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Abstract
We study complete noncompact spacelike hypersurfaces immersed into conform-

ally stationary spacetimes, equipped with either one or twoconformal vector fields.
In this setting, by using as main analytical tool a suitable maximum principle for
complete noncompact Riemannian manifolds, we establish new characterizations of
totally geodesic hypersurfaces in terms of theirr -th mean curvatures. For instance,
for a timelike geodesically complete conformally stationary spacetime endowed with
a closed conformal timelike vector fieldV , under appropriate restrictions on the flow
and the norm of the tangential component ofV , we are able to prove that totally geo-
desic spacelike hypersurfaces must be, in fact, leaves of the distribution determined
by V . Applications to the so-called generalized Robertson–Walker spacetimes are
also given. Furthermore, we extend our approach in order to obtain a lower estimate
of the relative nullity index.

1. Introduction

In the last years, the study of spacelike hypersurfaces immersed in Lorentzian space-
times has been of substantial interest from both physical and mathematical points of
view. From the physical one, that interest became clear whenLichnerowicz [29] showed
that the Cauchy problem of the Einstein equation with initial conditions on a maximal
spacelike hypersurface (that is, with zero mean curvature)has a particularly nice form,
reducing to a linear differential system of first order and toa nonlinear second order
elliptic differential equation.

From a mathematical point of view, spacelike hypersurfacesare also interesting be-
cause of their Calabi–Bernstein type properties. Traditionally, the parametric version of
the Calabi–Bernstein theorem asserts that the only complete maximal hypersurfaces in
the Lorentz–Minkowski space are the spacelike hyperplanes (cf. [16], [22], [24] and
[34]). In this setting, the problem of characterizing maximal, or more generally, con-
stant mean curvature hypersurfaces of different Lorentzian spacetimes has been stud-
ied by several authors. For instance, in a series of papers Alías, Romero and Sánchez
(cf. [7], [8] and [9]) have studied the uniqueness of spacelike hypersurfaces with constant
mean curvature in an important class of Lorentzian manifolds, the so calledconform-
ally stationary spacetimes. We recall that such a space is a manifoldNMnC1 endowed
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with a Lorentzian metric tensorh , i equipped with a conformal timelike vector field
V 2 X( NM). The fact thatV is conformal means that the Lie derivative of the Lorentzian
metric h , i with respect toV satisfiesLV h , i D 2 h , i for a certain smooth function
 on NMnC1. In particular, whenV is a Killing vector field (that is, vanish identi-
cally on NMnC1), then NMnC1 is classically called astationary spacetime. The reason for
the terminology conformally stationary spacetime is due tothe fact that NMnC1 endowed
with the conformally related metrich , i� D jV j�2

h , i (cf. Lemma 2.1 of [36]), where
jV j D

p

�hV, Vi > 0, is in fact a stationary spacetime, since the timelike fieldV is a
Killing vector field for h , i�.

In [21], the first author jointly with Caminha derived, for the square operator of
Yau [37], an analogue of the Omori–Yau maximum principle forthe Laplacian [32, 37]
and applied it to obtain nonexistence results concerning complete noncompact space-
like hypersurfaces immersed with some constantr -th mean curvature in a conformally
stationary spacetime. More recently, the authors jointly with Camargo and Caminha
have obtained in [17] a new characterization of complete noncompact totally geodesic
spacelike hypersurfaces in conformally stationary spacetimes.

We note that the class of conformally stationary spacetimesincludes the family of
generalized Robertson–Walker(GRW) spacetimes. By a GRW spacetime, we mean a
Lorentzian warped product�I �

�

Fn with Riemannian fiberFn and warping function
� (for details, see Section 4). For such a spacetime, the conformal timelike vector
field V(t, p) D �(t)(�=�t)(t, p) is also closed, in the sense that its metrically equivalent
1-form is closed. As it was observed by Montiel in [30], ifNMnC1 is a conformally
stationary spacetime equipped with a closed conformal vector field, then it is locally
isometric to a GRW spacetime. A global analogue of this assertion was also obtained
by Montiel, which showed that a timelike geodesically complete spacetime having a
closed conformal timelike vector field must be isometric to an appropriate quotient of
a GRW spacetime (see Proposition 2 of [30]).

Recently, many authors have treated the uniqueness problemof spacelike hyper-
surfaces with constant mean curvature in GRW spacetimes. For instance, we may cite
the works [13], [14], [15] and [35], where Romero et al. have obtained rigidity re-
sults concerning to spacelike slices of 3-dimensional GRW spacetimes obeying either
the null convergence condition or the timelike convergencecondition. Also in the 3-
dimensional case, Albujer and Alías [3] have established new Calabi–Bernstein results
for maximal hypersurfaces immersed into a Lorentzian product space. In [4], the first
author jointly with Albujer and Camargo have approached some uniqueness problems
concerning complete spacelike hypersurfaces with constant mean curvature immersed
in a Robertson Walker (RW) spacetime (that is, a GRW spacetime whose Riemannian
fiber has constant sectional curvature), which was supposedto obey the null conver-
gence condition. In [18], by considering the RW model�(��=2, �=2)�cost H

n of an
open subset of the anti-de Sitter spaceHnC1

1 , whereHn stands for then-dimensional
hyperbolic space, the first author and Camargo obtained new characterizations of totally
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geodesic spacelike hypersurfaces inHnC1
1 .

In this paper, our aim is to establish new characterization theorems of totally geo-
desic spacelike hypersurfaces immersed in a conformally stationary spacetime. For in-
stance, in Section 3 we prove the following results (cf. Theorems 3.3 and 3.9):

Let NMnC1 be a conformally stationary spacetime endowed with a conformal time-
like vector field V and let xW Mn

!

NMnC1 be a complete, noncompact spacelike hyper-
surface. Suppose that one of the following conditions is satisfied:
(a) H � 0 and div

NM V � 0 on Mn;
(b) H � 0 and div

NM V � 0 on Mn.
If jV>

j is Lebesgue integrable on Mn, then Mn is maximal. Moreover, if NMnC1 is an
Einstein spacetime and H2 is bounded from below on Mn, then Mn is totally geodesic.

Let NMnC1 be a conformally stationary spacetime endowed with a parallel timelike
vector field V and a homothetic nonparallel timelike vector field W, and xW Mn

!

NMnC1 be a complete noncompact spacelike hypersurface such that Hdoes not change
sign on Mn. If jV>

j is Lebesgue integrable on Mn, then Mn is maximal. Moreover, if
NMnC1 is Einstein and H2 is bounded from below, then Mn is totally geodesic.

Here, H is the mean curvature,H2 D (2=(n(n � 1)))S2 denotes the mean value
of the second elementary symmetric functionS2 on the eigenvalues of the Weingarten
operator (see Section 2 for details about ther -th mean curvatures) andV> stands for
the tangential component of the vector fieldV on Mn. Our approach is based on the
use of the Newton transformations (see Section 2) jointly with a suitable extension of
a maximum principle at the infinity of [38] due to Caminha in [20] (cf. Lemma 3.2).

In Section 4, we apply those results described above to studythe uniqueness of
totally geodesic spacelike hypersurfaces in GRW spacetimes. When the spacetime is
timelike geodesically complete we can guarantee, with an appropriate set of hypotheses
and with the aid of another classic result due to Yau (cf. Lemma 4.2), that complete
noncompact spacelike hypersurfaces are leaves of the distribution of vector fields which
are orthogonal to a conformal vector field globally defined onthe ambient spacetime.
Specifically, we obtain the following result that extends Theorem 4.1 of [17], for the
case of a single closed conformal field (cf. Theorem 4.3):

Let NMnC1 be a timelike geodesically complete conformally stationary spacetime,
with nonnegative Ricci curvature and endowed with a closed conformal timelike vector
field V . Let xW Mn

!

NMnC1 be a connected complete spacelike hypersurface with H
bounded and H2 bounded from below. IfjV>

j is Lebesgue integrable on Mn and the
conformal factor of V satisfies

1

jV j

� 

�t
� nH2,

where t2 R denotes the real parameter of the flow of� D V=jV j, then Mn is totally
geodesic and the Ricci curvature ofNMnC1 in the direction of N vanishes identically.
Moreover, if M n is noncompact, hV, Vi is constant on Mn and the Ricci curvature of
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Mn is also nonnegative, then x(Mn) is contained in a leaf of the distribution of vector
fields orthogonal to V .

In Section 5, concerned with the case of ther -th mean curvatures, when the am-
bient spacetime is either a stationary spacetime or a timelike geodesically complete
conformally stationary spacetime, we obtain a lower estimate of the index of relative
nullity of complete noncompact spacelike hypersurfaces having two consecutiver -th
curvatures which do not change sign. For instance, we get thefollowing extension of
Theorem 6.2 of [28] (cf. Theorem 5.3):

Let NMnC1
c be a timelike geodesically complete conformally stationary spacetime,

with constant sectional curvature c and endowed with a closed conformal timelike vec-
tor field V . Let xW Mn

!

NMnC1
c be a complete, noncompact spacelike hypersurface

with bounded second fundamental form A and whose r-th mean curvature Hr does not
change sign and such that the(r C 1)-th mean curvature HrC1 is bounded, for some
r 2 {1, : : : , n� 1}. If jV>

j is Lebesgue integrable on Mn and the conformal factor 
of V satisfies

1

jV j

� 

�t
¤ c,

where t2 R denotes the real parameter of the flow of� D V=jV j, then the hypersurface
Mn is (r � 1)-maximal. Moreover, if the (r C 1)-th mean curvature HrC1 also does not
change sign, then the index of minimum relative nullity�0 of Mn is at least n� (r �1).

As a consequence of such previous result, we establish a sortof extension of The-
orem 1.2 of [18]. More precisely, we obtain the following (cf.Corollary 5.6):

Let xW Mn
! H

nC1
1 be a complete spacelike hypersurface with bounded second

fundamental form, which lies in the chronological future(past) of an equator ofHnC1
1

determined by an unit timelike vector a2 RnC2
2 . Suppose that, for some1� r � n� 1,

Hr and HrC1 have equal(different) signs and that both of them do not change sign on
Mn. If ja>j is Lebesgue integrable on Mn, then the index of minimum relative nullity
�0 of Mn is at least n� (r � 1).

2. Preliminaries

Let NMnC1 be a (n C 1)-dimensional (n � 2) manifold with a Lorentzian metric
tensorh , i and Levi-Civita connectionNr. We denote byX( NM) the set of vector fields
of classC1 on NMnC1 and byC1( NM) the ring of real functions of classC1 on NMnC1.
We recall that a vector fieldV on NMnC1 is saidconformal if

LV h , i D 2 h , i

for some function 2 C1( NM), whereL stands for the Lie derivative of the Lorentzian
metric of NMnC1; the function is called theconformal factorof V . A Lorentz manifold
NMnC1 endowed with a globally defined conformal timelike vector field is saidconformally

stationary spacetime.
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SinceLV (X) D [V, X] for all X 2 X( NM), where [ ] denotes the Lie bracket, the
tensorial character ofLV shows thatV 2 X( NM) is conformal if, and only if,

(2.1) h

N

rXV, Yi C hX, NrYVi D 2 hX, Yi,

for all X, Y 2 X( NM). In particular,V is Killing if, and only if,  � 0. Moreover, from
equation (2.1) we easily verify that

(2.2)  D

1

nC 1
div

NM V .

From now on, letx W Mn
!

NMnC1 be a complete noncompact spacelike hyper-
surface, namely, an isometric immersion from a complete, noncompact, connected,n-
dimensional Riemannian manifoldMn into NMnC1. In this setting, letr denote the
Levi-Civita connection ofMn. As NMnC1 is time-orientable by the timelike vector field
V and x W Mn

!

NMnC1 is a spacelike hypersurface, thenMn is orientable and one can
choose a globally defined unit normal vector fieldN on Mn having the same time-
orientation of NMnC1, that is,

hV, Ni < 0.

Such N is said the future-pointing Gauss mapof Mn. If we let A denote the
Weingarten operator ofx with respect toN, then A restricts to a self-adjoint linear
map Ap W TpM ! TpM at eachp 2 Mn. Next theGauss formulafor Mn is given by

(2.3) N

rXY D rXY � hAX, YiN

and theWeingarten formulafor Mn is

(2.4) AX D � NrX N,

for any X, Y 2 X(M).
For 1� r � n, let Sr (p) denote ther -th elementary symmetric functionon the

eigenvalues ofAp, so that one getsn smooth functionsSr W Mn
! R for which

det(t Id � A) D
n
X

rD0

(�1)r Sr t
n�r ,

whereS0D 1 by definition. For fixedp 2 Mn, the spectral theorem allows us to choose
on TpM an orthonormal basis{E1, : : : , En} of eigenvectors ofAp, with corresponding
eigenvalues�1, : : : , �n, respectively. One thus immediately sees that

Sr D �r (�1, : : : , �n),



1032 H.F.DE L IMA AND M.A.L. V ELÁSQUEZ

where�r 2 R[X1, : : : , Xn] is the r -th elementary symmetric polynomialon the indeter-
minatesX1, : : : , Xn.

For 1� r � n, one defines ther -th mean curvature Hr of x by

(2.5)

�

n

r

�

Hr D (�1)r Sr D �r (��1, : : : , ��n).

In particular, whenr D 1,

(2.6) H1 D �
1

n

n
X

iD1

�i D �
1

n
tr(A) D H

is the mean curvature ofMn, which is the main extrinsic curvature of the hypersurface.

REMARK 2.1. The choice of the sign (�1)r in our definition of Hr is motivated
by the fact that in that case the mean curvature vector is given by H D H N. Therefore,
H (p) > 0 at a pointp 2 Mn if, and only if, H(p) is in the time-orientation asN(p),
and hence asV(p).

When r D 2, H2 defines a geometric quantity which is related to the (intrinsic)
scalar curvatureS of the hypersurfaceMn. For instance, when the ambient spacetime
has constant sectional curvaturec, we obtain that

(2.7) SD n(n� 1)(c� H2).

Moreover, a relationship between the squared norm of the second fundamental formA
of the spacelike hypersurfaceMn and their curvaturesH and H2 is given by

(2.8) jAj2 D n2H2
� n(n� 1)H2.

One also let ther -th Newton transformation Pr on Mn be given by settingP0D Id
and, for 1� r � n, via the recurrence relation

(2.9) Pr D (�1)r Sr IdC APr�1.

A trivial induction shows that

Pr D (�1)r {Sr Id � Sr�1AC Sr�2A2
�: : :C(�1)r Ar },

so that Cayley–Hamilton theorem givesPn D 0. Moreover, sincePr is a polynomial
in A for every 1� r � n, it is also self-adjoint and commutes withA. Therefore, all
bases ofTpM diagonalizingA at p 2 Mn also diagonalize any transformationPr at p.



ON THE TOTALLY GEODESIC SPACELIKE HYPERSURFACES 1033

If {E1, : : : , En} is such a basis andAi denotes the restriction ofA to hEi i
?

� TpM,
it is easy to see that

det(t Id � Ai ) D (�1)kSk(Ai )t
n�1�k,

where

Sk(Ai ) D
X

1� j1<:::< jk�n
j1,:::, jk¤i

� j1 � � � � jk .

With the above notations, it is also immediate to check that

(2.10) Pr Ei D (�1)r Sr (Ai )Ei .

It follows from (2.10) that for eachr 2 {0, : : : , n� 1},

tr(Pr ) D (�1)r (n� r )Sr D br Hr ,(2.11)

tr(APr ) D (�1)r (r C 1)SrC1 D �br HrC1,(2.12)

and

(2.13)

tr
�

A2Pr
�

D (�1)r (S1SrC1 � (r C 2)SrC2)

D

�

n

r C 1

�

(nH HrC1 � (n� r � 1)HrC2),

where

br D (n� r )

�

n

r

�

D (r C 1)

�

n

r C 1

�

.

The divergenceof Pr is defined by

(2.14) divM Pr D tr(rPr ) D
n
X

iD1

(rEi Pr )(Ei ),

where{E1, : : : , En} is a (local) orthonormal frame onMn.
From Lemma 3.1 of [6], we have a suitable formula for the divergence of the

Newton transformations. In what follows, as in [31], the curvature tensorNR of the
ambient spacetimeNMnC1 is given by

NR(X, Y)Z D Nr[X,Y] Z � [ NrX, NrY]Z,

for all X, Y, Z 2 X( NM).
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Proposition 2.2. The divergence of the Newton transformations are given by

(2.15) hdivM Pr , Xi D
r
X

jD1

n
X

iD1

h

NR(N, Pr� j Ei )Ei , A j�1Xi,

for all X 2 X(M).

Moreover, from the computations of Section 4 of [6] we get

Proposition 2.3. Let NMnC1 be a conformally stationary spacetime endowed with
a conformal timelike vector field V and let xW Mn

!

NMnC1 be a spacelike hyper-
surface. Then,

divM Pr V>

D hdivM Pr , V>

i C br { Hr C hV, NiHrC1},

where V> D V C hV, NiN is the projection of V onto Mn, br D (r C 1)
� n

rC1

�

and  
is the conformal factor of V .

3. Characterizations of totally geodesic hypersurfaces

Let NMnC1 be a conformally stationary spacetime withn � 2. If NMnC1 is also an
Einstein manifold, that is, if there exist a constant� 2 R such that the Ricci tensor
Ric

NM of NMnC1 satisfies

(3.1) Ric
NM (X, Y) D �hX, Yi,

for any X, Y 2 X( NM), then we say that NMnC1 is a conformally stationary Einstein
spacetime. In this setting, we have the following

Lemma 3.1. Let NMnC1 be a conformally stationary Einstein spacetime endowed
with a conformal timelike vector field V and let xW Mn

!

NMnC1 be a spacelike hyper-
surface. Then,

(3.2) divM P1V>

D n(n� 1){ H C hV, NiH2},

where is the conformal factor of V . If, in addition, NMnC1
c has constant sectional

curvature c, then

(3.3) divM Pr V>

D br { Hr C hV, NiHrC1},

where br D (r C 1)
� n

rC1

�

.
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Proof. Since NMnC1 is an Einstein manifold, from (3.1) and Proposition 2.2
we have

(3.4)
hdivM P1, V>

i D

n
X

iD1

h

NR(N, Ei )Ei , V>

i

D �Ric
NM (N, V>) D ��hN, V>

i D 0,

where{E1, : : : , En} is a (local) orthonormal frame onMn. Hence, from equation (3.4)
and Proposition 2.3 we obtain equation (3.2).

Now, suppose thatNMnC1
c has constant sectional curvaturec. Thus, from Propos-

ition 2.2, we have

(3.5)
hdivM Pr , V>

i D c
r
X

jD1

n
X

iD1

{hN, Ei ihPr� j Ei , A j�1V>

i

� hPr� j Ei , Ei ihN, A j�1V>

i} D 0,

where{E1, : : : , En} is a (local) orthonormal frame onMn.
Therefore, from (3.5) and Proposition 2.3 we conclude the proof of equation (3.3).

In the paper [38], Yau established the following version of Stokes’ theorem on an
n-dimensional, complete noncompact Riemannian manifoldMn: if ! 2 �n�1(M) is an
integrable (n� 1)-differential form on Mn, then there exists a sequence Bi of domains
on Mn such that Bi � BiC1, Mn

D

S

i�1 Bi and

lim
i!C1

Z

Bi

d! D 0.

Now, suppose thatMn is oriented by the volume elementd M. If ! D �Xd M is the
contraction ofd M in the direction of a smooth vector fieldX on Mn, then Caminha
[20] obtained a suitable consequence of Yau’s result, whichis described below. In what
follows, L1(M) stands for the space of Lebesgue integrable functions onMn.

Lemma 3.2. Let X be a smooth vector field on the n-dimensional complete, non-
compact, oriented Riemannian manifold Mn, such thatdivM X does not change sign on
Mn. If jXj 2 L1(M), then divM X D 0.

We recall that a spacelike hypersurface is saidmaximal if its mean curvature van-
ishes identically. Our first result establishes sufficient conditions to guarantee that a
complete maximal spacelike hypersurface is, in fact, totally geodesic.
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Theorem 3.3. Let NMnC1 be a conformally stationary spacetime endowed with a
conformal timelike vector field V and let xW Mn

!

NMnC1 be a complete, noncompact
spacelike hypersurface. Suppose that one of the following conditions is satisfied:
(a) H � 0 and div

NM V � 0 on Mn;
(b) H � 0 and div

NM V � 0 on Mn.
If jV>

j 2 L1(M), then Mn is maximal. Moreover, if NMnC1 is an Einstein spacetime
and H2 is bounded from below on Mn, then Mn is totally geodesic.

Proof. Consideringr D 0 in the Proposition 2.3 we have

(3.6) divM V>

D n C nHhN, Vi.

From equation (2.2) we see that div
NM V and have the same sign onMn. More-

over, sinceN and V has the same time-orientation, then from either item (a) or (b)
jointly with equation (3.6) we obtain that divM V> does not change sign onMn. Since
jV>

j 2 L1(M), Lemma 3.2 gives divM V>

D 0. Therefore, D 0 and H vanishes
identically on Mn.

Now, from equation (2.8) we havejAj2 D �n(n � 1)H2, which implies H2 � 0.
Thus, assuming thatH2 is bounded from below onMn and the ambient spaceNMnC1

is Einstein, we have thatjAj is bounded onMn and, from Lemma 3.1, we get

(3.7) divM P1V>

D n(n� 1)hV, NiH2.

Then, from (2.9) we have thatjP1j is also bounded. Therefore,jP1V>

j 2 L1(M), be-
causejV>

j 2 L1(M). Next, from (3.7) we obtain that divM P1V> does not change
sign on Mn. By applying once more Lemma 3.2 we conclude that divM P1V>

D 0.
Therefore,H2 D 0 on Mn and, hence,Mn is totally geodesic.

When V is a Killing vector field (namely, when � 0), Theorem 3.3 reads as
follows

Corollary 3.4. Let NMnC1 be a stationary spacetime endowed with a Killing time-
like vector field V and let xW Mn

!

NMnC1 be a complete, noncompact spacelike hyper-
surface whose mean curvature H does not change sign. IfjV>

j 2 L1(M) then Mn is
maximal. Moreover, if NMnC1 is Einstein and H2 is bounded from below on Mn, then
Mn is totally geodesic.

Let LnC2 denote the (n C 2)-dimensional Lorentz–Minkowski space (n � 2), that
is, the real vector spaceRnC2, endowed with the Lorentz metric

hv, wi D
nC1
X

iD1

viwi � vnC2wnC2,
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for all v, w 2 RnC2. We define the (n C 1)-dimensional de Sitter spaceSnC1
1 as the

following hyperquadric ofLnC2

S

nC1
1 D {p 2 LnC2

W hp, pi D 1}.

From the above definition it is easy to show that the metric induced fromh , i turns
S

nC1
1 into a Lorentz space form of constant sectional curvature 1.In SnC1

1 , from Corol-
lary 3.4, we have the following nonexistence result concerning to complete noncompact
spacelike hypersurfaces.

Corollary 3.5. There exists no complete noncompact spacelike hypersurface
x W Mn

! S

nC1
1 in (nC 1)-dimensional de Sitter space, whose mean curvature H does

not change sign, H2 is bounded from below and such that, for some pair of orthog-
onal timelike vectors u, v 2 LnC2, ju>j, jv>j 2 L1(M) and jhu, � ij, jhv, � ij are bounded
on Mn.

Proof. Suppose, by the sake of contradiction, that there exists such a hypersurface.
Following the ideas of [27], for any pair of orthogonal timelike vectorsu, v 2 LnC2, we
have thatW(x) D hu, xiv � hv, xiu is a timelike Killing vector field inSnC1

1 . Since
jhu, � ij, jhv, � ij are bounded onMn and ju>j, jv>j 2 L1(M), then jW>

j 2 L1(M).
From Corollary 3.4,Mn is totally geodesic inSnC1

1 . Next, from Theorem 5.1 of [1] we
obtain thatMn is isometric ton-dimensional Euclidean sphereSn, which contradicts the
non-compactness ofMn.

We recall that the anti-de Sitter spacetimeHnC1
1 is the hyperquadric

H

nC1
1 D {p 2 RnC2

2 W hp, pi D �1},

in the indefinite index two flat spaceRnC2
2 . It is also a standard fact thatHnC1

1 is the
Lorentz space form of constant sectional curvature�1. The following result inHnC1

1

is a sort of extension of Theorems 1.1 and 1.2 of [18].

Corollary 3.6. Let xW Mn
! H

nC1
1 be a complete, noncompact spacelike hyper-

surface, whose mean curvature H does not change sign and such that H2 is bounded
from below. If, for some pair of orthogonal timelike vectors u, v 2 RnC2

2 , ju>j, jv>j 2
L1(M) and jhu, � ij, jhv, � ij are bounded on Mn, then Mn is isometric to the n-
dimensional hyperbolic spaceHn.

Proof. Following once more the ideas of Example 1 of [27], since u, v 2 RnC2
2

are orthogonal timelike vectors, we observe thatW(x) D hu, xiv � hv, xiu is a time-
like Killing vector field in HnC1

1 . Moreover, sincejhu, � ij, jhv, � ij are bounded and
ju>j, jv>j 2 L1(M), we havejW>

j 2 L1(M). Thus, from Corollary 3.4,Mn is totally
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geodesic inHnC1
1 . Therefore, from Theorem 5.1 of [1] we conclude thatMn is iso-

metric toHn.

An important particular case of a conformal vector fieldV is that in which

(3.8) N

rYV D  Y

for all Y 2 X( NM), where is the conformal factor ofV . In this case we say that
V is closed, in the sense that its dual 1-form is closed. In this setting,a closed con-
formal vector fieldV is said homotheticif  is constant, and it is saidparallel if  
vanishes identically.

For any open setU � NM, the distribution onU of vector fields orthogonal to V
is defined by

V?(p) D {w 2 Tp NM I hV(p), wi D 0}, p 2 U .

We note thatV? is integrable; in fact, ifX, Y 2 V?, then from equation (3.8) we
have that

h[X, Y], Vi D h NrXY � NrY X, Vi D �hY, NrXVi C hX, NrYVi D 0.

Therefore, Frobenius’ theorem guarantees that the collection of all connected integral
manifolds of V?, called leaves, corresponds to aspacelike foliationof NMnC1.

Let 6n be a leaf of V? furnished with the induced metric. From equation (3.8)
we get

(3.9) N

rhV, Vi D 2 V .

Consequently,hV, Vi is constant on connected leaves ofV?. Moreover, computing
covariant derivatives in (3.9), we have

(Hess
NMhV, Vi)(X, Y) D 2X( )hV, Yi C 2 2

hX, Yi.

However, since both Hess
NM and the metric are symmetric tensors, we get

X( )hV, Yi D Y( )hV, Xi,

for all X, Y 2 X( NM). Now, takingY D V we arrive at

(3.10) N

r D

V( )

hV, Vi
V D ��( )�,

where� D V=jV j and jV j D
p

�hV, Vi > 0. Hence, is also constant on connected
leaves of V?. Furthermore, with a straightforward computation, we verify that the
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shape operatorA
6

of a leaf6n
2 V? with respect� is given by

(3.11) A
6

(X) D � NrX� D �
 

jV j
X,

for any X 2 X(6) and, hence,6n is an umbilical hypersurface with constant
mean curvature

(3.12) H D
 

jV j
.

REMARK 3.7. In order to conclude that spacelike hypersurfaces are leaves ofV?

and taking into account equation (3.12), we consider from now on that the mean curva-
ture of spacelike hypersurfaces studied and the conformal factor have the same sign.

Proposition 3.8. Let NMnC1 be a conformally stationary spacetime endowed with
a closed conformal timelike vector field V, whose conformal factor is , and let
x W Mn

!

NMnC1 be a spacelike hypersurface. If W is another closed conformal time-
like vector field on NMnC1, with conformal factor W, and f W Mn

! R is given by
f D hV, Wi, then

(3.13) r f D  W>

C  WV>

and

(3.14) 1 f D W>( )C V>( W)C nH{ hW, Ni C  WhV, Ni} C 2n  W.

Proof. If Y 2 X(M) then from (3.8) we have

hr f, Yi D Y( f ) D h NrYV, Wi C hV, NrYWi

D  hY, W>

i C  WhV
>, Yi D h W>

C  WV>, Yi.

On the other hand, consideringr D 0 in the Proposition 2.3,

divM V>

D n C nHhN, Vi.

Thus, from (3.13) we obtain

1 f D divM r f D divM ( W>

C  WV>)

D  divM W>

C hr , W>

i C  W divM V>

C hr W, V>

i

D  {n W C nHhN, Wi} CW>( )C  W{n C nHhN, Vi} C V>( W)

D W>( )C V>( W)C 2n  W C nH{ hN, Wi C  WhN, Vi}.
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Now, we are in position to establish the following characterization of totally geo-
desic spacelike hypersurfaces, which can be regarded as a sort of extension of the The-
orem 4.1 of [17].

Theorem 3.9. Let NMnC1 be a conformally stationary spacetime endowed with a
parallel timelike vector field V and a homothetic nonparallel timelike vector field W,
and xW Mn

!

NMnC1 be a complete noncompact spacelike hypersurface whose mean
curvature H does not change sign on Mn. If jV>

j 2 L1(M) then Mn is maximal.
Moreover, if NMnC1 is Einstein and H2 is bounded from below, then Mn is
totally geodesic.

Proof. SinceV is parallel andW is homothetic and nonparallel, it follows from
(3.13) and (3.14) that

r f D  WV>

and

1 f D nH WhV, Ni,

with  W being a nonzero constant. Therefore, the assumptionjV>

j 2 L1(M) gives
jr f j 2 L1(M), and the assumption onH , together with the fact thathV, Ni < 0 on
M, assures that1 f is either nonnegative or nonpositive onMn. Therefore, Lemma 3.2
implies1 f D 0 on Mn and, hence,H vanishes identically onMn.

Finally, to prove the second part of the theorem, it is enoughto follow the same
steps of the end of the proof of Theorem 3.3.

4. Applications to GRW spacetimes

According to the terminology introduced in [7], a particular class of conformally sta-
tionary spacetimes is that ofgeneralized Robertson–Walker(GRW) spacetimes, namely,
warped productsNMnC1

D �I �
�

Fn, where I � R is an interval with the metric�dt2,
Fn is ann-dimensional Riemannian manifold and� W I ! R is positive and smooth. In
particular, when the Riemannian fiberFn has constant sectional curvature, then�I �

�

Fn

is classically called aRobertson–Walker(RW) spacetime.
For such spacetimes, let�I W NMnC1

! I denote the canonical projection ontoI .
Then the vector field

(4.1) V D (� Æ �I )�t

is a conformal, timelike and closed, with conformal factor D �

0, where the prime
denotes differentiation with respect tot . Moreover, fort0 2 I , the slice Mn

t0 D {t0}� Fn

is totally umbilical, withr -th mean curvature equal to (�0(t0)=�(t0))r with respect to�t

(cf. [7]; see also [30] and [6]).
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If NMnC1
D �I �

�

Fn is a GRW andxW Mn
!

NMnC1 is a complete spacelike hyper-
surface of NMnC1, such that� Æ �I is bounded onMn, then�F jM W Mn

! Fn is neces-
sarily a covering map (cf. [7]). In particular, ifMn is closed thenFn is automatically
closed. Moreover, from Proposition 7.42 of [31] (see also Corollary 9.107 of [12]), we
see that a GRW as above has constant sectional curvaturec if, and only if, its fiber
Fn has constant sectional curvaturek (that is,�I �

�

Fn is in fact a RW spacetime)
and its warping function� satisfies the following ODE

(4.2)
�

00

�

D cD
(�0)2

C k

�

2
.

Now, in a GRW space, leth denote the (vertical)height functionnaturally attached
to the spacelike hypersurfaceMn, namely,h D (�I )jM . Let Nr andr denote gradients
with respect to the metrics of�I �

�

Fn and Mn, respectively. A simple computation
shows that the gradient of�I on �I �

�

Fn is given by

N

r�I D �h Nr�I , �t i�t D ��t ,

so that the gradient ofh on Mn is

(4.3) rh D ( Nr�I )
>

D ��

>

t ,

where�>t D �t C hN, �t iN is the tangential component of�t on Mn.
From Corollary 3.4 we obtain the following

Corollary 4.1. Let NMnC1
D �R � Fn be a stationary spacetime, where Fn is a

complete noncompact Riemannian manifold, and let xW Mn
!

NMnC1 be a complete non-
compact spacelike hypersurface whose mean curvature H doesnot change sign. Ifjrhj 2
L1(M) then Mn is maximal. Moreover, if NMnC1 is Einstein and H2 is bounded from be-
low on Mn, then Mn is totally geodesic. In particular, when Fn is the Euclidean space
R

n then Mn is a spacelike hyperplane in Lorentz–Minkowski spacetimeL

nC1.

Proof. SinceV D �t is a timelike Killing vector field in NMnC1, the first part of
the result follows directly from Corollary 3.4. In particular, whenFn

D R

n, from the
classification of the totally geodesic hypersurfaces ofL

nC1 (see, for example, [31] or
[1]), we conclude thatMn is a spacelike hyperplane ofLnC1.

Let NMnC1 be a conformally stationary spacetime endowed with a closedconformal
timelike vector fieldV , whose conformal factor is . If p 2 NMnC1 and6p is the leaf
of V? containing p, then we can find a neighborhoodUp of p on 6n

p and an open
interval I � R containing 0 such that the flowF (t, � ) of � D V=jV j is defined in
Up for any t 2 I . Moreover, when NMnC1 is timelike geodesically complete, that is,
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when all timelike geodesic ofNMnC1 is defined for all values of the parametert 2 R,
S. Montiel [30] proved that the application

(4.4)
' W R �6

n
p!

NMnC1

(t, q) 7! F (t, q)

is a global parametrization ofNMnC1, such that NMnC1 is isometric to the GRW

�R �

�

6

n
p,

where

�(t) D
p

�hV(F (t, q)), V(F (t, q))i,

t 2 R, and q 2 6n
p is an arbitrary point.

In order to prove our next result which extends Theorem 4.1 of[17], we will need
the following classical result due to S.T. Yau [38].

Lemma 4.2. Every complete noncompact Riemannian manifold with nonnegative
Ricci curvature has infinite volume.

Theorem 4.3. Let NMnC1 be a timelike geodesically complete conformally station-
ary spacetime, with nonnegative Ricci curvature and endowed with a closed conformal
timelike vector field V . Let xW Mn

!

NMnC1 be a connected complete spacelike hyper-
surface with mean curvature H bounded and H2 bounded from below. IfjV>

j 2 L1(M)
and the conformal factor of V satisfies

(4.5)
1

jV j

� 

�t
� nH2,

where t2 R denotes the real parameter of the flow of� D V=jV j, then Mn is totally
geodesic and the Ricci curvature ofNMnC1 in the direction of N vanishes identically.
Moreover, if M n is noncompact, jV j is constant on Mn and the Ricci curvature of Mn

is also nonnegative, then x(Mn) is contained in a leaf of V>.

Proof. Initially we observe that, sinceNMnC1 is timelike geodesically complete
conformally, we can consider along it the global parametrization (4.4).

If fV W Mn
! R is given by fV D hV, Ni then fV is negative onMn. For all

Y 2 X(M) we have

hr fV , Yi D Y( fV ) D YhV, Ni

D h

N

rYV, Ni C hV, NrY Ni

D  hY, Ni � hV>, A(Y)i D h�A(V>), Yi.
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Thus

(4.6) r fV D �A(V>).

On the other hand, from Proposition 3.1 of [11],

(4.7) 1 fV D nhrH, Vi C {Ric
NM (N, N)C jAj2} fV C nH � nN( ).

From (3.10) we observe that

(4.8) N( ) D hN, Nr i D ��( )hN, �i D �
1

jV j

� 

�t
fV ,

where t is the parameter of the flow of� D V=jV j. Thus, in (4.7) we have

(4.9) 1 fV D nhrH, Vi C {Ric
NM (N, N)C jAj2} fV C nH C

n

jV j

� 

�t
fV .

From hypothesis (4.5),

(4.10) 1 fV � nhrH, Vi C {Ric
NM (N, N)C jAj2} fV C nH C n2H2 fV .

Now, let us consider onMn the tangent vector field

X D r fV � nHV>.

Since H is bounded andH2 is bounded below then, from (2.8), we obtain that the
norm of the Weingarten operatorA is bounded. Thus, from (4.6),

jXj � {jAj C njH j}jV>

j 2 L1(M),

becausejV>

j 2 L1(M).
Moreover, from the Proposition 2.3, whenr D 0, and (4.10) we have

(4.11)

divM X D 1 fV � nhrH, Vi � nH divM V>

� nhrH, Vi C {Ric
NM (N, N)C jAj2} fV

C nH C n2H2 fV � nhrH, Vi � n2
 H � n2H2 fV

D {Ric
NM (N, N)C jAj2} fV � n(n� 1)H � 0,

where the last inequality we used thatfV < 0, Ric
NM � 0 and H and has the same

sign over Mn (see Remark 3.7). Thus, Lemma 3.2 gives divM X D 0. Therefore,
Ric

NM (N, N) D 0 and Mn is totally geodesic.
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Now, suppose thatMn is noncompact,jV j is constant onMn and the Ricci curva-
ture of Mn is also nonnegative. SinceA D 0 andr fV D �A(V>) then fV D hV, Ni
is constant and nonzero onMn. Since jV j also is constant onMn and

(4.12) jV>

j

2
D jV C hV, NiNj2 D �jV j2C hV, Ni2,

so thatjV>

j is constant onMn. Therefore,

C1 >

Z

M
jV>

j d M D jV>

jVol(M).

But sinceMn is noncompact and has nonnegative Ricci curvature, the Lemma 4.2 gives
Vol(M)DC1, and hence the only possibility isjV>

j D 0. Them, from (4.12) we have

jhV, Nij D jV j.

Therefore, the inverse Cauchy–Schwarz inequality gives that V is parallel to N and,
hence,x(Mn) is contained in a leaf ofV?.

Let NMnC1
D �I �

�

Fn be a GRW spacetime. According the terminology estab-
lished in [2], we say thatMn is bounded away from the infinity ofNMnC1 when it lies
between two slices ofNMnC1. From Theorem 4.3, we have the following result.

Corollary 4.4. Let NMnC1
D �I �

�

Fn be a timelike geodesically complete GRW

spacetime with nonnegative Ricci curvature and xW Mn
!

NMnC1 be a connected com-
plete spacelike hypersurface bounded away from the infinityof NMnC1, with mean curva-
ture H bounded and H2 bounded from below. If the height function h satisfiesjrhj 2
L1(M) and

�

00

�

� nH2,

then Mn is totally geodesic and the Ricci curvature ofNMnC1 in the direction of N
vanishes identically. Moreover, if M n is noncompact, � is constant on Mn and the
Ricci curvature of Mn is also nonnegative, then x(Mn) � {t0} � Fn, for some t0 2 I .

5. Estimating the index of relative nullity

Let NMnC1
c be a conformally stationary spacetime with constant sectional curvature

c and endowed with a conformal timelike vector fieldV , and consider a complete
spacelike hypersurfacex W Mn

!

NMnC1
c , oriented by a vector fieldN in the same tem-

poral direction thatV . Let A be the second fundamental form ofMn with respect to
N. According to [23], for p 2 Mn, we define thespace of relative nullity1(p) of Mn

at p by

1(p) D {v 2 TpM I v 2 ker(Ap)},
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where ker(Ap) denotes the kernel ofAp. The index of relative nullity�(p) of Mn at
p is the dimension of1(p), that is,

�(p) D dim(1(p)),

and theindex of minimum relative nullity�0 of Mn is defined by

�0 D min
p2M

�(p).

In order to state our next result, we recall that a spacelike hypersurfaceMn is said
r -maximal if HrC1 vanishes identically onMn.

Theorem 5.1. Let NMnC1
c be a stationary spacetime with constant sectional curva-

ture c, endowed with a Killing timelike vector field V . Let xW Mn
!

NMnC1
c be a

complete noncompact spacelike hypersurface with bounded second fundamental form
A and such that the(r C 1)-th mean curvature HrC1 does not change sign, for some
r 2 {0, : : : , n� 1}.
(a) If jV>

j 2 L1(M) then Mn is r-maximal. Moreover, if HrC2 also does not change
sign, for some r2 {0, : : : , n� 2}, then the index of minimum relative nullity�0 of Mn

is at least n� r .
(b) When NMnC1

c is the Lorentz–Minkowski spaceLnC1, if Hr does not vanish on Mn,
for some r2 {0, : : : , n � 2}, then through every point of Mn there passes an(n � r )-
hyperplane ofLnC1 totally contained in Mn.

Proof. (a) SinceV is a Killing vector field, then D 0. Therefore, from
Lemma 3.1 we have

(5.1) divM Pr V>

D br hV, NiHrC1.

Since jAj is bounded, from (2.9) we conclude thatjPr j is also bounded, for any 1�
r � n. Thus jPr V>

j 2 L1(M), becausejV>

j 2 L1(M). Moreover, sinceN and V have
the same time-orientation andHrC1 does not change sign onMn then from (5.1) we
obtain that divM Pr V> does not change sign. Thus, Lemma 3.2 gives divM Pr V>

D 0.
Therefore,HrC1 D 0 on Mn.

Replacingr by r C 1 in equation (5.1) and following the same steps considered
above, we obtain thatHrC2D 0 on Mn. Therefore, sinceHrC1D HrC2D 0, Proposition
1 of [19] assures thatH j D 0 for all j � r C 1 and, hence,�0 � n� r .

(b) Now, suppose thatNMnC1
c is the Lorentz–Minkowski spacetimeLnC1. By The-

orem 5.3 of [23] (see also [25]), since we are supposing thatHr does not vanish on
Mn, the distributionp 7! 1(p) of minimal relative nullity of Mn is smooth and inte-
grable with complete leaves, totally geodesic inMn and inLnC1. Therefore, the result
follows from the characterization of complete totally geodesic submanifolds ofLnC1 as
spacelike hyperplanes of suitable dimension.
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From the proof of the Theorem 5.1, we observe that we can change the Killing
vector field V by a conformal field, but in this caseMn has to be (r � 1)-maximal.
Thus, we have the following

Corollary 5.2. Let NMnC1
c be a conformally stationary spacetime with constant sec-

tional curvature c and endowed with a conformal timelike vector field V . Let xW Mn
!

NMnC1
c be a (r � 1)-maximal complete, noncompact spacelike hypersurface with bounded

second fundamental form A and such that the(r C 1)-th and (r C 2)-th mean curvatures
HrC1 and HrC2 do not change sign, for some r2 {0,: : : ,n�2}. If jV>

j 2 L1(M) then the
index of minimum relative nullity�0 of Mn is at least n� r . In particular, when NMnC1

c is
the Lorentz–Minkowski spacetimeLnC1, if Hr does not vanish on Mn then through every
point of Mn there passes an(n� r )-hyperplane ofLnC1 totally contained in Mn.

On the other hand, when the ambient space is a timelike geodesically complete
conformally stationary spacetime endowed with a closed conformal vector field, we
have the following estimate of the index of relative nullityof a complete spacelike
hypersurface which extends Theorem 6.2 of [28].

Theorem 5.3. Let NMnC1
c be a timelike geodesically complete conformally station-

ary spacetime, with constant sectional curvature c and endowed with a closed conformal
timelike vector field V . Let xW Mn

!

NMnC1
c be a complete, noncompact spacelike hyper-

surface with bounded second fundamental form A and whose r-th mean curvature Hr
does not change sign and the(r C 1)-th mean curvature HrC1 is bounded, for some
r 2 {1, : : : , n� 1}. If jV>

j 2 L1(M) and the conformal factor of V satisfies

(5.2)
1

jV j

� 

�t
¤ c,

where t2 R denotes the real parameter of the flow of� D V=jV j, then the hypersurface
Mn is (r � 1)-maximal. Moreover, if the (r C 1)-th mean curvature HrC1 also does not
change sign, then the index of minimum relative nullity�0 of Mn is at least n� (r � 1).

Proof. Since NMnC1
c is timelike geodesically complete, we can consider the global

parametrization (4.4). So, if we consider the functionfV W Mn
! R given by fV D

hV, Ni, then fV is negative onMn and from (4.6),r fV D �A(V>). Moreover, since
divM Pr D 0 by Proposition 2.2 and the constant sectional curvature condition, from
Codazzi equation we obtain

divM Prr fV D
X

i

hrEir fV , Pr Ei i

D �

X

i

hrEi (AV>), Pr Ei i
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D �

X

i

h(rEi A)V>, Pr Ei i �
X

i

hA(rEi V
>), Pr Ei i

D �

X

i

h(rV> A)Ei , Pr Ei i �
X

i

hrEi V
>, APr Ei i

D �

X

i

h(PrrV> A)Ei , Ei i �
X

i

hrEi V
>, APr Ei i

D � tr(PrrV> A) �
X

i

hrEi V
>, APr Ei i,

where{E1, : : : , En} is a (local) orthonormal frame onMn. Thus, by using LemmaA
of [33], we get

divM Prr fV D (�1)rC1V>(SrC1) �
X

i

h

N

rEi ( fV N), APr Ei i �
X

i

h

N

rEi V, APr Ei i

D (�1)rC1
hV>, rSrC1i C

X

i

hAEi , APr Ei i fV �
X

i

h

N

rEi V, APr Ei i

D

�

n

r C 1

�

hV, rHrC1i C tr(A2Pr ) fV � tr(Pr A( NrV)>).

On the other hand, from equation (4) of [10], we have

tr(Pr A( NrV)>) D tr(APr ( NrV)>)

D c tr(Pr ) fV C tr(APr ) C tr(Pr )N( ).

Then, from equations (2.11), (2.12) and (2.13), we obtain

divM Prr fV D

��

n

r C 1

�

(nH HrC1 � (n� r � 1)HrC2) � c(r C 1)

�

n

r C 1

�

Hr

�

fV

� (r C 1)

�

n

r C 1

�

Hr N( )C (r C 1)

�

n

r C 1

�

HrC1 

C

�

n

r C 1

�

hV, rHrC1i.

Hence, taking into account equation (4.8), we get

(5.3)

divM Prr fV D

�

n

�

n

r C 1

�

H HrC1 � (n� r � 1)

�

n

r C 1

�

HrC2

� c(r C 1)

�

n

r C 1

�

Hr

�

fV C (r C 1)

�

n

r C 1

�

Hr

jV j

� 

�t
fV

C (r C 1)

�

n

r C 1

�

HrC1 C

�

n

r C 1

�

hV, rHrC1i.
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Consideringr D 0 in Proposition 2.3,

(5.4)
divM HrC1V>

D hrHrC1, Vi C HrC1 divM V>

D hrHrC1, Vi C n HrC1C nH HrC1 fV .

Hence, if we consider the fieldY D Prr fV �
� n
rC1

�

HrC1V>

2 X(M), from (5.3)
and (5.4) we get

(5.5)

divM Y D

�

�(n� r � 1)

�

n

r C 1

�

HrC2 � c(r C 1)

�

n

r C 1

�

Hr

�

fV

C (r C 1)

�

n

r C 1

�

Hr

jV j

� 

�t
fV � (n� r � 1)

�

n

r C 1

�

HrC1 .

On the other hand, from Lemma 3.1,

(5.6) divM PrC1V>

D (n� r � 1)

�

n

r C 1

�

 HrC1C (n� r � 1)

�

n

r C 1

�

HrC2 fV .

Now, let us consider onMn the tangent vector field

X D Y C PrC1V>.

SincejAj is bounded, from (2.9) we have thatjPr j is also bounded, for any 1� r � n.
Thus, from (4.6),

jXj � {jYj C jPrC1V>

j} �

�

jPr j jAj C

�

n

r C 1

�

jHrC1j C jPrC1j

�

jV>

j 2 L1(M),

becausejV>

j 2 L1(M) and HrC1 is bounded. Moreover, from (5.5) and (5.6),

divM X D (r C 1)

�

n

r C 1

��

1

jV j

� 

�t
� c

�

Hr fV .

Since Hr does not change sign onMn and (5.2) is valid, then divM X does not change
sign on Mn. Thus, Lemma 3.2 gives divM X D 0. Therefore,Hr D 0 on Mn.

Furthermore, ifHrC1 does not change sign, from the Lemma 3.1, we obtain that

divM Pr V>

D (n� r )

�

n

r

�

HrC1 fV

also does not change sign onMn. Here, we observe thatjPr V>

j � jPr j jV>

j 2 L1(M).
Over again, Lemma 3.2 gives divM Pr V>

D 0. This impliesHrC1 D 0.
Finally, sinceHr D HrC1 D 0, Proposition 1 of [19] assures us thatH j D 0 for all

j � r , so that�0 � n� (r � 1).
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Consideringr D 1 in Theorem 5.3, we have the following characterization of to-
tally geodesic spacelike hypersurfaces.

Corollary 5.4. Let NMnC1
c be a timelike geodesically complete conformally sta-

tionary spacetime, with constant sectional curvature c and endowed with a closed con-
formal timelike vector field V . Let xW Mn

!

NMnC1
c be a complete, noncompact space-

like hypersurface with bounded second fundamental form A and whose mean curvature
H does not change sign and such that H2 is bounded. IfjV>

j 2 L1(M) and the con-
formal factor  of V satisfies(1=jV j)� =�t ¤ c, where t2 R denotes the real par-
ameter of the flow of� D V=jV j, then Mn is maximal. Moreover, if H2 also does not
change sign, then Mn is totally geodesic.

We recall that, according to Example 4.2 of [30], fixed an unittimelike vector
a 2 LnC2,

(5.7) V(p) D a� hp, aip, p 2 SnC1
1

is a closed conformal timelike vector field inSnC1
1 which foliatesSnC1

1 by means of to-
tally umbilical round spheresM

�

D {p 2 SnC1
1 W hp, ai D � }, � 2 R. The level set given

by {p 2 SnC1
1 W hp, ai D 0} defines a round sphere of radius one which is a totally geo-

desic spacelike hypersurface inSnC1
1 . According to the terminology established in [5],

we will refer to that sphere as theequatorof SnC1
1 determined bya. This equator div-

ides SnC1
1 into two connected components, thechronological futurewhich is given by

{p 2 SnC1
1 W ha, pi < 0},

and thechronological past, given by

{p 2 SnC1
1 W ha, pi > 0}.

Taking into account the previous discussion, from the proofof Theorem 5.3 we
get the following

Corollary 5.5. Let xW Mn
! S

nC1
1 be a complete spacelike hypersurface with

bounded second fundamental form, which lies in the chronological future(past) of an
equator ofSnC1

1 determined by an unit timelike vector a2 LnC2. Suppose that, for
some1 � r � n � 1, Hr and HrC1 have different(equal) signs and that both of them
do not change sign on Mn. If ja>j 2 L1(M), then the index of minimum relative nullity
�0 of Mn is at least n� (r � 1).

Proof. From equation (5.6) applied to the vector fieldV , taking into account our
restrictions on the signs ofHr and HrC1 as well as the region ofSnC1

1 where Mn is
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supposed to be contained, we get that divM Pr V> does not change sign onMn. On the
other hand, from (5.7) we have thatjV>

j D ja>j 2 L1(M). Therefore, we can reason
as in the proof of Theorem 5.3 to conclude thatHr D HrC1 D 0 on Mn and, hence,
the index of minimum relative nullity�0 of Mn is at leastn� (r � 1).

For a fixed timelike unit vectora 2 RnC2
2 , we have that the closed conformal vector

field V given by

V(p) D aC ha, pip, p 2 HnC1
1 ,

is timelike on the open set consisting of the pointsp 2 HnC1
1 such thatha, pi2 < 1.

This open set has two connected components and the distribution onHnC1
1 orthogonal

to V provides a foliationF (V) in this spacetime by means of the totally umbilical
spacelike hypersurfacesM

�

D {p 2HnC1
1 W hp,ai D � }, �1< � < 1, which are isometric

to two copies of hyperbolic spacesHn with constant curvature�1=(1C � 2) (see [30],
Example 4.3). In this setting, since the level set given by{p 2 HnC1

1 W hp, ai D 0}

defines a totally geodesic spacelike hypersurface inH

nC1
1 which is isometric toHn, we

will refer to that level set as theequator of HnC1
1 determined bya. In a similar way

of the de Sitter space, thechronological futureof HnC1
1 determined bya is given by

{p 2 HnC1
1 W �1< ha, pi < 0},

and thechronological pastis given by

{p 2 HnC1
1 W 0< ha, pi < 1}.

We can reason as in the proof of Corollary 5.5 to get the following

Corollary 5.6. Let xW Mn
! H

nC1
1 be a complete spacelike hypersurface with

bounded second fundamental form, which lies in the chronological future(past) of an
equator ofHnC1

1 determined by an unit timelike vector a2 RnC2
2 . Suppose that, for

some1 � r � n � 1, Hr and HrC1 have equal(different) signs and that both of them
do not change sign on Mn. If ja>j 2 L1(M), then the index of minimum relative nullity
�0 of Mn is at least n� (r � 1).

REMARK 5.7. In [26], Ishihara proved that ann-dimensional complete maximal
spacelike hypersurface immersed inHnC1

1 must have the squared norm of the second
fundamental form bounded from above byn.

ACKNOWLEDGEMENTS. The first author is partially supported by CNPq, Brazil,
grant 300769/2012-1. The authors are partially supported by CAPES/CNPq, Brazil,
grant Casadinho/Procad 552.464/2011-2. The authors wouldlike to thank the referee
for giving some valuable comments and suggestions which improved the paper.



ON THE TOTALLY GEODESIC SPACELIKE HYPERSURFACES 1051

References

[1] N. Abe, N. Koike and S. Yamaguchi:Congruence theorems for proper semi-Riemannian hyper-
surfaces in a real space form, Yokohama Math. J.35 (1987), 123–136.

[2] A.L. Albujer and L.J. Alías:Spacelike hypersurfaces with constant mean curvature in the steady
state space, Proc. Amer. Math. Soc.137 (2009), 711–721.

[3] A.L. Albujer and L.J. Alías:Calabi–Bernstein results for maximal surfaces in Lorentzian prod-
uct spaces, J. Geom. Phys.59 (2009), 620–631.

[4] A.L. Albujer, F.E.C. Camargo and H.F. de Lima:Complete spacelike hypersurfaces in a
Robertson–Walker spacetime, Math. Proc. Cambridge Philos. Soc.151 (2011), 271–282.

[5] J.A. Aledo, L.J. Alías and A. Romero:Integral formulas for compact space-like hypersurfaces
in de Sitter space: applications to the case of constant higher order mean curvature, J. Geom.
Phys.31 (1999), 195–208.

[6] L.J. Alías, A. Brasil, Jr. and A. Gervasio Colares:Integral formulae for spacelike hypersurfaces
in conformally stationary spacetimes and applications, Proc. Edinb. Math. Soc. (2)46 (2003),
465–488.

[7] L.J. Alías, A. Romero and M. Sánchez:Uniqueness of complete spacelike hypersurfaces of con-
stant mean curvature in generalized Robertson–Walker spacetimes, Gen. Relativity Gravitation
27 (1995), 71–84.

[8] L.J. Alías, A. Romero and M. Sánchez:Spacelike hypersurfaces of constant mean curvature
and Calabi–Bernstein type problems, Tohoku Math. J. (2)49 (1997), 337–345.

[9] L.J. Alías, A. Romero and M. Sánchez:Spacelike hypersurfaces of constant mean curvature in
certain spacetimes, Nonlinear Anal.30 (1997), 655–661.

[10] K. Andrzejewski and P.G. Walczak:Conformal fields and the stability of leaves with constant
higher order mean curvature, Differential Geom. Appl.29 (2011), 723–729.

[11] A. Barros, A. Brasil and A. Caminha:Stability of spacelike hypersurfaces in foliated space-
times, Differential Geom. Appl.26 (2008), 357–365.

[12] A.L. Besse: Einstein Manifolds, Springer, Berlin, 1987.
[13] M. Caballero, A. Romero and R.M. Rubio:Constant mean curvature spacelike surfaces in

three-dimensional generalized Robertson-Walker spacetimes, Lett. Math. Phys.93 (2010),
85–105.

[14] M. Caballero, A. Romero and R.M. Rubio:Complete CMC spacelike surfaces with bounded
hyperbolic angle in generalized Robertson-Walker spacetimes, Int. J. Geom. Methods Mod.
Phys.7 (2010), 961–978.

[15] M. Caballero, A. Romero and R.M. Rubio:Uniqueness of maximal surfaces in generalized
Robertson–Walker spacetimes and Calabi–Bernstein type problems, J. Geom. Phys.60 (2010),
394–402.

[16] E. Calabi: Examples of Bernstein problems for some nonlinear equations; in Global Analysis
(Proc. Sympos. Pure Math.15, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, RI,1970,
223–230.

[17] F. Camargo, A. Caminha, H.F. de Lima and M. Velásquez:On the geometry of conformally
stationary Lorentz spaces, Acta Math. Hungar.134 (2012), 385–403.

[18] F. Camargo and H.F. de Lima:New characterizations of totally geodesic hypersurfaces in anti-
de Sitter spaceHnC1

1 , J. Geom. Phys.60 (2010), 1326–1332.
[19] A. Caminha:On spacelike hypersurfaces of constant sectional curvature Lorentz manifolds, J.

Geom. Phys.56 (2006), 1144–1174.
[20] A. Caminha:The geometry of closed conformal vector fields on Riemannianspaces, Bull. Braz.

Math. Soc. (N.S.)42 (2011), 277–300.
[21] A. Caminha and H.F. de Lima:Complete spacelike hypersurfaces in conformally stationary

Lorentz manifolds, Gen. Relativity Gravitation41 (2009), 173–189.
[22] S.Y. Cheng and S.T. Yau:Maximal space-like hypersurfaces in the Lorentz–Minkowski spaces,

Ann. of Math. (2)104 (1976), 407–419.
[23] M. Dajczer: Submanifolds and Isometric Immersions, Publish or Perish, Houston, TX, 1990.
[24] F.J.M. Estudillo and A. Romero:Generalized maximal surfaces in Lorentz–Minkowski space

L3, Math. Proc. Cambridge Philos. Soc.111 (1992), 515–524.



1052 H.F.DE L IMA AND M.A.L. V ELÁSQUEZ

[25] D. Ferus:On the completeness of nullity foliations, Michigan Math. J.18 (1971), 61–64.
[26] T. Ishihara:Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curva-

ture, Michigan Math. J.35 (1988), 345–352.
[27] H.F. de Lima:Spacelike hypersurfaces with constant higher order mean curvature in de Sitter

space, J. Geom. Phys.57 (2007), 967–975.
[28] H.F. de Lima and U.L. Parente:On the geometry of maximal spacelike hypersurfaces in general-

ized Robertson–Walker spacetimes, to appear at Ann. Mat. P. Appl, DOI10.1007/
s10231-011-0241-y.

[29] A. Lichnerowicz: L’intégration des équations de la gravitation relativiste etle problème des n
corps, J. Math. Pures Appl. (9)23 (1944), 37–63.

[30] S. Montiel: Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated space-
times, Math. Ann.314 (1999), 529–553.

[31] B. O’Neill: Semi-Riemannian Geometry, Academic Press, New York, 1983.
[32] H. Omori: Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan19 (1967),

205–214.
[33] R.C. Reilly: Variational properties of functions of the mean curvaturesfor hypersurfaces in

space forms, J. Differential Geometry8 (1973), 465–477.
[34] A. Romero and R.M. Rubio:New proof of the Calabi–Bernstein theorem, Geom. Dedicata147

(2010), 173–176.
[35] A. Romero and R.M. Rubio:On the mean curvature of spacelike surfaces in certain three-

dimensional Robertson–Walker spacetimes and Calabi–Bernstein’s type problems, Ann. Global
Anal. Geom.37 (2010), 21–31.

[36] M. Sánchez:Structure of Lorentzian tori with a Killing vector field, Trans. Amer. Math. Soc.
349 (1997), 1063–1080.

[37] S.T. Yau:Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math.28
(1975), 201–228.

[38] S.T. Yau:Some function-theoretic properties of complete Riemannian manifold and their appli-
cations to geometry, Indiana Univ. Math. J.25 (1976), 659–670.

Henrique F. de Lima
Departamento de Matemática
Universidade Federal de Campina Grande
58429-970 Campina Grande, Paraíba
Brazil
e-mail: henrique@dme.ufcg.edu.br

Marco Antonio L. Velásquez
Departamento de Matemática
Universidade Federal de Campina Grande
58429-970 Campina Grande, Paraíba
Brazil
e-mail: marcolazarovelasquez@gmail.com


