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Abstract

We study complete noncompact spacelike hypersurfaces risahénto conform-
ally stationary spacetimes, equipped with either one or ¢aaformal vector fields.
In this setting, by using as main analytical tool a suitableximum principle for
complete noncompact Riemannian manifolds, we establish ciearacterizations of
totally geodesic hypersurfaces in terms of theith mean curvatures. For instance,
for a timelike geodesically complete conformally statighapacetime endowed with
a closed conformal timelike vector fieM, under appropriate restrictions on the flow
and the norm of the tangential componentfwe are able to prove that totally geo-
desic spacelike hypersurfaces must be, in fact, leaveseofligtribution determined
by V. Applications to the so-called generalized Robertsonk&/akpacetimes are
also given. Furthermore, we extend our approach in ordebtaim a lower estimate
of the relative nullity index.

1. Introduction

In the last years, the study of spacelike hypersurfaces nsgndn Lorentzian space-
times has been of substantial interest from both physicdl rmathematical points of
view. From the physical one, that interest became clear vidi@merowicz [29] showed
that the Cauchy problem of the Einstein equation with ihit@nditions on a maximal
spacelike hypersurface (that is, with zero mean curvatuas)a particularly nice form,
reducing to a linear differential system of first order andatmonlinear second order
elliptic differential equation.

From a mathematical point of view, spacelike hypersurfaresalso interesting be-
cause of their Calabi—Bernstein type properties. Traudtily, the parametric version of
the Calabi—Bernstein theorem asserts that the only compietximal hypersurfaces in
the Lorentz—Minkowski space are the spacelike hyperplanks[X6], [22], [24] and
[34]). In this setting, the problem of characterizing maalmor more generally, con-
stant mean curvature hypersurfaces of different Lorentspacetimes has been stud-
ied by several authors. For instance, in a series of papdes,ARomero and Sanchez
(cf. [7], [8] and [9]) have studied the uniqueness of sp&edtiypersurfaces with constant
mean curvature in an important class of Lorentzian mansfottie so callecconform-
ally stationary spacetimesWe recall that such a space is a manifdit!*! endowed
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with a Lorentzian metric tensof, )} equipped with a conformal timelike vector field
V € X(M). The fact thatv is conformal means that the Lie derivative of the Lorentzian
metric ( , ) with respect toV satisfiesCy(, ) = 2y (, ) for a certain smooth function
¥ on M In particular, whenV is a Killing vector field (that is,y vanish identi-
cally on M"1), then M+ is classically called atationary spacetimeThe reason for
the terminology conformally stationary spacetime is du¢ht fact thatM"*+* endowed
with the conformally related metri¢, )* = |[V|~2(, ) (cf. Lemma 2.1 of [36]), where
V] = +/—=(V,V) >0, is in fact a stationary spacetime, since the timelike fiélis a
Killing vector field for (, )*.

In [21], the first author jointly with Caminha derived, forethsquare operator of
Yau [37], an analogue of the Omori—-Yau maximum principle tteg Laplacian [32, 37]
and applied it to obtain nonexistence results concerningpbtete noncompact space-
like hypersurfaces immersed with some constatit mean curvature in a conformally
stationary spacetime. More recently, the authors jointlthwCamargo and Caminha
have obtained in [17] a new characterization of completecampact totally geodesic
spacelike hypersurfaces in conformally stationary sjsest

We note that the class of conformally stationary spacetimelsides the family of
generalized Robertson—-WalkéGRW) spacetimes. By a GRW spacetime, we mean a
Lorentzian warped product! x, F" with Riemannian fibef=" and warping function
¢ (for details, see Section 4). For such a spacetime, the ooafotimelike vector
field V(t, p) = ¢(t)(3/9t)¢,p is also closed, in the sense that its metrically equivalent
1-form is closed. As it was observed by Montiel in [30], M"*! is a conformally
stationary spacetime equipped with a closed conformalovefitld, then it is locally
isometric to a GRW spacetime. A global analogue of this ¢éissewas also obtained
by Montiel, which showed that a timelike geodesically cortglepacetime having a
closed conformal timelike vector field must be isometric toappropriate quotient of
a GRW spacetime (see Proposition 2 of [30]).

Recently, many authors have treated the uniqueness probiespacelike hyper-
surfaces with constant mean curvature in GRW spacetimesintance, we may cite
the works [13], [14], [15] and [35], where Romero et al. haJgtained rigidity re-
sults concerning to spacelike slices of 3-dimensional GR)Acstimes obeying either
the null convergence condition or the timelike convergenordition. Also in the 3-
dimensional case, Albujer and Alias [3] have establishad Galabi—Bernstein results
for maximal hypersurfaces immersed into a Lorentzian pcodpace. In [4], the first
author jointly with Albujer and Camargo have approached esamiqueness problems
concerning complete spacelike hypersurfaces with cohstesan curvature immersed
in a Robertson Walker (RW) spacetime (that is, a GRW spaeetilose Riemannian
fiber has constant sectional curvature), which was supptsesbey the null conver-
gence condition. In [18], by considering the RW moddl-7/2, 7/2) Xcost H" Of an
open subset of the anti-de Sitter spdﬂ%“, whereH" stands for then-dimensional
hyperbolic space, the first author and Camargo obtained hewacterizations of totally
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geodesic spacelike hypersurfacesHl’j“.

In this paper, our aim is to establish new characterizati@motems of totally geo-
desic spacelike hypersurfaces immersed in a conformadljostary spacetime. For in-
stance, in Section 3 we prove the following results (cf. Teews 3.3 and 3.9):

Let M"*1 be a conformally stationary spacetime endowed with a comdbrtime-
like vector field V and let xM" — M™*! be a completenoncompact spacelike hyper-
surface. Suppose that one of the following conditions isfead
(& H=>=0anddivy V <0on M";

(b) H<0anddivy V >0 on M".
If |VT| is Lebesgue integrable on Mthen M' is maximal. Moreoverif M"* is an
Einstein spacetime andHs bounded from below on Mthen M is totally geodesic.

Let M1 be a conformally stationary spacetime endowed with a peraiinelike
vector field V and a homothetic nonparallel timelike vectetdfiw, and x: M" —
M"t1 be a complete noncompact spacelike hypersurface such thabed not change
sign on M. If |VT| is Lebesgue integrable on Mthen M is maximal. Moreoverif
M"t1 is Einstein and H is bounded from belowthen M is totally geodesic.

Here, H is the mean curvatureH, = (2/(n(n — 1)))S denotes the mean value
of the second elementary symmetric functiSnon the eigenvalues of the Weingarten
operator (see Section 2 for details about thh mean curvatures) and ' stands for
the tangential component of the vector fialdon M". Our approach is based on the
use of the Newton transformations (see Section 2) jointl$hvai suitable extension of
a maximum principle at the infinity of [38] due to Caminha ir0JZcf. Lemma 3.2).

In Section 4, we apply those results described above to stiuelyuniqueness of
totally geodesic spacelike hypersurfaces in GRW spacstinvghen the spacetime is
timelike geodesically complete we can guarantee, with gragpiate set of hypotheses
and with the aid of another classic result due to Yau (cf. Lamh), that complete
noncompact spacelike hypersurfaces are leaves of thébdign of vector fields which
are orthogonal to a conformal vector field globally definedtbea ambient spacetime.
Specifically, we obtain the following result that extendse®tem 4.1 of [17], for the
case of a single closed conformal field (cf. Theorem 4.3):

Let M1 be a timelike geodesically complete conformally statignapacetime
with nonnegative Ricci curvature and endowed with a closetfarmal timelike vector
field V. Let x M" — M"*! be a connected complete spacelike hypersurface with H
bounded and bl bounded from below. IfV | is Lebesgue integrable on 'Mand the
conformal factory of V satisfies

1 9y H2

- >

V] ot ~

where te R denotes the real parameter of the flowwoft= V/|V|, then M is totally
geodesic and the Ricci curvature ®"*1 in the direction of N vanishes identically.
Moreovey if M" is noncompagct(V, V) is constant on M and the Ricci curvature of
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M" is also nonnegativethen XM") is contained in a leaf of the distribution of vector
fields orthogonal to V.

In Section 5, concerned with the case of théh mean curvatures, when the am-
bient spacetime is either a stationary spacetime or a tmaleodesically complete
conformally stationary spacetime, we obtain a lower edtref the index of relative
nullity of complete noncompact spacelike hypersurfacedgnigatwo consecutive -th
curvatures which do not change sign. For instance, we gefolt@ving extension of
Theorem 6.2 of [28] (cf. Theorem 5.3):

Let M2+ be a timelike geodesically complete conformally statignapacetime
with constant sectional curvature ¢ and endowed with a dasenformal timelike vec-
tor field V. Let x M" — l\7IQ+l be a completenoncompact spacelike hypersurface
with bounded second fundamental form A and whose r-th measatove H does not
change sign and such that ti{e + 1)-th mean curvature H is bounded for some
re{l,...,n—1}. If V7| is Lebesgue integrable on Mand the conformal factog
of V satisfies

19y
mﬁ #C,
where te R denotes the real parameter of the flowwoE V/|V|, then the hypersurface
M" is (r —1)-maximal. Moreoverif the (r + 1)-th mean curvature H; also does not
change signthen the index of minimum relative nullity of M" is at least n—(r —1).

As a consequence of such previous result, we establish akertension of The-
orem 1.2 of [18]. More precisely, we obtain the following (€orollary 5.6):

Let x: M" — HT“ be a complete spacelike hypersurface with bounded second
fundamental formwhich lies in the chronological futurépas?) of an equator oﬁHITr1
determined by an unit timelike vectorealRS*z. Suppose thatfor somel <r <n-—1,

H; and H ., have equaldifferen) signs and that both of them do not change sign on
M". If |aT| is Lebesgue integrable on Mthen the index of minimum relative nullity
vo of M" is at least n— (r — 1).

2. Preliminaries

Let M1 be a @ 4 1)-dimensional f > 2) manifold with a Lorentzian metric
tensor( , ) and Levi-Civita connectiorV. We denote byX(M) the set of vector fields
of classC>® on M™1 and byC>(M) the ring of real functions of clas§> on M"+1,
We recall that a vector fiel on M"*! is said conformalif

Lyv(,)=2¢(, )

for some functiony € C*(M), where£ stands for the Lie derivative of the Lorentzian
metric of M"t1; the functiony is called theconformal factorof V. A Lorentz manifold
M1 endowed with a globally defined conformal timelike vectoldfie saidconformally
stationary spacetime
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Since Ly (X) = [V, X] for all X € X(M), where [] denotes the Lie bracket, the
tensorial character ofy shows thatV € X(M) is conformal if, and only if,

(2.1) (VxV, Y) + (X, WV) = 2y (X, Y),

for all X,Y € ¥(M). In particular,V is Killing if, and only if, ¥ = 0. Moreover, from
equation (2.1) we easily verify that

1 .

From now on, letx: M" — M"! be a complete noncompact spacelike hyper-
surface, namely, an isometric immersion from a completecampact, connectech-
dimensional Riemannian manifolM" into M"*1, In this setting, letV denote the
Levi-Civita connection ofM". As M"*1 is time-orientable by the timelike vector field
V andx: M" - M™1 is a spacelike hypersurface, th&" is orientable and one can

choose a globally defined unit normal vector fie\d on M" having the same time-
orientation of M"*1, that is,

(V,N) <O0.
Such N is said thefuture-pointing Gauss mampf M". If we let A denote the
Weingarten operator ok with respect toN, then A restricts to a self-adjoint linear
map A,: T,M — TpM at eachp € M". Next theGauss formulafor M" is given by
(2.3) VxY = VxY — (AX, Y)N
and theWeingarten formulgor M" is
(2.4) AX = —VxN,
for any X, Y € X(M).

For 1<r <n, let S(p) denote ther-th elementary symmetric functioon the
eigenvalues ofAj, so that one geta smooth functions : M" — R for which

dettld — A) = > (1) §t",
r=0

where S = 1 by definition. For fixedp € M", the spectral theorem allows us to choose
on T,M an orthonormal basi$Es, ..., En} of eigenvectors ofA,, with corresponding
eigenvaluesiy, . .., An, respectively. One thus immediately sees that

S :O’r()\,l, .. .,)\-n)u
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whereo; € R[Xy,..., Xp] is ther-th elementary symmetric polynomiah the indeter-
minates Xy, . .., Xu.
For 1<r <n, one defines the-th mean curvature Hof x by

(2.5) (:‘) He = (=1 S = 01 (<A1, . - . —hn).

In particular, wherr = 1,

(2.6) Hy = 1ix-— LA = H
' 1= n & " n -

is the mean curvature df1", which is the main extrinsic curvature of the hypersurface.

REMARK 2.1. The choice of the sign—<)" in our definition of H; is motivated
by the fact that in that case the mean curvature vector imgiyeH = HN. Therefore,
H(p) > 0 at a pointp € M" if, and only if, H(p) is in the time-orientation a®(p),
and hence a¥(p).

Whenr = 2, H, defines a geometric quantity which is related to the (intchs
scalar curvatureS of the hypersurfaceM". For instance, when the ambient spacetime
has constant sectional curvaturewe obtain that

2.7) S=n(n—1)(c — Hy).

Moreover, a relationship between the squared norm of thenseftommdamental formA
of the spacelike hypersurfadd" and their curvature$d and H, is given by

(2.8) |A]? = n?H? — n(n — 1)H,.

One also let the-th Newton transformation ;Pon M" be given by settind® = Id
and, for 1<r <n, via the recurrence relation

(2.9) P =(-1)SId+ AR_;.
A trivial induction shows that
P =(-1){SId—S 1A+ S A~ . +(-1) A},
so that Cayley—Hamilton theorem givé% = 0. Moreover, sinceP; is a polynomial

in A for every 1<r <n, it is also self-adjoint and commutes with. Therefore, all
bases ofT,M diagonalizingA at p € M" also diagonalize any transformatidh at p.
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If {E1, ..., En} is such a basis and; denotes the restriction oA to (E;j)* C ToM,
it is easy to see that

dettld — A)) = (—1)KS(At" 1K,
where
1<ji<..<jk=n
Jaeees JoF
With the above notations, it is also immediate to check that
(210) Pr Ei — (_1)r S (AI)E| '

It follows from (2.10) that for eachn € {0,...,n—1},

(2.11) tr(R) = (=1 (n—r)S = b H,,
(2.12) tr(AR) = (=1 (r + 1)S+1 = —br Hr 4,
and

tr (A°P) = (-1)(S1S+1— (r +2)S+2)

_ (r il)(nHHrH—(n—r —D)Hesa),

b = (n—r)(?) —(r +1)(r :1)

The divergenceof P, is defined by

(2.13)

where

(2.14) divy Pr = tr(VP) = ) (Ve R)(E),
i=1

where{E;y, ..., E,} is a (local) orthonormal frame oM".

From Lemma 3.1 of [6], we have a suitable formula for the djesice of the
Newton transformations. In what follows, as in [31], the vaiure tensorR of the
ambient spacetim®"t! is given by

R(X, Y)Z = Vixv1Z — [Vx, W]Z,

for all X,Y, Z € ¥(M).
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Proposition 2.2. The divergence of the Newton transformations are given by
r n _ )
(2.15) (divi P, X) = > > (R(N, P E)Ei, ATEX),
j=1i=1
for all X € X(M).

Moreover, from the computations of Section 4 of [6] we get

Proposition 2.3. Let M"*! be a conformally stationary spacetime endowed with
a conformal timelike vector field V and let: M" — M™1 be a spacelike hyper-
surface. Then

divy PVT = (divm P, V') + b {¢yHr + (V, N)Hr 14},

where VI =V + (V, N)N is the projection of V onto M by = (r +1)(,},) and v
is the conformal factor of V.

3. Characterizations of totally geodesic hypersurfaces

Let M1 be a conformally stationary spacetime with> 2. If M"*! is also an
Einstein manifold, that is, if there exist a constant R such that the Ricci tensor
Ricy of M1 satisfies

(3.1) RiGg (X, Y) = A(X, Y),

for any X, Y € X(M), then we say thaM™?! is a conformally stationary Einstein
spacetime In this setting, we have the following

Lemma 3.1. Let M"*! be a conformally stationary Einstein spacetime endowed
with a conformal timelike vector field V and let M" — M™1 be a spacelike hyper-
surface. Then

(3.2) divu PLVT = n(n — 1){yH + (V, N)Hy},

where ¢ is the conformal factor of V. Jfin addition M*! has constant sectional
curvature ¢ then

(3.3) divy PVT = by (¢ Hr + (V, N)H, 14},

where b = (r + 1)(;,).
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Proof. Since M"*! is an Einstein manifold, from (3.1) and Proposition 2.2
we have

divy P, V') = R(N, E)E;, VT
(3.4) (divm Py ) ;( ( ) )

= —Ricy(N, V") = —A(N, V") = 0,

where{E;, ..., En} is a (local) orthonormal frame oM". Hence, from equation (3.4)
and Proposition 2.3 we obtain equation (3.2).

Now, suppose that\7lt[4”rl has constant sectional curvature Thus, from Propos-
ition 2.2, we have

(divw P, VT) =30 3 (N, EN (P B ATV
(3:5) j=1i=1

—(P_jEi, E)(N, A7tV Ty} =0,

where{E;y, ..., E,} is a (local) orthonormal frame oM".
Therefore, from (3.5) and Proposition 2.3 we conclude tleopof equation (3.3).
U

In the paper [38], Yau established the following version ks’ theorem on an
n-dimensional, complete noncompact Riemannian manifdli if » € Q"1(M) is an
integrable (n — 1)-differential form on M, then there exists a sequence & domains
on M" such that BC Bi;1, M" = ;», B and

lim /dw:O.
| —=>+00 B|

Now, suppose thaM" is oriented by the volume elemendtM. If w = (xdM is the
contraction ofdM in the direction of a smooth vector field on M", then Caminha
[20] obtained a suitable consequence of Yau's result, wisaktescribed below. In what
follows, £1(M) stands for the space of Lebesgue integrable function$18n

Lemma 3.2. Let X be a smooth vector field on the n-dimensional comptete-
compact oriented Riemannian manifold M such thatdivy, X does not change sign on
M". If |X| € £Y(M), thendivy X = 0.

We recall that a spacelike hypersurface is sa@aximalif its mean curvature van-
ishes identically. Our first result establishes sufficieahditions to guarantee that a
complete maximal spacelike hypersurface is, in fact, iptgéodesic.
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Theorem 3.3. Let M"*! be a conformally stationary spacetime endowed with a
conformal timelike vector field V and let: sM" — M"*! be a completenoncompact
spacelike hypersurface. Suppose that one of the followimgliions is satisfied
(@ H=>=0anddivy V <0on M
(b) H <0anddivy V >0 on M".

If [VT| € £Y(M), then M is maximal. Moreoverif M"t1 is an Einstein spacetime
and H is bounded from below on M then M is totally geodesic.

Proof. Considering = 0 in the Proposition 2.3 we have
(3.6) divy V' =ny + nH(N, V).

From equation (2.2) we see that giw¥ andy have the same sign oM". More-
over, sinceN and V has the same time-orientation, then from either iteh dr (b)
jointly with equation (3.6) we obtain that div " does not change sign ad". Since
IVT| € £Y(M), Lemma 3.2 gives diy V' = 0. Therefore,jy = 0 and H vanishes
identically onM™.

Now, from equation (2.8) we havpA|? = —n(n — 1)H,, which implies H, < 0.
Thus, assuming thall, is bounded from below oM" and the ambient spacki"*!
is Einstein, we have thdtA| is bounded orM" and, from Lemma 3.1, we get

(3.7) divy PLV" = n(n — 1)(V, N)Hs.

Then, from (2.9) we have thaP;| is also bounded. Therefor¢P,VT| € £LY(M), be-
cause|VT| € £Y(M). Next, from (3.7) we obtain that diyP;V " does not change
sign on M". By applying once more Lemma 3.2 we conclude thatydRV '™ = 0.
Therefore,H, = 0 on M" and, henceM" is totally geodesic. ]

When V is a Killing vector field (namely, wheny = 0), Theorem 3.3 reads as
follows

Corollary 3.4. Let M1 be a stationary spacetime endowed with a Killing time-
like vector field V and let xM" — M"*1 be a completenoncompact spacelike hyper-
surface whose mean curvature H does not change sigiv If € £Y(M) then M is
maximal. Moreoverif M"+! is Einstein and H is bounded from below on M then
M" is totally geodesic.

Let L"*2? denote the 1f + 2)-dimensional Lorentz—Minkowski space ¢ 2), that
is, the real vector spad®"*?, endowed with the Lorentz metric

n+1

(v, w) = E Vi Wi — Un42Wn+42,
i=1
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for all v, w € R"*2. We define the r{ + 1)-dimensional de Sitter spac®™* as the
following hyperquadric ofL."+?

STt ={p e L"*2: (p, p) = 1}.

From the above definition it is easy to show that the metriciged from(, ) turns
S]** into a Lorentz space form of constant sectional curvaturgn 58]+, from Corol-
lary 3.4, we have the following nonexistence result coniogrmo complete noncompact
spacelike hypersurfaces.

Corollary 3.5. There exists no complete noncompact spacelike hypersurfac
x: M" — "1 in (n + 1)-dimensional de Sitter spaceshose mean curvature H does
not change signH, is bounded from below and such théor some pair of orthog-
onal timelike vectors w € L"*2, [uT|,|v"| € £YM) and |{u, -)|, |(v, -)| are bounded
on M".

Proof. Suppose, by the sake of contradiction, that thergesuch a hypersurface.
Following the ideas of [27], for any pair of orthogonal tirkel vectorsu, v € L"+2, we
have thatW(x) = (u, x)v — (v, X)u is a timelike Killing vector field inSQ“. Since
l{u, -}, |{v, -)| are bounded orM" and [uT|, |v"| € LYM), then |WT| € LY(M).
From Corollary 3.4M" is totally geodesic irST*l. Next, from Theorem 5.1 of [1] we
obtain thatM" is isometric ton-dimensional Euclidean sphe$8, which contradicts the
non-compactness d¥l". 0

We recall that the anti-de Sitter spacetiﬂﬁ[@+l is the hyperquadric

H{™ = {p e R}**: (p, p) = —1},
in the indefinite index two flat spadR)*2. It is also a standard fact thai] ™ is the
Lorentz space form of constant sectional curvatate The following result in]HIQ+l
is a sort of extension of Theorems 1.1 and 1.2 of [18].

Corollary 3.6. Let x: M" — ]HIQ+1 be a completenoncompact spacelike hyper-
surface whose mean curvature H does not change sign and such thas Hounded
from below. If for some pair of orthogonal timelike vectors we R}, [u'|, [vT| €
£Y(M) and |(u, - )|, [{v, )| are bounded on M, then M is isometric to the n-
dimensional hyperbolic spacH".

Proof. Following once more the ideas of Example 1 of [27]csein, v € Rg”
are orthogonal timelike vectors, we observe thiétx) = (u, X)v — (v, X)u is a time-
like Killing vector field in ]HIQ“. Moreover, sincel(u, - )|, [{v, - )| are bounded and
uT), [vT| € £Y(M), we have|WT| € £LY(M). Thus, from Corollary 3.4M" is totally
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geodesic in]HIT*l. Therefore, from Theorem 5.1 of [1] we conclude tHdf' is iso-
metric to H". O

An important particular case of a conformal vector figldis that in which
(3.8) WV = yY

for all Y € (M), where ¢ is the conformal factor ofV. In this case we say that
V is closed in the sense that its dual 1-form is closed. In this settaglosed con-
formal vector fieldV is said homotheticif  is constant, and it is saigarallel if
vanishes identically.

For any open set/ C M, the distribution on/ of vector fields orthogonal to V
is defined by

VEH(p) = {w € T,M; (V(p), w) =0}, pelU.

We note thatV* is integrable; in fact, ifX, Y € V*, then from equation (3.8) we
have that

([X, Y], V) = (VxY — Vy X, V) = —(Y, VxV) + (X, VyV) = 0.

Therefore, Frobenius’ theorem guarantees that the calfedf all connected integral
manifolds of V<, called leaves corresponds to apacelike foliationof M"+1,

Let " be aleaf of V! furnished with the induced metric. From equation (3.8)
we get

(3.9) V(V, V) =2y V.

Consequently,(V, V) is constant on connected leaves \f. Moreover, computing
covariant derivatives in (3.9), we have

(Hess (V, V))(X, Y) = 2X(W)(V, Y) + 2¢¥2(X, Y).
However, since both Hegsand the metric are symmetric tensors, we get
XV, Y) =Y(@)(V, X),
for all X,Y e ¥(M). Now, takingY =V we arrive at

- V()
(3.10) Vg = AT

Vo= —v(y)v,

wherev = V/|V] and |[V| = /—(V, V) > 0. Hence,y is also constant on connected
leaves of V*. Furthermore, with a straightforward computation, we fyethat the
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shape operatoAy of a leaf =" € V! with respectv is given by

4

(3.11) Ax(X) = —Vxv = v

Xy

for any X € X¥(X) and, hence,x" is an umbilical hypersurface with constant
mean curvature

(3.12) "=

REMARK 3.7. In order to conclude that spacelike hypersurfacesemees ofv -
and taking into account equation (3.12), we consider from pa that the mean curva-
ture of spacelike hypersurfaces studied and the conforatabifys have the same sign.

Proposition 3.8. Let M"*! be a conformally stationary spacetime endowed with
a closed conformal timelike vector field, Mwvhose conformal factor ig), and let
x: M" — M"*! be a spacelike hypersurface. If W is another closed confbtinse-
like vector field onM™+1, with conformal factory, and f: M" — R is given by
f = (V, W), then

(3.13) Vi=yW' +ywV’
and
(3.14) Af =WT(W) + VT (Ww) + nH{Y (W, N) + vw(V, N)} + 2ny .

Proof. If Y € X(M) then from (3.8) we have
(VEY) =Y(f) = (WV, W) + (V, VyW)
=YY, W) +yw(VTY) = (W +ywVT,Y).
On the other hand, considerimg= 0 in the Proposition 2.3,
divu VT =ny +nH(N, V).

Thus, from (3.13) we obtain

Af =divy VI =divu(yWT + ywVT)
=y divu W' + (Vi, WT) + Yy divy VT + (Vrw, V1)
= Y {nyw +nH(N, W)} + W' () + Ywing + nH(N, V)} + VT (yw)
= W' (%) + V' (¥w) + 20ypw + nH{Y (N, W) + yw (N, V)}. O
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Now, we are in position to establish the following charaztgion of totally geo-
desic spacelike hypersurfaces, which can be regarded as af @xtension of the The-
orem 4.1 of [17].

Theorem 3.9. Let M"*! be a conformally stationary spacetime endowed with a
parallel timelike vector field V and a homothetic nonparalienelike vector field W
and x: M" — M"*! be a complete noncompact spacelike hypersurface whose mean
curvature H does not change sign on"MIf |[VT| € £}(M) then M is maximal.
Moreover if M"™! is Einstein and H is bounded from belowthen M is
totally geodesic.

Proof. SinceV is parallel andW is homothetic and nonparallel, it follows from
(3.13) and (3.14) that

Vi=ywV’
and
Af = nHyw(V, N},

with ¥\ being a nonzero constant. Therefore, the assumgtoh € £1(M) gives
[V f| e £Y(M), and the assumption oHl, together with the fact thatV, N) < 0 on
M, assures that f is either nonnegative or nonpositive &i". Therefore, Lemma 3.2
implies Af =0 on M" and, henceH vanishes identically orM".

Finally, to prove the second part of the theorem, it is enotglfiollow the same
steps of the end of the proof of Theorem 3.3. ]

4. Applications to GRW spacetimes

According to the terminology introduced in [7], a partiautdass of conformally sta-
tionary spacetimes is that generalized Robertson—-Walk@BRW) spacetimes, namely,
warped product™! = —I x4 F", wherel C R is an interval with the metrie-dt?,
F" is ann-dimensional Riemannian manifold agd | — R is positive and smooth. In
particular, when the Riemannian fibEf' has constant sectional curvature, theinx, F"
is classically called &obertson-WalkefRW) spacetime.

For such spacetimes, let;: M"*!* — | denote the canonical projection onto
Then the vector field

(4.1) V= (pom)d

is a conformal, timelike and closed, with conformal facibr= ¢’, where the prime
denotes differentiation with respect to Moreover, forty € |, the slice M'[‘) = {tg} x F"
is totally umbilical, withr-th mean curvature equal t@’'(t)/¢(to))" with respect too,
(cf. [7]; see also [30] and [6]).
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If M™1 =] x,F"is a GRW andx: M" — M"*! is a complete spacelike hyper-
surface ofM™t1, such thatp o 7, is bounded orM", thenzg|y: M™ — F" is neces-
sarily a covering map (cf. [7]). In particular, " is closed thenF" is automatically
closed. Moreover, from Proposition 7.42 of [31] (see alsodlary 9.107 of [12]), we
see that a GRW as above has constant sectional curvatifreand only if, its fiber
F" has constant sectional curvatuke(that is, —I x, F" is in fact a RW spacetime)
and its warping functiory satisfies the following ODE

Va ’
(4.2) ¢— =Cc= W—+k
¢ ¢?

Now, in a GRW space, let denote the (verticalpeight functionnaturally attached
to the spacelike hypersurfadd”, namely,h = (7;)|m. Let V and V denote gradients
with respect to the metrics ofl x, F" and M", respectively. A simple computation
shows that the gradient of, on —| x4 F" is given by

?m = —(?ﬂ'h 8t>3t = —Bt,
so that the gradient dfi on M" is
(4.3) Vh=(Vm)" = -3/,

whered,” = 3 + (N, &)N is the tangential component ¢f on M".
From Corollary 3.4 we obtain the following

Corollary 4.1. Let M"! = —R x F" be a stationary spacetimevhere F" is a
complete noncompact Riemannian manifaldd let x M" — M"*! be a complete non-
compact spacelike hypersurface whose mean curvature Hramehange sign. IfVh| €
L£1(M) then M is maximal. Moreoveiif M"*1 is Einstein and H is bounded from be-
low on M, then M is totally geodesic. In particulawwhen F' is the Euclidean space
R" then M is a spacelike hyperplane in Lorentz—Minkowski spaceifirfie.

Proof. SinceV =  is a timelike Killing vector field inM™+1, the first part of
the result follows directly from Corollary 3.4. In partiew] whenF" = R", from the
classification of the totally geodesic hypersurfacedLBf! (see, for example, [31] or
[1]), we conclude thatM™ is a spacelike hyperplane @&f*?. ]

Let M1 be a conformally stationary spacetime endowed with a clesedormal
timelike vector fieldV, whose conformal factor igr. If pe M™?! and =, is the leaf
of V1 containing p, then we can find a neighborhodd, of p on Xp and an open
interval I C R containing 0 such that the flowF(t, -) of v = V/|V| is defined in
Up for any t € |. Moreover, whenM™1 is timelike geodesically completéhat is,
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when all timelike geodesic oM"*! is defined for all values of the parametee R,
S. Montiel [30] proved that the application

¢ RxZTp— MmN+l
(4.4)
(t,q) — F(t a)

is a global parametrization df1"*1, such thatM"*! is isometric to the GRW

—R X En,

where

o(t) = v—(V(F(t, q)), V(F(t, q)),

t €R, andq € X is an arbitrary point.
In order to prove our next result which extends Theorem 4.[16f, we will need
the following classical result due to S.T. Yau [38].

Lemma 4.2. Every complete noncompact Riemannian manifold with naatieg
Ricci curvature has infinite volume.

Theorem 4.3. Let M"*! be a timelike geodesically complete conformally station-
ary spacetimewith nonnegative Ricci curvature and endowed with a closaafarmal
timelike vector field V. Let xM"™ — M"*! be a connected complete spacelike hyper-
surface with mean curvature H bounded ang bbunded from below. IV T| € £1(M)
and the conformal factory of V satisfies

Lov
V] ot

(4.5)

where te R denotes the real parameter of the flowwt V/|V|, then M is totally
geodesic and the Ricci curvature ®"*1 in the direction of N vanishes identically.
Moreovery if M™ is noncompagt|V| is constant on M and the Ricci curvature of M
is also nonnegativethen XM") is contained in a leaf of V.

Proof. Initially we observe that, sinc®i"*! is timelike geodesically complete
conformally, we can consider along it the global paramatian (4.4).
If fv: M" — R is given by fy = (V, N) then fy is negative onM". For all
Y € X(M) we have
(Viv,Y)=Y(fy) = Y(V, N)
= (WV, N) + (V, VyN)
= ¥{Y, N) = (VT, A(Y)) = (-A(V"), Y).
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Thus
(4.6) Viy =—-ANV).
On the other hand, from Proposition 3.1 of [11],
4.7 Afy = n(VH, V) + {Ricy (N, N) + |A]>} fy + nHy — nN(¥).
From (3.10) we observe that

ERY

(4.8) N = (N, T9) = —vN, v) = — 5

Vs

wheret is the parameter of the flow of = V/|V|. Thus, in (4.7) we have

i 0
(49)  Afy =n(VH,V)+ {(Ricq(N, N) + |A%} fv + nHy + %a_ltp fv.
From hypothesis (4.5),
(4.10) Afy <n(VH, V) + {Ricy(N, N) + | A} fy + nHy 4+ n?H?fy.

Now, let us consider oM" the tangent vector field
X =Vfy—nHV'.

Since H is bounded andH; is bounded below then, from (2.8), we obtain that the
norm of the Weingarten operaték is bounded. Thus, from (4.6),

IX] < {|Al+n[HBIVT| € £LY(M),

becausdV | € LY(M).
Moreover, from the Proposition 2.3, when= 0, and (4.10) we have
divy X = Afy —n(VH, V) —nH divy V'
<n(VH, V) + {Ricy (N, N) + | A%} fy
+nHy +n?H?fy —n(VH, V) = n®yH —n?H?fy
= {Ricy (N, N) + |A%} fy —n(n — 1)Hy <0,

(4.11)

where the last inequality we used th& < 0, Rigz; > 0 and H and ¢ has the same
sign over M" (see Remark 3.7). Thus, Lemma 3.2 gives\dX = 0. Therefore,
Rici (N, N) =0 and M" is totally geodesic.
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Now, suppose thaM" is noncompact|V| is constant orM" and the Ricci curva-
ture of M" is also nonnegative. SincA =0 andV fy = —A(V ") then fy = (V, N)
is constant and nonzero dd". Since|V| also is constant oiM" and
(4.12) IVTIZ =V + (V, N)N|? = = V> + (V, N)?,
so that|VT| is constant onM". Therefore,

+oo>/|VT|dM=|VT|V0|(M).
M

But sinceM" is noncompact and has nonnegative Ricci curvature, the Ll gives
Vol(M) = +oc, and hence the only possibility | T| = 0. Them, from (4.12) we have

IV, N) = [V].
Therefore, the inverse Cauchy—Schwarz inequality gives Vhis parallel toN and,
hence,x(M") is contained in a leaf o¥/*. ]
Let M"1 = —| x4 F" be a GRW spacetime. According the terminology estab-

lished in [2], we say thaM" is bounded away from the infinity d#i"** when it lies
between two slices oM"*1. From Theorem 4.3, we have the following resuilt.

Corollary 4.4. Let M"™! = —| x, F" be a timelike geodesically complete GRW
spacetime with nonnegative Ricci curvature andM" — M™1 be a connected com-
plete spacelike hypersurface bounded away from the infirfity"+1, with mean curva-
ture H bounded and FHbounded from below. If the height function h satisfies| €
£Y(M) and

¢//

> nH?,

then M is totally geodesic and the Ricci curvature M1 in the direction of N
vanishes identically. Moreoveif M" is noncompagte is constant on M and the
Ricci curvature of M is also nonnegativethen XM") C {to} x F", for some § € I.

5. Estimating the index of relative nullity

Let I\7IQ+l be a conformally stationary spacetime with constant seaticurvature
¢ and endowed with a conformal timelike vector field, and consider a complete
spacelike hypersurface: M" — Mg“, oriented by a vector fieldN in the same tem-
poral direction thatV. Let A be the second fundamental form " with respect to
N. According to [23], forp € M", we define thespace of relative nullityA(p) of M"
at p by

A(p) = {v € ToM; v € ker(Ap)},
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where ker@,) denotes the kernel of,. The index of relative nullityv(p) of M" at
p is the dimension ofA(p), that is,

v(p) = dim(A(p)),
and theindex of minimum relative nullityg of M" is defined by
Vg = g;ll\r/r v(p).

In order to state our next result, we recall that a spacelifeetsurfaceM” is said
r-maximal if H;,; vanishes identically orM".

Theorem 5.1. Let l\7lg1+l be a stationary spacetime with constant sectional curva-
ture ¢ endowed with a Killing timelike vector field V. Let M" — MQ“ be a
complete noncompact spacelike hypersurface with boundednd fundamental form
A and such that thér + 1)-th mean curvature H; does not change sigrior some
ref{0,...,n—1}.

(@ If [VT] € £YM) then M is r-maximal. Moreoverif H,., also does not change
sign, for some re {0, ..., n— 2}, then the index of minimum relative nullity of M"
is at least n—r.

(b) WhenM2+? is the Lorentz—Minkowski spade™!, if H, does not vanish on M
for some re {0, ..., n— 2}, then through every point of Mthere passes afn —r)-
hyperplane ofL."*! totally contained in M.

Proof. (a) SinceV is a Killing vector field, theny = 0. Therefore, from
Lemma 3.1 we have

(5.1) divy VT = b (V, N)H, 1.

Since |A| is bounded, from (2.9) we conclude thi | is also bounded, for any %

r <n. Thus|PV'| e £Y(M), becausdV " | € £1(M). Moreover, sinceN andV have
the same time-orientation anld;; does not change sign oW" then from (5.1) we
obtain that diyy P,V does not change sign. Thus, Lemma 3.2 giveg,dwV ™ = 0.

Therefore,H; ;1 = 0 on M".

Replacingr by r + 1 in equation (5.1) and following the same steps considered
above, we obtain that, ., = 0 on M". Therefore, sincéd, ;; = H;,» = 0, Proposition
1 of [19] assures thaHj = 0 for all j >r 4+ 1 and, henceyo > n—r.

(b) Now, suppose tha[t7|§+1 is the Lorentz—Minkowski spacetinie"t!. By The-
orem 5.3 of [23] (see also [25]), since we are supposing Hyadoes not vanish on
M", the distributionp — A(p) of minimal relative nullity of M" is smooth and inte-
grable with complete leaves, totally geodesicMif and inIL"*1, Therefore, the result
follows from the characterization of complete totally gesit submanifolds of."** as
spacelike hyperplanes of suitable dimension. ]
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From the proof of the Theorem 5.1, we observe that we can ehémg Killing
vector fieldV by a conformal field, but in this cas®" has to be i — 1)-maximal.
Thus, we have the following

Corollary 5.2. Let M?** be a conformally stationary spacetime with constant sec-
tional curvature ¢ and endowed with a conformal timeliketgedeld V. Let x M" —
Mg+1 be a(r — 1)-maximal completenoncompact spacelike hypersurface with bounded
second fundamental form A and such that ¢he- 1)-th and (r + 2)-th mean curvatures
H, .1 and H ., do not change sigrfor some re {0,...,n—2}. If V| € £(M) then the
index of minimum relative nullityo of M" is at least n—r. In particular, whenM+1 is
the Lorentz—Minkowski spacetini@+!, if H, does not vanish on Mthen through every
point of M" there passes a(n — r)-hyperplane of."*+! totally contained in M.

On the other hand, when the ambient space is a timelike geadlgscomplete
conformally stationary spacetime endowed with a closedfaroral vector field, we
have the following estimate of the index of relative nullitf a complete spacelike
hypersurface which extends Theorem 6.2 of [28].

Theorem 5.3. Let I\7IQJrl be a timelike geodesically complete conformally station-
ary spacetimgwith constant sectional curvature ¢ and endowed with a dasmformal
timelike vector field V. Let:xM" — MI*1 be a completenoncompact spacelike hyper-
surface with bounded second fundamental form A and whokemean curvature H
does not change sign and tife + 1)-th mean curvature H; is bounded for some

re{l,...,n=1}. If V7| € £Y(M) and the conformal factogy of V satisfies
1 9y

5.2 =Y

(5.2) V] ot #C

where te R denotes the real parameter of the flowwof V /|V|, then the hypersurface
M" is (r — 1)-maximal. Moreoverif the (r + 1)-th mean curvature H; also does not
change signthen the index of minimum relative nullity of M" is at least n— (r — 1).

Proof. SinceM?*! is timelike geodesically complete, we can consider the ajlob
parametrization (4.4). So, if we consider the functibp: M" — R given by fy =
(V, N), then fy is negative onM" and from (4.6),V fy = —A(VT). Moreover, since
divy P = 0 by Proposition 2.2 and the constant sectional curvaturelition, from
Codazzi equation we obtain

divm PV fy =) (Ve Vfy, RE)

=—Y (Ve(AV"), RE)
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=-D (Ve AVT, RE) =D (A(VeV) PE)

=-Y ((WAE,PRE)-> (VeV', ARE)

=-Y (RVv' AE,E)-> (VEV', ARE)

=—tr(RVyrA) = > (VEV', ARE),

where{E;y, ..., Ey} is a (local) orthonormal frame oM". Thus, by using Lemma
of [33], we get

divm PV fy = (1) "'V T(S41) = D (Ve (fuN), ARE) — ) (Ve V, ARE)

= (-1 "HVT, VSi1) + ) (AE, ARE)fy —) (VeV, ARE)

= (r i 1) (V, VH 1) + tr(AZP) fy — tr(R AT V)T).

On the other hand, from equation (4) of [10], we have

tr(P A(VV)") = tr(AR (VV)T)
= ctr(P) fy + tr(AR)y + tr(P)N(v).

Then, from equations (2.11), (2.12) and (2.13), we obtain

diVM PerV = {(r i1

)(nH Hii—(—r —1)H o) —c(r + 1)(r _T_ 1) Hr} fv

n

—(r—|—1)( r+1

n
r+1)HrN(1ﬁ)+(r +1)(

+ (r 11)“” VHr 1)

Hence, taking into account equation (4.8), we get

. n n
divy BV fy = {n(r N 1)H Hii—(h—r —l)(r N 1) Hr 12

n n \ H ay
(5.3) —c(r + 1)(r 4 1) Hr} fv+(r+ 1)(r 4 1)MW fv

)Hr+1w

0+ 1)(r :1) Hradr + (r i 1) (V, VHe 1),
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Consideringr = 0 in Proposition 2.3,

divm Hi 11V = (VHr 41, V) + Hepadivg VT

(5.4)
=(VHr41, V) +n¢¥H 1+ nHH g fy.

Hence, if we consider the fiell = PV fy — (.7))H 11V € X(M), from (5.3)
and (5.4) we get

divy Y = {—(n —r- 1)(r _r; 1) Hr2 —c(r + 1)(r J': 1) Hr} fy

n H, oy n
+ (r + 1)(r n 1)mﬁfv —(n—r —1)(r " 1) Hr+1lﬁ.

On the other hand, from Lemma 3.1,

(5.5)

. n n
(5.6) diw PV =(—r— 1)(r N 1)WHH1 +MN-r— 1)(r N 1) Hr o fy.

Now, let us consider oiM" the tangent vector field
X=Y+P, V'

Since|A| is bounded, from (2.9) we have thg® | is also bounded, for any £r <n.
Thus, from (4.6),

IXI < (Y] + [PraaV Tl < {|Pr| Al + ( )|Hr+1| + |Pr+1|}|vT| e £(Mm),

r+1

becausdV '| € £}(M) and H, ;1 is bounded. Moreover, from (5.5) and (5.6),

. n 10
divy X = (r + l)(r n 1){ma—ltp —C}Hr fy.

Since H; does not change sign dd" and (5.2) is valid, then djy X does not change
sign onM". Thus, Lemma 3.2 gives diwvX = 0. Therefore,H, = 0 on M".
Furthermore, ifH; ., does not change sign, from the Lemma 3.1, we obtain that

divy PV = (n— r)(?) Hyoa fy

also does not change sign &n". Here, we observe thal, V| < |P[|VT| € LYM).
Over again, Lemma 3.2 gives @ivP, V" = 0. This impliesH, ;1 = 0.

Finally, sinceH, = H;;1 = 0, Proposition 1 of [19] assures us thdf = O for all
j =1, so thatvg > n—(r —1). O
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Consideringr = 1 in Theorem 5.3, we have the following characterization of t
tally geodesic spacelike hypersurfaces.

Corollary 5.4. Let M1 be a timelike geodesically complete conformally sta-
tionary spacetimewith constant sectional curvature ¢ and endowed with a dasan-
formal timelike vector field V. Let:xM" — l\7|é1+1 be a completenoncompact space-
like hypersurface with bounded second fundamental form dAvemose mean curvature
H does not change sign and such thaj id bounded. IfiV"| € £}(M) and the con-
formal factor ¢ of V satisfies(1/|V|)ay/dt # ¢, where te R denotes the real par-
ameter of the flow ob = V/|V|, then M" is maximal. Moreoverif H, also does not
change signthen M is totally geodesic.

We recall that, according to Example 4.2 of [30], fixed an uimtelike vector
ac ]Ln+2,

(5.7) V(p)=a-(p,ap, pes;

is a closed conformal timelike vector field 8{* which foliatesS]™* by means of to-
tally umbilical round sphered, = {p € ST“: (p,a) = 1}, T € R. The level set given

by {p e S’l‘”: (p,a) = 0} defines a round sphere of radius one which is a totally geo-
desic spacelike hypersurface S’j“. According to the terminology established in [5],
we will refer to that sphere as thequator of S’l‘+l determined bya. This equator div-
ides S7*! into two connected components, theronological futurewhich is given by

{pesitt: (a, p) <0},
and thechronological pastgiven by
{pesitt: (a, p) > 0}

Taking into account the previous discussion, from the probfTheorem 5.3 we
get the following

Corollary 5.5. Let x: M" — S[*! be a complete spacelike hypersurface with
bounded second fundamental formhich lies in the chronological futurépas) of an
equator ofS’l‘*l determined by an unit timelike vector @L."*2, Suppose thatfor
somel <r <n-1, H and H,; have different(equa) signs and that both of them
do not change sign on M If |aT| € £1(M), then the index of minimum relative nullity
vo of M" is at least n— (r —1).

Proof. From equation (5.6) applied to the vector fi#ld taking into account our
restrictions on the signs ofl, and H,.; as well as the region oSrl‘“ where M" is
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supposed to be contained, we get thatyd®V ™ does not change sign ai". On the
other hand, from (5.7) we have thi¢ '| = |a"| € £}(M). Therefore, we can reason
as in the proof of Theorem 5.3 to conclude th4t = H,.; = 0 on M" and, hence,
the index of minimum relative nullityy, of M" is at leastn — (r — 1). ]

For a fixed timelike unit vectoa € R}™2, we have that the closed conformal vector
field V given by

V(p)=a+(a p)p, peH]T,

is timelike on the open set consisting of the poimptss H} ™! such that(a, p)? < 1.
This open set has two connected components and the digiribo ]HIQ+1 orthogonal
to V provides a foliationF(V) in this spacetime by means of the totally umbilical
spacelike hypersurfacdd, = {p IHIQ“: (p,a) =1}, —1 < t <1, which are isometric
to two copies of hyperbolic spac& " with constant curvature-1/(1 + 72) (see [30],
Example 4.3). In this setting, since the level set given {lpye HT“: (p,a) = 0}
defines a totally geodesic spacelike hypersurfacHQﬁl which is isometric toH", we
will refer to that level set as thequator of ]HIQ+l determined bya. In a similar way
of the de Sitter space, thehronological futureof ]HITr1 determined bya is given by

{peHI: ~1 < (a, p) <0},
and thechronological pastis given by
{peHI™: 0< (a p) <1).

We can reason as in the proof of Corollary 5.5 to get the fahigw

Corollary 5.6. Let x: M" — ]HIQ+1 be a complete spacelike hypersurface with
bounded second fundamental forwhich lies in the chronological futurépasi) of an
equator oleIQ+1 determined by an unit timelike vector eaRQ*z. Suppose thatfor
somel <r <n-—1, H and H,; have equal(differen) signs and that both of them
do not change sign on M If |a’| € £(M), then the index of minimum relative nullity
vo of M" is at least n— (r — 1).

REMARK 5.7. In [26], Ishihara proved that amdimensional complete maximal
spacelike hypersurface immersed Iﬁﬂj+1 must have the squared norm of the second
fundamental form bounded from above hy
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