume b2 L1(S2) (, 
2 < 1). For all
� and  2M�,

kG(�) � G( )kM�

� 


�

k� �  kM� .

Lemma 2.2 (Morimoto–Wang–Yang). There exists a constant C0 > 0 independ-
ent of � 2M�, such that

Z

R

3

jB(�)(� )j

j� j

3C�
d� � C0��k� � 1kM� .

Then, we show a lemma concerninge�j� j
p
, which is a classical result in probabil-

ity theory.
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Lemma 2.3. e�j� j
pt (� 2 R3, t � 0) is a positive definite function of� if and only

if 0< p � 2. For every t> 0, f p(v, t), which is defined as

f p(v, t) D
1

2�2

Z

1

0
e�r ptr 2 sinr jvj

r jvj
dr ,

is a probability density onR3, and F [ f p( � , t)](� ) D e�j� j
pt . Furthermore,

Z

R

3
jvj

� f p(v, t) dv <1 (0� � < p) and
Z

R

3
jvj

p f p(v, t) dv D1.

Proof. Positive definiteness is proved in Schoenberg [8]. For each t > 0, e�j� j
pt

is a rapidly decreasing radial function defined onR3. Its inverse Fourier transform is

(10) F�1[e�j � j
pt ](v) D

1

(2�)3
(2�)3=2

jvj

�1=2
Z

1

0
J1=2(r jvj)e�r ptr 3=2 dr ,

where J
�

(z) (� 2 C, Re(�) > �1=2) is the Bessel function

J
�

(z) D

�

0

�

1

2

�

0

�

� C

1

2

��

�1� z

2

�

�

Z 1

�1
(1� t2)��1=2ei zt dt

(see Taylor [9] for instance). A straightforward calculation of J1=2(r jvj) together with
(10) gives

F�1[e�j � j
pt ](v) D

1

2�2

Z

1

0
e�r ptr 2 sinr jvj

r jvj
dr D f p(v, t).

Hence,F [ f p( � , t)](� ) D e�j� j
pt .

We now turn to the moment estimates. A simple calculation shows that f p(v, t) D
t�3=p f p(t�1=p

v, 1), so it suffices to consider the caset D 1. From [1, Theorem 2.1]
we have

lim
jvj!1

jvj

3Cp f p(v, 1)D
p2p�1

�

5=2
sin

�

p�

2

�

0

�

3C p

2

�

0

�

p

2

�

,

and this leads to the desired estimates.

Cho [4, Section 3] discusses conditions for whichG(�) and B(�) make sense.
Since M�

� K�

� K (0 < � < 2), it follows that Lemmas 3.1 and 3.3 in [4] are
still valid when we take� from M�. We state these facts as Lemmas 2.4 and 2.5.

Lemma 2.4. Assume b2 L1(S2) and T> 0. ThenG(�)(� ) is a continuous posi-
tive definite function of� for each� 2M�.

Moreover, if �( � , t) 2M� for each t2 [0, T ] and �(� , � ) 2 C([0, T ]) for each
� 2 R

3, thenG(�)(� , t) 2 C(R3
� [0, T ]).
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Lemma 2.5. Assume�
�0 <1 and T> 0. If � 2 C([0, T ]IM�) and �(� , � ) 2

C([0, T ]) for each� 2 R3, thenB(�)(� , � ) 2 C([0, T ]) for each� 2 R3.

3. Existence and behaviour of a solution under the cutoff assumption

In order to consider the non-cutoff case in Section 4, we firstprove that under the
cutoff assumption (
2 < 1), (7) has a unique solution inT �(R3

� [0,1)). We also
provide a stability estimate and an a priori estimate for this solution.

3.1. Existence. Assumeb 2 L1(S2). Under the cutoff assumption, (7) is writ-
ten as

(11) �(� , t) D e�(
2CÆpj� j
p)t
�0(� )C

Z t

0
e�(
2CÆpj� j

p)(t�� )G(�)(� , � ) d� .

In this subsection we will prove the following theorem.

Theorem 3.1. Let �0 � � < p, b 2 L1(S2) and �0 2M�. Then(11) has a solu-
tion � 2 T �(R3

� [0,1)), which satisfies

sup
�2R

3

eÆpj� j
pt
j�(� , t)j � 1 for each t� 0.

For a fixedT > 0, define

�T D {� 2 C([0, T ]IM�) j �(� , � ) 2 C([0, T ]) for each� 2 R3}.

SinceM� is a complete metric space endowed with dis
�

(�,  ) D k� � kM�

C k� �

 k

�

(see [7]),�T is also a complete metric space endowed with

DT (�,  ) D max
t2[0,T ]

dis
�

(�(t),  (t)).

Let us think of the right-hand side of (11) as the image8(�)(t) of an operator8. By
Lemma 2.4,8 is well-defined on�T . We will prove that8 is a contraction on�T

provided thatT is sufficiently small. SinceM� is endowed with dis
�

and the contrac-
tion estimate fork � k

�

was obtained in [4], it is enough to consider the contraction
estimate fork � kM� .

Lemma 3.2. If �0 � � < p, T > 0, and � 2 �T , then

k8(�)(t) � 1kM�

� Cp,�(Æpt)�=p
C 2 max

�2[0,T ]
k�(� ) � 1kM� ,

k8(�)(t) �8(�)(s)kM�

� C(�, T)jt � sj�=p,
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where s, t 2 [0, T ] and

C(�, T) D 2Cp,�Æ
�=p
p (2C 
2T)C 3


�

T1��=p max
t2[0,T ]

k�(t) � 1kM� .

Proof. Whent � 0, we haveG(�)(0, t) D 
2, so

8(�)(t) � 1D I1(t)C I2(t)C I3(t),

where

I1(t) D e�
2t [e�Æpj� j
pt
�0(� ) � 1],

I2(t) D
Z t

0
e�(
2CÆpj� j

p)(t�� )[G(�)(� , � ) � G(�)(0, � )] d� ,

I3(t) D 
2

Z t

0
e�
2(t�� )[e�Æpj� j

p(t�� )
� 1] d� .

Note that for anya > 0,

Z

R

3

1� e�aj� jp

j� j

3C�
d� D Cp,�a�=p.

Since

e�Æpj� j
pt
�0(� ) � 1D e�Æpj� j

pt (�0(� ) � 1)� (1� e�Æpj� j
pt ),

this gives
Z

R

3

jI1(t)j

j� j

3C�
d� � e�
2t [k�0 � 1kM�

C Cp,�(Æpt)�=p].

Next, by Lemma 2.1,

Z

R

3

jI2(t)j

j� j

3C�
d� � 


�

Z t

0
e�
2(t�� )

k�(� ) � 1kM�d�

� 


�

�

1� e�
2t


2

�

max
�2[0,T ]

k�(� ) � 1kM� .

Finally, I3 is estimated in a similar way asI1, yielding

Z

R

3

jI3(t)j

j� j

3C�
d� � 
2

Z t

0
e�
2(t�� )Cp,�[Æp(t � � )]�=p d�

� Cp,�(Æpt)�=p(1� e�
2t ).

Combining these estimates we obtain the first inequality of the lemma.
To obtain the second inequality of the lemma, we estimate

8(�)(t) �8(�)(s) D
3
X

iD1

(I i (t) � I i (s))
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with 0� s< t � T for simplicity. Since

I1(t) � I1(s) D �e�
2s[e�Æpj� j
ps(1� e�Æpj� j

p(t�s))�0(� )

C (1� e�
2(t�s))(e�Æpj� j
pt
�0(� ) � 1)],

we have
Z

R

3

jI1(t) � I1(s)j

j� j

3C�
d� � Cp,�[Æp(t � s)]�=p

C 
2(t � s)[k�0 � 1kM�

C Cp,�(Æpt)�=p]

� Cp,�Æ
�=p
p (t � s)�=p

C 
2(t � s)�=p[T1��=p
k�0 � 1kM�

C Cp,�Æ
�=p
p T ].

Next,

I2(t) � I2(s)

D

Z t

s
e�(
2CÆpj� j

p)(t�� )[G(�)(� , � ) � G(�)(0, � )] d�

� (1� e�
2(t�s))
Z s

0
e�(
2CÆpj� j

p)(s�� )[G(�)(� , � ) � G(�)(0, � )] d�

� (1� e�Æpj� j
p(t�s))

Z s

0
e�
2(t�� )�Æpj� j

p(s�� )[G(�)(� , � ) � G(�)(0, � )] d� .

Since b 2 L1(S2), we have jG(�)(� , � ) � G(�)(0, � )j � 2
2, which together with
Lemma 2.1 gives

Z

R

3

jI2(t) � I2(s)j

j� j

3C�
d�

� 


�

max
�2[0,T ]

k�(� ) � 1kM�

�

Z t

s
e�
2(t�� ) d� C 
2(t � s)

Z s

0
e�
2(s�� ) d�

�

C Cp,�[Æp(t � s)]�=p2
2

Z s

0
e�
2(t�� ) d�

� (t � s)�=p

�

2

�

T1��=p max
�2[0,T ]

k�(� ) � 1kM�

C 2Cp,�Æ
�=p
p

�

.

Finally,

I3(t) � I3(s) D �
2

Z t

s
e�
2(t�� )(1� e�Æpj� j

p(t�� )) d�

� 
2(1� e�Æpj� j
p(t�s))

Z s

0
e�
2(t�� )�Æpj� j

p(s�� ) d�

C 
2(1� e�
2(t�s))
Z s

0
e�
2(s�� )(1� e�Æpj� j

p(s�� )) d� ,
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so we have
Z

R

3

jI3(t) � I3(s)j

j� j

3C�
d� � 
2

Z t

s
e�
2(t�� )Cp,�[Æp(t � � )]�=p d�

C 
2Cp,�[Æp(t � s)]�=p
Z s

0
e�
2(t�� ) d�

C 


2
2 (t � s)

Z s

0
e�
2(s�� )Cp,�[Æp(s� � )]�=p d�

� Cp,�Æ
�=p
p (t � s)�=p(1C 
2T).

Together, these estimates yield the second inequality of the lemma.

Proof of Theorem 3.1. To see that8 is a contraction, note that8 is a mapping
from �T to �T for eachT > 0 and

(12) max
t2[0,T ]

k8(�)(t) �8( )(t)kM�

� 2(1� e�
2T ) max
t2[0,T ]

k�(t) �  (t)kM� .

This follows in the same way as in Cho [4] (replaceK� with M� and k � k
�

with
k � kM� , then this is obvious). Taking 0< T0 < (log 2)=
2 and combining (12) with the
k � k

�

-estimates in [4], we obtain

DT0(8(�), 8( )) < DT0(�,  ).

Therefore8 is a contraction on�T0. By using the Banach fixed point theorem, we
obtain a solution of (11).

3.2. An a priori estimate and a stability estimate. We observe that since
C([0,1)IM�) � C([0,1)IK�), the a priori estimate deduced in [4] also holds for
a solution of (11):

Lemma 3.3. Let �0 � � < p, b 2 L1(S2), and �0 2M�. If (11) has a solution
� which satisfies� 2 C([0,1)IM�) and �(� , � ) 2 C([0,1)) for every � 2 R3, then
the following estimate holds for every t� 0

(13) sup
�2R

3

eÆpj� j
pt
j�(� , t)j � 1.

Coupled with the existence of a local solution, estimate (13) gives the existence of a
global solution of (11). We will now show a stability estimate for the uniqueness result.

Theorem 3.4. Let 
2 < 1 and �,  2 T �(R3
� [0,1)) be solutions of(11),

corresponding to initial data�0,  0 2M� respectively. Then for all t� 0,

keÆpj � j
pt (�( � , t) �  ( � , t))kM�

� e�� t
k�0 �  0kM� .
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Proof. Define

U (� , t) D e(
2CÆpj� j
p)t

�

�(� , t) �  (� , t)

j� j

3C�

�

for � ¤ 0 andU (0, t) D 0. We have

(14) U (� , t) D U (� , 0)C
Z t

0
e(
2CÆpj� j

p)�

�

G(�)(� , � ) � G( )(� , � )

j� j

3C�

�

d� .

Since j� jp � j�Cjp C j��jp for 0� p � 2, (13) gives

Z

R

3
eÆpj� j

p
�

jG(�)(� , � ) � G( )(� , � )j

j� j

3C�
d�

�

Z

R

3

Z

S

2

b(� � �=j� j)eÆp(j�CjpCj��jp)�

j� j

3C�
(j�Cj j�� �  �

j C j 

�

j j 

C

�  

C

j) d� d�

�

Z

R

3

Z

S

2

b(� � �=j� j)

j� j

3C�
(eÆpj�

C

j

p
�

j�

C

�  

C

j C eÆpj�
�

j

p
�

j�

�

�  

�

j) d� d�

D J1C J2.

Here we used the simplified notation�(�C,� )D �C, with �� and � similarly defined.
By using the change of variables used in the proof of [5, Lemma8.1] (see also [7,
Lemma 2.1]),J1 and J2 are calculated as

J1 D

Z

R

3

Z

S

2
b

�

�

j� j

� �

�

eÆpj� j
p
�

j� j

3C�
j�(� , � ) �  (� , � )j cos�

�

�

2

�

d� d� ,

J2 D

Z

R

3

Z

S

2
b

�

�

j� j

� �

�

eÆpj� j
p
�

j� j

3C�
j�(� , � ) �  (� , � )j sin�

�

�

2

�

d� d� ,

from which we conclude that

keÆpj � j
p
� (G(�)(� ) � G( )(� ))kM�

� 


�

keÆpj � j
p
� (�(� ) �  (� ))kM� .

For simplicity we denotekeÆpj � j
pt (�( � , t)� ( � , t))kM� by V(t). Integrating (14) with

respect to� , we obtain

e
2t V(t) � V(0)C 

�

Z t

0
e
2�V(� ) d� .

The Gronwall inequality yields the result.

4. Global existence of a solution under the non-cutoff condition

In this section, we will construct a solution of (7) without the cutoff assumption
by using the results of the last section. For this purpose, first we prove two lemmas.
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Lemma 4.1. Let �0 � � < p � 2, �
�

<1, and �0 2M�. If (7) has a solution
� 2 T �(R3

� [0,1)) then � satisfies

k�(t) � 1kM�

� eC0��

t [k�0 � 1kM�

C Cp,�(Æpt)�=p],

where C0 is the same constant as inLemma 2.2.

Proof. It is easy to see that

�(� , t) � 1

j� j

3C�
D

e�Æpj� j
pt
�0(� ) � 1

j� j

3C�
C

Z t

0
e�Æpj� j

p(t�� )B(�)(� , � )

j� j

3C�
d� .

By Lemma 2.2 we obtain

k�(t) � 1kM�

� k�0 � 1kM�

C Cp,�(Æpt)�=p
C C0��

Z t

0
k�(� ) � 1kM� d� .

The estimate now follows by applying the Gronwall inequality.

For brevity, we will denoteC0��eC0��

T [k�0 � 1kM�

C Cp,�(ÆpT)�=p] by QC0.

Lemma 4.2. Fix T > 0. Under the assumptions ofLemma 4.1we have for all
s, t 2 [0, T ]

k�(t) � �(s)kM�

� C0(�0, T)jt � sj�=p,

where

C0(�0, T) D Cp,�Æ
�=p
p C

�

1C
1

1� �=p

�

QC0T1��=p.

Proof. Set 0� s< t � T and defineK1, K2, K3 by

�(� , t) � �(� , s) D (e�Æpj� j
pt
� e�Æpj� j

ps)�0(� )C
Z t

s
e�Æpj� j

p(t�� )B(�)(� , � ) d�

C

Z s

0
(e�Æpj� j

p(t�� )
� e�Æpj� j

p(s�� ))B(�)(� , � ) d�

D K1C K2C K3.

Obviously

Z

R

3

jK1j

j� j

3C�
d� �

Z

R

3

e�Æpj� j
ps
�

1� e�Æpj� j
p(t�s)

�

j� j

3C�
d� � Cp,�[Æp(t � s)]�=p.

By Lemmas 2.2 and 4.1,

Z

R

3

jK2j

j� j

3C�
d� � C0��

Z t

s
k�(� ) � 1kM� d� � QC0(t � s).
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For a fixed � 2 [0, s), f (r ) D e�(s�� )r
� e�(t�� )r (r � 0) is a nonnegative function,

satisfying

max
r�0

f (r ) D
t � s

t � �

�

s� �

t � �

�(s�� )=(t�s)

.

Furthermore, we have

�

s� �

t � �

�(s�� )=(t�s)

�

�

t � �

t � s

�1��=p

because the left-hand side is smaller than 1 and the right-hand side is larger than 1. Thus

Z

R

3

jK3j

j� j

3C�
d� �

Z

R

3

Z s

0

�

t � s

t � �

�

�=p

�

jB(�)(� , � )j

j� j

3C�
d� d�

� (t � s)�=p
�

QC0

�

�

1

1� �=p
(t � � )1��=p

�s

�D0

� (t � s)�=p
QC0

t1��=p

1� �=p

�

T1��=p

1� �=p
QC0(t � s)�=p.

Combining these estimates, the result follows.

Proof of Theorems 1.1–1.3. We follow [7]. For eachn 2 N, definebn(cos�) D
min{b(cos�), n} and�n as a solution of (11) withb replaced bybn. Define�

�,n in the
same manner. Then we have

k�n(t) � 1kM�

� e��,nt
k�0 � 1kM�

� e�� t
k�0 � 1kM� .

In [4], the Ascoli–Arzelà theorem was used to extract a subsequence of the series of
functions {�n}, which converges to a solution� of (7) in C([0,1)IK�). Since� is
a unique solution inS�p(R3

� [0,1)), we can extract such a subsequence. We denote
this subsequence also by{�n}. For all Æ > 0, we have

Z

Æ<j� j<Æ

�1

j�(� , t) � 1j

j� j

3C�
d� D lim

n!1

Z

Æ<j� j<Æ

�1

j�n(� , t) � 1j

j� j

3C�
d� � e�� t

k�0 � 1kM� .

The Lebesgue convergence theorem therefore implies that�( � , t) 2 M�. That � 2
C([0,1)IM�) follows from Lemma 4.2. Finally, by differentiating (7) with respect to
t , we obtain� 2 T �(R3

� [0,1)). For the proof of the maximum growth estimate and
the stability estimate of a solution, we take two sequences{�n},{ n} � S�(R3

� [0,1))
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which converge to solutions�,  2 S�(R3
� [0,1)) with initial data �0,  0 2M�,

respectively. Then for anyt � 0

sup
�2R

3

eÆpj� j
pt
j�n(� , t)j � 1

and

keÆpj � j
pt (�n( � , t) �  n( � , t))kM�

� e�� t
k�0 �  0kM� .

Letting n!1 in these inequalities yields Theorem 1.2. Once (9) is proved, we im-
mediately conclude that�(� , t) in Theorem 1.1 belongs toL1 and to any polynomially
weightedL2 space with respect to� . The Fourier inversion formula implies that�(� , t)
has a unique probability densityf (v, t) vanishing at infinity, and the Sobolev embed-
ding theorem shows thatf (v, t) is a smooth function ofv for every positivet . The
proof is completed by repeating the arguments of [7, Section3.3], the details of which
are omitted.

5. Non-existence of a solution in the casep � � < 2

In [4], a solution of (7) was found inS� for initial data inK� when 0< � � p� 2
and non-existence of solutions was proved whenp < � � 2. However, in our case the
existence of a solution inT � for initial data inM� fails also when� D p. Here we
recall Lemma 2.3. SinceM�

D F (P
�

(R3)) when 0< � < 2 and� ¤ 1, the following
theorem precisely reflects the moment estimates off p(v, t).

Theorem 5.1. Let p� � < 2. Then for any T> 0 and �0 2M�, there is no
solution of (7) which belongs toT �(R3

� [0, T ]).

Proof. Assume to reach a contradiction that� 2 T �(R3
� [0, T ]) is a solution of

(7). It is easy to check that

1� e�Æpj� j
pt
D e�Æpj� j

pt (�0(t) � 1)C 1� �(� , t)C
Z t

0
e�Æpj� j

p(t�� )B(�)(� , � ) d� .

Clearly,

Z

R

3

1� e�Æpj� j
pt

j� j

3C�
d� � 2 max

t2[0,T ]
k�(t) � 1kM�

C

Z t

0
C0��k�(� ) � 1kM� d� <1,

which contradicts the fact that
R

R

3(1� e�Æpj� j
pt )=j� j3C� d� diverges.
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