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Abstract
We give sufficient conditions for Mosco convergences for the following three

cases: symmetric locally uniformly elliptic diffusions, symmetric Lévy processes,
and symmetric jump processes in terms of theL1(Rd

I dx)-local convergence of the
(elliptic) coefficients, the characteristic exponents andthe jump density functions, re-
spectively. We stress that the global path properties of thecorresponding Markov
processes such as recurrence/transience, and conservativeness/explosion are not pre-
served under Mosco convergences and we give several exampleswhere such situa-
tions indeed happen.

1. Introduction

In the present paper, we are concerned with Mosco convergences of the follow-
ing three types of the Dirichlet forms: symmetric strongly local Dirichlet forms satis-
fying the locally uniformly elliptic conditions, symmetric translation invariant Dirichlet
forms, and symmetric jump-type Dirichlet forms. We give sufficient conditions for the
Mosco convergences in the above three cases in terms of theL1-local convergence of
the corresponding coefficients, and show instability of global path properties under the
Mosco convergences such as recurrence or transience, and conservativeness or explosion
by giving several examples.

We find that the Mosco convergences follow from quite mild assumptions (see As-
sumption A, B and C), which are essentiallyL1(Rd

Idx)-local convergences of the corres-
ponding coefficients, which are diffusion coefficients, Lévy exponents and jump densities.
Heredx denotes the Lebesgue measure onR

d. Hereafter we fix our state space to (R

d,dx)
and we writeL p(Rd) (or L p) shortly forL p(Rd

Idx) (1� p�1). Since theL1-local con-
vergence is one of the weakest notions of strong convergences, our results mean that the
weakest convergence of the coefficients implies the Mosco convergences.

The Mosco convergence is a notion of convergences of closed forms on Hilbert
spaces (see Definition 2.1), which was introduced by U. Mosco [11], originally to study
the approximations of some variational inequalities. In [12], he showed that the Mosco
convergence is equivalent to the strong convergences of thecorresponding semigroups
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and resolvents. The strong convergence of semigroups implies the convergence of finite-
dimensional distributions of the corresponding Markov processes when closed forms in
question are regular Dirichlet forms. For such reasons, theMosco convergence has been
used to show the weak convergence of stochastic processes inthe theory of Markov
processes (see e.g. [18, 7, 16, 5, 4] and references therein). In [6], Kuwae and Shioya
generalized the notion of the Mosco convergence, now is called the Mosco–Kuwae–
Shioya convergence, as the basicL2-spaces can change, while Hino considered the non-
symmetric version of the Mosco convergence in [3]. Although both generalizations are
quite important, in the present paper, we consider only symmetric cases and we fix a
basicL2-space asL2(Rd).

Our another aim is to show that the Mosco convergence of Dirichlet forms does
not preserve any global path properties for the corresponding processes of the Dirichlet
forms in any respect. As stated above, the Mosco convergence is equivalent to the
strong convergence of the corresponding semigroups, whichimplies only the conver-
gences of finite-dimensional distributions of the corresponding Markov processes. Thus
it is easy to imagine that global properties such as recurrence/transience and conserva-
tiveness/explosion are not preserved under the Mosco convergence. It seems, however,
that those studies how to construct such examples concretely have not been investigated.

In this paper, we construct several examples whose global properties such as re-
currence/transience and conservativeness/explosion arenot preserved under the Mosco
convergence. In constructing such examples, we use the results about sufficient condi-
tions for Mosco convergences as explained in the second paragraph in this introduction.

To be more precise, let us first consider symmetric strongly local Dirichlet forms
having the locally uniformly elliptic coefficients. Namelylet An(x) D (an

i j (x)) be a se-
quence ofd � d symmetric matrix valued functions wherean

i j is a locally integrable

Borel measurable function onRd satisfying the following conditions:

ASSUMPTION A. (A1) For any compact setK � Rd, there exists� D �(K ) > 0
so that for alln 2 N,

�j� j

2
� hAn(x)� , �i � ��1

j� j

2, a.e. x 2 K , 8� 2 Rd.

(A2) For any compact setK ,

Z

K
kAn(x) � A(x)k dx! 0 (n!1),

wherekAn(x) � A(x)k2 WD
Pd

iD1

Pd
jD1(an

i j (x) � ai j (x))2, x 2 Rd.
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Then, consider a sequence of symmetric quadratic forms

En(u, v) D
Z

R

d

hAn(x)ru(x), rv(x)i dx

and

E(u, v) D
Z

R

d

hA(x)ru(x), rv(x)i dx

for u andv in C1

0 (Rd), whereC1

0 (Rd) is the set of infinitely differentiable functions de-
fined onRd with compact support. Under Assumption A, it is known that (En, C1

0 (Rd))
(and (E , C1

0 (Rd))) are Markovian closable forms onL2(Rd) (see [2, Section 3]). They
become regular symmetric Dirichlet forms (En, Fn) and (E , F ) on L2(Rd). Our first
result is the following:

Theorem 1.1. Suppose thatAssumption Aholds. Then the Dirichlet forms(En,Fn)
converges to(E , F ) on L2(Rd) in the sense of Mosco.

REMARK 1.2. (1) In [12], Mosco gave several examples for which the Dirichlet
forms converge in Mosco’s sense. In the case of our strongly local forms, assuming
the convergence of the elliptic coefficients locally inL1(Rd), he have shown the0-
convergence. The0-convergence is weaker than Mosco convergence. He claimed that,
in addition to the convergence of the elliptic coefficients locally in L1(Rd), if the so-
called “compactly imbedded” condition is satisfied, the Dirichlet forms converge in his
sense. However, it is a bit harder to verify the “compactly imbedded” condition.
(2) In [3], Hino has given several equivalent conditions in order that the semigroups
converge strongly inL2 corresponding to time-dependent Dirichlet forms including both
of symmetric and non-symmetric cases. In the case of our symmetric strongly local
forms, his conditions required the diffusion coefficientsan

i j 2 L1(Rd, dx) for any i , j ,
which is stronger than (A1) (see [3, Example 4.3]).
(3) In [8] and [14], they studied the convergence of quadratic forms under the uni-
formly elliptic condition and obtained the weak convergence of corresponding Markov
processes. In Theorem 1.1 in the present paper, we only assume the locally uniformly
elliptic condition.

We now consider the convergence of symmetric Lévy processes. Let {'n} be a
sequence of the characteristic functions defined by symmetric convolution semigroups
{�n

t , t > 0}n2N :

e�t'n(x)
WD O�

n
t (x) (D

R

R

d ei hx,yi
�

n
t (dy)), x 2 Rd.
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According to the Lévy–Khinchin formula (Example 1.4.1 in [2]), we have the Follow-
ing characterization of�n

t :

(1.1) 'n(x) D
1

2
hSnx, xi C

Z

R

d

(1� cos(hx, yi))nn(dy),

where

(1.2) Sn is a non-negative definite symmetric (d � d)-matrix

and

(1.3)

nn(dy) is a symmetric Borel measure onRd
n {0} so that

Z

R

d
n{0}

jxj2=(1C jxj2)nn(dx) <1.

We consider the following condition:

ASSUMPTION B. 'n converges to a function' locally in L1(Rd).

Under the assumption, we find that' is also the characteristic function of a sym-
metric convolution semigroup{�t , t > 0}. Moreover the corresponding quadratic forms

En(u, v) D
Z

R

d

Ou(x)NOv(x)'n(x) dx,

Fn
D

�

u 2 L2(Rd) W
Z

R

d

j Ou(x)j2'n(x) dx <1

�

and

E(u, v) D
Z

R

d

Ou(x)NOv(x)'(x) dx,

F D

�

u 2 L2(Rd) W
Z

R

d

j Ou(x)j2'(x) dx <1

�

are symmetric translation invariant Dirichlet forms onL2(Rd). We show that (En, Fn)
converges to (E , F ) in the sense of Mosco under Assumption B:

Theorem 1.3. Assume thatAssumption Bholds. Then(En,Fn) converges to(E ,F )
in the sense of Mosco.

The point is that we only assume the convergencelocally in L1(Rd) of the respective
quantities and no other further assumptions are needed.
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We next consider the convergence of symmetric jump-type Dirichlet forms. Let
QJ(x, y) be a non-negative symmetric Borel measurable function onR

d
� R

d
n diag

satisfying

x 7!
Z

y¤x
(1^ d(x, y)2) QJ(x, y) dy 2 L1

loc(R
d).(1.4)

Here diag means that the diagonal set:diag D {(x, x)W x 2 Rd}. Consider the following
quadratic form QE on L2(Rd):

QE(u, v) D
1

2

Z Z

x¤y
(u(x) � u(y))(v(x) � v(y)) QJ(x, y) dx dy

for functionsu, v 2 Clip
0 (Rd). HereClip

0 (Rd) is the set of all Lipschitz continuous func-
tions onRd with compact support. Under the condition (1.4), it is also known that
(E , Clip

0 (Rd)) is a closable Markovian symmetric form onL2(Rd). Then the smallest
closed extension (E , F ) is a regular Dirichlet form.

Now take Jn(x, y) and J(x, y) non-negative symmetric Borel measurable functions
on Rd

� R

d
n diag satisfying (1.4) in place ofQJ(x, y) and then consider regular sym-

metric jump-type Dirichlet forms as follows:

8

�

�

<

�

�

:

En(u, v) D
1

2

Z Z

x¤y
(u(x) � u(y))(v(x) � v(y))Jn(x, y) dx dy,

Fn
D Clip

0 (Rd)

p

En
1

,

and
8

�

�

<

�

�

:

E(u, v) D
1

2

Z Z

x¤y
(u(x) � u(y))(v(x) � v(y))J(x, y) dx dy,

F D Clip
0 (Rd)

p

E1

,

whereE1(u, v) D E(u, v)C (u, v)L2(Rd). We make the following assumption.

ASSUMPTION C. (i) Jn(x, y) � QJ(x, y) for dx
 dy-a.e. (x, y) 2 Rd
�R

d
n diag

and8n 2 N.
(ii) {Jn(x, y)} converges toJ(x, y) locally in L1(Rd

�R

d
n diagI dx
 dy).

Theorem 1.4. AssumeAssumption C. Then(En, Fn) converges to(E , F ) in the
sense of Mosco.

From now on, by using the above theorems, we construct several examples whose
global path properties are not preserved under the Mosco convergence. We first con-
sider the instability of conservativeness/explosion of the symmetric diffusion processes.
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Under the same settings of Theorem 1.1, let the diffusion coefficients be diagonal
An(x) D an(x)I , where I denotes the identity of (d � d)-matrices. Then we have the
following result:

Proposition 1.5. The following results hold:
(i) (explosive ones to conservative one)If we set

�n(x) D (2C jxj)2(log(2C jxj))1C1=n, �(x) D (2C jxj)2(log(2C jxj))

for n 2 N, then (En, Fn) is explosive for any n and converges in the sense of Mosco
to the conservative Dirichlet form(E , F ).
(ii) (conservative ones to explosive one)If we set

�n(x) D (2C jxj)2�1=n(log(2C jxj))2, �(x) D (2C jxj)2(log(2C jxj))2

for n 2 N, then (En,Fn) is conservative for any n and converges in the sense of Mosco
to the explosive Dirichlet form(E , F ).

We now consider the instability of recurrence/transience of the symmetric Lévy
processes. Let� and �n be measurable functions on [0,1) satisfying that there exist
positive constants-� and N� so that

0< -� � �n(t) � N� < 2, a.e. t 2 [0,1)

and define Lévy measures onRd as follows:

nn(dx) D jxj�d��n(jxj) dx, n(dx) D jxj�d��(jxj) dx.

Then the corresponding characteristic (Lévy) exponents are given by

'n(x) D
Z

R

d

(1� cos(hx, �i))nn(d� ), '(x) D
Z

R

d

(1� cos(hx, �i))n(d� ),

respectively. Then the following proposition holds:

Proposition 1.6. Let nn and n be as above. Assume dD 1. Then the following
results hold.
(1) (recurrent ones to transient one)If we set

�n(u) D 1C 1=n� (log(uC e2))�1=2, �(u) D 1� (log(uC e2))�1=2

for u � 0 and n2 N, then (En, Fn) is recurrent for any n and converges in the sense
of Mosco to the transient Dirichlet form(E , F ).
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(2) (transient ones to recurrent one)If we set

�n(u) D 1� (log(uC e2))�(1�1=n), �(u) D 1� (log(uC e2))�1

for u � 0 and n2 N, then (En, Fn) is transient for any n and converges in the sense
of Mosco to the recurrent Dirichlet form(E , F ).

The point is the sharp criterion of the recurrence/transience for the stable-type pro-
cesses (see e.g. Theorem 3.3 in [20] and Theorem 4.2 in Appendix in the present paper).

REMARK 1.7. We can give a rather simple example for which the symmetric
Dirichlet forms corresponding to transient symmetric Lévyprocesses converge to the
symmetric Dirichlet form corresponding to a recurrent symmetric Lévy process in the
sense of Mosco:

Assumed D 2. Consider a function'n(x) WD jxj2�1=n, x 2 R2 for eachn. Then'n

defines the characteristic exponent associated with a transient symmetric (2�1=n)-stable
process onR2. Clearly'n(x) converges to'(x) WD jxj2 for all x and the limit'(x) is the
characteristic exponent associated with a 2-dimensional Brownian motion that is recur-
rent. Note that this example shows not only the instability of (global) path properties but
also the instability of path types. Namely, the jump processes converge to the diffusion
process. We will discuss such instability of path types in a forthcoming paper.

We finally consider the instability of recurrence/transience of symmetric jump pro-
cesses. Let� and �n be measurable functions on [0,1) satisfying that there exist
positive constants-� and N� so that

0< -� � �n(u) � N� < 2, a.e. u 2 [0,1).

Let c(x) be a measurable function onRd satisfying that there exist 0< c< C <1 so
that c � c(x) � C for all x 2 Rd. We consider the following jump kernels:

Jn(x, y) D (c(x)C 1)jx � yj�d��n(jx�yj), x, y 2 Rd, x ¤ y.

and

J(x, y) D (c(x)C 1)jx � yj�d��(jx�yj), x, y 2 Rd, x ¤ y.

We note that the corresponding jump processes are not necessarily Lévy processes because
c(x) is not necessarily translation-invariant. Even in this case, we have the following result
similar to Proposition 1.6:

Proposition 1.8. Let Jn and J be as above. Assume dD 1. Then the following
results hold.
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(i) (recurrent ones to transient one)If we set

�n(u) D 1C 1=n� (log(uC e2))�1=2, �(u) D 1� (log(uC e2))�1=2

for u � 0 and n2 N, then (En,Fn) is recurrent for each n and converges in the sense
of Mosco to the transient Dirichlet form(E , F ).
(ii) (transient ones to recurrent one)If we set

�n(u) D 1� (log(uC e2))�(1�1=n), �(u) D 1� (log(uC e2))�1

for u � 0 and n2 N, then (En, Fn) is transient for each n and converges in the sense
of Mosco to the recurrent Dirichlet form(E , F ).

The organization of the paper is as follows. In the next section, we recall the Mosco
convergence and give sufficient conditions for the Mosco convergence of the three types
of Dirichlet forms. In Section 3, we give several examples where global path properties
are not preserved under the Mosco convergence. In Appendix, we give a necessary
and sufficient condition for the recurrence of a class of symmetric stable type Lévy
processes.

2. Mosco convergence of symmetric Dirichlet forms onL2(Rd )

In the first part of this section, we briefly recall the notion of Mosco convergence
following [12]. For a closed form (E , F ) on a Hilbert spaceH, let E(u, u) D 1 for
every u 2 H n F . Here a closed form means a nonnegative definite symmetric closed
form on H, not necessarily densely defined.

DEFINITION 2.1. A sequence of closed formsEn on a Hilbert spaceH is said to
be convergent toE in the sense of Mosco if the following two conditions are satisfied:
(M1) for every u and every sequence{un} converging tou weakly in H,

lim inf
n!1

En(un, un) � E(u, u)I

(M2) for every u there exists a sequence{un} converging tou in H so that

lim sup
n!1

En(un, un) � E(u, u).

In [12], Mosco showed that a sequence of closed formsEn on H is converging
to E in the sense of Mosco if and only if the resolvents associated with En converges
to the resolvent associated withE strongly on H, and hence the semigroups associated
with En converges to the semigroup associated withE strongly on H.
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2.1. Convergence of symmetric strongly local Dirichlet forms. Consider a se-
quence of forms

En(u, v) D
Z

R

d

hAn(x)ru(x), rv(x)i dx

for some functionsu, v in L2(Rd), where An(x) D (an
i j (x)) are d�d symmetric matrix

valued functions satisfying Assumption A.
Under Assumption A, the forms (En, C1

0 (Rd)) for each n and (E , C1

0 (Rd)) are
Markovian closable forms onL2(Rd). They become regular symmetric Dirichlet forms
(En,Fn) and (E ,F ) on L2(Rd) (see [2]). Note that we setEn(u,u)D1 if u 2 L2(Rd)n
Fn. We first give a simple lemma which is used in showing thatEn converges toE in
the sense of Mosco.

Lemma 2.2. Suppose thatAssumption Aholds. For any compact set K� Rd,

there exists a subsequence{nk}k so that
R

KkA
1=2
nk (x) � A1=2(x)k2 dx! 0 as k!1.

Proof. SinceAn(x) is a non-negative definite matrix for eachx, there exists a

nonnegative definite matrixA1=2
n (x) so that (A1=2

n (x))2
D A(x). Then by the uniform

boundedness ofA1=2
n on the compact setK , we have

sup
n2N

ess sup
x2K

kA1=2
n (x) � A1=2(x)k2 <1.

By (A2), there exists a subsequence{nk}k so that Ank (x)! A(x) with respect tok � k

for a.e. x 2 K . By general theory of linear operators, we can check thatA1=2
n (x) !

A1=2(x) in a.e.x 2 K with respect tok � k2. Thus, by using the dominated convergence
theorem, we finish the proof.

We now prove Theorem 1.1:

Proof of Theorem 1.1. We first show (M1): Takeu 2 L2(Rd) and any sequence
{un} � L2(Rd) so that un converges tou in L2 weakly. We may assume that
lim infn!1

En(un, un) <1. Taking a subsequence{nk}, we have

1 > lim inf
n!1

En(un, un) D lim
k!1

Enk (unk , unk ) D lim
k!1

Z

R

d

jA1=2
nk
runk (x)j2 dx.(2.1)

Let us setA1=2
n (x)D (bn

i j (x)) and A1=2(x)D (bi j (x)). By (2.1), there existswi 2 L2(Rd)

so that, by taking a subsequence of{unk} if necessary,
Pd

jD1bnk
i j � j unk converges weakly

to wi in L2(Rd) for eachi .
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We now show thatwi D
Pd

jD1 bi j � j u. To this end, take any� 2 C1

0 (Rd). Then
we find that

Z

R

d

 

wi �

d
X

jD1

bi j (x)� j u(x)

!

�(x) dx

D

d
X

jD1

Z

R

d

(wi � bnk
i j (x)� j unk (x))�(x) dx

C

d
X

jD1

Z

R

d

(bnk
i j (x)� j unk (x) � bi j (x)� j unk (x))�(x) dx

C

d
X

jD1

Z

R

d

(bi j (x)� j unk (x) � bi j (x)� j u(x))�(x) dx DW (I)k C (II) k C (III) k.

We know that (I)k converges to zero by definition. Now let us denote byK the support
of the function�. Then

(II) k D

d
X

jD1

Z

K
(bnk

i j (x) � bi j (x))� j unk (x)�(x) dx.

By Lemma 2.2, taking a subsequence if necessary,bnk
i j converges tobi j in L2(K ). Since

un converges weakly tou, (� j unk ) also converges weakly to (� j u) in L2(Rd). Thus (II)k
converges to 0 ask!1 by the Schwarz inequality andL2-boundedness of the weakly
convergent sequence{� j un}n. The third term (III)k converges to 0 since�i unk converges

weakly to �i u in L2(Rd) and bi j � 2 L2(Rd). Thuswi D
Pd

jD1 bi j � j u holds for each

i D 1, 2,: : : , d. Hence we have
Pd

jD1 bnk
i j � j unk converges weakly to

Pd
jD1 bi j � j u, and

we conclude that

lim inf
n!1

En(un, un) D lim
k!1

Z

R

d

jA1=2
nk
runk (x)j2 dx �

Z

R

d

jA1=2
ru(x)j2 dx D E(u, u).

We second show (M2): It is enough to show foru 2 F . SinceC1

0 (Rd) is a (common)
core for the Dirichlet forms (En, Fn), there exists a sequence{ul } � C1

0 (Rd) so that

lim
l!1

E1(ul � u, ul � u)

D lim
l!1

�

Z

R

d

jArul (x) � Aru(x)j2 dxC
Z

R

d

jul (x) � u(x)j2 dx

�

D 0.

(2.2)
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Since any norms in the space of (d � d)-matrices are equivalent, by Lemma 2.2 and
taking a subsequence if necessary, it follows that for eachl 2 N,

Z

R

d

jA1=2
n rul (x) � A1=2

rul (x)j2 dx �
Z

QKl

kA1=2
n (x) � A1=2(x)k2opjrul j

2(x) dx

� Ckjrul jk
2
1

Z

QKl

kA1=2
n (x) � A1=2(x)k2 dx

! 0 as n!1,

where C > 0 denotes some constant such thatk � kop � Ck � k and kAkop means the
operator norm ofA: kAkopD supu2Rd

W juj�1jAuj=juj. This gives us that

lim
n!1

En(ul , ul ) D E(ul , ul ), l 2 N.

Thus, with (2.2), we have

lim
l!1

lim
n!1

En(ul , ul ) D E(u, u).

This shows (M2) (see, e.g. Corollary 1.18 in [1], and the proofof Theorem 3.1 in [3]).

2.2. Convergence of symmetric translation-invariant Dirichlet forms. Let
{�t }t>0 be a sequence of probability measures onRd of a continuous symmetric con-
volution semigroup:

8

�

<

�

:

�t � �s(A) D �tCs(A), t, s> 0, A 2 B(Rd),

�t (A) D �t (�A), A 2 B(Rd),

�t ! Æ weakly,

where�t ��s denotes the convolution of�t and�s (�t ��s(A) WD
R

�t (A� x)�s(dx), A 2
B(Rd)) and Æ is the Dirac measure concentrated at the origin. Define the kernels by

p(t, x, A) WD pt (x, A) WD �t (A� x), t > 0, x 2 Rd, A 2 B(Rd),

then {pt (x, A)I t > 0, x 2 Rd, A 2 B(Rd)} is a Markovian transition function which is
symmetric with respect to the Lebesgue measure in the following sense:

Z

R

d

pt f (x)g(x) dx D
Z

R

d

f (x)pt g(x) dx, f, g 2 B
C

(Rd).

According to the Lévy–Khinchin formula, we see that a continuous symmetric convo-
lution semigroup{�t , t > 0} is characterized by a pair (S, n) satisfying (1.2) and (1.3)
through the formula (1.1).
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Now let {'n} be a sequence of the characteristic functions defined by symmetric
convolution semigroups{�n

t , t > 0}n2N :

e�t'n(x)
WD O�

n
t (x) (D

R

R

d ei hx,yi
�

n
t (dy)), x 2 Rd.

Let ' be also a characteristic function defined by a symmetric convolution semigroup
{�t , t > 0}. The Dirichlet forms corresponding�n

t are defined by

8

�

�

�

<

�

�

�

:

En(u, v) D
Z

R

d

Ou(x)NOv(x)'n(x) dx,

Fn
D

�

u 2 L2(Rd) W
Z

R

d

j Ou(x)j2'n(x) dx <1

�

.

We set that for eachn, En(u, u) D1 if u 2 L2(Rd) n Fn. We assume Assumption B.
Then we show Theorem 1.3:

Proof of Theorem 1.3. We first show (M1): Take anyu 2 L2(Rd) and any se-
quence{un} � L2(Rd) for which un converges tou weakly in L2(Rd). We may assume
lim infn!1

En(un, un) <1.
According to the Parseval formula, note thatun converges tou weakly in L2 if

and only if Oun converges toOu weakly in L2. Here Ou denotes the Fourier transform of
u. Thus

1 > lim inf
n!1

En(un, un) D lim inf
n!1

Z

R

d

j Oun(x)j2'n(x) dx

implies that there exist a subsequence{nk} and an elementw 2 L2(Rd) so thatOunk �
p

'nk

converges tow weakly in L2(Rd). We now show thatw D Ou �
p

'. For anyv 2 C1

0 (Rd),
we see that

�

�

�

�

Z

R

d

(w(x) � Ou(x)
p

'(x))v(x) dx

�

�

�

�

�

�

�

�

�

Z

R

d

(w(x) � Ounk (x)
p

'nk (x))v(x) dx

�

�

�

�

C

�

�

�

�

Z

R

d

( Ounk (x)
p

'nk (x) � Ou(x)
p

'nk (x))v(x) dx

�

�

�

�

C

�

�

�

�

Z

R

d

( Ou(x)
p

'nk (x) � Ou(x)
p

'(x))v(x) dx

�

�

�

�

DW (I)k C (II) k C (III) k.

The first term (I)k converges to 0 by definition. For the second term (II)k, using the
condition (B) and the inequalityj

p

a�
p

bj �
p

ja� bj, we have that
p

'nv converges
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to
p

'v in L2(Rd). Thus the second term (II)k converges to zero by the Schwarz in-
equality andL2-boundedness of{Ounk}k. For the third term (III)k,

(III) k D

�

�

�

�

Z

R

d

(
p

'nk (x) �
p

'(x)) Ou(x)v(x) dx

�

�

�

�

� kOukL2

s

Z

R

d

(
p

'nk (x)v(x) �
p

'(x)v(x))2 dx! 0 as k!1.

Thus we conclude thatw D Ou
p

'. Hence we find that

lim inf
n!1

En(un, un) D lim
k!1

Enk (unk , unk ) D lim
k!1

Z

R

d

j Ounk j
2
'nk dx

�

Z

R

d

j Ouj2'dx D E(u, u).

This shows (M1).
We second show (M2): It is enough to show foru 2 F . SinceC1

0 (Rd) is a (com-
mon) core for the Dirichlet forms, there exists a sequence{Qun} of C1

0 (Rd) such that

(2.3)

lim
n!1

E1( Qun � u, Qun � u)

D lim
n!1

�

Z

R

d

j

O

Qun(x) � Ou(x)j2'(x) dxC
Z

R

d

( Qu(x) � u(x))2 dx

�

D 0.

We now take a sequence{�n} of C1

0 (Rd) satisfying

�n(x) D �n(�x), 0� �n(x) � �nC1(x) � 1, n 2 N,

lim
n!1

�n(x) D 1, x 2 Rd.

For any n, l 2 N, set un,l (x) D Qun � L�l (x) D
R

R

d L�l (x � y) Qun(y) dy, x 2 Rd. Here the
inverse Fourier transform of�l is denoted byL�l . Since

kQun � L�l � u � L�lkL2
D k( OQun � Ou) � �lkL2

� k

O

Qun � OukL2
D kQun � ukL2

! 0 as n!1

for eachl and

ku � L�l � ukL2
D kOu � �l � OukL2

! 0 as l !1,
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then we have that

lim
l!1

lim
n!1

kun,l � ukL2
D 0.

On the other hand, we see that from (2.3),OQun � �l
p

'n D
2

Qun � L�l
p

'n converges to

Ou � �l
p

' D

1u � L�l
p

' in L2(Rd) for any l . In fact, using the inequalities (a � b)2
�

2a2
C 2b2, j

p

a�
p

bj �
p

ja� bj and the condition (B), we have

Z

R

d

( OQun � �l
p

'n � Ou � �l
p

')2 dx

� 2
Z

R

d

( OQun � �l
p

'n �
O

Qun � �l
p

')2 dxC 2
Z

R

d

( OQun � �l
p

' � Ou � �l
p

')2 dx

� 2
Z

R

d

O

Qu2
n�

2
l j'n � 'j dxC 2

Z

R

d

( OQun � �l
p

' � Ou � �l
p

')2 dx

! 0 as n!1.

Thus we find that

lim
n!1

En(un,l , un,l ) D lim
n!1

Z

R

d

j

2

Qun � L�l j
2
'n dx D

Z

R

d

j

1u � L�l j
2
' dx

D

Z

R

d

j Ouj2�2
l ' dx

and

lim
l!1

Z

R

d

j Ouj2�2
l ' dx D

Z

R

d

j Ouj2' dx D E(u, u).

These imply that

lim
l!1

lim
n!1

En(un,l , un,l ) D E(u, u) and lim
l!1

lim
n!1

Z

R

d

jun,l � uj2 dx D 0.

Therefore, by the diagonalization argument, we can find a sequence{l (n)}n so that

l (n) < l (nC 1)%1 (n!1), lim
n!1

En(un,l (n), un,l (n)) D E(u, u)

and then (M2) is shown.

2.3. Convergence of symmetric jump-type Dirichlet forms. Let QJ(x, y) be a
non-negative symmetric Borel-measurable function onR

d
� R

d
n diag satisfying

x 7!
Z

y¤x
(1^ d(x, y)2) QJ(x, y) dy 2 L1

loc(R
d).(2.4)
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Consider the following quadratic formQE on L2(Rd):

QE(u, v) D
1

2

Z Z

x¤y
(u(x) � u(y))(v(x) � v(y)) QJ(x, y) dx dy

for some functionsu,v 2 L2(Rd). Under the condition (2.4), it is known that (E ,Clip
0 (Rd))

is a closable Markovian symmetric form onL2(Rd). Thus taking the closure ofClip
0 (Rd)

with respect to
p

QE1, we find that (QE , QF) is a regular Dirichlet form.
Now take Jn(x, y) and J(x, y) non-negative symmetric Borel-measurable functions

on Rd
� R

d
n diag satisfying (2.4) in place ofQJ(x, y) and then consider regular sym-

metric Dirichlet formsEn and E of pure jump type onL2(Rd) as follows:

8

�

�

<

�

�

:

En(u, v) D
1

2

Z Z

x¤y
(u(x) � u(y))(v(x) � v(y))Jn(x, y) dx dy,

Fn
D Clip

0 (Rd)

p

En
1

,

and
8

�

�

<

�

�

:

E(u, v) D
1

2

Z Z

x¤y
(u(x) � u(y))(v(x) � v(y))J(x, y) dx dy,

F D Clip
0 (Rd)

p

E1

.

We assume Assumption C. Then we prove Theorem 1.4.

Proof of Theorem 1.4. We have to check the following two conditions:
(M1) For anyu 2 L2(Rd) and {un} � L2(Rd) which converges tou weakly in L2(Rd),

lim inf
n!1

En(un, un) � E(u, u).

(M2) For any u 2 L2(Rd), there exists a sequence{un} � L2(Rd) which converges to
u in L2(Rd) such that

lim sup
n!1

En(un, un) � E(u, u).

Proof of (M1). Suppose that
(1) un is weakly convergent tou in L2(Rd) and
(2) lim infn!1

RR

x¤y(un(x) � un(y))2Jn(x, y) dx dy<1.

We may assume that limn!1

RR

x¤y(un(x) � un(y))2Jn(x, y) dx dy<1.

Then for eachn, put Nun(x, y) D (un(x) � un(y))
p

Jn(x, y) for (x, y) 2 Rd
� R

d
n

diag. Then {Nun} are bounded sequence inL2(Rd
�R

d
n diagI dx 
 dy), and so there

exists a subsequence{Nunk} which converges to some elementNu weaklyin L2(Rd
�R

d
n

diagI dx
 dy).
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We now claim that

Nu(x, y) D (u(x) � u(y))
p

J(x, y), (dx
 dy)-a.e. (x, y) with x ¤ y.

For any nonnegativev 2 C0(Rd
� R

d
n diag) and for anynk, we see

�

�

�

�

Z Z

x¤y
( Nu(x, y) � (u(x) � u(y))

p

J(x, y))v(x, y) dx dy

�

�

�

�

�

�

�

�

�

Z Z

x¤y
( Nu(x, y) � (unk (x) � unk (y))

p

Jnk (x, y))v(x, y) dx dy

�

�

�

�

C

�

�

�

�

Z Z

x¤y
(unk (x) � unk (y))(

p

Jnk (x, y) �
p

J(x, y))v(x, y) dx dy

�

�

�

�

C

�

�

�

�

Z Z

x¤y
((unk (x) � unk (y)) � (u(x) � u(y)))

p

J(x, y)v(x, y) dx dy

�

�

�

�

DW (I)nk
C (II)nk

C (III) nk
.

Since Nun converges toNu weakly in L2(Rd
�R

d
ndiagIdx
dy), we see limk!1

(I)nk
D 0.

By making use of the Schwarz inequality and Assumption C and noting {unk} is a
bounded sequence inL2(Rd

I dx), we see

(II)nk

�

s

ZZ

x¤y
(unk (x) � unk (y))2

v(x, y) dx dy

�

s

ZZ

x¤y
(
p

Jnk (x, y) �
p

J(x, y))2
v(x, y) dx dy

� kvk

1

kunkkL2

s

2

�













Z

{x W (x,�)2supp[v]}
jv(x, � )j dx













1

C













Z

{y W (�,y)2supp[v]}
jv( � , y)j dy













1

�

�

s

ZZ

supp[v]
jJnk (x, y) � J(x, y)j dx dy

! 0 as nk !1.

Here we used elementary inequalities in the second inequality above: (a � b)2
�

2(a2
C b2) and j

p

a�
p

bj �
p

ja� bj for a, b � 0. As for (III)nk
, note that both

'(x) D
Z

y¤x

p

J(x, y)v(x, y) dy, x 2 Rd,

 (y) D
Z

y¤x

p

J(x, y)v(x, y) dx, y 2 Rd
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are in L2(Rd). So we see

(III) nk
�

�

�

�

�

Z

R

d

(unk (x) � u(x))'(x) dx

�

�

�

�

C

�

�

�

�

Z

R

d

(unk (y) � u(y)) (y) dy

�

�

�

�

goes to 0 whennk !1. Thus we see

Nu(x, y) D (u(x) � u(y))
p

J(x, y) (dx
 dy)-a.e. (x, y) with x ¤ y.

Hence

lim inf
n!1

En(un, un) �
Z Z

x¤y
(u(x) � u(y))J(x, y) dx dyD E(u, u).

Proof of (M2). SinceClip
0 (Rd) is a common core for (En, Fn), it is enough to

show (M2) for functions inClip
0 (Rd) (see, e.g. Corollary 1.18 in [1], and the proof of

Theorem 3.1 in [3]). Take anyu 2 Clip
0 (Rd). Put un D u for eachn, thenun converges

to u in L2(Rd). Denote byK the support ofu and take compact setF with K � F and

(2.5) d(K , Fc) D inf{d(x, y) W x 2 K , y 2 Fc} � 1.

Then

En(un, un) D En(u, u) D
Z Z

x¤y
(u(x) � u(y))2Jn(x, y) dx dy

D

Z Z

F�Fndiag
(u(x) � u(y))2Jn(x, y) dx dy

C 2
Z Z

K�Fc

(u(x) � u(y))2Jn(x, y) dx dy

DW (I)n C 2(II)n.

We first estimate (I)n. For all n 2 N and (dx 
 dy)-a.e. (x, y) 2 K � K n diag, we
see that the integrand in (I)n, that is, (u(x) � u(y))2Jn(x, y), is bounded byM(1 ^
d(x, y)2) QJ(x, y) from above, whereM WD max{Lip(u)2, 4kuk2

1

}. Here Lip(u) means
the smallest Lipschitz constant ofu. By the fact that the function (1̂ d(x, y)2) QJ(x, y)
is integrable on the setF � F n diag and Assumption C, we have

lim
n!1

(I)n D

Z Z

F�Fndiag
(u(x) � u(y))2J(x, y) dx dy.

We next estimate (II)n. The integral (II)n is the following:

Z Z

K�Fc

u(x)2Jn(x, y) dx dy.
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For (dx
 dy)-a.e. (x, y) 2 K � Fc, by Assumption C, we see

u(x)2Jn(x, y) � kuk2
1

QJ(x, y),

and the right hand side is integrable on the setK � Fc because of (2.4). Thus, by
Assumption C, we have

lim
n!1

(II)n D lim
n!1

Z Z

K�Fc

u(x)2Jn(x, y) dx dy

D

Z Z

K�Fc

u(x)2J(x, y) dx dy.

Combining these two estimates, we have

lim
n!1

En(u, u) D
Z Z

F�Fndiag
(u(x) � u(y))2J(x, y) dx dy

C 2
Z Z

K�Fc

u(x)2J(x, y) dx dy

D

Z Z

x¤y
(u(x) � u(y))2J(x, y) dx dyD E(u, u).

This concludes that (M2) holds.

3. Instability of global path properties

3.1. Proof of Proposition 1.5.

Proof of Proposition 1.5. By [17, Theorem 2.2] and the Feller’s test in [10], in
the case of (i), (En, Fn) is explosive and (E , F ) is conservative, and, in the case of
(ii), (En, Fn) is conservative and (E , F ) is explosive (see also, e.g., [2, p. 300]). By
Theorem 1.1, (En,Fn) converges to (E ,F ) in the sense of Mosco in the both cases (i)
and (ii) and we finish the proof.

3.2. Proof of Proposition 1.6. We first show the following lemma which is a
sufficient condition for localL1-convergence of'n to ':

Lemma 3.1. If �n(t)! �(t) for every t2 [0,1), then'n! ' locally in L1(Rd).

Proof. We show that, for any compact setK � Rd,
R

K j'n(x) � '(x)j dx ! 0.
Since 'n and ' are continuous functions andj'n � 'j is uniformly bounded onK ,
making use of the dominated convergence theorem, it sufficesto show that'n(x) !
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'(x) for a.e. x 2 K . We see that

j'n(x) � '(x)j �
Z

R

d

j1� cos(hx, �i)j � j j� j�1��n(j� j)
� j� j

�1��(j� j)
j d�

�

Z

R

d

j1� cos(hx, �i)j j� j�1��n(j� j) d�

C

Z

R

d

j1� cos(hx, �i)j j� j�1��(j� j) d�

�

Z

R

d

j1� cos(hx, �i)jmax{j� j�1�N�, j� j�1�-�} d�

C

Z

R

d

j1� cos(hx, �i)jmax{j� j�1�N�, j� j�1�-�} d�

<1.

Since�n(t)! �(t) as n! 0 for any t 2 [0,1), it follows that

(1� cos(hx, �i))(j� j�1��n(j� j)
� j� j

�1��(j� j))! 0

as n ! 1. By the dominated convergence theorem, we see that'n(x) ! '(x) for
a.e. x 2 Rd. The proof is completed.

Now we show Proposition 1.6:

Proof of Proposition 1.6. (i): By Theorem 4.1, we can verify that (En, Fn) is re-
current for anyn and (E ,F ) is transient. By Lemma 3.1, we have that (En,Fn) converges
to (E , F ) in the sense of Mosco. (ii): The transience of (En, Fn) and the recurrence of
(E , F ) follow directly from Theorem 4.2. By Lemma 3.1, we have that(En, Fn) con-
verges to (E , F ) in the sense of Mosco and we finish the proof.

3.3. Proof of Proposition 1.8.

Proof of Proposition 1.8. We use Proposition 1.6 and the comparison theorems
of Dirichlet forms [2, Theorem 1.6.4].

4. Appendix: Sharpness of recurrence criteria for symmetric Lévy processes

It is well-known that a translation invariant symmetric stable process with an index
� (0< � � 2) is recurrent if and only ifd D 1� � � 2 or d D � D 2. The Lévy kernel
is given byn(dh) D cjhj�d�� dh for some constantcD c(d, �) if 0 < � < 2.

In this appendix, we give a recurrent criteria for a class of stable type Lévy pro-
cesses having the Lévy measuren(dh)D jhj�d��(jhj) dh, where� is a measurable function
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defined on [0,1). When� is a constant between 0 to 2, then this corresponds nothing
but to a symmetric� stable process. Consider also the following quadratic form:

E(u, v) D
Z Z

h¤0
(u(x C h) � u(x))(v(x C h) � v(x))n(dh) dx

D

Z Z

x¤y

(u(y) � u(x))(v(y) � v(x))

jx � yjdC�(jx�yj)
dx dy,

D[E ] D {u 2 L2(Rd) W E(u, u) <1}.

Then it is known that (E , D[E ]) is a symmetric, translation invariant Dirichlet form on
L2(Rd) under the following condition:

Z

h¤0
(1^ jhj2)n(dh) D cd

Z

1

0
(1^ u2)u�1��(u) du<1.

In [20] (see also [9, 13]), we have shown the following theorem:

Theorem 4.1 (cf. Theorem 3.3 in [20]). If the conditions

lim sup
R!1

R�2Cd
Z R

0
u1��(u) du<1

and

lim sup
R!1

Rd
Z

1

R
u�1��(u) du<1

hold, then the process is recurrent.

In the case whered D 1, we can show the following. Let" > 0 and set

�(u) D 1� (log(uC e2))�", u � 0

for instance. Let us also consider the corresponding form:

E(u, v) D
Z Z

h¤0
(u(x C h) � u(x))(v(x C h) � v(x))n(dh) dx

D

Z Z

x¤y

(u(y) � u(x))(v(y) � v(x))

jx � yj1C�(jx�yj)
dx dy,

D[E ] D {u 2 L2(R) W E(u, u) <1}.

Then we have the following criterion for the recurrence:

Theorem 4.2. The form/process is recurrent if and only if" � 1.
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Proof. Though we have shown in [20] (cf. [19]) that the form isrecurrent if" � 1,
we give the proof of it for reader’s convenience. Namely, we estimate two integrals in
the previous theorem in the cased D 1.

For R> e,

R�1
Z R

0
u1��(u) duD R�1

Z R

0
u(log(uCe2))�" du.

Since" � 1, we find that

R�1
Z R

0
u(log(uCe2))�" du

D R�1
Z

p

R�e2

0
u(log(uCe2))�" duC R�1

Z R

p

R�e2
u(log(uCe2))�" du

� R�1
Z

p

R

0
u2�" duC R�1

Z R

p

R�e2
u((1=2) log R)�" du

�

R2�"�1
�1

2�" C 1
C R�1C((1=2) log R)�" (R�

p

RC e2)

D

2"

(1C 2")R1�2�"�1 C R((1=2) log R)�"
�

1�
1
p

R
C

e2

R

�

.

Since" � 1, it follows that

log R((1=2) log R)�"
D

�

1

2
log R

�

�"

� log R

D 2"(log R)1�"
!

(

0 if " > 1,

2" if " D 1,
as R!1.

Thus we find that

lim sup
R!1

R�1
Z R

0
u1��(u) du<1.

We now estimate the second condition: ForR>
p

e,

R
Z

1

R
u�1��(u)duD R

Z

1

R
u�2C(log(uCe2))�" du� R

Z

1

R
u�2C(2 log R)�" du

D R

�

1

�1C (2 log R)�"
u�1C(2 log R)�"

�

1

R

D R
R�1C(2 log R)�"

1� (2 log R)�"
D

R(2 log R)�"

1� (2 log R)�"
.
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Similar to the previous calculus, we find that logR(2 log R)�"
D 2�"(log R)1�". Then it

follows that

lim sup
R!1

R
Z

1

R
u�1��(u) du<1.

Thus the process is recurrent for" � 1.
Now we show that the process is transient if 0< " < 1. In order to show this,

recall that the characteristic function' of the process is defined by

'(� ) D
Z

R

(1� cos(�h))jhj�1��(jhj) dh, � 2 R

and the process is recurrent if and only if for some (or equivalently, for all) r > 0,

Z

{j� j<r }

d�

'(� )
D1,

(see [15]). Then we will prove that
R

{j� j<r }
(1='(� )) d� <1 for some 0< r � 1 pro-

vided that 0< " < 1. This means it is enough for us to estimate the function' on
{� 2 R W j� j < 1}.

Since'(0)D 0, we only consider the case 0< j� j < 1.
First assume that 0< � < 1. Then

'(� ) D
Z

R

(1� cos(�h))jhj�1��(jhj) dh

�

Z

{�=2<�x<�}

(1� cos(�h))jhj�2C(log(jhjCe2))�" dh

D

Z

{�=2<u<�}

(1� cosu)

�

�

�

�

u

�

�

�

�

�

�2C(log(ju=� jCe2))�" du

�

(�h D u)

� �

1�(log(�=�Ce2))�"
Z

{�=2<u<�}

(1� cosu)u�2 du� c�1�(log(�=�Ce2))�" ,

where c is a constant independent of� . Similarly, we can get a similar bound for
�1< � < 0:

'(� ) D
Z

R

(1� cos(�h))jhj�1��(jhj) dh

�

Z

{��=2>�x>��}

(1� cos(�h))jhj�1��(jhj) dh

� (�� )1�(log(�=(�� )Ce2))�"
Z

{�=2<u<�}

(1� cosu)u�2 du

� c(�� )1�(log(�=(�� )Ce2))�" .
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Thus it follows that

'(� ) � cj� j1�(log(�=j� jCe2))�" , 0< j� j < 1.

Then, noting 0< " < 1, we find that

Z

B(1)

d�

'(� )
� c

Z

j� j<1
j� j

�1C(log(�=j� jCe2))�" d�

� 2c
Z 1

0
u�1C(log(�=uCe2))�" du (�=uC e2

D t)

D �c
Z

1

�Ce2
(�(t � e2)�1)�1C(log t)�" (t � e2)�2 dt

� c0
Z

1

�Ce2
(t � e2)�1�(log t)�" dt (log t D s)

� c0
Z

1

log(�Ce2)
(es
� e2)�1�s�"

� es dt � c00
Z

1

2
e�s1�"

ds (s1�"
D x)

D

c00

1� "

Z

1

21�"
e�xx"=(1�") dx � c0000

�

"

1� "
C 1

�

<1,

where c0 and c00 are positive constants independent oft and s respectively. Therefore
the form/process is transient for 0< " < 1.

ACKNOWLEDGMENT. The first author was supported by Grant-in-Aid for JSPS
Fellows Number 261798 and the SGU program in Kyoto university. The second author
was supported by Grant-in-Aid for Scientific Research (C) Number 15K04941.

References

[1] H. Attouch: Variational Convergence for Functions and Operators, Applicable Mathematics Se-
ries, Pitman, Boston, MA, 1984.

[2] M. Fukushima, Y. Oshima and M. Takeda: Dirichlet Forms and Symmetric Markov Processes,
second revised and extended edition, de Gruyter, Berlin, 2011.

[3] M. Hino: Convergence of non-symmetric forms, J. Math. Kyoto Univ.38 (1998), 329–341.
[4] P. Kim: Weak convergence of censored and reflected stable processes, Stochastic Process. Appl.

116 (2006), 1792–1814.
[5] A.V. Kolesnikov: Convergence of Dirichlet forms with changing speed measures onRd, Forum

Math. 17 (2005), 225–259.
[6] K. Kuwae and T. Shioya:Convergence of spectral structures: a functional analytic theory and

its applications to spectral geometry, Comm. Anal. Geom.11 (2003), 599–673.
[7] K. Kuwae and T. Uemura:Weak convergence of symmetric diffusion processes, Probab. Theory

Related Fields109 (1997), 159–182.
[8] T.J. Lyons and T.S. Zhang:Note on convergence of Dirichlet processes, Bull. London Math.

Soc.25 (1993), 353–356.



590 K. SUZUKI AND T. UEMURA

[9] J. Masamune, T. Uemura and J. Wang:On the conservativeness and the recurrence of symmetric
jump-diffusions, J. Funct. Anal.263 (2012), 3984–4008.

[10] H.P. McKean, Jr.: Stochastic Integrals, Academic Press, New York, 1969.
[11] U. Mosco: Approximation of the solutions of some variational inequalities, Ann. Scuola Norm.

Sup. Pisa (3)21 (1967), 373–394.
[12] U. Mosco: Composite media and asymptotic Dirichlet forms, J. Funct. Anal.123 (1994),

368–421.
[13] H. Ôkura and T. Uemura:On the recurrence of symmetric jump processes, Forum Math.27

(2015), 3269–3300.
[14] M. Röckner and T.-S. Zhang:Convergence of operators semigroups generated by ellipticoper-

ators, Osaka J. Math.34 (1997), 923–932.
[15] K. Sato: Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cam-

bridge, 1999.
[16] W. Sun: Weak convergence of Dirichlet processes, Sci. China Ser. A41 (1998), 8–21.
[17] M. Takeda: On a martingale method for symmetric diffusion processes and its applications,

Osaka J. Math.26 (1989), 605–623.
[18] T. Uemura:On weak convergence of diffusion processes generated by energy forms, Osaka J.

Math. 32 (1995), 861–868.
[19] T. Uemura: On some path properties of symmetric stable-like processesfor one dimension,

Potential Anal.16 (2002), 79–91.
[20] T. Uemura:On symmetric stable-like processes: some path properties and generators, J. The-

oret. Probab.17 (2004), 541–555.

Kohei Suzuki
Department of Mathematics
Faculty of Science
Kyoto University
Sakyo-Ku, Kyoto, 606-8502
Japan

Toshihiro Uemura
Department of Mathematics
Faculty of Engineering Science
Kansai University
Suita, Osaka, 564-8680
Japan


