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Abstract
For a minimal diffusion process om,[b), any possible extension of it to a stand-
ard process ong] b] is characterized by the characteristic measures of exmgs
away from the boundary points andb. The generator of the extension is proved to
be characterized by Feller's boundary condition.

1. Introduction

The generator of a minimal diffusion process on an inter@ab) can be charac-
terized by the second order differential operafo= D, Ds in Feller's canonical form,
wherem and s are strictly-increasing continuous functions am If). Feller ([4] and
[6]) determined all possibilities of boundary conditiomsrhake£ a generator of some
Feller semigroup, which we cakeller's boundary conditionsIf the boundary points
a and b are both accessible, Feller's boundary condition is of threnf

1.1 Pa(f) = @p(f) =0

where

(1.2) Pa(f) = pof(@) — P2Dsf(a) + psLf(a) — pa[ f — f(a)]

and

(1.3) Pp(f) = op F(b) + D5 f(b) + gz L f(b) —au[ f — f(b)]

for some non-negative constants, g, i = 1, 2, 3 and some non-negative measupgs

on (@, b] and g4 on [a, b). Here, for a measurg and an integrable functiorf, we
write u[f] = [ f du.

The purpose of this paper is to determine, for a given minidifision process on
(a, b), all possibilities of its extensions to standard processe ja, b]. For such an ex-
tension, we give the characteristic measure of excursisay &om the boundarya, b},
construct the process by piecing together excursions aowkphat itsCyp-generator is
characterized by Feller’s boundary condition.
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If the boundaries are regular, 1td—McKean [11] constructechsa process by time
change of the reflected process using its local time at thedsies and an independ-
ent Poisson point process. Note that Hutzenthaler—Ta@prsfudied the time rever-
sal property of such process and discussed application®palgtion genetics. If the
boundaries are not regular, then the reflected process duesxist, so that the time
change method is not valid. 1td [10] utilized excursion theto construct such a pro-
cess and determined the domain of its generator. Note thatefolvent formula which
played the key role in [10] was generalized by Rogers [13]e Tésults of this paper
complement the results of [10] and [13]. Note also that Fbkua [7] recently deter-
mined, by the help of the Dirichlet form theory, all possiidls of the extensions to
symmetric diffusion processes for any minimal one-dimeoai diffusion process pos-
sibly with killing inside @, b). Our objects exclude killing insidea(b), but are out of
scope of [7] since they have jumps from the boundary so ttet #re not necessarily
symmetric. For an invariance principle for such processes, Yano [14].

For this purpose, we shall appeal to the excursion theosy;sttmple path which
starts froma up to the Kkilling time or the first hitting time ob, whichever comes
earlier, will be constructed from the stagnancy rateand the characteristic measure
of excursions away frona given as

1.4) ngb) = pda + pzng?),eﬂ + /( ' p4(dx) pxstop,
a,

where A stands for the excursion which stays at the cemetery forimﬁ!,tng?)ref, for
the characteristic measure of excursions away feoof the diffusion process reflected
ata and stopped ab, and P for the law of the£-diffusion process started atand
stopped at or b. The possible behaviors atof a generic sample path are as follows:
(i) itis killed (i.e., jumps to the cemetery) according teethate p;;

(i) it enters the interior &, b) continuously according to the raig;

(iii) it stagnates at according to the rates;

(iv) it jumps into an interior pointx of (a, b] picked accordingly to the rat@,(dx).

We may carry out the same construction of the sample pathhastarts fromb as
that froma, where p;’'s are replaced by's. We shall prove that th€,-generator of
the process constructed in such a way as above is characdriz Feller's boundary
conditions (1.1).

This paper is organized as follows. In Section 2, we intredseveral notations
from the theory of excursions and state our main theorems.giie a very general
formula about the resolvents and give theorems aliugenerators. In Section 3, we
prove the resolvent formula. In Section 4, we study severapgrties of the resolvent
operator of the minimal diffusion process. Section 5 is dedao the proofs of the
theorems ofCy-generators.
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2. Notations and main theorems

2.1. Excursions and resolvents. Let A denote an isolated point attached to
[—o0, o0] and we callA the cemetery For any functionf defined on a subinterval of
[—o0, ], we always extendf so that f(A) = 0. Let W denote the space consisting
of all cadlag functionaw: [0, 00) — [—00, c0] U {A} such that, for some & T, < oo,
w(t) € [—oo, 00] for all 0 <t < Tpo andw(t) = A for all t > To. We equipW with
the o-field generated by the cylinder sets. We denote the codelipeocess ofV by
(X(h=0 = (Xt)=0:

(2.1) X(t)(w) = X¢(w) = w(t) for t=>0.
We denote the first hitting time of € [—o0, co] U {A} by
(2.2) Ty = Tx(X) = inf{t > 0: X, = X}
and the first exit time ok € [—o0, oc] by

(2.3) 1y = «(X) = inf{t > 0: X; # x}.

Here we adopt the usual convention thatdnt oco.

Let a € [—o0, o0]. We write E(a) for the set of alle e W such thate(t) is con-
stant for allt > T, A Ta, wheres At = min{s, t}. Each element of E(a) is called
an excursion away from .a We utilize the theory of excursions away from see,
e.g., [2, Chapter 1ll] and [1, Chapter IV]. Ldt be a subinterval offoo, o] and let
{(X)t=0, (Px)xe1} be a standard process dni.e., a strong Markov process such that
Xi el for all t < To a.s. with respect td® for x € I, and such that its sample paths
are right-continuous and quasi-left-continuous upTig see, e.g., [3]. Suppose that
ael. We write P® for the law underPy of the stopped procesé({a))tzo defined as

(2:4) a if t>T.,.

Xt(a) _ {Xt if t<T,,

For the procesq(Xi)i=0, Pa}, we would like to obtain a positive additive func-
tional (La(t))=0 which increases only when the process staya,and a non-negative
constantc, called thestagnancy rate The following three cases are only possible:
(i) Suppose that is regular-for-itself i.e., P;(T, = 0) = 1, and also thaa is instan-
taneous i.e., Py(ta = 0) = 1. Let L4(t) be a choice of the local time & up to time
t. Then there exists a constant > 0 such that

t
(2.5) / Lix,—a) dS = gala(t).
0
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(i) Suppose that is regular-for-itself but not instantaneous. Theris holding, i.e.,
Pi(ta > 0) = 1. Let ¢4 > 0 be a fixed constant and set

t
(2.6) L) = = [ Lixa 0
Ga Jo
(iii) Suppose thata is irregular-for-itself. Then we hav®,(T, > 0) = 1. Then the
set{t > 0: X; = a} is locally finite so that can be enumerated {ag < 7, < ---}.
Extending the probability space, we g} ; be a sequence of independent standard
exponential variables which is independent &f)=o. We now define

o0
2.7) La(t) = &+ ) &nlig=y

n=1

and defineg, = 0.

Let na(l) = inf{t > 0: La(t) > |I}. Then, in any one of the above three cases
(i)—(iii), the process fa(1))i=o0 is a subordinator which explodes ht(c0). We define
a point process(1))ep, taking values inE(a) as

X(t+na(l-)) if 0=t <nal)—nal-)

(2.8) pa()(t) = { X(na(l)) it t>na(l)—nall-)

for all | belonging to the domai, = {I: na(l—) < na(l)}. We see that g.(1))iep, is
a stationary Poisson point process stopped fto), so that it is called thexcursion
point process Its characteristic measure will be denoted lpyand called thecharac-
teristic measure of excursions away from &he process(l)) >0 can be recovered
from the excursion point process as

(2.9) na(l) = cal + Z Ta(Pa(s))-

s<I
By (2.9), we haveP[e ""()] = e 'Va(") where

(2.10) Va(r) = cal +Na[l—e ).
Since Py(na(l) < o0) > 0, we obtain

(2.11) nil —e "] < oo,

and, in particularn, is o-finite. If a is regular-for-itself, the process(l) is strictly
increasing until it explodes, so that we have

(2.12) ca>0 or [ny(Ty <t)=o00 foralltx>A0]
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We know that the strong Markov property holds in the followsense: for any stopping
time T, any constant timé and any non-negative Borel functiorisandg, one has

(2.13) Nal f (X1)g(X140)] = nal f (X7)PLIGX)II-
If we write
(2.14) ka = na({A}), wva(-)=na(-; Xo=42a), ja(:)=na(Xo € -; Xo # @),

thenn, may be represented as

(2.15) Na = Kada + va + [

ja(dx)P®@.
I\{a}

The quantitiesky, vy and j, are called thekilling rate, the characteristic measure of
excursions of continuous entrancand thejumping-in measurerespectively.

REMARK 2.1. Suppose that & ny(Xg = a) < co. Then the first index. such
that p,(1)(0) = a is positive and finite a.s., so that(A) is a finite stopping time such
that X(na(1)) = a. Hence it follows thata may not be regular-for-itself and that, =

Vg = Pa(a).

Let By(l) or simply By, denote the set of all bounded Borel functions lnLet
us study the resolvent operator:

(2.16) Rg(x) = P [/ e”g(xt)dt} for geBy, r>0 and xel.
0
Letbe | \ {a} be fixed and write
(2.17) Tap = Ta A Ty = inf{t > 0: X; € {a, b}}.
Let ¢ and n® be the stagnancy rate and the characteristic measure ofsexts!

away froma for the processf,(xt(b))tzo, P,} starting froma and stopped db. Forr > 0O,
we define

(2.18) V() = cPr +nP[1—e ]
and, forr > 0 andg € By, we define

Ta,b
(2.19) NO(g) = sPg(a) + n® [ /O e g(Xy) dt].

The following resolvent formula will play a key role:
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Theorem 2.2. One has
(2.20) PR g@) = NO(g) + nPle™; Ty < 0o] R g(b).

Theorem 2.2 will be proved in Section 3. We remark that Theo&2 contains
Theorem 5.3 of Ité [10] and Theorem 1 of Rogers [13] as spewiaes wherd is
not accessible.

Before closing this subsection, we introduce another iwtatRecall that the re-
solvent operator is defined in (2.16). It is easy to see thatrésolvent equation

(2.21) R —Rq+(r — )RRy =0

holds. LetCy(l) or simply C, denote the set of all bounded continuous functions on
I. If geCy, we see, by the dominated convergence theorem,rtRag(x) converges

to g(x) asr — oo for all x € 1. Hence we see that the range(Cp) does not depend
onr > 0 and thatR : C, - R (Cp) is injective. Now we define the operatgr as

D(9) = R(Cy),
(2.22) {Qf =rf —R1f for feD(Q),
which turns out to be independent of the choicerof 0. We call G the Cy(l)-
generatoror simply the Cy-generator

2.2. Feller's boundary classification. Let us prepare several notations of Feller's
characteristics of one-dimensional diffusions.

Let (a, b) be a subinterval of foo, 0co]. Let m and s be strictly-increasing con-
tinuous functions ong| b) with values in oo, oc]. We extend such functions so that
m(a) = m(a+), m(b) = m(b-), s(a) = s(a+) ands(b) = s(b—). Fora<x <y <b,
we write m(x, y) = m(y) — m(x) and s(x, y) = s(y) — s(x).

We adoptFeller's classification of boundarietaken from [4] and [5] as follows.
Let ¢ € (a, b). We use the following terminolody

[ Cc
a is calledaccessiblgf / ds(x) / dm(y) < oo,
a X

(2.23) N c
a is calledenterableif [ dm(x)/ ds(y) < oo,
a X

where we writefccf for f(cl,cz] if ¢, < ¢, and for— f(cz,cl] if c; > Cp. These classifications

1The term “enterable” in the second line of (2.23) has nevenhesed in the literatures. We prefer,
however, to adopt this unfamiliar terminology, since thmifear terminology conflicts (2.24); see the
footnote on the next page.
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do not depend on the particular choice ofe (a, b). We also use the following
terminology:

a is calledregular if it is both accessible and enterable,
a is calledexit if it is accessible but not enterable,

a is calledentranceif it is enterable but not accessible,

a is callednatural if it is neither accessible nor enterable.

(2.24)

The same classification is made for the boundaryy switching the roles betweea
and b.

2.3. Minimal one-dimensional diffusion processesWe caII{(Xt)tzo,(PXO)Xe(a,b)}
a minimal diffusion procesf it is a standard process oi,(b) such that the following
conditions holdPy-a.s. for allx € (a, b):
(i) tr X;is continuous int < Ty;
(i) Xie(ab)forallt<Ta;
(i) Xy >aor Xy >bast — Ta—.
In addition, we assume the following condition:

(2.25) P«(Ty <o00) >0 forall x,ye(a b).

We denote its resolvent by
(2.26)
RY%(x) = Pf[/ e "g(X;) dt:| for geBp((@ b)), r>0 and xe(a b).
0

It is well-known that there exist some strictly-increasicmntinuous functionsn and s
such that
s(@, x)

(2.27) P Ta > Tp) = s@.b) forall a<a <x<b <b

and

228)  PYTaATo] = /

Kap(X, y)dm(y) forall a<a <x<b <b,
(a,b)

where

s(@’, x)s(y, b’)

(229)  Kap(x,y) = Kap(y, ) = ==

forall & <x<y<b.

2The terms “exit” and “entrance” are sometimes used instdathacessible” and “entrable” in
(2.23), respectively; see, e.g., Itb—McKean'’s textbook.[12
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The functionsm and s will be called thespeed measurand thecanonical scalg re-
spectively. We writeD(Ds) for the set of measurable functiorfs on [a, b] such that
f(x) — f(y) = fxy g(2) ds(z) for all x, y € (a, b) for some locallys-integrable func-
tion g, and in this case, we writ®s;f = g. We write D(L) for the set of measurable
functions f on [a, b] such thatf € D(Ds) and Ds f (X) — Dsf(y) = fxy g(2) dm(z) for
all x,y € (a, b) for some locallym-integrable functiong, and in this case, we write
LT =DnDsf =g. For f € D(£), we say thatl f € Cy([a, b)) if £f(a+) exists, and
in this case we write f(a) = Lf(a+). We will use the following property for the
resolvent RO, -o.

Proposition 2.3. For all g € By((a, b)) and r > 0, it follows that
(2.30) Rge D(£) and LR’g=rR%g—g

and that f= R°g satisfies the following

(i) f(a+) =0, if a is accessiblg

(i) fa+) =u(a) f:i g(X)vr (xX)dm(x) and Ds f (a+) = 0, if a is entrance
(i) f(a+) = g(a+)/r, if a is natural and the limit ga+) exists.

For the proof of Proposition 2.3, see, e.g., [9, Theorem]62Me note that, when
a is entrancery f:_ vr (X) dm(x) = Dsvr (b) — Dsvr () < oo.

For x = a andb, let y(x) = 1 if x is accessible angk(x) = 0 otherwise. The
Co((a, b))-generatoiG® of the minimal diffusion process can be characterized devisl

Theorem 2.4. The G((a, b))-generatorG® of the resolven(R%),., is given as
(231) D(G° ={f e D(L): f, LT € Cp((a, b)), y(a)f(a+) = y(b)f(b—) = 0}
and
(2.32) Gof(x) =Lf(x) for feD(@G® and xe(ab).

Theorem 2.4 is well-known, so that we omit the proof.

2.4. Extensions of the minimal process. Let {(X)t=0, (PY)xe(ap)} be a minimal
diffusion process and lah and s be the corresponding speed measure and the canon-
ical scale, respectively. Ldt = [a, b) or [a, b] and let {(X¢)i>0, (Px)xe1} be an exten-
sion to a standard process of the minimal proc&3§)i=o, (P)xe@n)}, i-€., the killed
process X?)-o defined by

(2.33)

%O — Xe if 0<t<TaATh,
t A if t>TaATy

considered undePy has the lawP? for all x € (a,b). We have essentially the following
four cases:
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1°). | =[a, b), a is accessible and is not;
2°). | =[a, b], a is accessible, and is not;
3°). | =[a, b], and neithera nor b is accessible;
4). | =[a, b], and botha andb are accessible.

In each case, we would like to characterize @l)-generator of the extension.

As we will discuss the case of’¥after a while, let us assume thatis accessi-
ble. For the stopped proce$tX”)i=o, Pa}, we let ¢ andn{® be the stagnancy rate
and the characteristic measure of excursions away foriet ¢\ and n® be their
counterparts for the stopped proce{$xt(a))tzo, Py}.

If ais regular, then there exists, uniquely in the sense of laggreservative diffu-
sion process ona|b] which is stopped ab and whose stagnancy rateats zero. This
process will be called theeflected procesat a. We denote byn(b) the characteristic

a,refl
measure of excursions away fromwhich is normalized so that

1

b
(2.34) Notel(Tx < 00) = i

for x e (a,b).

We do not definmgtf)ref, if ais exit.
Applying the decomposition (2.15) of the excursion measarthe stopped process

{(XP) =0, P}, we have

b
(2.35) n® = pa + ponlleq + /( ) pa(dx) PSP
a,
for some non-negative constants and p, and some non-negative measusg in fact,

we have the representation (2.15) so thatshould be proportional tmgl?)refl if ais
regular. We let

(2.36) ps = ¢

If a is exit, v, should be zero, so that we Igb = 0 and discard the terrpzngfieﬂ. By

the conditions (2.11) and (2.12), the coefficients mustsBathe conditions:

(2.37) / Pa(dx)PSO1 — e ] < o0
(ab]
and
(2.38) p2+ ps >0 or [ps((a a+¢)) =oc for all ¢ > 0].

REMARK 2.5. The condition (2.37) is equivalent to the following ddion:
0] f:“ ps(dx)s(a, xX) < oo for somee > 0 if a is regular;
(i) f:“ p4(dx) fax m(y, c) ds(y) < oo for somee > 0 if a is exit.
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REMARK 2.6. The behavior & of the proces$(Xi)i=o0, (Px)xea} iS as follows:
(i) a is regular-for-itself and instantaneous if either one & tbllowing holds:
(i-1) a is regular and eithep, > 0 or ps((a, a + €)) = oo for all € > 0;
(i-2) a is exit and ps(a, a + &) = oo for all ¢ > 0;
(ii) a is regular-for-itself but not instantaneous if either orfethee following holds:
(ii-1) a is regular,p; = 0 and ps((a, a + ¢)) < oo for somee > 0;
(ii-2) a is exit and ps((a, a + ¢)) < oo for somee > O.

We state our main theorems which determine @yegenerator of all possible ex-
tensions. The proofs will be given in Section 5.

1°). Suppose that =[a,b), a is accessible ant is not. The following theorem
generalizes Theorem 5.3 of 1td [10].

Theorem 2.7. Let py, p2, p3 and p be as introduced ir{2.35) and (2.36) Then
the G([a, b))-generatorG is such that its domain is given as

(2.39) D(G) = {f e D(L): f, Lf € Cy([a, b)) and @4(f) = 0},
where ®, has been defined iflL.2), and it satisfies
(2.40) gf(x)=Lf(x) for f eD(G) and xe]a,b).
REMARK 2.8. If, in addition,b is entrance, then one has, for afiye D(G),
(2.41) Dsf(b—) =0.
This remark holds true also in any other case below.

2°). Suppose that = [a, b], a is accessible and thdt is not. If b is entrance
and irregular-for-itself, then we have

(2.42) @ =0 and n® =P
Otherwise, we have

(2.43) Oz := géa) >0 and nf,a’ = (16(a) + / Qa(dx) PP
[a,b)

for some non-negative constagt and some non-negative finite measuggeon [a, b),
and we putg, = 0 for convenience.

Theorem 2.9. Let p, p2, p3 and p be as introduced in(2.35) and (2.36) Let
di, 2, g3 and @ be as above. Then the domain of thg([@, b])-generatorgG is given
as follows if b is entrance and irregular-for-itselthen

(2.44) D(@) = {f € D(L): f, Lf € Cp([a, b]), Pa(f) = pa({b}) f (b)}:
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if b is natural or (entrance and regular-for-itsejf then
(2.45) D(9) ={f e D(L): f, LT € Cp([a, b]), Pa(f) = pa({b}) f(b), Pp(f) = 0},
where @, has been defined iflL.3). In both casesone has for any f e D(G),

(2.46) Gf(x)=LFf(x) for xe]a, b

3°). Suppose that = [a, b] and neithera nor b is accessible. We only state a
special case; the necessary modifications in the other emsesbvious. Let us assume
that a is natural and thab is entrance and irregular-for-itself. For the stopped pssc
{(X?)iz0, Pa}, we have

(2.47) p3 = ge(‘b) >0 and ngb) = P1dia} +/ pa(dx) Pg'P
(a,b]

for some non-negative constapt and some non-negative finite measynxgon (, b],
and we putp, = 0 for convenience. For the stopped proceésfa))tzo, Py}, we have

(2.48) @ =0 and n® =PI

Theorem 2.10. Let py, p2, p3 and p be as above. Then the,(a, b])-generator
G is such that its domain is given as

(2.49) D(G) = {f e D(£): f, LT € Cp([a, b]), Pa(f) = pa({b}) f(b)}.
For any f e D(G), one has
(2.50) Gf(x)=LFf(x) for xela,b].

4°). Suppose that = [a, b] and botha and b are accessible. For the stopped
process{(X®)i=o0, Py}, we have

(2.51) N = quda + ENey + /[ ) qa(dlx) PSP
a,

for some non-negative constargs andg, and some non-negative measupeon [a, b)
such that,

(2.52) Qa(dX)PSO1 — e 2] < o0
[a,b)

and, forgs := ¢,

(2.53) g+03>0 or [qu((b—e, b)) =o0 forall ¢ > Q].
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Theorem 2.11. Let p, p2, ps and p be as introduced ir{2.35) and (2.36) Let
Ji1, G2, gz and g be as above. Then the,(a, b])-generatorg is such that its domain
is given as

(2.54) D(G) ={f e D(L): f, LT € Cy([a, b]) and ®,(f) = dy(f) = 0},
and it satisfies

(2.55) Gf(x)=Lf(x) for feD(G) and xela, b

3. The resolvent formula

Let {(Xt)t=0. (Px)xefap} be a standard process and follow the notations in Sub-
section 2.1. We utilize the following lemma:

Lemma 3.1. For any r > 0, one has
na(l) I
(3.1) / e L xqy—adt = ga[ e ds for all | >0, P,-a.s.
0 0
Proof. Take a sample point from a set of full probability. dldhat

na(l)
(32) /0 L) At = 1a1) = 3 (7a(8) — 1a(s-)} = cal.

s<l

Let ¢ > 0. Then we have

na(l+e€) na(l +¢)
(33) / et 1{X(t):a] dt < e*rﬂa(|) / 1{X(t):a} dt = e*l"]a(|)§a8
na(l) na(l)

and

na(l+¢) na(l +¢)
(3.4) / 0 et Lix@)=a) dt > e’ na(l+e) / o Lix)=a) dt = el +s)§a€.
Na Na

By (3.3), we see that the functiof(l) = fé’a(')e*rtl{x(t):a, dt is absolutely continuous,

so that there exists a locally integrable functié() such thatF(l) = f(') f(s)ds. By
(3.3) and (3.4), we have the right-derivative B{l) is equal toc,e™ (). Hence we
obtain f(I) = cae™""=") for almost everyl > 0. The proof is now complete. O

For the proof of Theorem 2.2, we prove three more lemmas int diows.
Let us construct a sample path of the procg$é)i-o, Pa}. Let (p(1)),.pw be a

Poisson point process with characteristic measWeand let Xp(t))>0 be a process
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with law P,. We assume thatp®(1))0 and Xu(t))=0 are independent. We define
the subordinator (1)) as

(3.5) nP0) = P+ Tan(pP(s) for 1=0.

s<l

Note that we have

(36) Efe 0] = expl— (c0r +nP[L—e ™))
3.7 = expl—I () —nPle™: Ty < oa])).

Let A denote the first index > 0 that p®)(I) hits b, or in other words,

(3.8) A =inf{l = 0: To(p®(1)) < o0}.

We define the procesX(P(t): 0 <t < n®P(1)) as

3.9 xP) = POt —nP(-) it p®(-) <t < y®(l) for some 0< | < A,
' a a otherwise.

Now we construct the procesX{(t))>o as

XO)(t) it t<n®@),
(3.10) Xa(t) = { Xpt —n®@) if t>n®@).

Then it is obvious that the proces¥4(t)):>o is a realization of the proce$éX;):>o, Pa}.
The first one of the three lemmas is the following.

Lemma 3.2. Let g€ By. Then

© O[eT: Ty, < o0]
3.11 E tg(Xa() dt | = 2 b R g(b).
(3.11) [ / 0y, €I0X) t] e Rg(b)

Proof. Let @3(1))cpg denote the restriction ofp?(1)),.,m on the set of excur-
sions which fail to hitb; more precisely, we define

(3.12) D2 = {l € DO: To(p®(1)) = oo}

and pS(1) = p®() for all | € D2. Lete = p®(1). Then we see that the three quantities
(P2(1))1=0, » and e are mutually independent, and thqlg(l))|eDg is a Poisson point
process with characteristic measu@(- ; T, = 00), the law of A is given as

(3.13) PO > 1) = g7 (To<c0)
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and the law ofe is given as

nO(.; Ty < o)

(3.14) Plee )= BT~ )
If we write
(3.15) na() = <P+ Ta(p3(s),

s<l
we haveE[e7a0] = e¥a®), where

(3.16) ¥20) = ¢Pr +nP[1—e "™ T, = o0].
By definition, we have

(3.17) N9 () = n2(4) + To(e)-

Thus we obtain

(3.18) E|: / b e "g(Xa(t)) dt}

o0 EF*@WA '“m&a+¢Wm»m}
Na (A

(3.19) = E[e‘”fa)(”]E[ / ‘”g(Xb(t))dt]
0

(3.20) = E[e "M TR g(b)

(3.21) = E[e"%®] . E[e" ] R g(b).

The expectations in the last expression can be computed as

O (T, < 00)

—rn2 a0
(3.22) E[e™":M] = E[e™/=0] = n®(Ty < 00) + Y2(r)
and
(3.23) Efe 0] = néb)[i:)”h; T < 0o]
Ny’ (Tp < 00)
Since
(3.24) nO(Ty < 00) + ¥2(r) = cPr + nP[1 — &™) = yO(r),

we complete the proof.



EXTENSIONS OF DIFFUSION PROCESSES ONINTERVALS 389

The second one is the following.

Lemma 3.3. Let ge By. Then

()
~rt o)
(3.25) EUO e g(Xa(t))Lix,()=a) dt] = g(a)w(b)( 3
Proof. By Lemma 3.1, we have
P ()
(3.26) the left-hand side of (3.25¢ g(a)E[/ et Lixat)=a) dt}
0
(3.27) - g(a)E|:g§b) / "”a)(')dl}
0
(3.28) = (b)g(a)E[ / g ") dl]

Since is independent ofr(1))>0, we have

A A
(3.29) EU e 0 dq _ E[/ 20 dl]
0 0

(3.30) = wgl(r) E[1—e 50

(2:31) - wé’l(r) {l - ngm(:fb)fio? jo ;g(r)}

@22 O < olo) + Q)

(3.33) (bl)(r)

which completes the proof. ]

The third one is the following.

Lemma 3.4. Let g€ By. Then

O,

na’(A)
(3.34) E|:/
0

e " g(Xa(t)) dt] = N (9).

1
vOr)
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Proof. By the construction of the proce¥s(t), we have
P
(3.35) E [ / e g(Xa())Lix.()a) dt}
0

0
(3.36) = E[Z / ) et g(Xa(t)) dt}
l<a Y72 (-)

an(P(1)
(3.37) —E[Z ) [ I -”g(p@(lxt»dt}.

I=x

By the compensation formula, we have

(3.38) (3.37)= E[ / ' g0 dl} -n® [ / e et g(X:) dt].
0 0

By (3.17) and by (3.29)—(3.33), we have

(3.39) E[/OA e 0) dl] [/OA g0 d|:| (s(r)

Combining these results with the result of Lemma 3.3, weinktee desired result.[]
Theorem 2.2 is therefore immediate from Lemmas 3.2 and 3.4.

4. The resolvent of the minimal diffusion

4.1. Non-negative increasing and decreasing eigenfunatie. Let {(X;)i>o,
(Pf)xe(a,b)} be a minimal diffusion process and follow the notations irb&action 2.3.

We recall non-negative increasing and decreasing eigetifturs of £. All results
in this subsection are well-known; see, for example, [12]details.

Let c € (a,b) andr > O be fixed. Letv = ¢, and ¢, denote the unique non-
negative increasing solutions dfv = rv such that

(4.1) ¢(€) =1, Dspi(c) =0,
(4.2) Yr(c) =0, Dsyr(c) = 1.

These solutions can be obtained via successive approrimhbi solving the following
integral equations:

X y
.3) o) =14t / ds(y) / o (2) (),

x y
(4.9) wr(x)=s(x)—s(c)+r/ ds(y) / Ui (2) dm(2).
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Then any solution offv = rv with v(c) = 1 is of the formv = ¢, — y¥,. Note
thatv = ¢, — y ¥y is non-negative and decreasing when restrictedapb)[ then so is

it on the whole interval &, b). Let y and y denote the infimum and the supremum
among ally > 0 such thaty, — ywr_is a non-negative decreasing function. Then we
see that O< y <y < oo and thatg, — ¥y is a non-negative decreasing function for
al y <y =< ;7_ Now we take the minimal onex, = ¢, — ;. The boundary behaviors
of v ata are as follows:

u(a) € (0,00) if ais accessible 5 (b) € (0,00) if bis entrance
"= o otherwise 1o otherwise
€ (0,00) if ais enterable € (0,00) if bis accessible
Der (a){= 00 otherwise Der (b){= 0 otherwise

We also note thag[cb_ v (X)dm(x) < oo in any case. By the same way, we obtain a
non-negative increasing solutiam = u; of Lu = ru whose boundary behaviors are
as follows:

U (@) € (0,00) if ais entrance U (b) € (0,00) if b is accessible
1o otherwise =0 otherwise
€ (0,00) if ais accessible € (0,00) if bis enterable
Dsur(a){z 0 otherwise Dsur(b){z o0 otherwise

We also note thafac ur (x)dm(x) < oo in any case.

4.2. Several limits at the boundary points. We multiply u; (or v,) by a certain
constant and we may assume without loss of generality that

(4.5) v (X)Dsur (X) — U (X)Dsvr (X) =1 for all x € (a, b).

We prove the following proposition.

Proposition 4.1. One has
1 1
d Dsyr(b) =— .
i@ " PO =

Here we understand/+oco = 0 and 1/4-0 = +o0.

(4.6) Dsur(a) =

Proof. By the symmetry, it suffices only to prove thatu,(a) = 1/v,(@). If ais
not accessible, then this is obvious, because we Bawe(a) = 0 and v, (a) = oco.
Suppose thah is accessible. By (4.5), we have

o L—=u (X)Dsur (X)
4.7) Dsur (a) = X|_I)r‘£l+ T
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Hence it suffices to show that

(4.8) Jim {—u, ()Dsur ()} = 0.
Sinceu, satisfiesCu; =ru, andu,(a) = 0, we have
X y
(4.9 ur (x) = ks(a, x)+r/ ds(y)/ Ur (2) dm(2),

where we denot& = Dsu, (a) € (0, co). Differentiating both sides, we have
X

(4.10) Dsur(X) =k +r / Uy (2) dm(2).

a

Let ¢ > 0 be fixed. Then there exists> 0 such that|Dsu, (x) — k| < ¢ for all x with
a <X <a+34. Then we have

(4.11) |ur(x) —ks(a, x)| < /X|Dsur (y) — k|l ds(y) <es(a,x) for a<x<a+3.

By (4.5), we see thaDs(v; /u;) = —1/u? and that

v (x) _ u(b) / >~ ds(y) / >~ ds(y)
— i —

(4.12) ()~ ur(0) U (Y)2 U ()2

From this and by (4.5), we have

(4.13) 0 = —ur (X)Dsvr (x) = 1 — vy (X)Dsur (X)

b~ g
(4.14) = 1— U, (X)Dsur (X) / urs(%)z
b— d
(4.15) <1-(k—es(a X)/ %
(k _ 8)2 1 1
(4.16) =1- (K + g)ZS(a’ X){s(a, x) s b)}

(k—e? (k—e)? s(a x)
T k+te?  (k+e)? s(@h)

(4.17)

Sinces(a,a) = 0 and sinces > 0 is arbitrary, we obtain (4.8) and hence we obtain the
desired result. ]

4.3. The resolvent of the minimal diffusion process. Define

(4.18) RO, y) = RAY, ) = ur(X)ur(y) for a<x<y<h.
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Then it is well-known that the resolvent operat&®’}; .o of the minimal diffusion pro-
cess defined in (2.26) is the integral operator with keR&(x, y) dm(y), i.e.,

b,

419)  Rgx)= [ RY(x y)gy)dm(y) for geB, and x e (a,b).
a

From Theorem 2.4, it follows that

(4.20) if feD(G, then Rf’/:f = rR?f — f.

In our study, however, we neeR°Lf for f € D(L) with f, £Lf € C,. The formula
(4.20) can be generalized to the following proposition:

Proposition 4.2. For any f e D(£) with f, Lf € Cp, one has

(4.21) ROLT = rROf — f + f(a)% + f(b)u“—(fb).

In addition, one has

(4.22) Dsf(@ =0 if a is entrance
Proof. Sincel = D,Ds, we have

(4.23) Dsf(X) —Dsf(y) = /X Lf(z2dm(z) for x,ye(a,Db).
y

Since Lu; =ru, and Lv, =ru,, we see that, for any, y € (a, b),

X

(4.24) Datty (X) — Datir (y) = r [ Uy (2) dm(2),
y

(4.25) Dsvr (X) — Dsvr (y) =1 [ v (2) dm(2).

y

Let x € (a, b) and takec € (a, x) arbitrarily. We have

w2 | " LE(y)u ) dm(y)

azn = [ aociofue+ [ Du@se)

@2 —uOD0-D.1)+ [ ds@Pu@ [ £i)dmy)
429 =u@DAR-DAO)+ [ EEDU@D. 0~ (2)

(4.30) = U (X)Ds f(X) — ur (c)Ds f (C) — / ’ ds(2)Dsu; (2)Ds f (2).
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Using the formula (4.24), we have

@3 [ ds@pu @D

432 = [ 85D 1 (Dat ()~ (O (9~ Dt ()

(433 = DI~ 1) —1 [ @Dt [ uy)cmy)
@34 = D109 = 1) v [ " dm(y)ur (v) / " D.1(2) ds(2)

(4.35) = Dsur (){ f(x) - f(C)}—f/ f(y)ur(y) dm(y) + f(C)-r/ ur (y) dm(y).

C

Using the formula (4.24) again, we have

(4.35) = Dot () F(X) = 1())
(4.36) x
r / f (y)ur (y) dm(y) + 1 (6){Dae (x) — Dair (0))

(4.37) = F(X)Dsur (x) — £(c)Dsur (c) —r /CX f(y)ur (y) dm(y).

Hence we obtain

(4.38) /CX LT (y)ur(y) dm(y) = W[ur, £](x) —W[ur, f](c) +r /CX f(y)ur (y) dm(y),
where we write

(4.39) WLt gl(x) = f(X)Dsg(x) — g(x)Ds f (x).

Since f and £ f are bounded and sincﬁ;‘C ur (y) dm(y) is finite, we see that the limit
(4.40) Qa:= lim {~=Wlur, ](2)}

exists finitely and that

(4.41) / L1 ()ur(y) dm(y) = Qa + W[ur, 1(X) +1 / f (y)ur (y) dm(y)

holds. In the same way, we see that the limit

(4.42) Qp:= Iirg W, f1(2)
z—b—
exists finitely and that

b— b—
(4.43) / L (y)ur () dm(y) = Qo — W[vy, F(x) + / £ (y)ve (y) dm(y)
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holds. Adding (4.41) time%, (x) and (4.43) timesJ (x), we obtain
(4.44) (RPLF)(X) = Qavr(X) + Qour () — f +rRYf (x).

Now let us prove thaQ, = f(a)/v(a) as follows:
(i) Suppose that is accessible. Letg| = sup|g(x)| < co. Sincev, is decreasing
and by (4.8), we have

(4.45) Ur (€)|Ds T (x) — Ds f ()| = ur(c) /Xlﬁf(z)l dm(2)

(4.46) < 'Lf(g' w© | " (2) dm()
RVl

(4.47) = () Ur (){ Dsvr (X) — Dsvr (C)}

(4.48) —0 as c—a+ forfixed x.

Hence we obtain liga,,. {—U;(c)Ds f(c)} = 0. Hence, by Proposition 4.1, we obtain
Qa = f(8)Dsur(a) = f(a)/vr(a).
(i) Suppose that is not accessible. On one hand, we havé) = co. On the other
hand, sincef and £ f are bounded, we see by (4.44) ttf@4v, (x) should be bounded
neara. Hence we obtaiQ, = 0= f(a)/v (a).
We can make the same argument bband obtainQ, = f(b)/ur(b). Therefore, from
(4.44), we obtain the formula (4.21).

If ais entrance, then we hawg(a) € (0,00) andDsu, (a) = 0. SinceQ, = 0, we
obtain Dsf (a) = 0.

The proof is now complete. ]

5. The Cy-generator

We now suppose thd{(X:)i=o0, (Px)xe[ap} i an extension to a standard process of
the minimal proces$(X;)t>o, (Px(’)xe(a,b)} and follow the notations in Subsection 2.4. It
is well-known that

(5.1)

X
E)s(top[e—rTa: T, < Tb] — Ur( )

v ()

Ur (X)

for r > 0.
ur (b)

and ES°Pe™™; T, > Ty] =

5.1. ®,4(v;) and ®,(u;). We need the following lemma for later use.

Lemma 5.1. If a is accessibleone has

(5.2) Pavr) _ par +nP[1 — e

Ma] — 4 ®
) ] = 0.
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If a and b are both accessihl®ene has

(5.3) % = —nPe”™; T, < o0).

Proof. By (2.34) and (5.1), we have

D
(5.4) — svr (@) — lim _ vr (X)
v () x—a+ s(a, X) v (@)
(5.5) = Jim nZlen(Te < 00){1— PIe ™ Ta < oo])
(5.6) = Jim (T < 00)(PEL — €™ To < o0] + PE(Ty < 0)).

Note that, under the measunét”) the hitting time T, decreases to 0 as does toa.

refl’
By the strong Markov property ofil)e

we have

, and by the dominated convergence theorem,

(5.7 (5.6)= Xirg+{n(b) [1—e T T, < T, < oo] + N (T < Ty < 00)}

a,refl a,refl

(5.8) =Pl — €T Ty < 00] + NPleg(Th < 00)
(5.9) = ngszeﬂ[l —e M.

Hence, by (2.35), we have

() Tae y
2 ny’[1—e "2 Xo = al.
ur(a) 2

By (5.1) and by (2.35), we have

vr (X)
(5.11) /(a'b] p4(dx){1 3 @ }

(5.12) = / pa(dx){ PS1 — e T, < oo] + PSOY(T, < 00)}
(a,b]
(5.13) =nP[1 - e T, < 0o Xg € (a, b]] + n®(Ty < 00, Xo € (a, b]).

Since p1 = na({A}) and since{A} U {T, < oo} = {T; = 0o}, we obtain

Da(vr) B Dsv; () L (a) U (x)
G @ TP TPE /<a,b] p“(dx){l o (a)}
(5.15) = par +nP[1 — e T, < o0] + nP((A)) + nO(Ty, < )
(5.16) = par +nP[1 —e ).

Now we obtain (5.2).
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Sincea is regular, we havel(a) = 0. By (2.34) and (5.1), we have

Dsur(a) im 1 u((x)

5.17 =

( ) ur (b) x—a+ s(a, X) ur(b)

(518) - xiT+ ng,))reﬂ(Tx < 00) szmp[e_rTb; Tp < 9]
19 = i rOle T, < Ty < o]
(5.20) = ngt,’)reﬂ[e_”b; Tp < 00).

Hence we have

Dsu; () _

(5.21) P2 0 ()

nPle"; Ty < 0o, Xo = al.

By (5.1) and by (2.35), we have

(5.22) [ pu@ e = [ pu(opge i T, < o)
(ah] ur(a) (ab]

(5.23) =nP[e™; T, <00, Xo € (a b]l.
Sinceu,(a) = 0, we have

Pa(Ur) ur (a) Dsu (a) Lu, (a) / ur (X) — ur (a)
5.24 = — — dx) —————~
TR (BT BTN (> LT O M A T
(5.25) =-nPle™; T, < oo].
The proof is now complete. ]

The following proposition is important in the proof of our maheorem.

Proposition 5.2. If a and b are both accessihl®ene has

Da(vr) ] Dp(Ur) _ Dp(vr) ) ®a(Ur)

v(@)  ur(b) v(@ u(b) >0 for r>0.

(5.26)

That is the matrix

_ ®a(vr)/vr(@)  Pa(ur)/ur(b)
®-27) A‘(cbb(vr)/vr(a) <1>b(ur)/ur(b))

has strictly positive determinant.
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Proof. Let us writeF, = (1—e—’TX)1{TX<OO} for x =a andb. By Lemma 5.1 and
by that wherea and b are switched, we have

Da(vr) . Op(Ur)  Dp(vr) . Dq(ur)

(5.28) Uy (a) Uy (b) - Ur (a) Uy (b)
> (pa + NP[Fa] + nP( AN} - (aar + niU[Fo] + n((A))}
(5.29) + n{(Ty < 00) - né)(Ta < 00) —nP[e™™; T, < o] -I’]E)a)[e—fTb; Ta < o]

> {p3r + Pzng))reﬂ[':a] + P2 +/ pa(dx) sztop[ Fa]}

(ab)

(5.30) -{qsr + QN[ Fol + a1 + /( ) q4(dX)P§‘°"[Fb]}-
a,

The last quantity turns out to be positive because of the itiond (2.38) and (2.53).

O
5.2. N¥)(g) and ®4(R%). Let us prove the following lemma.
Lemma 5.3. Suppose that a is accessible. Thér any ge By, one has
(5.31) NE(G) = —@a(RPQ).
Proof. By Proposition 2.3, we note th&g(a) = 0.
Supposea is regular for a while. By the strong Markov property mﬁ’reﬂ, we have
(5.32) DsRPg(a) = lim S(a ) RPg(x)
Ta,b
(5.33) = Jim 00Ty < oo) P;mp[ [ et dt]
Ta.b_Tx
(5.34) = x|l>r2+ ng 2eﬂ|:/o e g(Xeyr,) dt; Ty < oo:|
Ta,b
(5.35) = Jim Nt [ /T e TtTg(X,) dt; Ty < oo:|.
Since
Tab |Ig||
(5.36) / e t=Tg(X) dt| < =5 (1 — e Tav)
T

and sincen® [1—e"Tav] < 0o, we may apply the dominated convergence theorem to

a,refl
see that

(5.37) D.R%(a) = n{’ ,ef,[ /0 ™ ertg(x,) dt}.
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By Proposition 2.3, we have
(5.38) LRg(a) = rRPg(a) — g(@) = —9(a).
Therefore we obtain

(5.39) —®a(RP9) = —p1R7g(a) + P.DsRPg(@) — psLRYY(@) + palR'g — R7g(a)]

Tab
(5.40) — psg(a) + (pznr;f'+ /( . p4(dx)Pf‘°p) [ [ emar dt]
a,
Ta,h
(5.41) = psg(a) + ngb>[ / e "tg(X;) dt].
0
The proof is now complete. ]

5.3. The case of 9). Let us prove Theorem 2.7.

Proof of Theorem 2.7. Suppose thatis accessible and thdt is not. Letg e
By = Bp([a, b)). Noting that the process cannot Hitbefore hittinga, we have the
Dynkin formula:
Ur
v ()

(5.42) Rg=Rg+ Rg(@) on [a,b).

By Proposition 2.3, we hav® g € D(£), and we have

v ()

(5.43) LRg=rRg—g+ Ry =rRg-g on [anb).

Using Lemmas 5.1 and 5.3 and then using Theorem 2.2, we have

(5.49 @R = @a(R0) + Rola)
(5.45) = -NO(9) + Ro@vP()
(5.46) = R g(b)nP[e™™; Ty < o]
(5.47) =0.

Thus we obtain the following:

(5.48) if geB, wehave RgeD(£) and ®,(Rg)=0.
Set
(5.49) D={feD): f,Lf eCya b)) and ®,(f) = 0}.

Let us prove thaD(G) = D.
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Let f € D(G). Letr > O be fixed and sety = (r —G)f. Then we havef = R.g.
By (5.42), (5.43), (5.48) and Proposition 2.3, we hdv& f € Cy([a, b)) and &,(f) =
0. Hence we obtairD(G) ¢ D. By (5.43), we have

(5.50) Lf=LRY) =rRg—g=0Gf.

Conversely, letf € D. Letr > 0 be fixed and se = (r —£) f € Cy([a,b)). Then,
by Proposition 4.2, we have

(5.51) Rg=rR’f — RLf
— yROF _ 0¢ _ Ur
(5.52) =rR%f %RJ f+f@%d®}
Ur
(5.53) =f—f() @)

Seth = Rg— f. By (5.48), we haved,(R g) = 0, and hence we havé,(h) = 0.
From (5.42) and (5.53), it follows that

Ur

v (a)’

(5.54) h={Rg(a— f(a)

By Lemma 5.1, we have

Dq(vr)
vr(a)

(5.55) 0= d,(h) = (R g(@) — f(a)} = {Rg@ — f@vP).

By the condition (2.38), we have¢:”(r) > 0, so that we obtairR g(a) — f(a) = 0.
This shows thah = 0, which implies thatf = R.g. Now we conclude thab(G) > D,
and thus the proof is complete. O

5.4. The cases of 9 and 3°). We prove Theorem 2.9.

Proof of Theorem 2.9. Suppose thatis accessible antd is not. Letg € B, =
Byp([a, b]). In this case, we have the Dynkin formula

Ur
v (a)

(5.56) Rg=Rg+ Rg(@) on [a,b).

Hence we haveR. g € D(£) and we have the formula
(5.57) LRg=rRg—g on [ab).

In the same way as (5.44)—(5.46), we have

(5.58) ®a(Rg) = nP[e™™; Ty < o0] R g(b)
(5.59) = pa({b})Rrg(b).
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Thus we obtain the following:
(5.60) if geB, wehave RgeD(L) and ®,(Rg) = pa({b})R g(b).
(1) Suppose thab is entrance and irregular-for-itself. Set

(5.61) D={(feD): f,Lf cCo(a bl), Pa(f) = pa((b})f(b)}.

Let us prove thaD(G) = D.

Let f € D(G). Letr > 0 be fixed and sey = (r —G)f. Then we havef = R g.
By (5.56), (5.57), (5.60) and Proposition 2.3, we halves Cy([a, b)) with finite left
limit f(b—), £f € Cp([a, b]) and da(f) = pa({b}) f(b). Since P = PP we see
that the Dynkin formula (5.56) holds also far= b. This shows thatf (b—) = f(b),
hence we obtairD(G) ¢ D. By (5.57), relation (2.46) is now obvious.

We suppose thaf € D. Letr > 0 be fixed and sety = (r — £)f € Cy([a, b]).
Then, by Proposition 4.2, we have

Og — f — f(a)—'—
(5.62) Rg=f f(a)vr(a).

Seth = R.g— f. By (5.60), we haved,(R-g) = ps({b})R-g(b), and hence we have
®,(h) = pa({b}h(b). From (5.56) and (5.62), it follows that

Ur
(5.63) h={Rg(a) - f(a)}m-
Hence, by Lemma 5.1 and by (5.1), we have
(5.64) 0 = @4(h) — pa({b})h(b)

o Dq(vr) vr (b)

(569 ~ (Ra@) - f(an{ 22~ pution 23
(5.66) = {Rg(@) — f@HYD () — pa({b})Ps e ]},
Since
(5.67) lim vP(r) = 00
by the assumption (2.38) and since
(5.68) lim Pe ] = 0,

we see thaty®(ro) — pa({b}) P Ye~""] > 0 for somer, > 0. Hence, by (5.66) we
obtain R,g(a) — f(a) = 0 and by (5.63) we obtairf = R,g. Now we conclude that
D(G) > D.
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(2) Suppose thab is natural or [entrance and regular-for-itself]. Set

(569) D= {feDL):f LfeCy(a b)), Pa(f)= pa(({b})f(b), Pu(f) = 0}.

Let us prove thatD(G) = D.

Let g € D(G). Letr > 0 be fixed and segy = (r — G)f. In the same way as
(1), we can prove thaf = R g and thatf € Cy([a, b)) with finite left limit f(b—),
LT € Cp([a, b]) and ®,(f) = pa({b}) f (b). For anyr > 0, we can findg € Cy([a, b])
such thatf = R.g. Using Theorem 2.2 where the roles @fand b are switched, and
using the Dynkin formula (5.56), we have

(5.70) V() (b) = asg(b) + /( - da(dX)RPg(x) + da({a)) R 9(@)

(5.71) = 039(b) + qu[ f].

Noting thatg = (r — G) f, thatg(b) = g(b—) =rf (b—) — L f(b), and that

(5.72) Yr) = qar +nP[1— e ™ = g1 + gar + qu((a, b)),
we have
(5.73) {01 + ga([a, b))} f(b) + qar { f(b) — f(b-)} + GzL F(b) = qa[ f].

This shows that
(5.74) ®p(f) + qgar{f(b)— f(b—)} =0.

Sinceqz > 0 and since > 0 is arbitrary, we obtairb,(f) = f(b)— f(b—) = 0. Hence
we obtainD(G) c D.

Suppose thatf € D. Letr > 0 be fixed. Setg = (r — £)f € Cy([a, b]). Then,
in the same way as (1), we can prove tlfat= R.g on [a, b], and hence we obtain
D(G) > D.

The proof is now complete. ]

The proof of Theorem 2.10 is quite similar to that of Theorerf, 2and so we
omit it.

5.5. The case of 9. Now we prove Theorem 2.11.

Proof of Theorem 2.11. Suppose that batland b are accessible. Lej € B, =
By([a, b]). By the strong Markov property, we obtain the Dynkin formul

U Rgb)

_ po
(5.75) Ro =R+ Ro@ s ol
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By Proposition 2.3, we hav&® g € D(£), and we have

1 Rg(b)—r

(5.76) LRg=rRg—g+ Rg(a) v: @) ur (b)

(5.77) =rRg—g.

Using Lemmas 5.1 and 5.3 and then using Theorem 2.2, we have

_ 0 Dq(vr) @4(ur)
(5.78)  @a(Rg) = ®a(RQ) + Rg@) 75" + RO
(5.79) = —N&(9) + R9@vP(r) + R gb){—nPe " ™; Ty < oo}

(5.80) =0.
Replacing the roles ok andb, we obtain®,(R g) = 0. Thus we obtain the following:
(5.81) if geB, wehave RgeD(£) and ®,(Rg) = dy(Rg)=0.

Let f € D(G). Letr > 0 be fixed and sety = (r —G)f. Then we havef = R g.
By (5.81), we haved,(f) = ®p(f) = 0. Hence we see thdd(G) is contained in the
right-hand side of (2.54). By (5.77), we have

(5.82) Lf=L(Rg =rRg—g=Gf.

Conversely, letf € D(£) such thatf, £Lf € Cy([a, b]) and suppose thab,(f) =
®y(f) =0. Letr > 0 be fixed and seg = (r —£) f. Then, by Proposition 4.2, we have

(5.83) Rg=rR’f — RLf
_rROF _ 0f Ur Uy
(5.84) =rRYf {rRr f—f+ f(a)vr(a) + f(b)Ur(b)}
Uy Ur
(5.85) =f—f(a) @ f(b)ur o)

Seth = Rg— f. By (5.81), we haved,(R g) = ®p(R g) = 0, and hence we have
®,4(h) = dp(h) = 0. From (5.75) and (5.85), it follows that

Ur Uy
RO~ O

(5.86) h={Rg(@) - f(a)}

Since ®,4(h) = dp(h) = 0, we obtain
0 Rg(a) - f(a))
5.87 =A ;
587 (0) (Rrg(b)—f(b)
where A is the matrix defined in (5.27). Hence, by Proposition 5.2, oléain
(5.88) Rg(@) - f(a) = Rg(b) — f(b) =0.
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This shows thah = 0, which implies thatf = R.g. Now we conclude that the right-
hand side of (2.54) is contained ID(G), and thus the proof is complete. L]
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