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Abstract
We define the induction and restriction functors for cyatoio q-Schur algebras,
and study some properties of them. As an application, wegodfg a higher level
Fock space by using the module categories of cyclotogp®chur algebras.

0. Introduction

Let %, be the Ariki-Koike algebra associated to the complex rafiacgroup
Gnx (Z/rZ)" over a commutative rindR. Let ., be the cyclotomiay-Schur algebra
associated to%, . It is known that#, -mod is a highest weight cover of; .-mod in
the sense of [14] wheiR is a field. In [14], Rouquier proved tha¥;, ,-mod is equiva-
lent to the category) of the rational Cherednik algebra associatedtpx (Z/r Z)" as
the highest weight covers of%, ,-mod whenR = C with some special parameters.

On the other hand, in [3], Bezrukavnikov and Etingof definled parabolic induc-
tion and restriction functors for rational Cherednik algeh By using these functors,
Shan has categorified a higher level Fock space by using tiegarees© of rational
Cherednik algebras in [16].

In this paper, we define the induction and restriction furefor cyclotomicg-Schur
algebras, and study some properties of them. In 81, we res@wme known results for
cyclotomic g-Schur algebras. In 82, we define the injective homomorpla§mlgebras
L2 e = Fnear- This injection carries the unit element of,, . to a certain idempo-
tent& of A .1,. Thus, we can regard’ 1§ (resp.€.%n1r) as an iy, Snr)-
bimodule (resp. &, “n+1r)-bimodule) by multiplications through the injection By
using these bimodules, we define the restriction functamfr#;, ., -mod to.#, -mod
by Reﬁ+l = Homg,,, (#hs1,€, ?), and define the induction functors fram, ;-mod
to Fhi1r-mod by Indtt = A11,E®5, 2 and colnf™ := Homg, (6 7hi1r, ?). In
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83, we study the standard (Weyl) and costandard modulesabbtoynic g-Schur alge-
bras applying the functors RES, Indl™* and colnd™. In Theorem 3.4, we prove that
the restricted and induced standard (resp. costandardlule®odhave filtrations whose
successive quotients are isomorphic to standard (resparmtesd) modules. In 84, we
study some properties of our functors. In particular, weverthe isomorphism of func-
tors Indi** = colndi*? (Theorem 4.17). Then, we see that Resis left and right ad-
joint to Ind’*!, and both functors are exact. Moreover, these functors cdemith
the dual functors and Schur functors (Corollary 4.18). In 8% using the projections
to blocks of cyclotomicg-Schur algebras, we refine the induction and restrictiorcfun
tors. As an application, we categorify a levelFock space by usingp, ., “n-mod
with (refined) induction and restriction functors (Corojle.7)t. In 86, we prove that
our induction and restriction functors are isomorphic te torresponding parabolic in-
duction and restriction functors for rational Cherednigeddras given in [3] when mod-
ule categories of cyclotomig-Schur algebras are equivalent to catego@iesf rational
Cherednik algebras as highest weight covers of module aagsgof Ariki—Koike alge-
bras (Theorem 6.3).

Notation and conventions: For an algebsa over a commutative ringR, let o/-
mod be the category of finitely generated le#f-modules, andKq(</-mod) be the
Grothendieck group ofez-mod. For M € «/-mod, we denote byNl] the image of
M in Ko(<7-mod).

Let 0: &/ — o/ be an algebra anti-automorphism. For a leftmodule M, put
M® = Homg(M, R), and we define the left action off on M® by (@ - ¢)(m) =
p@@) -m) for ae o/, ¢ € M®, me M. Then we have the contravariant functor
®: «/-mod — «/-mod such thatM — M®. Throughout this paper, we use the same
symbol @ for contravariant functors defined in the above associatitid several alge-
bras since there is no risk to confuse.

1. Review of cyclotomicg-Schur algebras

In this section, we recall the definition and some fundanieptaperties of the
cyclotomic g-Schur algebra#;,; introduced in [4], and we review a presentation of
“nr by generators and defining relations given in [18].

1.1. Let R be a commutative ring, and we take parametgi®,...,Q; € R such
that q is invertible in R. The Ariki—Koike algebrag.7%;,, associated to the complex
reflection group&, x (Z/rZ)" is the associative algebra with 1 ov& generated by

1Recently, in [17], Stroppel and Webster gave a categorificaif a Fock space by using a quiver
Schur algebra, but our methods are totally different froeirth In the review process, the author re-
ceived a mail from Professor C. Stroppel. According to heil,nia the revised version of [17], they
regard their induction and restriction functors as graditsl bf corresponding our functors, and also
obtain graded lifts of some results of this paper. He wold tb thank C. Stroppel for her information.
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To, Ta, - - ., Thy With the following defining relations:

(To— Q1)(To — Q2). .. (To — Qr) =0,

(Ti—aq)(Ti+97H) =0 (1<i<n-1),
ToTiToTy = TaToT1 To,
TTiaTi =TiuTiTia (1<i=<n-2),
Tty =TT (li=jl=2).
The subalgebra og7%, generated byTy, ..., T,_1 is isomorphic to the Iwahori—

Hecke algebrar.7#, of the symmetric groups, of degreen. For w € &,, we denote
by I(w) the length ofw, and denote byT, the standard basis of. 7%, corresponding
to w. Let x: pith, — rI, (N — h*) be the anti-isomorphism given bl* = T; for
i=0,1,...,n=1.

1.2, Letm = (my, ..., m) € Z_, be anr-tuple of positive integers such that
mg >n foranyk=1,...,r. Put
K
W — @, ) e 2,
An’r (m) = pu= (/J,(l), PP /L(r)) r (k)
>
k=1 i=1
We denote byju®| = 3™ u® (resp.|u| = Y ,|u®)) the size ofu® (resp. the

size of u), and call an eIement oft,, r(m) anr-composition of sizen. Put
Al = (e Age(m) | A0 =289 > >0 for anyk =1,...,r).
Then A7, is the set ofr -partitions of sizen.
13. Fori=1,...,n,putL; =ToandL; = Ti_3Li_1Ti_1. For u € A,,(m), put
ra
m, = Z ql(w)Tw (1_[ 1_[ Qk))y M# = my - R%,ra
wed, k=1i=1
where &, is the Young subgroup of5, with respect tou, anda, = Z L] with

a; = 0. The cyclotomicg-Schur algebraz.7;,, associated tg.s4 , is deflned by

Rt = RZnr (Any (M) = End, %< b M").

MEAn (M)

REMARK 1.4. LetMm = (My,..., M) € Z, be such thaff, > n for any k =
1,...,r. Then it is known thag.#,(An(mM)) is Morita equivalent tor.% ¢ (An (M))
when R is a field.
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1.5. In order to describe a presentation @4, ,, we prepare some notation.

Putm=Y_, mg, and letP = ", Zs be the weight lattice ofjl,,. Seta; =
gi—¢gfori=1,...,m=1, thenll = {¢; | 1 <i <m-—1} is the set of simple roots,
and Q = @} Za; is the root lattice ofgly,. Put Qt = @™ Z-oai. We define a
partial order =" on P, so-called dominance order, By> u if A —u € Q™.

Putr(m)={@i,k)|1<i<m, 1<k=<r},andr’(m)=r(m)\ {(my,r)}. We
identify the setI"(m) with the set{1,..., m} by the bijection

k—1
r(my—(1,...,m} such that i(k)— Y mj+i.
=1
Under this identification, we have
m
P = @Zsi = @ Zej Ky,
i=1 (i,k)er(m)
m—1
Q = ZOli = @ Za(i,k).
i=1 (i,k)er’(m)

Then we regardi,,,(m) as a subset oP by the injective map

Apr(m) — P such that A — Z 2.
(i,K)er(m)

For convenience, we considemny + 1,k) = (1,k 4+ 1) for (my, k) € I'’(m) (resp. (-
1,k) = (me_g, k—1) for (1,k) € r'(m)\ {(1, 1)}).

Fori=1,...,n—1, lets = (i,i + 1) € &, be the adjacent transposition. For
i€ Ane(m) and (,K) € I'(m), put Nf'y = SITHuO| + Xy 1,

M+a(l'k) = (L [ [ (L DECEEY
X ={L, NGk SNE i SNEg =17 - - v SN SNy =1 SN('f,k)—Mi(k)H}’
Mia(l‘k) = (L i i DO (L i LY
X/‘ - {1’ SN{i,k)’ SN(’i,k)SN(li,k)Jrl’ ! SN(}i,k)SN(li,k)Jrl Sfo,k)+“§?1—1}’
] k+D) er
where we seju.’ ;= py O if i =m.

For (, k) € I''(m), we define the element§; k), Fix € rSnr DY
(1.5.2)

_,® .
q Hip1+1 Z q|(X)TX* hlj-(i,k)mll .h if W+ oK) € An’r(m),

e K
XeX,, (B

0 it w+agr ¢ Anr(m),

Eix(m,-h) =
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(1.5.2)

,/L‘(k)Jrl I(y)T* m.-h if o A m
Fiw(m,-h) = q ( Z a y) i W=k € Any(m),

yexg o
0 it w— ok & Anr(m)

1 (i # my),

I—N(’-‘k)+1 — Q41 (i = my).

for uw € Apy(m) andh € g4, whereh’i(i’k) = {

For » € Anr(m), we define the element, & ., by
1)L(mu . h) = (S)L’Mm)L . h

for w € An (M) and h € g4, ;. From this definition, we see thdt,; | » € A, (m)}
is a set of pairwise orthogonal idempotents, and we have}L, _, ) 1.
For & € Anr(m) and {, k) € I'(m), we definesj,) € r-7nr by

A _ (SA,u(mA(L Ni 1 + LNg‘k)—l 4+ .o+ LN}(k —Afk)+1)) .h if )‘i(k) 75 0,
oMy -h) = o M

| 0 if A7 =0
for u € An,(m) andh € g . For (, k) € I'(m), put

Olik = Z T ke

AEAp, (M)

then o(j k) is a Jucys—Murphy element of.7,, (See [13] for properties of Jucys—
Murphy elements).

1.6. We need some non-commutative polynomials to give a preemtaf .7
as follows. Putd = Z[q,q7%, Q1,..., Q/], whereq, Qu, ..., Q; are indeterminate over
Z, and letX = Q(q, Q1, ..., Q) be the quotient field ofA.

Let K(x) (resp.K(y)) be the non-commutative polynomial ring ovrwith inde-
terminate variables = {X | (i, K) € I'"(m)} (resp.y = {Yix | (i, K) € I'"(m)}). For
g(x) € K(x) (resp.g(y) € K(y)), let g(F) (resp.g(E)) be the element of..#,, ob-
tained by replacing; iy (resp.y;) with Eg i (resp. Fik). Moreover, forg(x, y) =
2Ty @ g (y) € K{x) ®x K(y) (rj € K), put

g(F, E) =) 1,9, (F)g (E) € x-Fnr-
j

Then we have the following lemma.
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Lemma 1.7 ([18, Lemma 7.2]) For A € A, (m) and (i, k) € I"(m), there exists
a (non-commutativiepolynomial q’k)(x, y) € K{x) ® K(y) such that

(1.7.1) O’(}Il’k) = ga,k)(F’ E)lA
|n K:yn’r.

We remark that a polynomiagg‘i’k)(x, y) € K(X) ®x K(y) satisfying (1.7.1) is not
unique in general. Thus we fix a polynomigﬂ'k)(x, y) € K(X) ®x K{y) (A € Anr(M),
(i, k) € I"'(m)) satisfying (1.7.1).

For an integek € Z, put [K] = (q—q¥)/(q—q~1). For a positive integer € Z- o,
put [t]! = [t][t —1]---[1] and set [0]!= 1.

Now we can describe a presentation of cyclotomp&chur algebras as follows.

Theorem 1.8([18, Theorem 7.16]) x-%n, is the associative algebra ovés gen-
erated by E i, Fiw ((, k) € I'(m)), L, (A € A, (m)) with the following defining
relations

(1.8.1) L=l ), Li=1
AEAn,; (M)
) _ 1x+a(i,k) Biw 1f A+ a0 € Anr(m),
(1.8.2) Eiwl = {0 otherwise
1, = il 1T A =gy € Anr (M),
(1.8.3) Fiwl = {0 otherwise
o | Babiagy T A= e € Anr(m),
(1.8.4) LB = {o otherwise
Fikliragy T A+ ain € Anr(m),
18 LR = qp 0o ise. '
(1.8.5) 2.77(1,k) {0 otherwise
(1.8.6) EqoFin = FanEo = 8uo.00 D M.
AEAn,
i A m

— k+1
wheren g = 1 (~ Qe [A%) —af]
A(k) 7}\§-k+1)

+qm (qflg(xmk,k)(':a E) - qg?1,k+1)(|:, ENL, if i = my,
(1.8.7) Eq+10(Eqx)° = (@ + 9 )E 0 Eq+10Edk + (Eio)*Egik =0,
EiwEqGy = EGnEix (0, k) =1, D =2),
(1.8.8) Fa=1k(Fix)” — @ + a7 R Fi<ik Fak + (Fio)*Fizn = 0,

FiwFin = FonFiw (30, K =, D= 2),
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where i, k) — (j, 1) = (X571 ma + i) — (Zp2yme + ) for €, k), (), 1) € 7(m).

Moreover 4.7, is isomorphic to the.A-subalgebra of %, generated by
Ei /[ Fio/ll (i, k) € I'(m), | = 1), L (A € An,(m)). Then we can obtain
the cyclotomic gq-Schur algebra¥,, over R as the specialized algebra®y 4%
of Ayn,r-

1.9. Weyl modules (see [18] for more details). Let 4.7 (resp.4.7;,) be the
subalgebra ofi.nr generated b)E}, W/l (resp. F(', w/[11") for (i,k) € I'"(m) andl > 1.
Let 4., be the subalgebra of.#,, generated by ,1for A € Ap(M). Then 4%,
has the trlangular decomposition?n, = 4.7 4% 47 by [18, Proposition 3.2,
Theorem 4.12, Theorem 5.6, Proposition 6.4, Propositighand Theorem 7.16]. We
denote by 4.7 ;° the subalgebra of.%;,, generated by,.#, and 4.7,

Note that %5 is the specialized algebr® ® 4 4. We denote byE((I')k)

(resp. F ik L) the elements ® E'I W/l (resp. 1® F(. /[l 1®1) of R®4 -
Then ., also has the triangular decomposition

Y
Ryn,f = Ryn,r R<yn,r Rﬁsﬂn,r

which comes from the triangular decomposition o8, .

For € A, we define the one-dimensiongal;;;°>-module®; = Ru;, by E((i'?k)-v,\ =
0(i,k)er'(m), ! >1)and 1, -v, =680 (0 € Anr(m)). Then the Weyl module
rRAn(A) of 7 is defined as the induced module ©f:

RAN(A) = RS ®Ryn30 0.

See also [18, paragraph 3.3 and Theorem 3.4] for definitidng2g,(1).
It is known thaty.#y, is semi-simple, and thac An(2) | 2 € A} gives a com-
plete set of pairwise non-isomorphic (left) simpte/, -modules.

1.10. Highest weight modules. Let M be angr.#,,-module. We say that an
elementm € M is a primitive vector ifE((i'?k) -m =0 for any {, k) € I'"(m) and| > 1,
and say thaim € M is a weight vector of weighy if 1, - m = m for u € A,,(m).

If x;,, € M is a primitive and a weight vector of weight, we say thatx, is a high-
est weight vector of weight. If M is generated by a highest weight vectgre M
of weight A as ang.%,,-module, we say thaM is a highest weight module of high-
est weighti. It is clear that the Weyl modulgAn(2) (A € Aj,) is a highest weight
module. Moreover, we have the following universality of theywvmodules.

Lemma 1.11. Let M be anr.%,,-module. If M is a highest weight module of
highest weight., there exists a surjective.#, ,-homomorphisnkAn(2) — M such that
1® v, — Xy, where X is a highest weight vector of M.
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1.12. In [4], it was proven by combinatorial arguments thets,, (resp.r-“nr)
is a cellular algebra. We review several properties fromfg4]later arguments.
For u € An(m), the diagram f] of u is the set

Wl =1{(, ], ez’ |1<i<m, 1<j=u¥ 1<k=r)
For A € A;r andx € Z.g X Z.o x {1,...,r}, we say thatx is a removable node

(resp. an addable node) afif [A] \ {x} (resp. p] U{x}) is the diagram of a certairn-
partition u € AT, (resp.;u € AT . ). In such case, we denote the abqves A

n—-1,r n+1r n—1,r
(resp.u € An++1,r) by A\ x (resp.A U x), namely p\ x] = [A] \ {X} (resp. RUX] =
[A] U {x}).
We define a partial order>*” on Z.g x Z-gx {1,...,r} by

G,j,kK>=(@,j,k) if k<k, orif k=k' and i <i".
We also define a partial order-" on Z.o x {1,..., r} by
@,k > (@', k) if (i,1,k)>(’, 1,k).

Forix e AT

ar» @ standard tableatiof shapex is a bijection

t: [A] = {1,2,...,n}

satisfying the following two conditions:
) 0, 5, K) <, j+1,k)if (i, ] + 1,k €[4l
(i) (G, j, k) <t +1,j,k)if (i +1,j,K) €[]
We denote by Std( the set of standard tableaux of shape
For u € An(m), we define the bijectiont“: [u] — {1, 2,...,n} as

k—1 i—1
(G, 5, ) =D 1@+ > ul + .
c=1 a=1

It is clear thatt* € Std@) for A € A[l,. For t € Std@.), we defined(t) € &, as

t((0, J, k) = dOEG, . k) (@ k) € 2D

For A € Anfr and s, t € Std@A), setm,, = Td*(s)m,\Td(t) € rJ%,. Then we have the
following theorem.

Theorem 1.13([4, Theorem 3.26]) rs%, iSs a cellular algebra with a cellular
basis {m,, | s, t € Std@.) for somex € A} with respect to the posdtA,,, >). In
particular, we have rfj, = my,.
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1.14. Forie A}, andu € Ay (M), a tableau of shape with weight .. is a map

T:[AM]—>{(a,c0)eZxZ]|a>1, 1<c<r}

such thatu-(k)

i =#xe[A]l| T(xX) = (i, k)}. We define the reverse lexicographic order
onZxZ by (ac)>(a,c) eitherifc>c, orif c=c anda > a'. For a tableau

T of shapei with weight i, we say thafl is semi-standard iff satisfies the follow-
ing conditions:

@i If T((, j, k) =(a,c), thenk <c,

@iy T, 5, K) =T, j+1,K)if (i, ] +1,k) €[A],

@iy TG, j,K) <T@ +12,j,k)if (i +1,],k)e[A]l

For i € A, andu € An (M), we denote by/o(A, ) the set of semi-standard tableaux
of shapex with weight . Put 7o) = U e 4, m) To(r: 1)

For A € At , let T* be the tableau of shape with weight A such that

nr?

TH(, 5, k) = (i, k).

It is clear thatT* is semi-standard, and it is the unique semi-standard tatéahape
A with weight . Namely, we haveTo(r, ) = {T*}.

For t € Std@.) (A € A,) and i € An,, we define the tableau(t) of shapexr with
weight u by

w®(, j, k) =(a,c), if t(a b,c)) =, j k) forsome b.

Namely, (t) is obtained by replacing each entxy= t((i, j,k)) in t by (a,c) if x appears
in the a-th row of thec-th component of* (see [4, Example (4.3)] for examples).
For Se To(x, ), T € To(r, v) (A € Af,, i, v € Apr(m)), put

msr= Y qE@HEOm,

5,teStd()
u(s)=Sv(t)=T

and define the elemenrtst € r7hr by
(pST(mr : h) = 0y, MsT" h (T € Any (m)1 he R%,r)-

Then we have the following theorem.

Theorem 1.15([4, Theorem 6.6]) g%, is a cellular algebra with a cellular
basis {pst | S, T € To(2) for somex € A} with respect to the posdiAf , >). In
particular, there exists an anti-automorphiséq: r-“nr — rZnr SUCh thatb,(esT) =

¢1s. Moreovey r.%, is a quasi-hereditary algebra when R is a field.

For the anti-automorphisri, of g%, introduced in Theorem 1.15, we have the
following lemma.
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Lemma 1.16. For pu € Apr(m), (i, k) € I''(m) and | > 1, we have that

(1.16.1) On(L) = 1,
(O —p

(1.16.2) GH(E((iI,)k)llt) = q| (1 MIHH)]‘M F((il,)k)a
(0, 0

(1.16.3) (L, F((il,)k)) =q u.+1+I)E((:?k)1M.

Proof. Note thatd, on 4%, is the restriction to4.%,, of 6, on k%, and
it is enough to show the case wheRe= K by using the argument of specialization.
Moreover, it is enough to show the case whete 1 since we can obtain the statements
for | > 2 by the inductive arguments thanks to the equation

On(E{Lu) = On(1/IN(ES 5 L) (Bt 1))
= 1/[']Qn(E(i,k)1u)en(E((i|,|7<)l)1u+a(i,k))-
From the definitions, we see that £ ¢1.7:, and we obtaird,(1,) = 1,. By [18,
paragraphs 5.5, 6.2, and Lemma 6.10], we see that

®_ ®
E M) = g 5 (g g (M)

Combining with [4, Proposition 6.9 and Lemma 6.10], we hdvat t

On(Eqi L) (Myusag) = (Egl(my))*
®_,® )
= q“i H|+1+1((F(i,k)(mﬂ+a(i,k))) )
®_, K
= g I‘|+1+1F(i’k)(mu+a(iyk)),
and 6, (Eg in1.)(m;) = 0 unlesst = u + «( . Thus, we have that

(0_ 0 ©_,0
On(EioLy) = 9" Mot R g Lugag = O M0t Ry .

Now we proved (1.16.2), and, by applyifig to the equation (1.16.2), we obtain (1.16.3).
O

1.17. From the definitions, we have that
(1.17.1) Lors=08,.01s and ¢rsl; =6, ¢rs

for T € To(x, n), Se€ To(, v) (see [4]).
For A € Ar{r, let R7nr (> A) be the R-submodule ofz.#,, spanned by

{osT| S, T € To()) for somer’ € AT such thath’ > A},

nr



INDUCTION AND RESTRICTION FUNCTORS FORCSA 795
and gW(1) be the R-submodule ofg.%/rnr (> A) Spanned by
{orm + RS0 (> 1) | T € To(A)}-

Then, thanks to the general theory of cellular algebga&, . (> 1) turns out to be a two-
sided ideal ok-%,r, andgW(X) turns out to be ap.7; r-submodule 0k /R (> 1)
whose action comes from the multiplication @, ;. Putot = g1 + rSnr (> A) for
T € To(A), then{et | T € To(1)} gives anR-free basis ofrkW(1), and it is known that
rRW(L) is generated byt as ang.#, -module.

Lemma 1.18. For eachi € AT

oo there exists thex-#,  -isomorphism

rRAR(A) = rRW(X) such that 1® v — @12

Proof. From the definition of semi-standard tableaux, we ged# A > p if
To(r, n) # 0. Thus, we have that,1- RW(A) = O unlessr > n. On the other hand,
we have that

E((il,)k) SQT = E((il,)k)lx 010 = Ligtag Edk - o1
for (i, k) € I'"(m) and| > 1. Noting thatx + | - & k) > A, these imply that
E(y-¢r =0 forany {ker’(m) and |>1.

Thus, RW(A) is a highest weight module with a highest weight veater of highest
weight ». Then, by Lemma 1.11, we have the surjective homomorphism

XR: RAH()\-) — RW()\.) such that ® V) > QT

We should show that this homomorphism is an isomorphism,iaisdenough to show
the case wher®k = A by the arguments of specializations. First, we considerctse
where R = K. In this case, it is known that.7,, is semi-simple, angcAn(X) is
irreducible ([18, Theorem 2.16 (iv)]). Thus{x is injective. On the other handXx
is obtained fromX 4 by applying the right exact functo¢® 4?, and the restriction of
Xx to 4An(A) coincides withX 4. Thus, we have thaK 4 is injective, henceX 4 is
an isomorphism. ]

REMARK 1.19. Lemma 1.18 was already proved in [18] combined withThe-
orem 5.16] implicitly. However, this identification is imgant in the later arguments,
we gave the proof by using the universality.

1.20. Recall thatg.#, has the algebra anti-automorphisimn and we can con-
sider the contravariant functe®: ., -mod — %, -mod with respect t®, (see con-
ventions in the last of 80). Fok € A, put gVa(2) = (RANA))®. Then {rAn(() |
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L€ Al (resp. {rVa(}) | 2 € A} gives a set of standard modules (resp. a set of
costandard modules) gf.#,, in terms of quasi-hereditary algebras whBnis a field.

When R is a field, Letg.%,,-mod® (resp. Ryn,r—modv) be the full subcategory
of r“nr-mod consisting of modules which have a filtration such thatsuccessive
quotients are isomorphic to standard modules (resp. adastdrmodules).

2. Induction and restriction functors

In this section, we give an injective homomorphism of algsbirom a cyclotomic
g-Schur algebra of rank to one of rankn + 1. By using this embedding, we define
induction and restriction functors between module categoof these two algebras.

2.1. From now on, throughout this paper, we argue under the fatigvsetting:

m=(my,...,m) suchthat m¢>n+1 forall k=1,...,r,
m =(mg, ..., M_y, M —1),

RZn+1r = RZn+1r (Antar(M)),

RZnr = Rnr (Anr (M),

(2.1.1)

We will omit the subscriptR when there is no risk to confuse.

REMARK 2.2. We should choosem and m’ as in (2.1.1) when we consider an
embedding from%,, to “.1,. However, in fact, we can take (resp.m’) freely
through the Morita equivalence R is a field (see Remark 1.4).

2.3. We define an injective map
V: An,r (m/) g An+1,r (m)! ()"(1)1 LR | )\'(ril)l )"(r)) = ()"(1)! LRI | )\‘(I‘fl), S"(r))i

wherei® = .0, ..., 20, 1). Puta?,, (m)=Imy, and we have

A (M) == @®, ..., 1) e Anpa, () | pf) = 1),

For x € A:H’r andt e Std@.), let t\ (n + 1) be the standard tableau obtained by
removing the nodex such thatt(x) = n + 1, and denote the shape of (n + 1) by
|t \ (n + 1)|. Note thatx (in the last sentence) is a removable nodeipfand that
t\(n+ 1) =x1\x

Forae Al ., we Al (m)andT € To(, i), let T\ (m;, r) be the tableau
obtained by removing the node such thatT(x) = (m;, r), and denote the shape of
T\ (m,r) by |T\ (m,r)]. Note thatx (in the last sentence) is a removable node of

A, and that|T \ (m;, r)| = A\ x. It is clear thatT \ (m;, r) € To(x \ X, y~1(1)).
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Forxr e AT

n+1, @nd a removable node of A, we define the semi-standard tableau
TS € To(2) by

(a,c) if (a,b,c)#X,

(2.3.1) Ti(a, b, ¢) = {(m, r) if (ab,c)=x

From the definitions, we see th@f € | J ) To(x, 1), and thatTj\ (my,r) = TH>,

v
MeAn+1‘r (m

2.4. Let K(x) (resp.K(x')) be the non-commutative polynomial ring ovierwith
indeterminate variables = {X; i | (i, K) € I''(m)} (resp.X’ = {Xw | (i, K) € I''(m")}).
Note that/™’(m’) = I'’(m)\ {(m; —1,r)}, and we have the natural injective migm’) —
K(m) such thatx; iy — X i) for (i,k) € I"(m’). Under this injection, we regard a poly-
nomial in IC(m') as a polynomial inC(m). It is similar for IC(y) and KC({y’).

For the polynomialsgg\i’k)(x/, y) € K{X) ®x K{Y') (A € Apr(M'), (i, k) € (M)
such as in Lemma 1.7, we have the following lemma.

Lemma 2.5. Let A € Ay (m’) and (i, k) € I''(m’). For gg'k)(x’, y) € K{X') ®x
K(y') such that g, (F, E)1, = o)y in xZnr, we have
iw(F By = o))
in %1, In particular, we can take gk)(x’,y’) as a polynomial é%)(x,y) satisfying
(171) in ;Cyn_(_l’r.

Proof. Let:: x4, — xi41, be the natural injective homomorphism defined
by Ti—=T (0<i <n-1). Then we have(Lj) =L; for j=1,...,n.
By (1.5.1) and (1.5.2) (see also [18, Lemma 6.10]) we can Iclieat

UEq (M) = Eqr(m, @), «(Fin(m)) = Fin(myw).
These imply that, forg(x, y) € K(X') ®x KL(y'), we have
W(9(F, E)(m,)) = g(F, E)(m, )

in x%+1,. On the other hand, from the definition og\'k), we have

o1y (M)) = o B (m, ).
Then we have
Gi(F. E)L = 0( 1y © GGk (F, E)My) = o (M)
& UG (Fy EXmy)) = (o (M2))
& G o(F. E)Myy) = of 5 (my )
< ga,k)(Fv E)L = U(}i/,%)- 0



798 K. WADA

Now, we can define the injective homomorphism frofy, to .#11, as the follow-
ing proposition.

Proposition 2.6. There exists the algebra homomorphism %, — Shiir
such that

| ( ( (
(2.6.1) E )y > EDoE, Flly = FlE, 1 1,0
for (i,K) e I'(M), | = 1, » € An,(M'), where§ = erAVH m 1 is an idempotent of

Znt1r- In particular, we have that(ls, ) = &, and thatu( ) G £ 7410, Where
1y, is the unit element of#,,. Moreover is injective.

Proof. If ¢ is well-defined injective homomorphism given by (2.6.1), weasily
see that(lx,,) = &, and that((#) G £11,€. Hence, it is enough to show the
well-definedness and injectivity af

First, we prove the statements for the algebras @verin order to see the well-
definedness of the homomorphisg: . %nr — x%n+1r defined by (2.6.1), we should
check the relations (1.8.1)—(1.8.8). For the relationsepk¢1.8.6), it is clear, and we
can check the relation (1.8.6) by Lemma 2.5.

We show that dim . %hr = dimg ie(c-nr), then this equality implies thatc
is injective.

For A € Af,, let x be the addable node of such thatx is minimum for the
order > on the set of all addable nodes of and puti = A U x. Thus, we have. €

Af.1,. Note thatx is a removable node of, we can take the semi-standard tableau

T)f\ defined by (2.3.1). From the definitions, we see ﬂﬁéte To(h, ¥(1)). When we
regardx Any1(h) as ani.%,-module through the homomorphism, we see thatpTX;

is a weight vector of weight sincec(1,) =1, and TXi € To(A, ¥(1)). On the other
hand, for {, k) € I''(m’), we havey(x) + agy % % since x is minimum in the set
of all addable nodes of. Thus, we haveTo(i, y(1) + ag) = 9. This implies that
Eow - prp = 0 since =1 “Pri = l}/()»)+0¢(|.k) Eik - Pri together with (1.17.1), where we
consider the actions gf #,+1,. AS a consequence, we see tIEQ.-t,k)-wa; = 0 for any
(i,k) € I'’(m’), where we consider the action gf#},; throughix. This means thajoTx;

is a highest weight vector of weight, and ., -submodule ofc Ans1(A) generated
by ¢+; is a highest weight module of highest weight Thus, the universality of Weyl
modules (Lemma 1.11) implies the isomorphism

KAn(X) = Sy - @1 @S g Inr-modules

since xAn(1) is a simplex.#,-module. Now we proved that, for eache A, the

n,re

Weyl module x A, (1) appears incAn,1(i) as ani.%nr-submodule throughy. Note
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that k% is split semi-simple, the above arguments combined with d&dulirn’s the-
orem implies that

dime x e = Y (dime cAn(2))? = dimg 1 (ic-Sn,).

rEARY

Hencex is injective.
By restricting tx to 4.%nr, We have the injective homomorphism: 4%, —
A1y Satisfying (2.6.1). In particular, we have(4-“nr) C E4-%n+1,E. Put
M(E) = (EXLYE | X € S iar Y € A inss M € Al (M)},
M(ﬁ é,-:) = {$X1My$ | X € A n_+1,r1 y € .Ayntl,rv n € An+l,f (m)

such that u £  for any A € A}, (m)}.

By (2.6.1) and the triangular decomposition @, ,, we see that
(2.6.2) talanr) = M(8).
Moreover, we claim that

(2.6.3) §aSnir§ = M(§) ® M(£ ).

Thanks to the triangular decomposition @f,.1,, we have

Easniir = (EXLYE [ X € aniars Y € a0y A € Angar(M)).

Thus, in order to show (2.6.3), it is enough to show that

ExL,ye=0 if pu<a
(2.6.4) .
for some 1 e A

ne1r(M) and pe Appg M)\ A]L (M)
From the definitions, fop € Ani1,(M)\ A7, (M), we see thap{) > 2 if 4 < A for
someA’ ., (m), and we see thaix1,y& =0 (X € 45,1, Y € aFpy,) if nl) =2

from the relations (1.8.1)—(1.8.8). These imply (2.6.4)d ave have (2.6.3). Py’ =
erAmJ(m)\A:ﬂ,(m) 1,, we have 1 4 . =&+ &' Then, by (2.6.3), we have

AyrH-l,r = M(E) 2] M(f S) 2] EAynﬁ-l,rS/ 2] S,&\ynﬁ-l,rg @ ghyn+l,r‘§/-

Combining with (2.6.2), we see that the injective homom@wh 4: 4% = 45h+1r
is split as a.4-homomorphism. Thus, by the specialization:of to R, we have the
injective homomorphismg: rhr = r7n+1r Satisfying (2.6.1). O
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By (2.6.1) and Lemma 1.16, we have the following corollary.

Corollary 2.7. When we regard;,, as a subalgebra of/,,1, through the in-
jective homomorphism: ., — 41, the anti-involutiond, on ., coincides with
the restriction of the anti-involutiofn+1 on 1.

2.8. From now on, we regard/,; as a subalgebra o#,,.1, through the injective
homomorphism: ., — “h+1,. As defined in Proposition 2.6, pat= ZAGAL“M 1,.
Since¢ is an idempotent of,.1(, we see that. %1, is a subalgebra QVHH‘,r with
the unit elemen€. Thus,§. %1, (resp. h+1r§) is an €. ni1r€, Sntar)-bimodule
(resp. (Fntar, &S n+1,€)-bimodule) by the multiplications. Note thet, ;) C &£ nt1,§
andu(1s,, ) = &, we can restrict the action ¢t 1,& to ., throughe. Thus,&.%, 1,
(resp.Zhi1,E) turns out to be ands, r,-%n1 1 )-bimodule (resp..&h+1r,-7nr)-bimodule)
by restriction. We define a restriction functor Iﬁ’é%s: ht1r-mod— 7, -mod by

Re§™ = Homgy, , (i1, D= ESni1r @y, ?-

We also define two induction functors fid, coindi™*: ., ,-mod — #,,1,-mod by

1
|nd2+ = yn—#l,ré@y’n_,?.

coind{** = Homg, . (6 #hi1r, ?).

By the definition, we have the following.
e Red*lis exact, In§™! is right exact and colfd? is left exact.
e Ind*! is left adjoint to Re%™.
e colnd™ is right adjoint to Re%"2.
We have the following commutativity with these functors dhe contravariant func-
tors ® with respect to the anti-involution&, andé, .

Lemma 2.9. We have the following isomorphisms of functors.
() ®oRed™ ~Redtlo®.
(i) ®olIndi*! =~ colndi*! o @.

Proof. For a left (resp. righty;, ;-moduleM, we denote byM? the right (resp. left)
“nr-module obtained fronM by twisting the action through the anti-involutieh. We
also use the same notation for left (resp. right),1,-modules, &h+1r, “nr)-bimodules
and (¢, Yn+1r)-bimodules when we twist the action through the anti-iotionsé, and
On+1. Then we have the isomorphism a1, 71 )-bimodules

(2.9.1) U ESninr) = Fniark
by 0s(£S) = On1+1(s)é for s € A1, From the definition, we also see that

(2.9.2) HomR((éyn+1,r)ga R) = (65+10)® as (P, Fnsar)-bimodules.
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For N € #,-mod, we have the following natural isomorphisms

® o Indi*}(N) = Homg(Fh11,¢ ®.,, N, R’
=~ Homy,, (N, Homg(#11,§, R))’
=~ Homyg, (N, Homg((¢-%h+1,)’, R))’  (because of (2.9.1))
=~ Homg, (N, (-%h+1,)®)" (because of (2.9.2))
= Homy,, (§%hi1r, N®)
= colndi™ o ®(N),

and this implies (ii). Note that RES! = Homg, , (“he1r€, D)= ES5041r R, 2, WE
can obtain (i) in a similar way. ]

The last of this section, we prepare the following lemma fded arguments.

Lemma 2.10. Assume that R is a field. Fore A/, we have

[Indy**(An())] = [INdR ¥ (Va()] in Ko(-#h+1,-mod).

Proof. Let K, R, R) be a suitable modular system, nam&yis a discrete valu-
ation ring such thaR is the residue field oR, andK is the quotient field ofR such
that ., is semi-simple (e.g. see [12, Section 5.3]). Létbe one ofK, R or R
For » € Af,, we see thatc./h 1§ ®,, xAn(A) is generated by(é @ o7 | T €
To(A)} as x-S n+1,-modules, and that ® ¢r # 0 for any T € 7p(X) sinceé is re-
garded as the identity element pf#; ;. Thus, g %h1 1€ ®. .9, gAn(A) is an g Fny1r-
submodule ok Shy1,& ®, .7, k An(L) generated by @ o7 | T € To(A)}. In particular,
a7n+1r€ ® .7, gAn(A) is torsion free, thus it is a full ranR-lattice ofk i1, € ®y A,
k An(2). Similarly, -7 n11r8 ®..9, gVa(2) is a full rank R-lattice of K1 E Oy o,
k Vn(1). Moreover, by the general theory of cellular algebras, weha\,(1) =~ k Va(1)
sinceg r is semi-simple. Then, the decomposition map implies

[RM+1rE B, RANA)] = [RTn41rE O, RVA(M)] I Ko(rFn41,-mod). [

3. Restricted and induced Weyl modules

In this section, we describe filtrations of restricted anduited Weyl modules
(resp. costandard modules) whose successive quotientsocanerphic to Weyl modules
(resp. costandard modules).

3.1. Itis known that there exists the injective homomorphism Igehras

(3.1.1) Ay — 1, suchthat T =T for i=0,1,...,n—1.
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We regard.#,, as a subalgebra of#,, 1, through:”.

3.2. We recall that, fora € An++1,r’ the Weyl moduleAn;1(A) of S 41, has an

R-free basis{¢t | T € To(A)}. From the definition, we have that
Re$ ™ (Anyar (M) = & - Anyar(3).
Thus, we see that RES!(An41,(1)) has anR-free basis
{1 | T € To(r, w) for someu € A, (M)}

thanks to (1.17.1).

Proposition 3.3. Letie Ay, we AL (M), T €To(r,u). For(i,k) e I'(m),
we have the following.

() Egr- o1 =) seToutene) Tses ((s€R).
[S\(me,r)[=[T\(m 1)

(i) Fai-or =2 seTou-agy Tsps ('s€ R).
[S\(m; . O)I=[T\(m; 1)l

Proof. We prove only (i) since we can prove (ii) in a similarywa

If w+ gy € Antrr(m), we haveEjy - o1 = Ejly - o1 = 0 by (1.8.2), and
there is nothing to prove. Thus, we assume that ok € Ant1,(mM). Then we have
Bk T = LutagEk o1, and this implies thab € To(A, n +a( k) if rs # 0 thanks
to (1.17.1). Hence, it is enough to prove th&\ (m;, r)| > [T \ (m;, r)| if rs # 0.

By [4, Proposition 6.3], we can writeny: = m,h for someh € J%1,. Then,
by (1.5.1), we have

E¢ k- ot (M) = Ejy(MrT2)
= Ej(m,h)

—u®
=1q wigtl Z q'(X)TX* hljr(i,k)mﬂ -h

Ao
xeX), 0K

_,®
=q it Z q'oTe H, oM T

ntay
xeX), 09

)
= Z q it Z q'eTy h'} M-

Std Ltei,
o xex, "
(Note thatt* is the unique standard tableaus Std(.) such thati(t) = T*.) Since

pe Al (m) and i + ag € Antir(M), we havep®) =1 andpu®, > 1. These
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imply Y 31u®] + Y, u{® < n—1. Then, from the definitions oK}, and
h g, We see thaq—ﬂfklﬁl(zxeXﬁw(i,k) q' 0T )N g € Har, Where we regardi,,
as a subalgebra of%,.1, by (3.1.1). Thus, by [1, Proof of Proposition 1.9], we have

Ei k- orm-(my)

_u®
= Z gt Z q'®Te h g Mee

Std na,
(3.3.1) e xex, "
= > > rimge | mod A (> 2) (feR),
teStd@.) s€Std

0)
w(®=T \|s\n+1|>[t\n+1]

where J4 11, (> 1) is an R-submodule ofs4.1, spanned bym,, | u, v € Std@.") for
some)’ € A7, such that\’ > 1}. Sincep{) = 1, we see thatt\ n + 1| does not
depend on a choice df e Std@) such thatu(t) = T. Then, take and fix a standard

tableaut’ € Std@t) such thatu(t) = T, and (3.3.1) implies

(3.3.2) Eix - orm(m) = > rsmMge. mod #i1r(>2) (rs € R).
seStdQ)

|s\n+1|=|t'\n+1]
On the other hand, by a general theory of cellular algebrgstier with (1.17.1), we
can write

Eig-orm = Y. rspsp mod Shi1,(>1) (rs€R).
SeTo(h, n+aiik)

Thus, we have

Edix - o1 (My)

= Z I'sMsT

SeTo(h, o k)
(3.3.3)

= Z I's Z ql(d(S))mEt;‘ mod %\+l,r(> )L)
SeTo(r ntein) seStd)
(n+og10)(s)=S

Note thatu + ok € AL“ (m), we can easily check thas\ (m,,r)| = |s\ n+ 1| for
Se To(h, u + i) ands € Std@u) such that & + o, x)(s) = S. Similarly, we have
[T\ (m,r)] =¥ \n+ 1. Thus, by comparing the coefficients in (3.3.2) and (3.3.3),
we have|S\ (m, r)| > |T \ (m, r)] if rs # 0. ]
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Now we can describe filtrations of restricted and induced Mieydules (resp. co-
standard modules) as follows.

Theorem 3.4. Assume that R is a fieldve have the following.

(i) For e A}, there exists a filtration of#,-modules

Re§  (Ans1(A) = M1 D Mp D+ D Mg D Myyp =0,

such that M/Miy1 = Ap(A \ %), where %, Xo, ..., X are all removable nodes of
such that x > Xp >+« > X.
(i) For e Ay ,,, there exists a filtration of#},-modules

Re$ ™ (Vni1(1)) = N« D Ngeg D+ D Ny D Np =0,

such that N/Ni_; = Vh(A \ Xi), where %, X, ..., X are all removable nodes df such
that x; > Xo > -+« > Xg.
(i) For u e A,{r, there exists a filtration of#;,.1,-modules

Ind? ™ (An(1)) = M1 D Mz D -+- D My D My = 0

such that M/Mj;1 = Api1(e U %), where %, Xp, ..., X are all addable nodes oft
such that X > X1 > - > X1.
(iv) For u € A;r, there exists a filtration of#,,1,-modules

colnd™(Vn(u)) = Nk DN 1 D--- DNy D Np=0

such that N/Ni_1 = Vpi1(ne U %), where X, X, ..., Xk are all addable nodes oft
such that x > X1 > --- > X1.

Proof. (i) Until declining, letR be an arbitrary commutative ring. Put

TTW=J 70 w.

HGArVHLr (m)

Then, Re§ ™ (Ani1, (1)) has anR-free basis{or | T € 7;(A)}. For T € 77 (1), there
exists the unique removable nodeof A such thatT (x) = (m;, r) since Mg,q} =1. Let
X1, X2, ..., X¢ be all removable nodes dof such thatx; > x, > - -+ > X« (note that the
order > determines a total order on the set of removable nodes).ol.et M; be an
R-submodule of RéS(An,1(1)) spanned by

{e1 | T € 75 (1) such thatT(x;) = (m, r) for somej >i}.



INDUCTION AND RESTRICTION FUNCTORS FORCSA 805

Then we have a filtration oR-modules

(3.4.1) Red  (Ani1(A)) = M1 D My D -+ D My D Mg = 0.

For T € 7/ (2) such thatT(x;) = (mr, r), we have|T \ (m;, r)| = A\ X by the
definition. Note thatr \ x; > A \ X if and only if x; < x (i.e. j > i). Then, for
S, T € 77 () such thatS(x;) = T(x;) = (m, r), we have that

(3.4.2) IS\ (M, )] > |T\(m,r)] ifand only if | >1i.

By Proposition 3.3 and (3.4.2), we see tivtis an.#,-submodule of R&ES(An,1(1))
for eachi = 1,...,k, and the filtration (3.4.1) is a filtration of4, ,-modules.
From the definition,M; /M;,1 has anR-free basis

{e1 + Mi11 | T € 74 (2) such thatT (x) = (m, r)}.

Note thatT;} € 74 (») and TQi(xi) =(m,r). Letx = (a, b,c), and putt = A —
(a(a,c) + d@t+10 00+ a(mrfl,r))- Then we haveT;} € To(A, 7). Note thatE(“) T =
1 ya Ey-er; is alinear combination ofgr | T € To(A,7 +a(j,))}, and thatTo(r,7 +
O{(j,|)) =0 unlelssx Z T+ o).

If (j,1) > (a c), we haveE ) - ¢1; = 0 sincer Z © + «j ).

Assume that [, 1) < (a, ¢), and wé have

-1 j -1 i
(3.4.3) Z|A(g)| + Z A = Z|(r + a9 + Z(r +ag ).
g=1 b=1 g=1 b=1

By (3.4.3) together with the definition of semi-standardl¢abix, we can easily check
that (&', b', ¢’)) < (j,I) for any Se To(A, T + g k) and any &, b, ¢’) € [A] such that
@, c) > (j,1). This implies that

(3.4.4) IS\ (Mr, 1)] # [Te \ (me, 1) forany Se To(k, T+ agj)

since @, ¢) > (j,1) and T (x) = T¢((a, b, ¢)) = (m;, r) > (], 1).
Thus, Proposition 3.3 (i) together with (3.4.4) implies

E(jy|) CPTr € Mi,, forany (,I) e F’(m’).

Thus,goTXxi + Mj;1 € Mj/M;i,1 is a highest weight vector of weight\ x; as an element
of the .}, ,-module. Thus, by the universality of Weyl modules (Lemmh#l}, we have
the surjectiver.#n r-homomorphism

Xgr: RAN(A\ X)) = r 0y - (@17 + Miga).
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Sincexc An(A\ %) is a simplex.#,-module, Xk is injective. Note thatXg is de-
termined by Xgr(1 ® vy\x) = o1y + Mi,1, we see thatX 4 is the restriction ofX to
AAR(A\ %). Thus, X 4 is also injective, andX 4 is an isomorphism. Then, by the ar-
gument of specialization, we hawér is an isomorphism for an arbitrary commutative
ring R.

Assume thatR is a field. SinceAn(r \ %) = S - (QOT;; + Mi;y) is an S,
submodule ofM;/M;,1, we have thatAn(A \ %) =~ M;/M; .1 by comparing the dimen-
sions of Ap(2 \ ;) and of M; /M;,1. Now we proved (i).

(i) is obtained by applying the contravariant functa@ to (i) thanks to
Lemma 2.9 (i).

Next, we prove (iv). Fori € A, ., let AﬁH(A) be an R-submodule of
ntir/ns1r (> A) spanned bygrit + St (> A) | T € To(A)}. Then, by a gen-
eral theory of cellular algebras, it is known thaf]+1(x) is a right %, 1,-submodule
of Si1r/ S nr1r (> A), and that

(3.4.5) Homr(A7 5 (1), R) = Anta()® = Vnya(h)

as left #,+1,-modules.
Let Ay, = {1, A2, ---, Ag} be such that < j if A; < ;. By a general theory
of cellular algebras, we obtain a filtration of4.;1,, %n+1r)-bimodules

yn+1,r=J13J23"'DJQDJQ+1=O

such thatJ/J+1 = Ant1(X) ® RAE]H()W)- By applying the exact functor RES to
this filtration, we obtain a filtration of #;,,, #h+1,)-bimodules

ESp1y =6 DERLD - DEJYDEIY1=0

such thatt J; /& J+1 = Re§ T (Ans1(A) ® RAL 1 (Ai). By (i), we have that Ji /& Ji 11 €
Snr-mod* for eachi = 1,...,g. Thus, by a general theory of quasi-hereditary algebras,
we have a filtration of left#,1,-modules

(3.4.6) Homg, (§hi1r, V() = Ng D Ng-1D---DNiDNo=0

such thatN; /Nj_; =~ Homym (EJ /€ Fiv1, Va(w)).
On the other hand, we have the following isomorphisms#asi -modules.
Homg, (6 Ji/& Ji+1, Va(1h))
=~ Homy,, (Re§ ™ (Ani1(M)) ® rAL 1 (M), Va(u))
(3-4.7) = Homg(A%, (%), Homs, (Re§ (Ans1(Ai)), Va(i)))

_ JHomR(AL (%), R) if 4 = uUx for some addable node of u
~\o otherwise,



INDUCTION AND RESTRICTION FUNCTORS FORCSA 807

where the last isomorphism follows from a general theory wdisi-hereditary algebras
(see e.g. [6, Proposition A2.2 (ii)]) together with (i).

Supposer; = pUx andX; = u U X; for some addable nodes, x; of u. Then,
we have thai; < A; if and only if x; < x;. Thus, by (3.4.6) together with (3.4.7) and
(3.4.5), we obtain (iv).

(i) is obtained by applying the contravariant funct@ to (iv) thanks to
Lemma 2.9 (ii). ]

4. Some properties of induction and restriction functors

In this section, we study some properties for induction agstriction functors. In
particular, we will prove that Iif* and colnd™* are isomorphic.

4.1. First, we prepare some general results. For a finite dimeabiassociative
algebrag’ over a field, we denote the full subcategory«fmod consisting of projective
modules bye7-proj. Let | : o7-proj — o/-mod be the canonical embedding functor.

When o7 is a quasi-hereditary algebra, we denote the full subcagegb.<”-mod
consisting of standard (resp. costandard) filtered modues/-mod* (resp..«/-mod").
Let 15: o/-mod® — «7-mod (resp.IZ{: «/-mod’ — <7/-mod) be the canonical em-
bedding functor. Let# be a finite dimensional algebra, ar€l: «-mod — %Z-mod
be a covariant functor. We say th&to Iﬁf (resp.F o I;) is exact if, for any short
exact sequence & N - M — L — 0 in &/-mod such thatN, M, L € «/-mod*
(resp.L, M, N € «7-mod’), we have the short exact sequence-0F o 15(N) —
Fo |§(M) — Fo IKQA{(L) — 0.

If o/ has an algebra anti-involutiod,,, we consider the contravariant functor
®: o/-mod— «7/-mod through the anti-involutioéi,, (see conventions in the last of §0).

By the general theory for quasi-hereditary algebras, we lthe following lemma.

Lemma 4.2. Let &/ and £ be finite dimensional algebras over a field with al-
gebra anti-involutiond,, and 64 respectively. Let F and G be covariant functors from
«/-mod to Z#-mod such that Fo ® =~ ® o G. Assume that’ is a quasi-hereditary
algebra. Then we have the following.

(i) Assume that Gz Hom,,(M, ?) for an (<7, %)-bimodule M. If Me «7-mod*, then
GolY, is exact.
(i) FolZ is exact if and only if G 1Y, is exact.

Proof. If M € o/-mod*, we have ExX, (M, X) = 0 for any X € A-mod’ by [6,
Proposition A2.2]. This implies (i).

(ii) follows from the fact that the contravariant functer. «7-mod— <7-mod asso-
ciated withé,, induce the (exact) contravariant functor form-mod® (resp..</-mod")
to «/-mod’ (resp..«/-mod*). O

The following lemma plays a fundamental role in the lateruangnts.
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Lemma 4.3. Let .« and £ be finite dimensional algebras over a fielthd F, G
be functors frome/-mod to -mod. Then we have the following.
(i) If F is a right exact functgrthe homomorphism of vector spaces

Hom(F, G) - Hom(F o I, Go l) given by v+ vl

is an isomorphism.

(i) Assume that F and G are right exact functors. IfoH, =~ G o |, we have
Fx~G.

(i) Assume thate is a quasi-hereditary algebra. If F is a right exact fungtoine
homomorphism of vector spaces

Hom(F, G) - Hom(F o I 5, Gol5) given by v vlja
is an isomorphism.

Proof. We can prove (i) and (ii) in a similar way as in [16, Lemrh.2]. We
prove (iii).

Since any projectiveZ-module is an object of7-mod*, we havel 5 ol =~ 1,
and we have the following commutative diagram.

v|—>ul|d

Hom(F, G) Hom(F o I, Go l)

Ul—m %‘[Lg:

Hom(Fol5,Gol%)

By (i), Hom(F,G) - Hom(F ol ., Go | ) is an isomorphism. We can also prove that
Hom(F o Iﬁj, Go I&A{) — Hom(F o 1, G o l) is an isomorphism in a similar way.
Thus, the above diagram implies (iii). ]

Lemma 4.3 (iii) implies the following lifting arguments omljaintness for functors
between module categories of two quasi-hereditary algebra

Proposition 4.4. Let.o and & be quasi-hereditary algebras. Let:Ez-mod —
#-mod (esp. F -mod— «7-mod)be a functor such that Eesp. F) is right exact. As-
sume that B 1% (resp. Fo | 3) gives a functore/-mod* — %-mod" (resp.%-mod* —
o/-mod).

If FolZ is right (resp. lef) adjoint to Eo 1%, then F is right(resp. lef) adjoint
to E.

Proof. It is enough to the case o 15 is right adjoint toE o | 5 by replacing a
role of F with E in the other case. Assume thBto |5 is right adjoint toE o | 5.
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Then there exist the morphisms of functérsEo |5 o Fol5 — Idgo 15 (unit) and
f:1dgol s — FolgoEol (counit) such thatdle, s )o(Lgo s 1) = 1gos, and that
(Lro158) © (11pe1s) = Lpos, Where we regard the functor ddo 15 (resp. Idy o 15)

as the identity functor og-mod® (resp.</-mod*). Note thatl % o Fol5 >~ Fol%

etc., we can write simply a8: EoF ol —Idgolj andf: ldyol5 — FoEolf

such that

(4.4.1) (E1glia ) o (1en) = 1elys,
(4.4.2) (1r8) o (1rl1s) = L1el;s .
By Lemma 4.3 (iii), there exist the morphisms of functors
e:EoF ->ldg, n:ldy > FoE
such that81|gAA = ¢ andnl;» =75. Moreover, we have
((e1e) o (Lem)Lis, = ((e1e) o (Lem))(Lis 0 Lys)
= (81E1|${) ° (1E7)1|§,)

= (1el;s) o (Len)
== 1E1|é.

(4.4.3)

Similarly, we have
((Ire) o (1e))Lis = (Trelis) o (nlrlys)
(444) = (1|:g‘) o (7~71|: 1|%)

= 1|: 1'?3-
By (4.4.3) and (4.4.4) together with Lemma 4.3 (iii), we have

(elg) o (1en) = 1e, (Ire) o (nlf) = 1f,
and F is right adjoint toE. ]

REMARK 4.5. By replacing thex-mod* (resp.#-mod") with .o7-proj (resp.%-
proj), we also obtain the lifting argument from the full sabegories consisting of pro-
jective objects thanks to Lemma 4.3 (i) in a similar way. (histcase,«# and % do
not need being quasi-hereditary algebras.) In this caselifng argument from pro-
jectives have already appeared in the proof of [16, Projpos.9].

In order to apply Proposition 4.4 to our functors between uh®categories of
cyclotomic g-Schur algebras, we prepare the following technical lemma.
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Lemma 4.6. Let .o/ and & be associative algebras over a field. Assume t#at
is quasi-hereditary. Let F and G be functors frommod to .</-mod such that F is
right exact. Then we have the following.

(i) Assume that the both functorsoA J, and Go 1}, are exact. If Fol5 ~Golj,
then we have P 1}, = Go |,

(i) Assume thatey’ and &£ are equipped with anti-involution8,, and 64, and that
the both functors Fe 1}, and Go |}, are exact. Let Gbe a functor from#-mod to
«/-mod. Assume that F® x®oF and Go® = ®o0G. If Folj =~ Golj, then
we have Fo |5 =G olj.

(iii) Assume that G is left exaaind thatdim F (M) > dimG(M) for any M € Z-mod".
If Folg=Golg, then we have P15 =Golj5.

Proof. (i). By the assumption, there exists a functoriatisgphismb: Fol 5 —
Gol5. SinceF is right exact, by Lemma 4.3 (iii), there exists the uniquerphésm
v: F — G such thatvls =7v. We provevly: Fo 1}, — Goly is an isomorphism.
By [6, Proposition 4.4], foN € %-mod’, we can take the following exact sequence

dy d d o
O-Tx—--+—>T1 —>To— N-—=>0,

such thatT; is a (characteristic) tilting module, and that Kere %-mod’ for each
i =0,...,k By applying the functord= and G to this exact sequence, we have the
following commutative diagram

F(Tw) F(To) F(N) — 0
V(Tl)i v(To)l V(N)l
G(T1) G(To) G(N) — 0
such that each row is exact since Kee %-mod" for eachi = 0,...,k. By the assump-

tion, we have that both(T.) andv(Ty) are isomorphisms sinch, T, € Z-mod*. Thus,
the above diagram implies tha{N) is an isomorphism. Thenl% is an isomorphism.

We prove (ii). Note tha® o 1,0 @0 |5 =~ 15, we have
Fol(%%lzo@olggo@ol%
E@oFoI%o@ol%
~®o0Goljo®ols (by (i)
~Go®oljo®ols
=G olb.

Finally, we prove (iii). Letji: Folgz — G o lg be the functorial isomorphism
which gives the isomorphisnr o | =~ G o | . By Lemma 4.3 (i), there exists the
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unigue morphismu: F — G such thatul,, = g. We prove thatul,%: Fold —
G o 15 gives an isomorphism of functors.

Note thatZ is a quasi-hereditary algebra, in particular, the globaletision of%#
is finite. Thus, for anyM € Z-mod"*, we can take a projective resolution

0>R% ... 2P %P S5 M0

such thatk is equal to the projective dimension & (denoted by pdirM). By an
induction on pdinM, we prove thatu1,s (M) is an isomorphism.

When pdinM = 0, we haveu(M) = (M) since M is projective. Thusu(M) is
an isomorphism.

Assume that pdifvl > 0. For the short exact sequence

(4.6.1) 0— Kerdg — Py % M — 0,

we have that Kefy € #-mod* by [6, Proposition A2.2 (v)]. Moreover, we have
pdimKed, < pdimM — 1. By applying the functord and G to (4.6.1), we have the
following commutative diagram

F(Kerdg) —— F(Py)) —— F(M) —— 0
(4.6.2) M(Kerdo)l M(Po)l M(M)l
0 —— G(Kerdg) —— G(P) —— G(M)

such that each row is exact. Note thatKerdy) (resp. «(Po)) is an isomorphism by
the assumption of induction (resp. the fde§ is projective). Then, the above dia-
gram implies that(M) is injective. Thus,u(M) is an isomorphism since difi(M) >
dim G(M). Then nlia is an isomorphism. ]

REMARK 4.7. In Lemma 4.6 (iii), ifG is right exact, then we do not need the
assumption din(M) > dim G(M) since the second row of the diagram (4.6.2) be-
comes right exact in such case.

4.8. We consider the following setting. Let’ (resp.#’) be a finite dimensional
associative algebra over a field, and (resp. %) be a quasi-hereditary cover af’
(resp.#’) in the sense of [14]. Namelyy is a quasi-hereditary algebra together with
a projective.«Z-module P, satisfying the following two conditions;

() &' =~ End, (P.)°".

(i) The exact functor2,, = Hom,/ (P.,, ?) from </-mod to «/’-mod is fully faithful
on projective objects.

Let ., = Homg (2 (<), ?) «/’-mod— «/-mod be the right adjoint functor a2, .
By [14, 4.2.1 and Lemma 4.32], we have

(481) Qrod,, =~ |dd',
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(4.8.2) D 0Q 0|y =Ildyoly.

It is similar for # and #'.
Let X be an (7, #)-bimodule such thaiX is projective as leftez-module. We
define a functor Res«/-mod — #-mod by

Res= Hom,/ (X, ?).
We also define two functors Ind, colndg-mod — <7-mod by

Ind = X®%? and colnd= Homgk(Res(), ?).

Then we see that Res is exact, and that Ind (resp. colnd) tigrkfp. right) adjoint
to Res.

Similarly, let X" be an 7', #’)-bimodule such thaiX’ is projective as lefte?’-
module, and define

Re$ = Hom,, (X', ?): «7’-mod — %’-mod,
Ind = X'®%7?: 2'-mod— </'-mod,
colnd = Homg (Res(«’), ?): %’-mod — «7'-mod.

We assume the following conditions;
(A-1) Ind’ = colnd. Hence, Indis left and right adjoint to Rés In particular Ind
is exact.
(A-2) o7, o', 2 and £’ are equipped with an anti-involutiof,, 6., 65 and 64
respectively. Moreover, we assume the following isomonpisis
(A-2a) Resg?) =~ X (resp. Reger’) = X as (4, .<7)-bimodules (resp.#', o/’)-
bimodules), wherex? (resp. X?) is obtained fromX (resp. ') by twisting the
action through the anti-involutiong,, and 64 (resp.6., andf).
(A-2b) Q. () = PY, (resp.Qu(B) = PY) as (7', «/)-bimodules (resp.#', 2)-
bimodules), whereP?, (resp. P%) is obtained fromP,, (resp. Py) through the
anti-involutions as in (A-2a).
(A-3) Q4 oRes~ Reso Q.
(A-4) X € Z-mod*.
(A-5) Indol % (resp. Res| %) gives a functor fromz-mod" to «7-mod" (resp.</-mod"
to Z-mod").
(A-6) For M € #-mod*, we have the following.
(A-6a) dim IndM) > dim colndM).
(A-6b) dim Ind o Q%(M) > dim 2., o colnd(M).
Note that the condition (A-2a) implies that ResX?® ., ? (resp. Rés= (X)) ® 7).
Similarly, the condition (A-2b) implies tha®,, ~ P’,®.,? (resp.Qg =~ P),®4?).
Thanks to the assumptions (A-1) and (A-2), we have the foligwlemma.
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Lemma 4.9. We have the following isomorphisms of functors.
(i) ®oResz= Reso® and ® o Ind = colndo ®.
(i) ®oRes=Reso® and®oInd = Ind o ®.
(i) ®oQy =Qyo® (resp.® o Ny = Ly o ®).

Proof. We can prove the lemma in a similar way as in Lemma 2.9. O

Then we have the following theorem.

Theorem 4.10. Under the setting in the paragraph8, we have the isomorphism
of functorsind = colnd

Proof. It is clear that colnd ®4 (resp.®., o Ind) is right adjoint toQ4 o Res
(resp. Réso Q,,), the uniqueness of the adjoint functor together with theuamption
(A-3), we have

(4.10.1) colndo &5 =~ &, o Ind.

Combining this isomorphism with (4.8.1) and (4.8.2), we éhav
INnd oQzolg=Qyod, 0IndoQygoly (. (4.8.1)
(4.10.2) ~ Q. ocolndo®yoQyoly (. (4.10.1))
~ Qg ocolndolg (. (4.8.2).

By Lemma 4.6 (iii) together with the assumption (A-6b), tls®morphisms (4.10.2)
imply the isomorphism

(4.10.3) Ind' o Qo |5 = Q. ocolndo | 5.
Since Indo Q4 is exact, Indo Q4 o Igv3 is exact. We also see th&,, o colndo I; is
exact by Lemma 4.2 (i) together with the assumption (A-2a) &k4). Then, applying

Lemma 4.6 (ii) to the isomorphism (4.10.3) together with lbean4.9, we have the
isomorphism

Ind 0oQzols=Q,olndol.
Combining this isomorphism with (4.10.1), we have
colndo dyzoQpolf = oind oQyolf

(4.10.4)
>~ ®,0Q,0lndo 5.

Note thatl% olg =~ lg, and that the functor Ind preserves projectivity since lag h
the exact right adjoint functor Res. Then, (4.10.4) togethigh (4.8.2) implies

(4.10.5) Indo |l = colndo | 4.
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By Lemma 4.6 (iii) together with the assumption (A-6a), tliemorphism implies

(4.10.6) Indo 15 = colndo | 5.

By (4.10.6) together with the assumption (A-5), we see thaloll 5 is left and right
adjoint to Res 1 5. Hence, we have that Ind is left and right adjoint to Res bypBse
ition 4.4. Then we see that Ind colnd by the uniqueness of the adjoint functof.]

REMARK 4.11. In order to prove Theorem 4.10, we may be able to remonees
assumptions from (A-1)—(A-6) in some situations by suppgsanother condition as
follows.

(i) If we can assume the isomorphis@o Ind =~ Ind o ®, we need only the assump-
tion (A-2a).

(ii) Assume that the functor Ind is exact, and that is symmetric algebra. Then we
need only the assumptions (A-1) and (A-3). In this case, wepave the isomorphism
Ind = colnd in a similar way as in the proof of [16, Proposition P.®y using the
lifting argument from projectives.

(iii) If we can assume the isomorphism

(4.11.1) Q. olnd = Ind o Q,

we need only the condition (A-1), (A-3), (A-5) and (A-6a) sinthe isomorphism (4.10.5)
follows from (4.10.1) and (4.11.1) together with (4.8.2).

4.12. Let's go back to the module categories of cyclotompSchur algebras. From
now on, throughout of this paper, we assume tRas a field, and thaQy # 0 for any
k=1,...,r.

PUt wp = (Q, ey @, (1,. .y 1, 0,. .y O)) (S] Anyr (m,) and Wny1 = )/(Cl)n) (S] An+1'r (m).
Then, it is clear thaM® =~ 7, as right.s4, ,-modules (respM®+ = 7,1, as right
Jh+1,-modules). Thus, we have the following isomorphisms of lalgs;

Endfm (yn-s-l,r 1a)n) = 1wnyn,rlwn = Endﬁﬁ.‘,(Mwn) = %,r.

(4.12.1)
Endyn*.l,r (yn+l,l’ 1wn+1) = 1wn+1=5ﬂn+1,r 1(1),-,+1 = Endﬁfn.ﬂlr (Ma)n+1) = =%0n+1,r .

We attach a correspondence between the setting in the pptagr8 and our set-
ting as follows.
i ﬂzyn+1,ryJZW:%Hl,ry«%:yn,ry%/:%,r-
o Py=Sni11don Pa=Sn1le, Qo =Qnp1i=Homgy, . (Fni1rleon ?), Qe =
Qn:=Homg, (S lo,, ?).
e X = Y1k, Res= Red*!, Ind = IndM™, colnd = colnd™. (Note that
Re$ (A i1r) = ESniar).
o X = 41, Where we regard’ .1, as a rights, .-module by the restriction
through the injection” defined by (3.1.1). Rés= ' Red*! := Homyx ., (Hsi1r, ?),
Ind' = Ind) ™ := 11, ®., 2, colnd = colnd) ™t := Homyy, (Hi1y, ?).
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Thanks to the double centralizer property betwegp.,, and %1, (see e.g. [12,
Theorem 5.3]), we see tha&?,,1 (resp.2,) is fully faithful on projective objects.

In order to apply Theorem 4.10 to our setting, we should pitha the assump-
tions (A-1)—(A-6) hold.

The assumption (A-1) follows from the fact that?, 1, (resp..7% ) is a symmetric
algebra as proved in [11] (see e.g. [16, Lemma 2.6]).

Note that the isomorphism 1% 1., = J%, (resp. 1,..%n+1rlon, = Hosir)
is given byg — ¢(m,,) (resp.¢ — ¢(m,,,,)), we have the following lemma.

Lemma 4.13([19, Proposition 6.3]) (i) Under the isomorphism s, =
1, “nr1l,,, We have

To = 1o, Fim_ar—1) Emy, _1.r =11, + Qr ey
Ti = L, FinEinle, — 9 1, (@1 <i=<n-1).
(i) Under the isomorphisnd?, 1, = 1., %n+1r 1o, WE have

TO = 1wn+1 F(mrflyrfl) E(mr—lxr*1)1¢0n+1 + Qr 1wn+1'
T = Lo FinEinlo, — 0 L, (1<i<n-1),
To = Lo Fnon) -~ Fonsan Fon Eon Eman) -+ Em-1nlony — 4 Lo,

By Proposition 2.6 and Lemma 4.13, we have the following tana

Corollary 4.14. The restriction ofi: %, — i1y 10 G4, = 1, s 1, CO-
incides with'”? : %4, — 1.

Recall the anti-involution: on s, (resp.7%+1,), and we consider the contravariant
functor ® : 4, -mod — 54, .-mod (resp®: 4 1,-mod — 5% 1,-mod) with respect
to *. By Proposition 2.6, Lemma 4.13 and Corollary 4.14 togethién Lemma 1.16, we
see that the assumption (A-2) holds (cf. (2.9.1)).

Lemma 4.15. The assumption(A3) holds namely we have the following iso-
morphisms of functors.

QnoRed ™ =~ “Red ™ 0 Q.
Proof. By Proposition 2.6 and Corollary 4.14, we see that
(4.15.1) Sy E ®x Sile, = Fnvtr Lo, @S (Phyar, S )-bimodules.
For M € #+1,-mod, we have the following natural isomorphisms

Qn o Re§™(M) = Homy, (“r 1, Re§TH(M))
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=~ Homyg, ., (Ind}* (. 1,,), M)

= Homg,,, (Yni1r€ ®5,, “nrle,, M)

~ #'Red  (Homy, ., (Zniir Lon,s M) (because of (4.15.1))
= 7Red*t o Qn1(M). O

Note that.#h 1, € ﬂnH,r—modA, Theorem 3.4 (i) implies
(yn+1,r§)9 = Re$+l(=5ﬂn+1,r) S yn,r'mOdA-

Thus, the assumption (A-4) holds.

The assumption (A-5) follows from Theorem 3.4 (i) providéutt Indi ™! is exact
on .%,-mod*. But Lemma 4.9 (i) holds by (A-2), and Lemma 4.2 asserts that t
exactness follows from Lemma 4.9 (i) and (A-4).

Finally, we prove the assumption (A-6).

Lemma 4.16. For M € yn,r—modA, we have the following.
() dim Ind2*(M) > dim colnd*(M).
(i) dim ZIndd*t o Q,(M) > dim Q4,1 o colndi (M),

Proof. By Lemma 2.10, we have that dim Jid(An(x)) = dim Ind}™1(V, (1)) for
A€ At Since INGTH(Va(1)) = Ind) ™ (An(1)®) = @ ocolnd) ™ (An(1)) by Lemma 2.9
(i), we have that dim Ingi*(A,(1)) = dimcolnd™(An(1)). Hence (i) holds for stand-
ard modules. Now we argue by induction on the lengthaefiltration.

Since M € .%,,-mod", we can take a exact sequence

(4.16.1) 0— Ny — M — N, — 0 such that Ny, N, € .%,,-mod".

Recalling that In{i}+1 is exact on.,,-mod" (see the above of Lemma 4.16), we have
the exact sequence

0 — Ind?*}(Ny) — Ind?tH(M) — IndDT1(N,) — 0.

Then we have
(4.16.2) dim Ind*(M) = dim Ind}™*(Ny) + dim Ind}™(Ny).
On the other hand, by applying the left exact functor cfifridto the sequence

(4.16.1), we have the exact sequence Bolnd™(Ny) — colndi (M) — colndi (Ny),
and we have

(4.16.3) dim colnd™*(M) < dim colnd\™*(Ny) + dim colndi™*(Ny).
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By the induction on the length oA-filtration of M, (4.16.2) and (4.16.3) imply (i).
By a similar way as in (i), we can prove that

(4.16.4) dim 2n41 0 Ind) (M) > dim Qn 11 o colndit1(M).

On the other hand, it is known th&,(An(})) is isomorphic to the Specht modufg
defined in [4]. Thus, by Theorem 3.4 (iii) and [1, CorollarylQ], we have

Qni10 N ALR)) = ZIndd (S = #Indh o Qn(An(L)).

By the exactness of Ifid! on .#,,-mod" (note #Ind*?, @, and Q,,; are exact),
we also have

dim 7 Ind"*! o (M) = dim Q41 o IndM(M).
Combining this equation with (4.16.4), we obtain (ii). ]

Now we have seen that the assumptions (A-1)—(A-6) hold, we lthe following
theorem by Theorem 4.10

Theorem 4.17. We have the following isomorphism of functors
IndM*™* = colnd) .
As corollaries, we have the following properties of indootand restriction functors.

Corollary 4.18. We have the following.
() Red*! and Ind]*! are exact.
(i) Ind"*! is left and right adjoint toReg**.
(iii) There exist isomorphisms of functors

Redto® =~ @oRed™, Indi*'o® = @olindl™.
(iv) There exist isomorphisms of functors
QnoRedtt =~ #Red* o 1, Qny1oIndit = #indM i,
Proof. (i) and (ii) are obtained from the definitions and Tieeo 4.17. (iii) is ob-
tained from Lemma 2.9 and Theorem 4.17. The first isomorpliis(iv) is Lemma 4.15
(). By (4.10.2) and Theorem 4.17, we have

Q1o ndi™o 1, = #ind ™o Q0 Iy,

Thus, by Lemma 4.3 (i), we hav@,,; o Ind1t! = #Ind"1,,. O
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5. Refinements of induction and restriction functors

In this section, we refine the induction and restriction torg which are defined
in the previous sections. As an application, we categorifyoak space by using cat-
egories.#,-mod ( > 0).

Throughout this section, we assume thatis a field, and we also assume the
following conditions for parameters.

e There exists the minimum positive integersuch that 1+ (q%) + (9% + --- +
(qZ)(,Ll =0.

e There exists an integes € Z such thatQ; = (q°)s for eachi =1,...,r.

Thanks to [5, Theorem 1.5], these assumptions make no logsradrality in represen-
tation theory of cyclotomiay-Schur algebras.

We also remark that/;, ,-mod does not depend on a choicenof= (mg,...,m;) €
Z' , such thatm, > n for anyk = 1,...,r up to Morita equivalence (see Remark 1.4).
Then, for eachn, we take suitablen and m’ to consider the induction and restriction
functors betweens;, ,-mod and.#,.1,-mod as in the previous sections.

5.1. Forx=(a,b,Cc) € Z.gxZ.ox{1,...,r}, we define the residue of by

resg) = (62)° Q; = (62)° ',

For x € Z.o x Z-o x {1,...,r}, we say thatx is i-node if resK) = (q%)', where we
can regardi as an element ofZ/eZ since §?)'*k® = (q%)' for any k € Z from the
assumption for parameters. We also say thas removable (resp. addablenode of
L € Ay, if x isi-node and removable (resp. addable) node..of

Fori e Af,, putr(d) = (ro(d),r1(a),...,re-1(2)) € Z<,, wherer; (1) is the number
of i-node in p]. Then it is known that the classification of blocks of;, in [10]
as follows.

Theorem 5.2([10]). For A,u € Aff,, An(2) and An(u) belong to the same block
of .7, if and only if r(A) = r(u).

5.3. Put

Rie={a=(ao, a,...,8 1) € Z° | a=r(1) for somei € A] }.
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Then we have a bijection betwed®, . and the set of blocks of;,; by Theorem 5.2.
By using this bijection, fola = (ag,ay,...,8.-1) € Z€ such thatz‘j’j)aj =n, we define
the functor }: %, -mod — ., .-mod as the projection to the corresponding block if
a€ R, and O ifa ¢ Rye.

We define a refinement of RES and Ind™* as follows. Fori € Z/eZ, put
i—Reﬁ“ = @ lo_io Reﬂ“ ol,,
a€Ry1e
i-Indy™ = P 1ayi o Indy* o 1,
acRye

wherea+i = (ag,...,8 1,8 £1,841,...,8. 1) fora=(ap,...,a 1) € Z&. Then, we
have Re§™ = @), 7z i-Re§ ' and Ind™ = P,z ¢z i-Indy**. From the definition
together with Theorem 3.4 and Theorem 4.17, we have thewiip corollary.

Corollary 5.4. (i) For A € A7, there exists a filtration of#, ;-modules

i-Re§ H(Ans1(A) =MD Mz D+ D Mg D Myyp =0,

such that M/Mj 1 = Ap(A \ %), where x, X, . .., X are all removable i-nodes of
such that x > xo > - -+ > X.
(i) For ue A;r, there exists a filtration of#,.1,-modules

i-Ind? (A1) =M DMy D - DMy D My =0

such that M/M;j 1 = Any1(e U X)), where X, Xo, ..., X are all addable i-nodes oft
such that X > Xg_1 > --- > Xq.

55. Puts= (s, % .--.,%). The Fock space with multi-charge is the C-

vector Space
Fid=P D clny

NEZ=0 reAny

with distinguished basig|A, s) | 2 € A[l, n € Z>o} which admits an integrabIeA[e-

module structure with the Chevalley generators acting Bewe (cf. [9]): fori € Z/eZ,

e-ns= Y lwms fi-lhs= > |u9.
n=A\X H=AUX
res)=(q?) res)=(q?)

5.6. Put

i-Res= @ i-Re§*™, i-Ind= @) i-Indj**.

NeZx=q NeZx=o
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Sincei-Res andi-Ind are exact functors froép,., -#n-mod to itself, these functors
imply the well-defined action oi€ ®z Ko(EP,-q -#nr-mod). Thanks to Corollary 5.4,
for » € Af,, we have that

n,ro

i-Res- [An(W)] = Y [Ana(@)] i-nd-[AnM)] = Y [Anca(w)]:
reélgigz)‘ fegé(:)igz)'

Note that{[An(A)] | A € A}, n € Zxo} gives anC-basis ofC ®z Ko(ED = -Znr-mod).
Then, we have the following corollary.

Corollary 5.7. The exact functors-Resand i-Ind (i € Z/eZ) give the action of
;[e on C ®; Ko(@nzo ym—mod), where FRes (esp. iInd) is corresponding to the
action of the Chevalley generators @esp. f) of ;[e. Moreover by the correspondence
[An(M)] = |2, 8) (A € A, n € Zxo) of basis C ®z Ko(P,=0-7n,-mod) is isomorphic
to the Fock spaceF[s] as ;te-modules.

REMARKS 5.8. (i) The results in this section do not depend on the dbaria-
tic of the ground fieldR, namely depend onlg and the multi-charges = (s;,...,s)
modulo e.
(i) By the lifting arguments from the module categories aiki-Koike algebras as in
[16, Section 5], we obtain thé\[e-categorification in the sense of [15] in our setting.

6. Relations with category © of rational Cherednik algebras

In this section, we assume th&® = C. We give a relation between our induction
and restriction functors for cyclotomig-Schur algebras and parabolic induction and
restriction functors for rational Cherednik algebras give [3].

6.1. Let H,, be the rational Cherednik algebra associated®tox (Z/r Z)" with
the parameters (see [14] for definition and parametecy and O,, be the category
O of H,, defined in [8]. In [8], they defined the KZ functor KZO, — 5% -mod.
Then O, is the highest weight cover of#,,-mod in the sense of [14] through the
KZ functor. In [14], Rouquier proved thaDd,, is equivalent to.#;,-mod as highest
weight covers of74, ,-mod under some conditions for parameters.

6.2. Let CIndl*? (resp. “Red*?) be the parabolic induction (resp. restriction)
functors betweer®,, and On;1, defined in [3]. Then, we have the following theorem.

Theorem 6.3. Assume thatO,, (resp. Ont1y) IS equivalent to .7, ,-mod
(resp. #n+1,-mod) as highest weight covers of#, ,-mod (esp. 741,-mod). Then
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under these equivalencese have the following isomorphisms of functors
9Red ™ =~ Red™, ©CIndh™t = Ind]t.

Proof. Let®,: O, — “n,-mod be the functor giving the equivalence as highest
weight covers of74, ,-mod. Then, we have that KZ= Q2,0 ®,. Let ¥,: & -mod —
On; be the right adjoint functor of K& Then, we have tha®, =~ ®, o ¥, by the
uniqueness of the adjoint functors. It is similar for the igglence ®,11: Onp1y —
“n+1r-mod.

By Corollary 4.18 (iv) and [16, Theorem 2.1], we have that

QnoRed™ =~ #Red™ o Qpyg
(6.3.1) =~ ?'Red* 0 KZyy1 0071,

~ KZ,o OReﬁ“ o ®;il.

Recall thatl,1: Fhi1r-proj— Fni1,-mod is the canonical embedding functor. Then,
(6.3.1) together with the isomorphist, =~ ©, o ¥,, implies that

(6.3.2) ®noQuoRe$™ o lh1 2 OpoWy0KZy0 Re§™ 0@, 1 o lny1.

Since Re&™ (resp.”Red*?) has the left and right adjoint functor Ifdt (resp.€Indh ™)
by Corollary 4.18 (ii) (resp. [16, Proposition 2.9]), Ré$ (resp.“Red 1) carries pro-
jectives to projectives. Thus, (6.3.2) together with @) 8mplies that

(6.3.3) Re$™ ol = OnoPRed™ 00,1 0 lni1.

Since both Rés ! and®,0Red 0, 1, are exact, (6.3.3) together with Lemma 4.3 (ii)
implies that

Red*! >~ @, 0 “Reg*to 071,
By the uniqueness of adjoint functors (or by a similar argotsg we also have

Ind™** =~ ©p 11 0 CIndl*t 0 O O
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