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Abstract
It is known that every finitely presented group is the fundaralegroup of the total
space of a Lefschetz fibration. In this paper, we give angtiheof which improves
the result of Korkmaz. In addition, Korkmaz defined the geoia finitely presented
group. We also evaluate upper bounds for genera of somelyipitesented groups.

1. Introduction

Gompf [5] proved that every finitely presented group is thedfamental group of
a closed symplectic 4-manifold. Donaldson [4] proved thare closed symplectic 4-
manifold admits a Lefschetz pencil. By blowing up the basmoof a Lefschetz pencil,
we obtain a Lefschetz fibration ové®. In addition, blowing up does not change the
fundamental group of a 4-manifold. Therefore, it immediafellows that every finitely
presented group is the fundamental group of the total spheelefschetz fibration.

Amoros—Bogomolov—Katzarkov—Pantev [1] and Korkmaz [8koalconstructed
Lefschetz fibrations whose fundamental groups are a givetelfinpresented group.
In particular, Korkmaz [8] provided explicity a genus andmonodromy of such a
Lefschetz fibration.

Let Fy = (01, ..., 0n) be the free group of rank. For x € F,, the syllable length
[(x) of x is defined by

1) =min{s | x = g+ ¢S, 1<i(j) <n m(j) € z}.

For a finitely presented group with a presentatiom™ = (g1, .--, On | 1, ---, Tk),
Korkmaz [8] proved that for any > 2(n + 3", I(ri) — k) there exists a genus-
Lefschetz fibrationf: X — S such that the fundamental group(X) is isomorphic

to I', providing explicitty a monodromy.
In this paper, we improve this result.

Theorem 1.1. LetT" be a finitely presented group with a presentatibn= (g;,
ey On | ry, ..., 1), and let | = max<i<{l(r;)}. Then for any g> 2n + | — 1, there
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Fig. 1. The Dynkin diagram.

exists a genus-g Lefschetz fibration X — S such that the fundamental group (X)
is isomorphic torl'.

In this theorem, ifk = 0, we supposé = 1. We will prove the theorem by pro-
viding an explicit monodromy.

In addition, Korkmaz [8] defined thgenus ¢I") of a finitely presented group to
be the minimal genus of a Lefschetz fibration with section®sehfundamental group
is isomorphic tol". The Lefschetz fibrations constructed in Theorem 1.1 havgoses.
Hence the definition of the genus of a finitely presented grisupell-defined.

We will also prove the following theorem.

Theorem 1.2. (1) Let B, denote the n-strands braid group. Then forr3, we
have2 < g(B;) < 4.
(2) LetHgy be the hyperelliptic mapping class group of a closed corewecrientable
surface of genus g 1. Then we hav@ < g(Hg) < 4.
(3) Let My, denote the mapping class group of a sphere with n puncturesn Tor
n> 3, we have2 < g(Mq,) < 4.
(4) Let S denote the n-symmetric group. Then forrB, we have2 < g(S,) < 4.
(5) Let A, denote the n-Artin group associated to the Dynkin diagraowshin Fig. 1
Then for n> 6, we have2 < g(A,) < 5.
(6) Let n k> 0 be integers with a- k > 3, and let m, ..., m¢ > 2 be integers. Then
we haven +k+1)/2<9(Z"® Zm, - P Zm,) <n+k+ 1.

2. A Lefschetz fibration and preliminaries

2.1. A Lefschetz fibration and its monodromy. Here, we review briefly the
theory of Lefschetz fibrations.

Let X be a closed connected orientable smooth 4-manifold. A smimeaip f: X —
S’ is a genugy Lefschetz fibratiomver S if it satisfies following properties:
e All regular fibers are diffeomorphic to a closed connecteterded surface of
genusg.
e Each critical point of f has an orientation-preserving chart on whitte;, z,) =
z2 + 73 relative to a suitable smooth chart &.
e Each singular fiber contains only one critical point.
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Fig. 2. The right Dehn twist about.

a, a, a; a a

S
b, b, b, by, b,
Fig. 3.

e f is relatively minima) that is, no fiber contains an embedded sphere with the
self-intersection numbe1.

Let My be the mapping class group of a closed connected orientéacety of
genusg, that is, the group of isotopy classes of orientation-pngsg diffeomorphisms
Xg — Xg. In this paper, for elements andy of a group, the compositiory means
that we first applyx and theny. So for f, g € My, the compositionfg means that
we first apply f and theng. For a simple closed curve on Xg, let t; be the isotopy
class of the right Dehn twist about (see Fig. 2). For a genus-Lefschetz fibration
which hasn singular fibers, there are simple closed curegs. .., ¢, on X4, each
of which is called thevanishing cycle such that each singular fibé% is obtained by
collapsingci to a point to create a transverse self-intersection, tand - t;, = 1. This
equation is called thenonodromyof a Lefschetz fibration. Conversely, if there are sim-
ple closed curvegs, ..., ¢, on X4 such thatts ---t;, = 1, then we can construct a
genusg Lefschetz fibration with the monodronty, - - - t;, = 1.

For a Lefschetz fibratiorf : X — S?, a smooth mags: > — X is a section off
if fos: S — S is the identity map.

For a closed connected orientable surfaggof genusg, letay,...,ag, by,..., by
andcy,...,Ccy be loops onXy as shown in Fig. 3. Then the fundamental grougx,)
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(a) The case g is odd. (b) The case g is even.

of Xy has a following presentation
7'[1(29) = (a]_, b]_, ey ag, bg | r),
wherer = byt by l(ahiat) - - - (aghgay?).

Let By, ..., By anda, b, c be simple closed curves oiy as shown in Fig. 4. In
this paper, letW denote the following

_ J(tts, - -tg)>  wheng is even,
(t2t?tg, - - -tg,)?> wheng is odd.

It was shown in [7] thatW = 1 in the mapping class groupty of 4. In addition,
the Lefschetz fibrationfy : Xyw — S? with the monodromyW = 1 has a section (see
[7] and [8]).

2.2. Preliminaries. We now state the way to obtain the presentation of the fun-
damental group of a Lefschetz fibration with a section. ForaugI" and{xy,...,Xn} C

I, let (xq, ..., X,) denote the normal closure ¢ky, ..., X,} in T.

Proposition 2.1 (cf. [6]). Let f: X — S be a genus-g Lefschetz fibration with
the monodromyct---t;, = 1. Suppose that f has a section. Then we have

m1(X) = m1(2g)/{C1, - - ., Cn),

where we regard G . . ., G, as elements inry(Xg).
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For X,y € Mg, let x¥ = y~Ixy. For example, for simple closed curves ..., ¢,
on T4 andh € Mg, we have ¢, - - -t )" = (Wte )« - - (h 2, h) = teyn - - ten, Where
(ci)h means the image aof; by h.

Proposition 2.2 ([8]). Let f: X — S? be a genus-g Lefschetz fibration with the
monodromy V=1, ---t;, = 1. Suppose that f has a section. Let d be a simple closed
curve onXy which intersects some transversely at only one point. Let:fX’ — S?
be the genus-g Lefschetz fibration with the monodromy«\2/1. Then we have

mi(X) = m(Zg)/(C, - - ., Cn, d),
where we regard G ..., c, and d as elements in(Zg).

In this paper, we denote the Lefschetz fibration with the nloomy V = 1 by
fv: Xy = S%. For example, in the above propositiof,= fy, X = Xy and f’ =
fvvtc, X = vatc.

We next state results of Korkmaz [8].

Theorem 2.3([8]). (1) Let X4 be a closed connected orientable surface of genus
g > 0. Then we have [@1(Zg)) = 9.
(2) Let mI") denote the minimal number of generators far Then we have (i)/2 <
g(I"), with the equality if and only if" is isomorphic tor(Xg).
(3) For the mapping class group1; of ¥, we have2 < g(M;) < 4.
(4) Let B, denote the n-strands braid group. Then forr8, we have2 < g(B,) < 5.
(5) Let n,k > 0 be integers with n-k > 3, and let m, ..., m¢ > 2 be integers. Then
we haven+k+1)/2<9Z"® Zm, &+ B Zn,) < 2(n + k) + 1.

Theorem 1.2 improves Theorem 2.3 (4) and (5).

3. Proof of Theorem 1.1

First of all, we show a proposition used in proofs of Theorerh d4nd 1.2. For
elementsx andy in a group, let k, y] = xyxty~1. For a real numbea, [a] is the
maximal integer less than or equal &

Proposition 3.1. Let fy: Xw — S be the genus-g Lefschetz fibration with the
monodromy W= 1, where W is as abovend let a, by, ..., a4, by be the generators
of m1(Xg) as shown inFig. 3. Then we have followings
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(1) (See[8].) Let U = WWHor ... Wh, then the fundamental group;(Xy) of the
Lefschetz fibration ¥ has the following presentation

by, ..., by, .
<a1, by, ..., ag, by aiag o gag/za(g+2)/z> when g is even
7T]_(XU)= bl,...,bg,
ag, by, ..., ag, by | @ay, . .., &g 1)28g+3)2, ) when g is odd
Ag+1)/2

and, the groupmy(Xy) is isomorphic to the free group of rark/2].
(2) Let U = WW ... W"-1, then the fundamental group;(Xy:) of the Lefschetz
fibration Xy, has the following presentation

[a-].! bl]y

a, by, ..., a8 by Eibg ++ Po-1y when g is even
A8y, . . ., 8g/28(g+2)/2

m(Xu) = [ag, by,

b2, “ ey bg_]_,

ay, b, ..., ag, by | bibg, when g is odgd
&g, - . ., g-1)/2&g+3)/2,

A(g+1)2

and, the groupmi(Xy') is isomorphic to the free product of the free group of rank
([9/2]1 - 1) with Z & Z.

Proof. Simple closed curveBy, ..., By and a, b, ¢ as shown in Fig. 4 can be
described inmy(Xg), up to conjugation, as follows
e B = akbxi1byy2 - - - Byk-10g-kCg-kAg—k+1, Where 0< k < g/2,
®  Bai1 = ay1bkyibkiz - - - by k-1bgkCq-kagk, Where O< k < g/2,
* A= agt1y2 b= Cg-1)28g+12 andc = Cgp2,
where letag = ag1 = 1. In addition, note that; = bt --- by (abia?) - - - (aybig™?)
up to conjugation, for X i < g. Since Xy has a section, by Proposition 2.1, we first
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obtain a presentation ofi(Xw) as follows.

Cg, Cg/2.

a, by, ..., ag, by | M3 - -;,lag/za<g+z>/2- »
biaghgay , - - -, By/28(g+2)/2b(g+2)/28(g 4 2) 2
when g is even,
m1(Xw) =
1Xw) Cg» &g+1)/2: Big+1)/2: Clg-1)/2:

ag, by, ..., a9, by | &3, .. -ia(gfl)/za<g+3)/2a )
biaghgay™, . . ., bg-1)/28(g+3)/2D(g+3)/28(g 32

when g is odd.

(We have thatri(Xw) is isomorphic tori(Z[g/27).) Since eachy intersects somes;
transversely at only one point, by Proposition 2.2, we abthe claim. ]

REMARK. From Proposition 3.1, we have followings.
e Forn=>1, there are genusaZand (h+ 1) Lefschetz fibrations whose fundamental
groups are isomorphic to the free group of ramk
e Forn > 2, there are genus+i2- 2) and (2 — 1) Lefschetz fibrations whose fun-
damental groups are isomorphic to the free product of the §®up of rank if — 2)
with Z ® Z.

Let T be a finitely presented group with a presentatidoe= (91,...,09n | r1,...,rk)
and letl = max<i<{l(r;)}. Forg>n+1—1 andr;, we construct a simple closed
curve R on X4 as below.

At first, we construct a simple closed curv@ in the casen = 4 andr =
0201020, 7032 as an example. Note thafr) = 5. Let X1, Xp, X3, X4, Xs be loops on
X4 which are homotopic t@,, a1, ay, a4 andag, respectively, as shown in Fig. 5 (a).
Let y1, Y2, ¥3, Y4 be loops onXy which are homotopic t@s, as, az, as, respectively,
and letz;, z,, z3, z4 be loops onXy which are homotopic t@s, as, a7, ag, respect-
ively, as shown in Fig. 5 (a). First we defor®y aroundys,zi,...,Ys, 24 as shown in
Fig. 5 (b). Then letD be a subsurface containing and z which is surrounded by
a simple closed curve oy as shown in Fig. 5 (b). Next, for ¥t <4, we move
y: to the right side ofx in D, and z to the left side ofx,; in D, as shown in
Fig. 5 (c). LetR be the loop as shown in Fig. 6 (a), and Rt= (R)t, 't 't 2t,t2,
as shown in Fig. 6 (b). Finally, we deform the surface so that..,y, andz,...,z4
go back to their original position as shown in Fig. 6 (c).

In general, a loopR, is constructed as follows. Let = g - -~ gfi("). For 1<
t <I(r;), let x, be a loop onXy which is homotopic toa;). If j(s) = j(s') for some
s < 8, we putxy to the right side ofxs. For 1<t <I(r;) — 1, lety; and z be loops
on X4 which are homotopic t@,.¢, such thatz is in the right side ofy;.
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Fig. 5. The loopR in the casen = 4, r = g,0:10509; 932
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(b) The loop R.

Fig. 6. The loopR in the casen = 4, r = g,0:059; 05>
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Fig. 7. The loopc wheres =1(r;) — 1.

First we deformXy aroundys,zi,...,¥ir)-1,2¢;)-1, Similarly to the above example.
Let c be a simple closed curve which is describedrii{Xy) as follows

c= (an+1bn+1a§+11) e (an+|(f.)—1bn+|(rl)—laril(r‘)—1)bgil(ri)—l T bl:il'

and intersects each @, ..., a, at two points, as shown in Fig. 7. Then IBt be a
subsurface whose boundarydsand which containg; and z.

Next we deformD as follows. For 1<t <I(r;) — 1, we movey; to just right side
of x in D, and z to just left side ofx.,; in D as shown in Fig. 5 (c). We regard
that this motion does not affect on loops by andc;. Hencexy, ..., X, also do not
deform, as shown in Fig. 5 (c).

After that, we define a simple closed curve as shown in Fig.)6Nre precisely,
we construct arcd; andL{ as follows. The ard; is in D. L; begins from the point
at the left side ofx; on the loopc, crosses«y, yi, 21, X2, V2, Z2, - - -, in this order, finally
crossesx (), and stops at the right side @f;,) on the loopc. Let L; be an arc whose
base point is the end point df;, end point is the base point df;, and which does
not intersect the interior oD and loopsay, by, ..., a,, by andc,. Note that the surface
which is obtained by removing loops &, by, ..., a,, by, andc, from X4, and which
containsL; is a disk. Hence the art; is unique up to homotopy relative to the base
point and the end point. Léelt; - L; denote the composition df; and L;.

We now defineR = (L; - L)t ™. --t)g([?)('(ri)). Finally, we deform the surface so
that y1, z1, . .., Yir)-1, Zr)-1 90 back to their original position.

Note that the loopR is described inri(Xy), up to conjugation, as follows:

(%) R =< 1_[ Xi,l,taj(l))"‘( l_[ Xi,l(ri),taj(l(r)))l:i:

1<t<m(1) 1=t=m(I(r;))
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wherex; s is a loop which is some products &fi;1, bny1, .., &)-1, bir)—1 @and cnya,
and L; is a loop which is described iny(Xg) as follows:

L= {bj(ll(r.))bi(lla.»—l'“bj(11)+1bj(11) when j(1) = j(1(ri)),
bijaein+1Piaey - - Piwbja-1 when j(1) > j((r)).

We now prove Theorem 1.1.

Proof of Theorem 1.1. Fog >2n-+1—1, letV be the following
V = UWhni ..o W2,
whereU = WW®: ... Wb, In addition, letV’ be the following
V' = VVR .V

where R, is the loop constructed previously. We show that the fundaategroup
m1(Xy-) is isomorphic tor.

Since each oby,...,by anda,1,...,8q/) intersects somd; transversely at only
one point, by Proposition 2.2, we have

m1(Xv) = m1(Xg)/(b1, ..., by, Bny1, - . ., Ag/2))
= m1(Xu)/(@n+1, - - -+ Bgy2))-

In addition, by the presentation of (1) of Proposition 3. have

m1(Xu) = (&g, . . ., g/2)-
Therefore we have

m1(Xv) = (@, ..., Qg2 | @nsts - - - Qgy2))
:<a1:~--yan>;
Because of the presentation @f(Xy) in (1) of Proposition 3.1, we assunge> 2n +
| —1 in place ofg>n+1—1.
For any 1<i <k, consider the vanishing cycleB)ta, ,)tr of Xy.. Note that
(Bo)ta,,, and @n1)tr are described inri(Xg), up to conjugation, as follows:
e  (Bota,,, = anta(by---by),
e  (@nitr = ant1(zRZ7Y) for somez € m1(Zy).
Then, we have that Bp)t,,,,)tr is described inri(Xg) as follows:
((Bo)ta,,,)tr = (X - @ns1(b1 - - bn) - X tr
= ()tr @+t (b1 - - - bo)tr (X iR
= (R (Y- an41(zZRZ) -y H)(w - (Boltw - w™)((X)tr) ™,
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for some elements, y and w in 71(Xg). Sinceany1 = (Bo)tr = 1 in m1(Xy'), we
have R = 1 from ((Bo)ts,.,)tr = 1, in m1(Xy’). For a vanishing cycle of Xy, if R

intersectsc transversely as points, then the vanishing cycle){r of Xy is described
in m1(Xg), up to conjugation, as follows:

(C)tRi =X Risl cee X RI?SXS+1,

whereej; = 1 andxy, ..., Xs11 are elements inr1(Xg) such thatc = x; - - -Xs41. Since
R =1 andc = 1 in 71(Xy), we can delete the relatiort){r = 1 of m1(Xy:). We
now definef; = a;TE(ll))a;‘Ef'(g');) for r; = g;‘z(ll))g;?,('(g')g) Sincex;s; and L; in the
description ¢) of R are 1 inmy(Xyr), the natural epimorphismri(Xg) — m1(Xy-)
sendsR; to f;. Note that the vanishing cycles ofy. consist ofc and €)tg for all

vanishing cyclex of Xy and 1<i < k. Therefore, we have

7T1(XV/)=<a]_,...,an|f\1,...,fk>
r.

I

Thus, the proof of Theorem 1.1 is completed. O

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2.

4.1. Proof of (1) of Theorem 1.2. Forn > 2, let B, denote then-strands braid
group. The grouB, has a presentation with generatets. .., o,_1 and with relations
° aiajoflo']—’l =1, where I<i < j—1<n-2,
®  0i0i110j (fijrllofl i_+11 =1, where 1I<i <n-2.

Let x =0y andy = o1 ---0,_1. Then B, can be presented with generatorsy and
with relations

o xXyxy*x~lykx~ly=k =1, where 2<k <n-2,

o xyxyixyxly Ixlyxlyl=1,

o (xy)"ly"=1.

A correspondence between the first presentation and thendqu@sentation is given
by i =y "Ixy’ for 1 <i <n—1. See [8] for this presentation.

We now prove (1) of Theorem 1.2.

Proof of (1) of Theorem 1.2. Fon > 3, since B, is generated by two gener-
atorsx, y, we haveg(B,) > 2 from (2) of Theorem 2.3 (cf. [8]). Therefore, we prove
g(Bn) <4 forn=> 3.

Let Ry, R; and R;, be simple closed curves an, as shown in Fig. 8, where 2
k < n—2. Note thatR;x, R, and Rs, intersectB, transversely at only one point, for
2<k=n-2. LoopsRyk, R and R3, can be described im1(X4), up to conjugation,
as follows
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o Ry = agta;¥(bshy) tapa;¥(br)a, t(biby) akas 1 (bsbs)ak, where 2<k <n -2,
e Ry =azla;l(b;)as asa; a; (bohsbs)~ta; H(bsbs)auasa; tas(bs)au,

e Rsy=(az'a; (b;")" (bibs) tar".

Let Vi be the following:

Vi = W W W' Wtbawtm( I1 WtRl-k)WtRz W'an,
2=k=n-2

Then, from Proposition 2.2 and (1) of Proposition 3.1, thedmmental groupri(Xy,)
can be presented with generat@s a; and with relations
o aakaar*aytakaytar® =1, where 2<k <n-2,
o  Bada lampaaytalalaalal =1,
o ()" la"=1.
Let ay = x anda; = y. Then it follows thatr1(Xy,) is isomorphic toB,. Therefore,
for n > 3 we haveg(B,) < 4.
Thus, the proof of (1) of Theorem 1.2 is completed. ]

4.2. Proof of (2) of Theorem 1.2. For g > 1, let Hy be the hyperelliptic map-
ping class group ofZy, that is, a subgroup of the mapping class groufy which
consists of elements commutative with a hyperelliptic Iation. It is well known that
there is the natural epimorphisByy.> — Hg. For g > 2, Birman and Hilden [2] gave
a presentation of the groufly with generatorsry, ..., o2g+1 and with relations
° aiajai’lo'j’l =1, where 1I<i < j—1<2g,
®  0i0i110j aijrlloi_loilll =1, where 1I<i < 2g,

)29+2 =1,

(01 -+ 02941
(01 - 021102911 - - 01)? = 1,

[(T]_ e 0’29+1(ng+1 01, O’l] =1.

Similarly to Subsection 4.1, lek = oy andy = oy ---02541. Then, note that
y?9+2 = 1. We calculate

01+ 0294102941 -+ - 01 = Y(Y?OXY 29) -+ (yxy H)x

— y29+1(xy—1)29x
=y (xy H*x
— (y )%+t
Then we haved - - - 02g1102g+1 - - - 01)? = (Y~1x)*9*2. In addition, we have
[01+ - 0294102911+ 01, 01] = (Y 1X)P9FIx(xy)2+ix~t

— (y_lX)Zg+1(yX_l)Zg+l.

Therefore, 7y can be presented with generatorsy and with relations
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Fig. 9. The loopRs.

xy*xyKx=1ykx—ly=k = 1, where 2< k < 2g,
Xyxy xyx ty=ix-tyx~ty=t =1,

(xy)?tty 22 =1,

y2g+2 — 1,

(y—lx)49+2 — 1,

(y—lx)29+1(yx—l)29+l =1.

We now prove (2) of Theorem 1.2.

Proof of (2) of Theorem 1.2. Fog > 2, since#y is generated by two gener-
atorsx, y, we haveg(#y) > 2 from (2) of Theorem 2.3 (cf. [8]). Therefore, we prove
g(Hg) <4 for g > 2.

Let R4, Rs and Rg be simple closed curves an, described inr1(24), up to con-
jugation, as follows
o Re=a""(b?),

o Rs=(a'a)**?(brh),

o Rs = (ay a0t (b.bsbs)(a; as) 0t (b3 ™).

For the loopRs, see Fig. 9. Note thaR4, Rs and Rg intersectB,, B; and B4 trans-
versely at only one point, respectively. L& be the following:

Vs = Wv\/tblwtbzwtb3wtb4< 1_[ WtRl‘k)WtRZWtR3,2Q+2WtR4WtR5WtRG_
2<k<2g

Then, from Proposition 2.2 and (1) of Proposition 3.1, thediamental groupri(Xy,)
can be presented with generat@s a; and with relations

o aafaarfa;lakayla; = 1, where 2< k < 2g,

o  padpataaaytarlaylaaytart =1,

o (a2a1)29+1a1—2g—2 =1,
° afg+2 =1,

o (artap)t? =1,

° (aI1a2)29+l(ala£1)29+l =1.

Let a = x anda; = y. Then it follows thatri(Xy,) is isomorphic toH4. Therefore,
for g > 2 we haveg(#Hy) < 4. In particular, since the grouf; is isomorphic toMy,
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we have 2< g(H;) < 4 from (3) of Theorem 2.3 (cf. [8]).
Thus, the proof of (2) of Theorem 1.2 is completed. 0

4.3. Proof of (3) of Theorem 1.2. For n > 3, let My, denote the mapping
class group of am-punctured sphere, that is, the group of isotopy classesierfitation-
preserving diffeomorphism§?\ {py, ..., pn} — S\ {p1, --., pn}. Magnus [9] gave a
presentation of the group 1o, with generatorsr, . . ., on—1 and with relations
e ojojo to;t =1, where 1<i < j—-1<n-2,
®  0i0i110j Uijrlloi’lo'i;ll =1, where 1<i <n-2,

e (o1-on1)' =1,

[ ] U]_---O'n,]_(fnfl---a']_:l.

Similarly to Subsection 4.1 and 4.2, Igt= 07 andy = o1 ---0on_1. Then Mgy, can
be presented with generatoxs y and with relations

o XYxy *x7lykx~ly=k =1 where 2< k <n-—2,

xyxy xyxty-Ix-lyx-ly=t =1,

(xy)"ty " =1,

y'=1,

(5"t = 1.

We now prove (3) of Theorem 1.2.

Proof of (3) of Theorem 1.2. Faom > 3, since My, is generated by two gener-
ators x, y, we haveg(Mg,) > 2 from (2) of Theorem 2.3 (cf. [8]). Therefore, we
prove g(Mon) < 4 for n = 3.

Let R; and Rg be simple closed curves oB,4 described int1(X4), up to conju-
gation, as follows
e Ry=al(bh),

o Rg=(a;'a)" (b))
Note thatR; and Rg intersectB, and B; transversely at only one point, respectively.
Let V3 be the following:

Va3 = VWi WRe,

Then, from Proposition 2.2 and (1) of Proposition 3.1, thedlamental groupri(Xy,)
can be presented with generategs a; and with relations
o aakaa *aytakaytaj® =1, where 2<k <n-2,
o  damatamaaytartaytaaytart =1,
o (apa)"ta,"=1,
° a,? =1,
° (a{laz)n_l =1.
Let a, = x anda; = y. Then it follows thatr;(Xy,) is isomorphic toMg . Therefore,
for n > 3 we haveg(Mon) < 4.
Thus, the proof of (3) of Theorem 1.2 is completed. ]
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4.4. Proof of (4) of Theorem 1.2. For n > 3, let S, denote then-symmetric
group. It is well known that the grouf, has a presentation with generatets...,on-1
and with relations
° o*iojai’ldj’l =1, where I<i<j—-1<n-2,
® 00110 aiflai_laijrll =1, where 1<i <n-2,

e o02=1, where 1<i <n-1.
Similarly to Subsection 4.1, lex = o, andy = o1---0_1. Sinceo; = y'~Ixy™,
02 =1 if and only if x> = 1. ThereforeS, can be presented with generatorsy and
with relations
o Xyxy *xlykx~ly=k =1, where 2< k <n -2,
o xyxy xyxly Ixlyxlyl=1,
o (xy"lty"=1,
e Xx2=1.
We now prove (4) of Theorem 1.2.

Proof of (4) of Theorem 1.2. Fam > 3, since§, is generated by two generators
X,Y, we haveg(S,) > 2 from (2) of Theorem 2.3 (cf. [8]). Therefore, we progé€s,) <
4 forn> 3.

Let Ry be the simple closed curve an, described inri(X4), up to conjugation,
as follows
e Ro=ajb,h).
Note thatRy intersectsB, transversely at only one point. L&, be the following:

Vi = ViW'hs,

Then, from Proposition 2.2 and (1) of Proposition 3.1, thedamental groupri(Xy,)
can be presented with generat@s a; and with relations
o aakaar*aylakaytark =1, where 2<k <n-2,
o  dadpa laaatatalaata;t =1,
o (a)"lay" =1,
° a% =1.
Let ay = x anda; = y. Then it follows thatr(Xy,) is isomorphic t0S,. Therefore,
for n > 3 we haveg(s,) < 4.
Thus, the proof of (4) of Theorem 1.2 is completed. O

4.5. Proof of (5) of Theorem 1.2. The Artin group is introduced by [3]. For
n > 6, the n-Artin group A, associated to the Dynkin diagram shown in Fig. 1 is
defined by a presentation with generatess. . ., on—1, T and with relations
e oiojo; 'o;t =1, where 1<i < j-1<n-2,
® 00110 aiflai’laijrll =1, where 1<i <n-2,
° 041041:_104_%‘1 =1,

° rcrif‘loi_l =1, where 1<i <n—1 with i # 4.



(FE M%)

Fig. 10.
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It is known that there is the natural epimorphisdg.; — Mg. Similarly to Sub-
section 4.1, lex = 07 andy = o1 - - - on_1. In addition, letz = z. Then the group4,
can be presented with generatorsy, z and with relations

o xyxy *xlykx-ly"k =1 where 2<k <n-2,

xyxy IxyxtyIx—tyx-ty=l =1,

(xy)"ty " =1,

(3xy)z(y3xy 3z y3x ty 3zt =1,

Z(y " Ixytr )z Yy Ixlyr ) = 1, where 1<i <n—1 with i # 4.

We now prove (5) of Theorem 1.2.

Proof of (5) of Theorem 1.2. Sincd, is generated by three generatorsy and
z, we haveg(A;,) > 2 from (2) of Theorem 2.3 (cf. [8]). Therefore, we progéA,) < 5.
Let Rik, Ry, Rs, Ry and Rs; be simple closed curves oBs as shown in Fig. 10,
where 2<k <n-—2 and 2<i <n-—1 withi # 4. Note that we can not consider
the loop Rs 1. Note thatR;k, R; and R; intersecta transversely at only one point,
for 2<k <n-2, and thatR, and Rs; intersectb transversely at only one point, for
2<i=n—1withi # 4. LoopsRik, Rz, Rs, Ry and Rs; can be described ini(Zs),
up to conjugation, as follows
o Rix= bgl(b2b3b4)*1a‘2‘(b3b4)bgl(b3b4)*1a2‘k(b2b3b4)b5a;2k(bgl)a2‘kbila‘2<a§k, where
2<k=n-2,
o Ry =bjay(bsha)bs*(bsba) ta, *(bsba)bs* (b2bsha) *aa(bsba)bs(bsba) *a, *(babsbs) x
bsaz (hsba)bs(bsbs) a5 2,
o Rs = (bu(bz)a)" *(bu(bobsba)bs)a] ?aZ,
o Ry = ajbi(b)afagta, 3(b;1)ba(b2)aasa, 3(b; )byt (bo)adas(ashsbs) 2,
e Rs; = aa, (bs)bg'(bs)a) " a; (ba(b2bs)bs)a; ' (aghs)bs(a 'aZ ' (bo))ay ta) 2 x
(b1(bobsby)bs)™t, where 2<i <n—1 with i # 4.
Let V5 be the following:

Vs = W\/\/‘bzwtbswtw( I1 WtRLk>WtRthRsWtR4< I1 WtRsv).

2<k=n-2 2<i=n-1,i#4

Then, from Proposition 2.2 and (2) of Proposition 3.1, thediamental groupri(Xy,)
can be presented with generatdxs a,, a3 and with relations
biasba; by takbr tayk = 1, where 2<k <n -2,
biapbiay thyazbtay thrtabtast = 1,
(b13o)"ta," = 1,
(a3bra; ®)an (afbra; )a; H(aghy ay%)a t = 1,
ay(a; th;al arl(a, thytal ) = 1, where 2<i <n—1 withi # 4,
a]_bla:flbIl.
Let by = X, a8 =y anda; = z. Thenm1(Xy,) is isomorphic to.A,. Therefore, for
n> 6 we haveg(A4,) <5.
Thus, the proof of (5) of Theorem 1.2 is completed. ]
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4.6. Proof of (6) of Theorem 1.2.

Proof of (6) of Theorem 1.2. Leh, k > 0 be integers witm + k > 3.

At first, we consider the case+k is even. We pun+k =2r. Let A;; and B; |
be simple closed curves OB, k1 as shown in (a) and (b) of Fig. 11, respectively,
where 1<i < j <r, and letC;; be the simple closed curve OBnik+1 as shown
in (c), (d) and (e) of Fig. 11, where £ i, j <r. Note that each ofA j, B;; and
Ci; intersectsa ;1 transversely at only one point. Loops j, B ; and C;; can be
described inr(Xh1ks1), Up to conjugation, as follows

o A =aatax it28, | ,(G b}y, where 1<i < j <,

e B =hb; bflaZr,szZr,Hzagr{j+2(b;jlc,), where 1<i < j <r,

o Cij=aba ay ji2by " (@41l ly), where 1<i, j <r andi # j,
e G =blaba*(bl,), where 1<i <r.

Let Vs be the following:

o))

I<i<j=r I<i<j=r 1<i,j=r

Note that we have relationg 1 =1, b1 =1, ¢ =1 andg,1 =1 in 7 (Xw). In
addition, we have the relatioagr,,-+2b2r,j+2a2‘r{j+2 = bj‘1 in 71(Xw) (see the pres-
entation ofr1(Xw) in the proof of Proposition 3.1). Then, from Propositior2,2the
fundamental groupr;(Xy,) can be presented with generatas b, ..., a, b, and
with relations

e aa'a 'a, where 1<i < j <r,

e bibjbtbt, where 1<i < j <r,

e abj'a'hj, where 1<i, j <r andi # j,

e blaba?l where 1<i<r.

Namely, r1(Xy,) is isomorphic toZ%. We next consider the simple closed curRf'
on Zhike1 as shown in Fig. 12, where4i <2r andm; > 2. Note thatR{“‘ intersects
a1 transversely at only one point. Loof®™ can be described iy (Zn k1), Up to
conjugation, as follows

o R =a (a2l 585" o8 1070, where 1<i <,

T = b (g eyt 08 abr L), where 1< <.

Let V7 be the following:

Vs = v6< I1 W*ﬁm).

1<i=<k

Then, from Proposition 2.2, the fundamental growXy,) is isomorphic toZ" &
Zyy ® - ® Zn,. Therefore, ifn + k is even, we havgy(Z" @ Zm, @ -+ - ® Zm,) <
n+k+1.
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i J r+1 2r-j+2 2r-i+2

(a) The loop A; j, 1 <i<j<r.

i 7 Y, 2rj+2  2rit2

(b) The loop B;j, 1 <i<j<r.

i J r+l 2r-j+2 2r-i+2

(c) The loop Cj 5, 1 <i<j<r.

i i r+1 2r-i+2 2r-j+2

(d) The loop Cy 5,1 <j<i<r.

i r+l 2r-i+2
(e) The loop Cj 4, 1 <i <.

Fig. 11.
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i r+1 2r-i+2
(a) The loop R;ni with m; =2,1<i<r.

L

i r+1 2r-i+2
(b) The loop R:n;;” with myy; =2,1<i<r.
Fig. 12.

Next, we consider the case+k is odd. We pun+k=2r +1. Let A j and B;
be simple closed curves oB,.x+1 as shown in (a) and (b) of Fig. 13, respectively,
where 1<i < j <r, and letC;; be the simple closed curve Qfn;x+1 as shown in
(c), (d) and (e) of Fig. 13, where £ i, j <r. In addition, letA ;1 andC;,;; be
simple closed curves ol k+1 @s shown in (a) and (b) of Fig. 14, where<li <r.
Note that each ofA;;, B;; and C;; intersectsBy . transversely at only one point.
Loops A j, Bi,j andC; ; can be described in1(Xnk+1), UP to conjugation, as follows
o Aj=aa tax it3a,"; 5(C b}y, where 1<i < j <r,

o Ari1=aa }y(bri2)axi3(Cry2)a 11, where 1<i <r,

e B =Dhb; bi_l(br+2)a2rfj+3b2r7j+3a2_rl,j+3(br_jrl2br+1cr+1), where 1<i < j <rr,

e Cij=ab; a;l(bwg)agr,j+3b2r,j+3a2—r£j+3(br‘j2br+1q+l), where 1<i,j <r and
P# ],

e G =blaba™(b7,), where 1<i <r,

e G =abial(bri2)ax—ivsba—izadyt; 3(C12), Where 1<i <r.

Let Vg be the following:

vgzwwbr+1< I1 W“H)( I1 W‘m)< [ Wt°u>.

I<i<j<r+1 1<i<j=<r 1<i<r+1,1<j=r

Sinceby 41 intersectsBy ., transversely at only one point, we have the relatipy = 1
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i i r+l  rt2 2r-j+3 2r-it3

(a) The loop A;j, 1 <i<j<r.

i i r+l  r+2 2r-j+3 2r-it3

(b) The loop B; j, 1 <i<j<r.

i j r+1  r+2 2r-j+3 2r-i+3

(c¢) The loop Cj 5, 1 <i<j<r.

J i r+l1  r+2  2r-i+3 2r-j+3

(d) The loop Cj 5, 1 <j<i<r.

i r+l1  r+2
(e) The loop Cj 4, 1 <i <.

Fig. 13.
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r+1 r+2

(a) The loop A; g1, 1 <2< r.

i r+1  rt2 2r-i+3
(b) The loop Cry1,4, 1 <i<r.

Fig. 14.

in 1 (X\y w1 ) from Proposition 2.2. Hence we have relatidms, = 1 andc; ;2 =1 in
w1(Xyywhre1)- Then, from Proposition 2.2 and the presentationrgfXw) in the proof
of Proposition 3.1, the fundamental group(Xy,) is isomorphic to an abelian gener-
ated byay, by, ..., &, b anda ;. We next consider the simple closed curR,E“ on
Zhike1 @s shown in Fig. 15, where4i < 2r + 1 andm; > 2. Note thatRimi intersects
Bar 12 transversely at only one point. Loofi®" can be described ifry(Znik11), Up to
conjugation, as follows

o R" =a"(@r-i+30y" 385 43G 110 10 1), where 1<i <r,

= b (@ Ayt aG by, where 1< <,
o R =alyio ).

Let Vg be the following:

v9=v8< I1 WtRimi).

1<i=<k

Then, from Proposition 2.2, the fundamental growmf(Xy,) iS isomorphic toZ" &
Zm, @+ -P®Zm,. Therefore, ifn+k is odd, we havey(Z"®Zm, - - -DZp,) < n+k+1.

Moreover, it is immediately follows from Theorem 2.3 (2) or) (&f. [8]) that
9Z" ® Zm, -+ ® Zm,) = (n + K+ 1)/2. Thus, the proof of (6) of Theorem 1.2
is completed. ]



LEFSCHETZ FIBRATIONS AND FINITELY PRESENTED GROUPS 375

] r+vl1  r+2 2r-i+3
(a) The loop Rzni withm; =2,1<:<r.

] r+l1  r+2 2r-i+3

(b) The loop R, ;" with m,j; =2,1<i<r.

r+1 r+2

(¢) The loop R;ﬁffl with mo,4+1 = 2.

Fig. 15.
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