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Abstract
In this paper we use a knot invariant, namely the Tristranwitiee signature, to
study deformations of singular points of plane curves. Wenldp in some cases, the
difference between th&-number of the singularity of the central fiber and the sum
of M-numbers of the generic fiber.

1. Introduction

A deformation of a plane curve singularity is, roughly spagk a smooth family
of plane algebraic curvefCslscp (we consider here only deformations over a di3k
in C) such thatCs C C? and a distinguished member, s@y, has a singular point at
7o € C?. The question we address is the following: how are relategatth other singu-
lar points of Cy and of Cs with s sufficiently small? This question, although already
very difficult, becomes even more involved if we impose somological constrains
on the general membelG;. For example, we can require all of them to be rational,
which means that eacBs is a union of immersed disks.

This rationality condition is justified for various reasorBor example, let us be
given a flat familyCs of projective curves in some surfageand this family specializes
to a curveCy with the same geometric genus &s. Then, for each singular point
z € Cp, we can take a sufficiently small bal aroundz and the familyCsN B provides
a deformation of a singular point such that all curé@sn B are rational.

To show a more specific example, we can téke- C,, to be a polynomial curve
given in parametric form byC = {(t",t™), t € C} with n, m coprime, and assumé&’
is also parametricC’ = {(¢(t), ¥(t)), t € C} with deg¢ = n, degyy = m. Then for
s e C\ {0}, the mapping £"¢(t/s), sy (t/s)) parametrizes a curve that is algebraically
isomorphic toC’ and, for sufficiently smalk, is very close toC. In other words, every
polynomial curve of bidegreen(m) specializes tot(",t™). In particular if a polynomial
curve of bidegreen, m) has some singularity, this singularity can be specializethe
guasi-homogeneous singularity(t™). So, classification of parametric deformations
encompasses the problem of finding possible singularities polynomial curve of a
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given bidegree. The characterization of possible singidarof polynomial curves is,
in turn, a problem with applications beyond algebraic getoyniself, for example in
determining the order of weak focus of some ODE systems @eand [5, Section 5)).

In [11, 5] there was defined a new invariant of plane curve \darities, namely
the codimension, also known as tMenumber (or the rougtM-number). It is, roughly
speaking, the codimension of the (topological) equisiagtyl stratum in the appropri-
ate space of parametric singularities. A naive parametantoty argument suggests
that this invariant is upper-semicontinuous under pardmeeformations. Yet proving
this appears to be an extremely difficult task. On the one hé#mel M-number can
be expressed by some intersection number of divisors in dhelution of singularity,
but then the blow-up diagram changes after a deformation waw that we are still
far from understand. In an algebraic approach, the geoengernus of nearby fibers
is quite difficult to control. On the other hand, the famousaHo’s example [9] can
be used to show, that a natural generalization of this ergesemicontinuity property
fails if we allow the curvesCs to have higher genera.

A possible rescue comes from a very unexpected place, ndfinoety knot theory.
It turns out that theM-number, or its more subtle brother, thé-number (also called
the fine M-number), is very closely related to the integral of the ffaisn—Levine sig-
nature of the knot of the singularity ([3]). We say a knot,téz of a link, to em-
phasize that this relationship has been proved only in these ed cuspidal singular-
ities. On the other hand, we can apply methods from [2] to\stih& changes of the
Tristram—Levine signature. Putting things together weawba bound for the difference
between the sum oM-numbers of singular points of a generic fiber and the sum of
M-numbers of singular points of the central fiber, providedt tthe curves have only
cuspidal singularities or double points.

The structure of the paper is the following. First we precisbat is a deform-
ation (Section 2). Then we recall definitions of codimens{8ection 3). Section 4 is
devoted to the application of the Tristram—Levine sigratwVe recall a definition of
the Tristram—Levine signature and cite two results from g2p [3]. This allows to
provide the promised estimates in Section 5.

2. What is a deformation?

Under a notion of adeformationof a plane curve singularity over a base space
(D, 0), whereD C C is an open disk, we understand a palf, B) where B is a ball
in €2 and X is an algebraic surface (called thatal spacg in B x D. The setsXs =
X N B x {s} (treated simply as subsets &) are called thefibers of the deformation.
We impose the following conditions on the pait’(B).
flatness The natural projection on the second factgr. X — D is a flat morphism.
transversality For eachs € D, the curveXs is transverse to the boundafB.
locality: The curveXq (called thecentral fibe) has precisely one singular poirg (we
will assume that this is @ C?), and the intersectioiX, N 3B is the link of singularity
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of zp.

The flatness condition is a standard one in the deformatiearsh The locality means
that we are concerned with the deformation of a given singptEnt z, at a local
scope: roughly speaking it says thBtis a small ball aroundy. The transversality
will be crucial in our approach, it roughly means that thekd3 is small: if Xq is
transverse t@B, then the transversality holds for alsufficiently close to O.

DerINITION 2.1. Thegenus gof the deformation is the geometric genus (i.e. the
topological genus of the normalization) of a generic fibr The deformation iga-
tional if g = 0, in which case allXs are sums of immersed disks. The deformation
is unibranchedif Xg is a disk. The deformation iparametricif it is both rational
and unibranched.

The intersection ofXs with the ball B by the transversality condition above is a
link, which we shall denotd.s. As this intersection is transverse for eagk D, the
isotopy type ofLs does not depend os.

DEFINITION 2.2. The (isotopy class of the) linkg is called thelink of the de-
formation It is denoted byL x.

REMARK 2.3. The locality property ensures tha can be identified with the
link of singularity of Xo.

Lemma 2.4. Let (X, B) be a parametric deformation. Thethere exists such an
¢ > 0 and a family of holomorphic functions

Xs(t) = ag(s) + ay(S)t + - - -,
ys(t) = bo(s) + by(S)t + - - -

with |s| < ¢ that (s, Ys) locally parametrizes Xand both x and y depend analytically
on s.

Proof. The assumptions on the parametricity and transhtgrggarantee that the
deformation is§-constant, hence equinormalizable (see [8, Section 2EY}).assump-
tions, the normalization oft’ is a productD x D’, where D’ is a small disk. Leto
be a normalization map. Then we consider the compositiop @fith the projection
m1: X — B onto the first factor, and then with coordinate functions my: B — C.
We havexs = my o1 0 p andys = 7y o 7y 0 p. O

3. Codimension

The codimension is a topological invariant of a plane curvgdarity. We recall
here a definition from [5].
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DerINITION 3.1. Let7 be a topological type of a plane curve cuspidal singular-
ity with multiplicity m. Let # be the space of polynomials in one variable. Consider
the stratumX C H consisting of such polynomialg that a singularity parametrized by

t— (", y()

defines a singularity at O of typ@. Then theexternal codimensiowf the singularity
T is
extv = codimy X + m— 2.

(Here coding A means the codimension & in B.) The interpretation of the def-
inition is the following. If we consider the space of pairspaflynomials &(t), y(t)) of
sufficiently high degree, then the subset of those paranmgria curve with a singu-
larity of type 7 forms a subspace of codimensiemt(7). In fact, there aren — 1
condition for the derivatives ok to vanish at some point, codignX conditions for
the polynomialy (the degree ofy is assumed to be high enough so that these condi-
tions are independent). The missirgdl comes from the fact that we do not require
the singularity to be at = 0, but we have here sort of freedom.

REMARK 3.2. In [5] the assumption thah is the multiplicity is not required. If
m is not the multiplicity, then (3.1) below, does no longer ol

The above definition can be generalized to multibranchedusanities. We refer
to [5] for detailed definitions.

There exists also a construction of te&tw in a coordinate-free way. It can be
done as follows. Let@, 0) be a germ of a plane curve singularity at 0, not necegsaril
unibranched. Letr: (U, E) — (C?, 0) be the minimal embedded resolution of this
singularity, whereE = )" E; is the exceptional divisor with a reduced structure. Ket
be a (local) canonical divisor od, which means thak = > o E; and K+ E;)-E; =
—2 for exceptional curveL;. Let C’ be the class of the strict transform @f, and
D=C +E.

DEFINITION 3.3. A rough M-numberof (C, 0) is the quantity
K- (K + D).
We have the following fact (see [5, Proposition 4.1])

3.1 M = ext.



DEFORMATIONS OF SINGULARITIES 577

REMARK 3.4. In[11], M is defined asM = u+(K + D)>2. This definition agrees
with Definition 3.3 for unibranched singularities, becayse- —D(K + D). For multi-
branched, the Orevkov’'s version is bigger and the diffeeeiscthe number of branches
—1. See also [5, Remark 4.2].

Orevkov [11] defines, besides a rough-number, a fineM-number of a singular-
ity. We should take the Zariski—Fujita decomposition

K+D=H+N,

where H is the nef part andN negative (i.e. the intersection form on the support of
N is negative definite). We have the following definition (s&e Definition 4.1]).

DEFINITION 3.5. TheM-number of the singularity is equal ol — N2
N2 is always non-positive, sdd < M. For cuspidal singularities we hawd? <
—1/2, while for an ordinaryd-tuple pointN = 0 andN? = 0. For cuspidal singularities

we have the formulaM = 1+ (K +D)?, hence we recover Orevkov’s original definition
[11, Section 1]

M = u+ H2
Both M and M-numbers can be very effectively calculated from the Eiserb
Neumann diagram. An algorithm can be found for example ingéction 4.2]. We
provide a simple, but important example.

EXAMPLE 3.6. Letp,q be coprime positive integers and consider the singularity
{xP —y9 = 0}. Its M-number is equal t + q — [p/q] — [q/p] — 1, while

(3.2) M=p+qg————~— 1.

EXAMPLE 3.7. BothM and M-numbers of an ordinary double point are zero.

We expect theM-number to be upper-semicontinuous in parametric defoomat
To be more specific we state a following conjecture.

Conjecture 3.8. Let (X, B) be a parametric deformation with a central fiberp X
having a singular point gwith M-numberM,. Then for all s € D* we have

(3.3) Z My < Mo,

where we sum thé&l-numbers of all singular points of the fibersX
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Without assumption for the deformation to be parametri@ oauld naturally ex-
pect that the left hand side of (3.3) should be replacedvhy+ g, whereg is the
geometric genus of the fibeXs. But then we can give a counterexample to this ex-
tended conjecture. Namely, Hirano [9] constructs a serfesuoves Hy C CP? (for
infinitely many d’s) such that eachHy is of degreed and has approximatel;?zd2 or-
dinary cusps. Now, it is well known that any algebraic cufveof degreed in C P2
specializes to a curv€y given by x4 — y¢ = 0. So let us take a deformation (sat-
isfying only the flatness conditionf ¢ CP? x D, with Zs = Z N CP? x {s}, such
that Zy = Cq4, and, fors € D*, Zg is isomorphic toHy. For s sufficiently small and
non-zero, all singularities oZs are close to (0, 0 C c CP?, so we can restrict our
deformation to a small balB around (0, 0). Shrinkind if necessary we can guaran-
tee that

X=ZNBxDccC?xD

is a deformation satisfying flatness, transversality amality conditions. Now we com-
pare codimensions. As the codimension of the ordirghtyple point isd — 2 by (3.1),
and the codimension of an ordinary cusp is one, we get thagebenetric genus oKs

for s # 0 should be at least (32)d? (we neglect terms of lower order id). Thus
the geometric genus dfly must be at least (82)d?. But this contradicts the classical
genus formula, because a degreeurve with (932)d? cusps can have geometric genus
at most (732)d2.

4. Tristram-Levine signatures

Let L be a link inS. Let V be a Seifert matrix oL. Finally, let¢ € C, |¢| = 1.

DEFINITION 4.1. TheTristram—-Levine signaturef L is the signatures (¢) of
the Hermitian form given by the matrix

Q-5V +(@-o)VT.

It is well-known thato is a link invariant. It is also easily computable for alge-
braic links.

EXAMPLE 4.2. Let us consider the singularif{x? — y? = 0} as in Example 3.6
and letTp 4 be its link (note, that this is exactly thep,(q)-torus knot). Its Tristram—
Levine signature can be computed as follows: consider a set

2:{'—p+é:1§i§p—1,1§j§q—1}c(0,2)-

Let ¢ = & with x € (0, 1) andx ¢ £. Then

o(¢) = —#5 N (X, X + 1)+ #2 \ (X, X + 1).
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Here # denote the cardinality of a finite set.

In general,o(¢) is a piecewise constant function with jumps only at the sooft
the Alexander polynomial. Its values are computable, yey tban not always be ex-
pressed by a nice, compact formula. However, the main featwe shall use is that
Tristram—Levine signatures behave well under knot colsondiThis behavior was stud-
ied in [2] in the context of the plane algebraic curves. We agme result from this
paper, that in our setting can be formulated as follows.

Assume that I, B) is a deformation. LelY = X4 be a non-central fiber (i.es #
0). Assume thaty,...,zy are the singular points of andLq,...,Ly the corresponding
links of singularities. Let, finallyb:(Y) denotes the first Betti number 8f. Recall that
Lo is the link of the singularityXo.

Proposition 4.3. For almost all¢ € S*

N
oL,(8) = Y ow,(2)

k=1

(4.1) < by(Y).

Proof. Letx, y be the coordinates i€2. If the function |x|? + |y|? is Morse
on Y, then the statement follows from [2, Proposition 6.8, (in the present paper
corresponds td., in [2], with r being the radius of our baB). If the above function
is not Morse, we can still find its subharmonic perturbatiorichhis sufficiently close
to the original one inB and finish the proof in the way like above. O

Proposition 4.3 gives a strong obstruction for the singtidsr occurring in the per-
turbations. Yet the Tristram—Levine signature functiordifficult to handle as we have
already seen in Example 4.2. Fortunately, there is a re$yR,d] that allows to draw
some consequences from Proposition 4.3 in a ready-to-use fo

Proposition 4.4 (see [3, 4, Proposition 4.6]) Let C be a germ of a curve singu-
lar at z5. Let K be the corresponding link of the singulayity and M the Milnor and
M-numbers of C. If K is a knot then

1
(4.2) 0< —3/0 o (€)Y dx — (M + u) < g.

REMARK 4.5. There is a mistake in the formulation of [3, Lemma 4.4§l §8,
Lemma 4.5]. The updated version [4] on the arxiv has thisreroorected. The quanti-
ties on the left hand sides of formulae (4.2) and (4.3) in [8ud be read 2 + (K +
D)? and 2« + H?, respectively. Indeed, the correct version of [3, (4.2)kiplicitly
written e.g. in [12, formula 29]. It can be also deduced frdma formula [5, (4.7)] and
[5, Corollary 4.7]. The correct formula, as stated in [43}#follows as well, because
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2; 4+ H?2 = 2u + (K + D)> — N2 and —N? is computed e.g. in [5, Proposition 4.9].
Thus, the correct estimate in [3, Proposition 4.6], showddOb< —3pp — (2 + H?) <
2/9, exactly as we wrote in [4] above. The essential part of thaofpof [3, Prop-
osition 4.6] is not changed. We are grateful to the refere¢hef present article for
having spotted that mistake.

ExampPLE 4.6. If C is a germ of a quasi-homogeneous singulafity —y® = 0},
p,g > 1, gcd, g) = 1, then its link is the torus knofp 4. It is known (see e.g. [3,
Corollary 2.10], or [10, Remark 3.9]), that for the torus kno

! i 1 1 p g 1
0 ) P\ ) TP T T e T g

As u=(p—1)Qq-1), by Example 3.6 we havM + u = pq— p/q —q/p. Hence

o [t ~Le(o})
3/0 (e™*)dx (M+u)—pqe 0,6.

Now we have all pieces to prove the main result.

5. The main result

The setup in this section is the followingX( B) is a deformation,Xy the cen-
tral fiber andY = X5 (s # 0) some other fiber (not necessarily a generic one). We
introduce the following notation:

e o is the Milnor number of the singularity oXg and Mg its M-number;

e g is the geometric genus of;

e Z7,...,Zy are singular points o¥, Li,...,Ly are corresponding links of singular-
ities. Thenuy,...,un (respectivelyMy,...,My) are Milnor numbers (respM-numbers)
of the singular points;

e by is the first Betti number of.

We shall put a following additional assumption. It is dietby the fact that we
do not have the formula for the integral of the Tristram—Ibevisignature for general
algebraic links.

ASSUMPTION5.1. There isn < N thatz,..., z, are cuspidal and,1,..., 2y
are ordinary double points. Furthermore, the singularityXg is cuspidal.

Let
R=N-—-n

be the number of the double points ¥f We have the following important result.
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Theorem 5.2. In the above notation.

n

2

(5.1) ZMK—M0<89+2R+§.
k=1

Proof. Let us observe that

(5.2) bi(Y) = 29 + R,
N n

(5.3) o=20+ R+ m=29+2R+ > .
k=1 k=1

The equality (5.3) is exactly the genus formula. It can bevgdoby comparing the
Euler characteristics of smoothings ¥f andY (they must agree). Since the signature
of a link of a double point is exactly-1 we deduce from Proposition 4.3 that for
almost all¢

(5.4) > (—o1,(2) = (—o1,()) < 2g.
k=1

The signs in (5.4) are written in this way on purpose. Now wegdrate the inequality
(5.4). Using (4.2) we get

n

2
E (Mk+Mk)—Mo—Mo<6g+§-
k=1

Applying (5.3) finishes the proof. O

We see that in this approach, the control of the genus is. vitalparticular we
can have the following result.

Proposition 5.3 (BMY like estimate) Let C be a curve inC? given in paramet-
ric form by

C={(xy)eC® x=9(t), y=y(), tC},
where¢ and iy are polynomials of degree p and q respectively. Assume thetdpq

are coprime and C has cuspidal singularitieg, z. ., z, with M-numbers M, ..., M,
and besidesC has precisely R ordinary double points. Then

ZMk<p+q————p——+2R.
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Proof. Consider a family of curves
Cs={(x,y) e C2: x =sPp(s ™), y = sy (s 't), te C},

wheres is in the unit disk inC. For s # 0 all these curves are isomorphic, while for
s = 0 we have a homogeneous curté,(?). Let B be a sulfficiently large ball such that
for eachs with |s| < 1, Cs is transverse to the bounda#B. Then, B N Cs gives raise
to a deformation in the sense of Section 2. The central fibeéZyisa homogeneous
curve, while a non-central is isomorphic to the intersectd C with a large ball. We
can apply Theorem 5.2 in this context, noting that tienumber of the singularity
(tP,t9) is equal top+qg—p/g—q/p—1 (see (3.2)). ]

We remark that the estimate in Proposition 5.3 is very sintilaTheorem 4.2 in
[5]. That result, however, relies on very difficult BMY inedifa
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