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Abstract

We study the homogeneous Boltzmann equation with the @naaki Laplacian
term. Working on the Fourier side we solve the resultinggrdaé equation, and im-
prove a previous result by Y.-K. Cho. We replace the initialadspace with a certain
spaceM* introduced by Morimoto, Wang, and Yang. This space precisafytures
the Fourier image of probability measures with boundedtifivtaal moments, provid-
ing a more natural initial condition. We show existence ofréque global solution,
in addition to the expected maximal growth estimates andilgtaestimates. As a
consequence we obtain a continuous density solution of tiggnal equation.

1. Introduction

We consider the spatially homogeneous Boltzmann equatitn avdiffusion term,
that is,

" 3 f (v, 1) + 8p(—A)P21 (v, 1) = Q(f, F)(v, 1), (v, 1) € R®x (0, 00),
f(v, 0) = fo(v),

where O< p <2 andé, > 0 are constants. This equation is a variant of the homo-

geneous Boltzmann equation

@ & f(v,t) = Q(f, (v, 1), (v,t) € R®x (0, 00),
f(v, 0) = fo(v).

Equation (1) was recently studied by Cho [4]. He discussedRburier transform of
(1) and showed that if we take an initial datum from a certgace (which we shall
define later), then there exists a unique global solution hen Fourier side and this
solution satisfies a maximal stability estimate. The ed#énia a consequence of the
diffusion term, so such an estimate is likely not valid fotusions of the Fourier trans-
form of (2). It should be noted that the initial data spacedusg Cho [4] may contain
“undesirable” data for this problem, that is, data whichvprés us from inverting the
Fourier transformed problem back into the original one (dee example, Remark 1
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(ii) of [4]). In order to avoid this obstruction, in this pap&e instead use a more
suitable space introduced by Morimoto—Wang-Yang [7], asrétmli data space. Us-
ing that space, we obtain the existence of a time-continumigue global solution of
(1). Readers may refer to [4, 2, 3, 6, 7] and the referenceeithéor historical progress
and recent research on these spaces.

We now discuss (1) in greater detaif.(v, t) is the density distribution of parti-
cles in rarefied gas with velocity € R® and timet > 0. The right-hand side of (1)
is defined by the Boltzmann collision operator correspogdion the the Maxwellian
molecule type cross section,

3) Qf, g)(v) = /R 3 / b(k-0)(f/g - f,0) do du,

where f/ = f(v.), g = g(v'), fx = f(vs), g =9(v), k = (v —v,)/(Jv — v4]), and

, Ut |v — vy ,_v+v*_|v—v*|

2 2 o 2 2

The Maxwellian molecule type cross sectib(k - o) in (3) is a non-negative func-
tion depending only on the deviation angle= cos(k - o). As in Villani [10], 6 is
customarily restricted to the range [©/2] by replacingb(k - o) = b(cosf) with its
“symmetrized version”

(b(cost) + b(costr — 6))Lio=o=x/2-

Since the physical moddi(cos?) coming from the inverse power laws has a singularity
near6 = 0, that is,

(4) b(cost) ~ K62 (0<s<1, K >D0),

we shall throughout this note assume the following weakgiateility condition
/2 0

(5) Jag € (0, 2] such that / b(cosh) sino sin"o(z) do < oo.
0

We note that (5) is satisfied for any cross sectiowith property (4) as long asg >
2s, althoughb(cosd) siné is not integrable on [07/2]. These constraints coming from
the physical model will be used throughout the paper.

Next, we reformulate equation (1). By taking into accourg Bobylev formula,
we apply the Fourier transform to (1) and obtain

) {(at +8plE P 1) = B@)E D, (€. 1) € R x (0, 00),

d(§, 0) = ¢o(5),
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where¢(§,t) = F[ (-, 1)](§),

BOYE) = QU 06 = [ b( <5 -0 )16 )0t )~ 40)(eN do,
and&* = (£+£|0)/2. (Thus, in (6) we havd(¢)(£,t) = B(o(-,1))(€) and we will use
similar abuse of notation in the sequel without further canty) The corresponding
integral equation is

t
@) B(E, 1) = e kMg (E) + fo e PlEPIB($)(E, 7) ds.

We assume thaf (-, t) is a probability measure oR? for everyt > 0 at least, thus
¢(&, 1) is equal to . e* df(v, t) and¢(0,t) = 1.

Before we discuss known results concerning (6), considst fire Fourier trans-
form of (2), namely,
(8) atd)(sl t) = B((f))(é, t), (é:! t) € R3 X (0! OO),

#(&, 0) = ¢o(§).

We first introduce some functional spaces. Although only tvee-dimensional case
is introduced, we remark that the following spaces can bené@ffor any dimensional

case. DefineP,(R3) (« > 0) as the set of all probability measures BA with finite
moment of order. In other words, ifu € P,(R3) then i satisfies

/ du(v) =1, / [v]* du(v) < oo.
R3 R3

Whena > 1, we add on the condition
/ vidu(w) =0 (j =1,2,3)
]R3

to the definition of P,(R%). Since we expect a solution of (2) to conserve its mass,
momentum, and energy, we thus normalize so that solutioegpaobability measures
with zero mean and finite moment of order 2 (or, finite varign¢e order to establish

a solution with infinite energy, Cannone and Karch [2] ineghspaces of characteristic
functions, namely

K= {¢: R - C | ¢(&) :/ e df(v), f e PO(R3)},

R3
Ko = {¢ ek | 1¢ =1y, = sup PE = oo},
£e€R3 |§|a
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and analysed the homogeneous Boltzmann equation with thevéliian molecule type
collision kernel. K% is a complete metric space endowed with the norm

16—yl = sup LEVEOL (¢ ey
£eR3 |§|
Since

(I} cK?cKeck2cKk®=K (0<ay <o <2),

the K“-valued solutions they established have infinite energyis Tasult was modi-
fied by Morimoto [6] by using finer calculations, and by MorimeWang-Yang [7] by
introducing the space

~1
M"‘z{q&elC||¢—1||Ma=43%d§<m}.

When 0< 8 <« < 2, this is a complete metric space endowed with

disy (@, ¥) = [l — ¥llme + 1o — ¥,
16 =¥l = [ W ds (9, ¥ € MO,

For anya € (0,2), M* C F(P,(R®)) (S K¢). Moreover, ifa # 1, thenM® = F(P,(R®)).
This is the reason why\® is preferable toC* for our problem, because this space has
a simple interpretation: when we consider the original Baknn equation we can take
initial data from P, (R®) and analyse the equation on the Fourier side. The resulés T
orem 1.4 in [7]. This theorem gives the existence of a unigiebaj measure valued
solution of (2) inC([0, oo): P,(R®)) with a P, (R%)-valued initial datum.

Now let us recall some known results concerning (6). Usirghriegques from [2]
and [6] (in which (8) is studied) Cho [4] proved that (6) hasduton in S*(R3 x
[0, c0)). A stability estimate and a maximum growth estimate wdse ahown. Here,
forall T > 0,

S“(R®*x [0, T]) = {¢ € C([0, T]; K*) | (&, ) € C([O, T]),
(&, -) € C((0,T)) for V& € R?},

S*R3 % [0, 00)) = _J 8“(R® x [0, T)).
T>0

We shall consider (7) with initial datgy in M* (« € (0, 2)). We apply the tech-
nique developed in [7] to discuss (7). Our main theorems lagefdllowing.
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Theorem 1.1. Letwg <« < p. Then for anypg € M*, (7) has a classical solu-
tion ¢ in

T*(R®x [0, 00)) = {¢ € C([0, 00); M*) | $(&, -) € C([0, 00)),
do(&, -) € C((0, 00)) for V& € R3}.

This solution¢ satisfies the a priori estimate

9) supellPtp(E, 1) <1 for each t>0.

EcR3

Since ¢ in Theorem 1.1 satisfieg¢(&, -) € C((0, 00)), ¢ is also a solution of
(6). (9) is a consequence of adding the diffusion teSrm—A)P/Z. Whené, =0, (9)
just gives the obvious statemefi(é, t)] < 1 for any & andt. This makes difference
between (1) and (2).

In order to state our stability result, we introduce the riotaT,;"(R?’x [0, 00)) for
all elements of7%(R3 x [0, o)) which satisfy (9). The following constants will also
be needed in the sequel. Fo8 2 ag < a < p < 2, we define

/2 0 0
Vo = 27 / b(cosh) sin@[co§ (5) + sinf (5)} de,
0

/2 0 0
Ag = 21 / b(cos6) sine[coé” (5) + sirf (5) — 1} do,
0

/2 0
o = 21 / b(coso) sin6 sin‘”(z) de,
0

1- ekl 4 o
oo [ ()
Po = Joo TEpre BT g b

whereT is the gamma functiony, is used to discuss (7) under the cutoff assumption,
that is, whenb e L1(S?). Easily we see thay, < y, < 2y». When we discuss the
equation under the non-cutoff assumption, we ugeand u,. In this case, G A, <

oo (see [2]) and O< u, < oo (due to (5)). The second identity f&,,, which was
mentioned to us by Cho, shows th@, is finite if and only if 0< o« < p. The
identity is easy to prove using a change of variables folkbwg integration by parts.

Theorem 1.2. Under the assumptions dfheorem 1.1et ¢, v € 'T;(R3X[O,OO))

be solutions of(7) with initial data ¢o, Y9 € M* respectively. Then the following sta-
bility estimate holds

1€ @ (-, ) = v (-, O)llae < € lido — Yol ae-

In particular, (7) has at most one solution i’ﬂi’,;’(R3 x [0, 00)).
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Interpreting Theorem 1.2 in terms of the original equati@ids the following result.

Theorem 1.3. Letag <a < p, a # 1, and § € P,(R%. Let ¢ be the unique
global solution of (6) with initial datum ¢o = F[fp] € M® given by Theorems 1.1
and 1.2. Then f(v,t) = F~Y¢(-,1)](v) is a unique global solution of1) with ini-
tial datum #§. This inverse Fourier transform is well-defined. (vft) is a smooth
probability density ofv and tends to0 as |v| — oo for each t> 0. Moreovey f €
C([0, 00); P, (R?)), where time continuity of f is interpreted in the followingnse for
any 4 > 0 and ¢ € C(R®) satisfying|y (v)| < C(1 + |v|?)%/? for some positive C

lim / Yv()f(v,t)dv = / ¥(v) f (v, tg) do.
=t Jgs R3

Note that a slightly stronger assumption is needed to eskahl solution with the
same properties whem = 1 (see [7, Remark 1.5]).

The outline of this paper is as follows. We cite some lemmasSéction 2. We
modify some of them so that they are applicable to our problenSection 3 we prove
that under the cutoff assumption we have a global uniquetiealwf (7), and deduce
an a priori estimate and a stability estimate. These reanétaused to discuss (7) under
the non-cutoff assumption in Section 4. The proof of mairothes are shown in this
section. In Section 5 we discuss non-existence of solutiorthe casep <« < 2.

2. Preliminaries

Under the cutoff assumptiorQ is split into a gain termQ™* and a loss ternQ—
in a self-evident way. We denote the Fourier transform of gain term Q™ by

600 = [ b5 )t ot ) do.

First, we cite two lemmas from Morimoto—Wang-Yang [7].

Lemma 2.1 (Morimoto—Wang-Yang) Assume ke L1(S?) (& y2 < o). For all
¢ and ¢ € M*,

1G(®) — G(W)lme = Valld — ¥l me.

Lemma 2.2 (Morimoto—Wang-Yang) There exists a constant,C> O independ-
ent of ¢ € M?, such that

1B()(&)|
jl;a e dé < Coptall¢ — Ll nme-

Then, we show a lemma concerniegl!”, which is a classical result in probabil-
ity theory.
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Lemma 2.3. e &It (¢ eR3, t > 0) is a positive definite function df if and only
if 0 < p =<2 Foreveryt>0, fy(v,t), which is defined as

oo SINT V]

1 o0
fov,t) = — —dr,
p(v, t) 2712/0 e ol r

is a probability density orR3, and F[ fu(-, t)[(€) = e ¥I™. Furthermore
/ [v]* fp(v, t)dv <00 (O<a < p) and / [v[P fo(v, t) dv = oco.
R3 R3

Proof. Positive definiteness is proved in Schoenberg [8}. daxht > 0, e I™
is a rapidly decreasing radial function defined RA Its inverse Fourier transform is

1

L1 1Pt (y) =
a0 FHeMw = oo

[o¢]
@020l [ duatrloe "2 ar,
0

where J,(2) (v € C, Ref) > —1/2) is the Bessel function

-1 v
s [+ 3)] 2 Loorone

(see Taylor [9] for instance). A straightforward calcudatiof Ji,»(r|v]) together with
(10) gives
4 1 o sinr|v|
}_1 |- [Pt 2_[ rPt,.2 dr = f , ).
e M) = 55 | e dr = (w0
Hence, F[ fp(-, D)](§) = eI,
We now turn to the moment estimates. A simple calculatiorwshihat fy(v,t) =

t=¥/Pfo(t~Y/Po, 1), so it suffices to consider the case= 1. From [1, Theorem 2.1]

we have
—1
im [ol3+P _ P2 (P (3P (P
|v|\linoo|v| fp(v, 1) 52 sm(2 r > r 5 )

and this leads to the desired estimates. O

Cho [4, Section 3] discusses conditions for whiGky) and B(¢) make sense.
Since M* C K* ¢ K (0 < @ < 2), it follows that Lemmas 3.1 and 3.3 in [4] are
still valid when we takep from M*. We state these facts as Lemmas 2.4 and 2.5.

Lemma 2.4. Assume ke L1(S?) and T > 0. ThenG(¢)(£) is a continuous posi-
tive definite function of for each¢ € M.

Moreover if ¢(-,t) € M for each te [0, T] and ¢(&, -) € C([0, T]) for each
£ € RS, thenG(4)(&,1) € C(R® x [0, T]).
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Lemma 2.5. Assumeu,, < oo and T > 0. If ¢ € C([0, T]; M*) and ¢(§, -) €
C([0, T]) for each& e R3, then B(¢)(£, -) € C([0, T]) for each& e R®.

3. Existence and behaviour of a solution under the cutoff assnption

In order to consider the non-cutoff case in Section 4, we fireve that under the
cutoff assumption ¥ < o0o), (7) has a unique solution iff*(R3 x [0, c0)). We also
provide a stability estimate and an a priori estimate fos tolution.

3.1. Existence. Assumeb € L1(S?). Under the cutoff assumption, (7) is writ-
ten as

t
(11) (e, 1) = e Uk g (g) 4 / e U2+l -DG ()&, 7) dr
0

In this subsection we will prove the following theorem.

Theorem 3.1. Letag <« < p, b e LY(S?) and ¢ € M*. Then(11) has a solu-
tion ¢ € T%(R3 x [0, 00)), which satisfies

supe®ll™gp(e, 1) <1 for each t>0.
EcR3

For a fixedT > 0, define
Qr = {¢ € C([0, T]; M) | $(£, -) € C([0, T]) for each& € R®).

Since M is a complete metric space endowed with,{is ¥) = ||¢p — ¥ || ame + || —
Ve (see [7]),227 is also a complete metric space endowed with

Dr(6, ¥) = max dis.((0), ¥ (V).

Let us think of the right-hand side of (11) as the imabp)(t) of an operatord. By
Lemma 2.4,® is well-defined onQt. We will prove that® is a contraction orQ2t
provided thatT is sufficiently small. SinceM“ is endowed with dig and the contrac-
tion estimate for| - |, was obtained in [4], it is enough to consider the contraction
estimate for|| - || pqe.

Lemma 3.2. f qpg<a < p, T >0,and¢ € Qr, then

1D@)() — Lare = Cpa(@pt)/P +2 max lé(z) = Ll pse,

1P(@)(t) — P(B)(S)l v = Clg, Tt —8|*/P,
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where st € [0, T] and

C¢, T) = 2C0u8y/ P2+ 12T) + 3y TP max lé(t) — Ll

Proof. Whent > 0, we haveG(¢)(0,t) = y», so

O(p)(t) — 1 = I9(t) + I2(t) + 13(t),
where
11(t) = e e M pg(g) — 1],

Io(t) = /0 e (=MD [G(p)(E, T) — G(@)(O, 7)] dr,
t
I5(t) = J/Z/ e 72D [e %lEIPtT) _ 1] g,
0

Note that for anya > 0,
1_ gaklP
- de= a/p
/Rs HES dé = Cpq.a”P.
Since
e po(e) — 1= 77K (go(€) — 1) - (1 — e,
this gives

I(t
A3 ||;|-§+)o|t ds =< e_VZt[”(bO — 1||MD/ + Cp‘a(spt)a/p].

Next, by Lemma 2.1,

t
[ de < v [ &) — 1 an
R 0

3 |é:|3+a

1—e
< ya( ) max () — Ll e

Vo 7€[0,T]

Finally, I3 is estimated in a similar way al, yielding

[13(t)] D) a/p
dE <y | € Cp.ul8p(t — )]*Pdr
R 0

3 |$|3+a

< Cpa(8pt)/P(1— &)

Combining these estimates we obtain the first inequalityhef lemma.
To obtain the second inequality of the lemma, we estimate

3
D(P)(t) — P(B)(S) = Y _(Ii(t) - 1i(s))

i=1

629
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with 0 <s <t < T for simplicity. Since

11(t) — 11(s) = —e7725[e7%0kI"S(1 — e 0k =) (£)
+ (1 — e (el g (£) — 1)),

we have

/RB MO =Wl g, < ¢, a0 — 91

|g:|3+ot
+ va(t — 9)[llpo — Ll pme + Cpa(8pt)*/P]
< Cpo8y/P(t —)*/P
+ yalt = 9)*/P[TY /Pl o — 1| pe + Cpad/PTI.
Next,

[2(t) — 12(9)
— /t e—(yz+8p\$\")(t—f)[g(d))(g' 7) — G(¢)(0, 7)] dt

—(1-e ") fo e eHRENCIG)(E, 7) ~ G(9)(O, )] dr
-1- e—Bp\Elp(t—S)) /S e—yz(t—r)—ép\él”(S—r)[g(@(g, 1) — G(¢)(0, 7)] dz.
0

Since b € L1(S?), we have |G(¢)(E, 1) — G(¢)(0, T)| < 2y, which together with
Lemma 2.1 gives

Io(t) — Ix(s
/ |2()3 2()|dé§
R3 | |3+
t S
< v, max|¢(r) — 1| e [ / e 2= dr 4 p(t — 9) / g 72(s=7) dr}
T€[O,T] s 0
S
+ Cpal8p(t —9)]%/P2y, / e (-9 gz
0
< (t—s)/P|2y,TT/P — 1| ppe + 2Cpa8%/P .
= (= 97%( 20, T max1(r) ~ L + 2Co5;

Finally,

t
I3(t) = 1a(8) = —72 / e (1 — e WKID) dr

S

S
_ (1 — e lElPE-9) / e r2lt=0)=8pl& P(s=1) g
0

S
a1 — e 79y / 7211 — g HhléPs1)) i
0
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so we have
I3(t) — | t
/ M d¢ = 7/2/ e 20IC, L[5t — 7)]/P dr
R3 |$| +a .
S
+ VZCp,a[(Sp('[ - S)]a/p / e 72(t-1) g
0

S
+ y2(t — ) / e 72IC, 4 [8p(s — T)]*/P dt
0
< Cpady/P(t —9)/P(1 4 y2T).
Together, these estimates yield the second inequality efelmma. ]

Proof of Theorem 3.1. To see thdt is a contraction, note thab is a mapping
from Q1 to Q1 for eachT > 0 and

12 max|e@)n) - SOy < 20— ) max o) = )|y

This follows in the same way as in Cho [4] (repla&® with M® and | - |, with
Il - llame, then this is obvious). Taking @ Ty < (log 2)/y. and combining (12) with the
| - |l.-estimates in [4], we obtain

DTO(CD(d))! (D(W)) < DT0(¢1 W)

Therefore® is a contraction orQr,. By using the Banach fixed point theorem, we
obtain a solution of (11). ]

3.2. An a priori estimate and a stability estimate. We observe that since
C([0, o0); M*) C C(]0, o0); K¥), the a priori estimate deduced in [4] also holds for
a solution of (11):

Lemma 3.3. Letag <a < p, b e LY(S?), and ¢o € M. If (11) has a solution
¢ which satisfiesp € C([0, o0); M%) and ¢(&, -) € C([0, 00)) for every& € R3, then
the following estimate holds for every>t0

(13) supe™ 1™ (&, 1)] < 1.

£€R3

Coupled with the existence of a local solution, estimatg ¢fis the existence of a
global solution of (11). We will now show a stability estiredbr the uniqueness result.

Theorem 3.4. Let y, < oo and ¢, ¥ € T*(R® x [0, 00)) be solutions of(11),
corresponding to initial datapg, Yo € M* respectively. Then for all & 0,

I P @ ) = (- Dl = € lldbo — Yol vae-
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Proof. Define

U(E, t) = ez toslel™n (M)

|g’:|3+a

for &€ #£0 andU(0,t) = 0. We have

(14)  UE ) =UE 0+ /O e(mspsw)r(g(‘ﬁ)@ %;gwxg r))ol

Since |£|P < |EF|P + |&7|P for 0 < p < 2, (13) gives

/ gl 19N D —GWE D
|§:|3+a

b(g - o/g)ehls PHE P o
S/Hgsfgz HES (o1 l¢~ =¥ |+ Y| [¥" —yT])do dg

D& 015D sk 4 e P g
/1;3 /sz |&|3+e lp" =y 7| + € ¢~ — ¥ |) do d&
=J1+Jz.

Here we used the simplified notatigif¢ *,7) = ¢+, with ¢~ andy* similarly defined.
By using the change of variables used in the proof of [5, Len811j (see also [7,
Lemma 2.1]),J; and J, are calculated as

olélPe
n= /yb(g )|s|3+a 6, 1) — Ve, r)|cos:*( )dods,

ebolélPr _
2= /I;.a /sz b(|,§| ) €3+ (&, ) — ¥ (&, 7)| sin” (E) do d§,

from which we conclude that

€ (G#)(X) ~ G nee = vl " (9() — () vee

For simplicity we denotd|e®®! "{(¢(-,t) — ¥ (-, t))|lame by V(t). Integrating (14) with
respect tof, we obtain

t
eV (t) < V(0) + yaf &7V (1) dr.
0

The Gronwall inequality yields the result. ]

4. Global existence of a solution under the non-cutoff contion

In this section, we will construct a solution of (7) withoutet cutoff assumption
by using the results of the last section. For this purposst fie prove two lemmas.
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Lemma 4.1. Letog <o < p =2, uy < oo, and ¢o € M®. If (7) has a solution
¢ € T*R3 x [0, o)) then ¢ satisfies

p(t) — Ll pe < € [[lpo — L) ase + Cp,a(8pt)*/P1,
where G is the same constant as lremma 2.2

Proof. It is easy to see that

dr.

P&, 1) —1 e llMgy(e) — 1 + /t o-ole P B@)E, 7)
0

|§|3+a - |§|3+a |$|3+a

By Lemma 2.2 we obtain

t
lp(t) = L st = lldo — L ae + Cpa(8pt)*/P + Cotta /0 ll¢(z) — Ll pe= dr.
The estimate now follows by applying the Gronwall inequalit O
For brevity, we will denoteCozt,€%"«T[|l¢o — 1| s« + Cpa(8pT)*/P] by Co.

Lemma 4.2. Fix T > 0. Under the assumptions dfemma 4.1we have for all
s,t [0, T]

() — ¢(S)[| pme < C'(o, T)It —s|*/P,
where

C'(¢0. T) = Cpabl® + (1 ; )COTH/P.

1
l1-o/p

Proof. Set 0<s <t <T and defineK,, K,, K3 by

t
B(E, 1) — p(E, 5) = (€0 — e EI"S)gy(e) + / e IR, 7) dr

+ /s(e_spgp(t_f) _ e_‘sp‘glp(s_f))B(qb)(S, 7)dr
0

= K1+ Kz + Ks.
Obviously

|Kq] e—5p|g|Ps(1 — e—5p\§|p(t—s))
9 = dé < Cpaldp(t —9)]*/P.
/R3 |E[3+e §= - &3+ & = Cpo[dp(t —9)]

By Lemmas 2.2 and 4.1,

K t -
[R K2l 4 < cop / 16(2) = Lpee de < Colt —9).

3 |$|3+ot
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For a fixedr € [0,s), f(r) = e®r — e (=2r (v > 0) is a nonnegative function,

satisfying
(s—7)/(t—s)
t—s(s—
max f(r) = ( T) .
r=0

t—t\t—r

Furthermore, we have

S\ &9y 1/
<
t—7 “\t-s

because the left-hand side is smaller than 1 and the rigid-kale is larger than 1. Thus

IKqf S(t—s)“”’ B@)E, )|
d TS BRSOy, g
/Ra BEE SS/Rs/o < BECE

50—$Wwé{— a—ﬂlwﬂs

l1-—a/p
tl-a/p

1-a/p

éo(t — S)a/p.

=0

< (t — S)a/péo
Ti-a/p
l1-a/p

=<

Combining these estimates, the result follows. ]

Proof of Theorems 1.1-1.3. We follow [7]. For eanhe N, defineb,(cost) =
min{b(cosh), n} and ¢, as a solution of (11) wittb replaced byb,. Define i, in the
same manner. Then we have

[n(t) = L e < € do — L pre < €| po — 1| pge-

In [4], the Ascoli—-Arzela theorem was used to extract a sgbsece of the series of
functions {¢n}, which converges to a solutiop of (7) in C([0, co); K¥). Since¢ is

a unique solution inS‘g(R3 x [0, 00)), we can extract such a subsequence. We denote
this subsequence also By,}. For all § > 0, we have

/ |¢($!t)_l| dé = lim [ wdé < e)hatud)o_l”_/\/[a.
§<|E| <81 s<lg]<st

HEE e HEE

The Lebesgue convergence theorem therefore impliesdthat t) € M*. That ¢ €
C([0, o0); M?) follows from Lemma 4.2. Finally, by differentiating (7) thi respect to

t, we obtaing € 7%(R® x [0, 00)). For the proof of the maximum growth estimate and
the stability estimate of a solution, we take two sequeriggs, {vn} C S*(R3x [0, 00))
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which converge to solutiong, ¥ € S*(R® x [0, o0)) with initial data ¢g, Yo € M2,
respectively. Then for any > 0

supe®k™ (g, 1) < 1

£cR3
and

e " n( -, ) — Y- D)l < €0 — ol e

Letting n — oo in these inequalities yields Theorem 1.2. Once (9) is provesl im-
mediately conclude thag(£,t) in Theorem 1.1 belongs th! and to any polynomially
weightedL? space with respect to. The Fourier inversion formula implies tha(&,t)
has a unique probability densitf(v, t) vanishing at infinity, and the Sobolev embed-
ding theorem shows that (v, t) is a smooth function ofb for every positivet. The
proof is completed by repeating the arguments of [7, Se@i8h the details of which
are omitted. O

5. Non-existence of a solution in the casp <« < 2

In [4], a solution of (7) was found is* for initial data inxC* when O<a < p <2
and non-existence of solutions was proved whea o < 2. However, in our case the
existence of a solution iff® for initial data in M fails also whenoe = p. Here we
recall Lemma 2.3. SinceM® = F(P,(R%) when 0< « < 2 anda # 1, the following
theorem precisely reflects the moment estimates 4¢b, t).

Theorem 5.1. Let p<a < 2. Then for any T> 0 and ¢ € M?*, there is no
solution of (7) which belongs to7*(R2 x [0, T]).

Proof. Assume to reach a contradiction tidae 7%(R3 x [0, T]) is a solution of
(7). It is easy to check that

t
1— el = el (go(t) — 1) + 1 - (€, 1) + / e IR (&, 7) dr.
0

Clearly,
L—e i . d
1—ehell™ i o
/R3 e 96 =2 maxile®) — e + /O Cottell6(x) — L aee dt < 00,

which contradicts the fact thaf,(1 — e%#¥I"t) /| |3+« d¢ diverges. O]

ACKNOWLEDGEMENTS The author wishes to express his profound gratitude to
Yoshinori Morimoto for many fruitful discussions and sugiimss. The author also
wishes to thank Yong-Kum Cho for valuable comments whiclpéelimprove earlier
versions of the results and proofs.



636

(1]
(2]
(3]
[4]
(5]
(6]
[7]

(8]
(0]
(10]

S. SAKAMOTO
References

R.M. Blumenthal and R.K. GetoorSome theorems on stable processBsns. Amer. Math.
Soc.95 (1960), 263-273.

M. Cannone and G. Karchinfinite energy solutions to the homogeneous Boltzmanntieqa
Comm. Pure Appl. Math63 (2010), 747-778.

M. Cannone and G. KarchOn self-similar solutions to the homogeneous Boltzmanmteauy
Kinet. Relat. Modelss (2013), 801-808.

Y.-K. Cho: On the Boltzmann equation with the symmetric stable Lévgaspto appear in
Kinet. Relat. Models.

Y.-K. Cho: On the homogeneous Boltzmann equation with soft-potentdllision kernels
preprint.

Y. Morimoto: A remark on Cannone—Karch solutions to the homogeneougrBaitn equation
for Maxwellian moleculesKinet. Relat. Modelss (2012), 551-561.

Y. Morimoto, S. Wang and T. YangA new characterization and global regularity of infinite
energy solutions to the homogeneous Boltzmann equatiddath. Pures Appl. (9103 (2015),
809-829.

1.J. Schoenberg:Metric spaces and positive definite functiorigans. Amer. Math. Soc44
(1938), 522-536.

M.E. Taylor: Partial Differential Equations I, Basic Ttwy, second edition, Applied Mathemat-
ical Sciencesl15 Springer, New York, 2011.

C. Villani: A review of mathematical topics in collisional kinetic timgoin Handbook of Math-
ematical Fluid Dynamic4, North-Holland, Amsterdam, 2002, 71-305.

Graduate School of Human and Environmental Studies
Kyoto University

Kyoto, 606-8501

Japan

e-mail: sakamoto.shota.76r@st.kyoto-u.ac.jp



