Gasior, A. and Szczepaki, A.
Osaka J. Math.
51 (2014), 1015-1025

FLAT MANIFOLDS WITH HOLONOMY GROUP Zg OF
DIAGONAL TYPE

A. GASIOR and A. SZCZEPNSKI

(Received October 15, 2012, revised March 5, 2013)

Abstract

We consider relations between two families of flat manifoldish holonomy
group Z& of diagonal type: the familyRBM of real Bott manifolds and the fam-
ily GHW of generalized Hantzsche—Wendt manifolds. In particuls, prove that
the intersectiorGHW N RBM is not empty. Moreover, we consider some class of
real Bott manifolds without Spin and Sfinstructure. There are given conditions
(Theorem 1) for the existence of such structures. As an egiin a list of all 5-
dimensional oriented real Bott manifolds without Spin stane is given.

1. Introduction

Let M" be a flat manifold of dimension. By definition, this is a compact con-
nected, Riemannian manifold without boundary with se@larurvature equal to zero.
From the theorems of Bieberbach ([2]) the fundamental grey(d") = I' determines
a short exact sequence:

(1) 0—>Z”—>I‘—p>G—>O,

whereZ" is a torsion free abelian group of ramkand G is a finite group which is iso-
morphic to the holonomy group d¥1". The universal covering oM" is the Euclidean
spaceR" and hencd” is isomorphic to a discrete cocompact subgroup of the isgmet
group IsomR"™) = O(n) x R" = E(n). Conversely, given a short exact sequence of the
form (1), it is known that the group’ is (isomorphic to) the fundamental group of a
flat manifold if and only if " is torsion free. In this cas€& is called a Bieberbach
group. We can define a holonomy representatiorG — GL(n, Z) by the formula:

2 Vge G, ¢(g)e)=3da(@ "

whereg € I' are generators a£" fori = 1,2,...,n, and§ € I such thatp(g) = g.
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In this article we shall consider only the case
() G=12 1<k<n-1, with ¢(Z¥) c D c GL(n, Z),

where D is the group of all diagonal matrices. We want to consideatiehs be-
tween two families of flat manifolds with the above proper8):(the family RBM

of real Bott manifolds and the familgHWW of generalized Hantzsche—Wendt mani-
folds. In particular, we shall prove (Proposition 1) thag¢ thtersectionrGHW N RBM

is not empty.

In the next section we consider some class of real Bott masifavithout Spin
and SpifY structure. There are given conditions (Theorem 1) for thistemce of such
structures. As an application a list of all 5-dimensionakwted real Bott manifolds
without Spin structure is given, see Example 2. In this casegeneralize the results
of L. Auslaneder and R.H. Szczarba, [1] from 1962, cf. RemhrkAt the end we
formulate a question about cohomological rigidity @)V manifolds.

2. Families

2.1. Generalized Hantzsche-Wendt manifolds. We start with the definition of
generalized Hantzsche—Wendt manifold.

DEFINITION 1 ([17, Definition]). A generalized Hantzsche—Wendt malaif¢for
shortGHW-manifold) is a flat manifold of dimension with holonomy group Z»)"*.

Let M" € GHW. In [17, Theorem 3.1] it is proved that the holonomy représgon (2)
of 71(M") satisfies (3). The simple and unique example of an orientddn&nsional
generalized Hantzsche—Wendt manifold is a flat manifoldcvhiias considered for the
first time by W. Hantzsche and H. Wendt in 1934, [9]. W' € GHWW be an ori-
ented,n-dimensional manifold (a HW-manifold for short). In 1982Zes[17], the sec-
ond author proved that for odd > 3 and for alli, H'(M", Q) = H'(S", Q), whereQ
are the rational numberS" denotes ther-dimensional sphere and<” denotes an iso-
morphism of groups. Moreover, for> 5 the commutator subgroup of the fundamental
group i (M™ =T is equal to the translation subgroug ([I'l = I' N R"), [16]. The
number®(n) of affine non equivalent HW-manifolds of dimensiongrowths exponen-
tially, see [14, Theorem 2.8], and fon > 7 there exist many isospectral manifolds non
pairwise homeomorphic, [14, Corollary 3.6]. The manifolds/e an interesting connec-
tion with Fibonacci groups [18] and the theory of quadratinoris over the fieldr,, [19].
HW-manifolds have no Spin-structure, [13, Example 4.6 o#593].

The (co)homology groups and cohomology rings with coeffitdein Z or Z,, of
generalized Hantzsche—Wendt manifolds are still not knasee [5] and [6].

We finish this overview with an example of generalized HactizsWendt mani-
folds which have been known already in 1974.
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ExampLE 1. Let M"=R"/T'y,n > 2 be manifolds defined in [12] (see also [17,
p.1059]), wherel, C E(n) is generated by, = (I =id, (1,0,...,0)) and

3 _ /0
1 O O -+ ... ... 0 0
0 1 0 0 :
.o O
0o .-~ 1 0 O 0
(4) v=1l0o ... 0 -1 o 0,2 e E(n),
0 0 0 1 0 =
o 2
| 0 o o o0 1]|
0

where —1 is in the {, i) position and 12 is the { + 1) coordinate of the column,
i=1,2,...,n—1. T is the fundamental group of the Klein bottle.

2.2. Real Bott manifolds. We follow [3], [11] and [15]. To define the second
family let us introduce a sequence RfP-bundles

1 1 1 1
(5) Mo 225 My 25 B2 My B2 M = (a point

such thatM; — M;_; fori =1, 2,..., n is the projective bundle of a Whitney sum
of a real line bundleLj _; and the trivial line bundle oveM;_;. We call the sequence
(5) areal Bott towerof heightn, [3].

DEFINITION 2 ([11]). The top manifoldM,, of a real Bott tower (5) is called a
real Bott manifold.

Let » be the canonical line bundle ovéM; and setx; = wi(y). Since HY(Mi_1, Z»)
is additively generated by, Xo,...,%—1 andL;_; is a line bundle oveM;_;, one can
uniquely write

i—-1

(6) wi(Li_1) = Z i Xk

k=1

with a; € Z, = {0, 1} andi =2, 3,...,n.

From aboveA = [ay] is a strictly upper triangular matrixof size n whose diago-
nal entries are 0 and other entries are either 0 or 1. Sumnpngve can say that the
tower (5) is completely determined by the matx From [11, Lemma 3.1] we can

la; =0 fork>i.
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consider any real Bott manifold1(A) in the following way. LetM(A) = R"/T(A),
where'(A) C E(n) is generated by elements

0
1 0 o0 0 ] :
0 1 0 0 0
7)) s = o .-~ 0 1 0 0 | 2 € E(n),
0 -+ 0 0 (=1 ... 0 0
0 .- 0 O 0 e (1) | O
0

where (1)»i+1 is in the { + 1,i + 1) position and 12 is the {) coordinate of the
column,i=1,2,...,n—-1.s,=(1,(0,0,...,0, 1) e E(n). From [11, Lemma 3.2,
3.3] s2,s3,..., 2 commute with each other and generate a free abelian subgbup
It is easy to see that it is not always a maximal abelian swimaf I'(A). Moreover,
we have the following commutative diagram

0—>N—>F(A)—>Z'§—>O

[

0— Z" — I'(A) — 25 —— 0

wherek = rankz,(A), N is the maximal abelian subgroup D{A), and p: I'(A)/Z" —
I'(A)/N is a surjection induced by the inclusion Z" — N. Hererankz,(A) denotes
a rank of the matrixA. From the first Bieberbach theorem, see [R],is a subgroup
of all translations ofl'(A) i.e. N =T(A)NR"=T(A)N{(l,a) € E(n)|aeR"}.

DEFINITION 3 ([3]). A binary square matrixA is a Bott matrix if A= PBP!
for a permutation matrix? and a strictly upper triangular binary matri.

Let B(n) be the set of Bott matrices of siz@? Since two different upper triangu-
lar matricesA and B may produce (affinely) diffeomorphic~) real Bott manifolds
M(A), M(B), see [3] and [11], there are three operationsZ{n), denoted by (Opl),
(Op2) and (Op3), such thal(A) ~ M(B) if and only if the matrix A can be trans-
formed intoB through a sequence of the above operations, see [3, Parh&]oderation
(Opl) is a conjugation by a permutation matrix, (Op2) is @&diipn ®y: B(n) — B(n)

8) Or(A)sj = A + agj Ak

2SometimesB(n) is defined to be the set of strictly upper triangular binamgtnices of sizen.
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for k, j € {1,2,...,n} such that®y o &y = 1z(y. Finally (Op3) is, for distinct, m
{1, 2,...,n} and the matrixA with A,; = Ay n

Al,* + Am,* if 1= m,
A . otherwise.

©) O (A 1= {

Here A, ; denotesj-th column andA, .. denotesi-th row of the matrixA.
Let us start to consider the relations between these twesedasf flat manifolds.
We start with an easy observation

RBM(n) N GHW(N) = {M(A) | rankz, A=n—1}
= {M(A) | a1,082,3- - @n—1n = 1}.

These manifolds are classified in [3, Example 3.2] andrfer 2
(10) #RBM(N) N GHW(n)) = 20-20-3)/2,

There exists the classification, see [17] and [3], of diffeopmism classes o§HW
and RBM manifolds in low dimensions. For dint 6 we have the following table.

number of number of number of
dim || GHW manifolds || RBM manifolds || GHW N RBM manifolds
total | oriented || total | oriented total
1 0 0 1 1 0
2 1 0 2 1 0
3 3 1 4 2 1
4 12 0 12 3 2
5 123 2 54 8 8
6 2536 0 472 29 64

Proposition 1. Let I'y be a group fromExample 1thenT, € GHW N RBM.

Proof. It is enough to see that the grou@, O)'»(G, 0) ! = I'(A), whereG =
[gj], 1<i,j=n,
1t j=n—i+1,
9 =10 otherwise,

and A=[g;], 1 <i,j <n, with

(10 j=i+a,
&= {0 otherwise. =
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3. Existence of Spin and Spifi structures on real Bott manifolds

In this section we shall give some condition for the exiséent Spin and Spih
structures on real Bott manifolds. We use notations fromptevious sections. There
are a few ways to decide whether there exists a Spin struotuin oriented flat mani-
fold M", see [7]. We start with the following. A closed oriented diffntial manifold
N has such a structure if and only if the second Stiefel-Whiittlassw,(N) = 0. In
the case of an oriented real Bott manifditil A) we have the formula foiw,.

Recall, see [11], that for the Bott matrik

j :1,2,...,n)

as graded rings. Moreover, from [12, (3.1) on p. 3] thth Stiefel-Whitney class

(n)wawmgzﬁvmwuwm/%ﬁ=m§:mﬁ

i=1

(12) w(M(A)) = (B(P) oY1, Yz - - - Yn) € H(M(A): Zo),
where oy is the k-th elementary symmetric function,
p: m1(M(A)) — G C O(n)

a holonomy representatioB(p) is a map induced by on the classification spaces
andy; := wi(Lj_1), see (6). Hence,

(13) wa(M(A) = D yiyj € HAM(A); Zy).

l<i<j=<n

There exists a general condition, see [5, Theorem 3.3],Hercalculation of the sec-
ond Stiefel-Whitney for flat manifolds withzg)* holonomy of diagonal type but we
prefer the above explicit formula (13)Its advantage follows from the knowledge of
the cohomology ring (11) of real Bott manifolds.

An equivalent condition for the existence of a Spin struetig as follows. An
oriented flat manifoldM" (a Bieberbach groupr;(M") = ') has a Spin structure if
and only if there exists a homomorphism ' — Spin() such thatine = p. Here
An: Spin() — SAN) is the covering map, see [7]. We have a similar conditiordeun
assumptionH2(M", R) = 0, for the existence of Spinstructure, [7, Theorem 1]. In
this caseM"” (a Bieberbach group’) has a Spih structure if an only if there exists
a homomorphism

(14) €: T — Spirf(n)

such thati,é = p. A,: Spirf(n) — SQn) is the homomorphism induced by,, see
[7]. We have the following easy observation. If there existsC I', a subgroup of

3We use it in Example 2.
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finite index, such that the finite coveringl™ with 71(M") = H has no Spin (Spf)
structure, therM" has also no such structure. We shall prove.

Theorem 1. Let Ae B(n) be a matrix of an orientable real Bott manifold ().
I. Letle N be an odd number. If there exi&t<i < j <n and rows A, Aj.
such that

(15) Hmlam=a;m=1 =
and
(16) g, =0,

then M(A) has noSpin structure. Moreoverif
a7 #HIC{1,2,...,n}|# =2,ZjesA,j =0} =0,

then M(A) has noSpirf structure.
Il. If a; =1 and there existL <i < j <n and rows

Ai,* :(01"'|Oyai,i1!""!ai,izkaoa"'!o)y
Aj,* = (Ov ceey Oyaj,i2k+11 vy aj,i2k+2|v 01 ey O)

such that @, = ajj, =-- =i, =1, am=0Tfor mé¢ {is, i, ..., 1%} 8jizx+1 =
Qjig+2 =" = Qjig+2d = 1, ajr = Oforr ¢ {iok +1,igx+2,...,ix+2} and |, k
odd then MA) has noSpin structure.

Proof. From [11, Lemma 2.1] the manifoldl(A) is orientable if and only if for
anyi=1,2,...,n,

Zi ;18 k=0 mod 2.
Assume that: 71(M(A)) — Spin() defines a Spin structure dvi(A). Leta;;,,a;,,...,

Qi iz @,j12 8,1+ -+, = 1 @nd lets, s; be elements ofr1(M(A)) which define rows
i, j of A, see (7). Then

€(s) = £@,8,- -6, €(s)=+eje), - e,
and
e(s Sj) = £6¢6; By -
From (15) 2 = 2m+2p—2. Moreovere(s?) = (—1)", ¢(s?) = (-1)° ande((s 5))?) =
(=P = (=)™ P+ Since from (16) (see also [11, Lemma 3.2 = s;5 we
havee((s)?)e((s))?) = e((ssj)?). Hence

(_1)m+p — (_1)m+ p+l )
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This is impossible sincé is an odd number and we have a contradiction.

For the existence of the Sginstructure it is enough to observe that the condition
(17) is equivalent to equatioR>(M(A),R) = 0, see [3, formula (8.1)]. Hence, we can
apply the formula (14). Let us assume tkatmi(M(A) — Spirf(n) defines a Spin
structure. Using the same arguments as above, see [7, Riapdd, we obtain a con-
tradiction. This finished the proof of I. For the proof Il les wbserve thag? = (s's))?.
Hence (1) = €((s)? = €((s5))?) = (—1)¢*' = 1. This is impossible. O

In the above theorem rows of numbeand j correspond to generatoss s; which
define a finite index subgrou C 71(M(A)). It is a Bieberbach group with holonomy
group Z, ® Z,. We proved thatH (if it exists) has no Spin (Spf) structure, (see the
discussion before Theorem 1). In the next example we givédighef all 5-dimensional
real Bott manifolds (with) without Spin (Spin structure.

ExampPLE 2. From [15] we have the list of all 5-dimensional orientedlrBott
manifolds. There are 7 such manifolds without the torus.eHme their matrices:

01010 01100
0 0101 0 00 0O
A4=|10 0 0 1 1|, A=|0 0 0 1 1],
0 00 0O 0 00 0O
0 00 0O 0 00 0O
001 1 1 1] [0 0 0 0 O]
0 00O0O 00110
A=[0 0 0 0 O, Ai7=|0 0 0 1 1/{,
0 00O0O 0 00O0O
0 00O0O 0 00O0O
[0 0 1 0 1] [0 0 1 0 1]
0 0110 00110
Ap=[0 0 0 1 1|, Ag=|0 0 0 0 Of,
0 00O0O 0 00 0O
0 00O0O 0 00 0O
[0 0 0 0 O]
0 00O0O
Apg=[0 0 0 1 1].
0 00O0O
|0 0 0 0 0]
From the first part of Theorem 1 above, foe= 1, | = 2 the manifoldM(A4) has no

Spir structure. For the same reasons (fet 1, j = 2) manifoldsM(As) and M(Ags)
have no Spin structures. The manifdlt{ Ay3) has no a Spin structure, because it satisfies
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fori =1, j = 3 the second part of the Theorem 1. Since any flat orientedfaldnvith

Z, holonomy has Spin structure, [10, Theorem 3.1] manifdlticA,g), M (Agg) have it.

Our last example, the manifolell (Az7) has Spin structure and we leave it as an exercise.
In all these cases it is possible to calculate #hewith the help of (6), (13) and (11).

In fact, wa(M(Ag)) = (X2)* + X1X3, w2(M(Ag3)) = X1Xa, wa(M(As0)) = wa(M(Asg)) =

X1X2. In all other casew, = 0.

EXAMPLE 3. Let

1 0]
11

*

>

Il
lcNoNeoNeoNeNoNeo)
cNoNoNeoNoNoNeo)
OO0 00O OoR
OO0 00 ¥ oOp

cooo ¥ ¥ opr

*
*
*
00
— 0 0_
be a family of Bott matrices, withx € Z,. It is easy to check that the first two rows
satisfy the condition of Theorem 1. Hence the oriented rest BianifoldsM(A) have
no the Spin structure.

REMARK 1. In [1] on p.6 an example of the flat (real Bott) manifdldl with-
out Spin structure is considered. By an immediate calarathe Bott matrix ofM is
equal to

O OO oo
O OO oo
O OO o
OO OFrPk
O OO Fr O

4. Concluding Remarks

The tower (5) is an analogy of a Bott tower
Wy = Wy 1 — --- —> Wy = CPY — Wy = {a poin}

where W, is a CP? bundle onW_; i.e. W = P(1¢ L;_;) and L;_; is a holomorphic
line bundle overW,_;. As in (5) P(1 & Li_;) is projectivisation of the trivial linear
bundle andL;_;. It was introduced by Grossberg and Karshon [8]. Note iWatis a
toric manifold. It means a normal algebraic variety over tioenplex number< with
an effective algebraic action of£¢)" having an open dense orbit, whetg = C \ {0}.
See [3] for the more complete bibliography.
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There is an open problem: Is it true that two toric manifolds diffeomorphic
(or homeomorphic) if their cohomology rings with integerefficients are isomorphic
as graded rings? In some cases it has partial affirmativeicatu For the survey of
those problems we send a reader to [4] and [11].

For real Bott manifolds the following is true.

Theorem ([11, Theorem 1.1]) Two real Bott manifolds are diffeomorphic if and
only if their cohomology rings wittZ, coefficients are isomorphic as graded rings.
Equivalently they are cohomologically rigid.

All of this suggests the following:

QUESTION. Are GHW-manifolds cohomological rigid?

The answer to the above question is positive for manifoldenfGHW N RBM. It
looks the most interesting for oriented GHW-manifolds. Heer, forn = 5 there are
two oriented Hantzsche—Wendt manifolds. From direct datmns with the help of a
computer we know that they have different cohomology ringth &, coefficients.
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