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Abstract

The degenerate affine and affine BMW algebras arise naturaltild context of
Schur—Weyl duality for orthogonal and symplectic Lie algeband quantum groups,
respectively. Cyclotomic BMW algebras, affine Hecke algspryclotomic Hecke
algebras, and their degenerate versions are quotientiisiipaper the theory is uni-
fied by treating the orthogonal and symplectic cases simedtasly; we make an ex-
act parallel between the degenerate affine and affine cases new algebra which
takes the role of the affine braid group for the degeneratingetA main result
of this paper is an identification of the centers of the affinel degenerate affine
BMW algebras in terms of rings of symmetric functions whichissg a “cancel-
lation property” or “wheel condition” (in the degenerateseaa reformulation of a
result of Nazarov). Miraculously, these same rings alsoeairisSchubert calculus,
as the cohomology and K-theory of isotropic Grassmanniarts symplectic loop
Grassmannians. We also establish new intertwiner-likatities which, when pro-
jected to the center, produce the recursions for centrahesiés given previously by
Nazarov for degenerate affine BMW algebras, and by BeliakBlanaehet for affine
BMW algebras.

1. Introduction

The degenerate affine BMW algebrég, and the affine BMW algebra®y arise
naturally in the context of Schur—Weyl duality and the aggtion of Schur functors to
modules in category for orthogonal and symplectic Lie algebras and quantumggou
(using the Schur functors of [41], [1], and [28]). The degate algebrasVi were in-
troduced in [27] and the affine versions appeared in [28], following foundational
work of [17]-[19]. The representation theory ®fx and W contains the represen-
tation theory of any quotient: in particular, the degereragclotomic BMW algebras
Wik, the cyclotomic BMW algebrasV; x, the degenerate affine Hecke algebfdg,
the affine Hecke algebraldy, the degenerate cyclotomic Hecke algebtgs, and the
cyclotomic Hecke algebrabl, x as quotients. In [31, 34, 35, 2, 8] and other works, the
representation theory of the affine BMW algebra is derived bjutar algebra tech-
niques. As indicated in [28], the Schur—Weyl duality alsoyiies a path to the repre-
sentation theory of the affine BMW algebras as an image of theesentation theory
of category© for orthogonal and symplectic Lie algebras and their quangroups
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in the same way that the affine Hecke algebras arise in ScheyWality with the
enveloping algebra ofl,, and its Drinfeld—Jimbo quantum group.

In the literature, the algebrag)k and Wy have often been treated separately. One
of the goals of this paper is to unify the theory. To do this veeehbegun by adjusting
the definitions of the algebras carefully to make the pregemts match, relation by re-
lation. In the same way that the affine BMW algebra is a quotiédrihe group algebra
of the affine braid group, we have defined a new algebra, therdegte affine braid
algebra which has the degenerate affine BMW algebra and thendegje affine Hecke
algebras as quotients. We have done this carefully, to enthat the Schur—Weyl du-
ality framework is completely analogous for both the degeteeaffine and the affine
cases. We have also added a parametéwhich takes valuestl) so that both the
orthogonal and symplectic cases can be treated simultalyedDur new presentations
of the algebrag/Vyx and Wy are given in Section 2.

In Section 3 we consider some remarkable recursions forrgéng central elem-
ents in the algebra®Vyx and W. These recursions were given by Nazarov [27] in the
degenerate case, and then extended to the affine BMW algebBzllakova—Blanchet
[4]. Another proof in the affine cyclotomic case appears i6,[Bemma 4.21] and,
in the degenerate case, in [2, Lemma 4.15]. In all of thesefprahe recursion is
obtained by a rather mysterious and tedious computation. skiésv that there is an
“intertwiner” like identity in the full algebra which, whefprojected to the center”
produces the Nazarov recursions. Our approach providesimgght into where these
recursions are coming from. Moreover, the proof is exactlgl@gous in both the de-
generate and the affine cases, and includes the parameterthat both the orthogonal
and symplectic cases are treated simultaneously.

In Section 4 we identify the center of the degenerate andeaBMW algebras. In
the degenerate case this has been done in [27]. Nazarod stetethe center of the
degenerate affine BMW algebra is the subring of the ring of sgirimfunctions gen-
erated by the odd power sums. We identify the ring in a diffengay, as the subring
of symmetric functions with the Q-cancellation property, the language of Pragacz
[29]. This is a fascinating ring. Pragacz identifies it as ¢b@omology ring of orthog-
onal and symplectic Grassmannians; the same ring appeains ag the cohomology
of the loop Grassmannian for the symplectic group in [24; 22|d references for the
relationship of this ring to the projective representatibaory of the symmetric group,
the BKP hierarchy of differential equations, representsti of Lie superalgebras, and
twisted Gelfand pairs are found in [25, Chapter Il §8]. Foe tiffine BMW algebra,
the Q-cancellation property can be generalized well to idewa suitable description of
the center. From our perspective, one would expect thatittgewhich appears as the
center of the affine BMW algebra should also appear as the #thef the orthogonal
and symplectic Grassmannians and as the K-theory of the Gragsmannian for the
symplectic group, but we are not aware that these ideniicsithave yet been made
in the literature.
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The recent paper [31] classifies the irreducible represientaof Wi by multiseg-
ments, and the recent paper [6] adds to this program of stydsetiing up commuting
actions between the algebrég, and Wi and the enveloping algebras of orthogonal and
symplectic Lie algebras and their quantum groups, showing the central elements
which arise in the Nazarov recursions coincide with cerglaments studied in Baumann
[3], and providing an approach to admissibility conditidmg providing “universal ad-
missible parameters” in an appropriate ground ring (agisiaturally, from Schur—Weyl
duality, as the center of the enveloping algebra, or quargtonp). We would also like
to mention the recent paper of A. Sartori [36] which estdddss similar results in the
case of the degenerate affine walled Brauer algebra and temtrgvork of M. Ehrig
and C. Stroppel [7] which studies these algebras in the gbofecategorification.

2. Affine and degenerate affine BMW algebras

In this section, we define the affine Birman—Murakami—Wen2W{B) algebraW
and its degenerate version. We have adjusted the definitions to unify the theory. In
particular, in Section 2.2, we define a new algebra, the dagém affine braid algebra
Bk, which has the degenerate affine BMW algebréis and the degenerate affine Hecke
algebras#y as quotients. The motivation for the definition 8f is that the affine
BMW algebrasW and the affine Hecke algebr&f are quotients of the group algebra
of affine braid groupC B.

The definition of the degenerate affine braid algeBgaalso makes the Schur—Weyl
duality framework completely analogous in both the affine degenerate affine cases.
Both By and C B, are designed to act on tensor space of the fr® V&K, In the de-
generate affine case this is an action commuting with a coogg@eisimple Lie algebra
g, and in the affine case this is an action commuting with thexfelil—Jimbo quantum
groupUqyg. The degenerate affine and affine BMW algebras arise vghierso,, or sp,,
andV is the first fundamental representation and the degeneifate and affine Hecke
algebras arise wheg is gl,, or sl andV is the first fundamental representation. In the
case whenM is the trivial representation angl is so,, the “Jucys—Murphy” elements
Y1, - .., Yk in By become the “Jucys—Murphy” elements for the Brauer algebsasl u
in [27] and, in the case that = gl,,, these become the classical Jucys—Murphy elem-
ents in the group algebra of the symmetric group. The SchayH\duality actions are
explained in [6].

2.1. The affine BMW algebraWy. Theaffine braid group B is the group given

by generatord;, T, ..., Tx_1 and X®, with relations

(2.1) TT, =TT, if j#£i+1,

(2.2) TTi1 T =Ti1TiTip, for i=1,2,...,k=2,
(2.3) XATXATy = T X T X,

(2.4) XET, = Ty X, for i=23,...,k—1.



260 Z. DAUGHERTY, A. RAM AND R. VIRK

Let C be a commutative ring and 1€ B, be the group algebra of the affine braid
group. Fix constants

g,zeC and Z((,') eC, for | ez,
with g and z invertible. LetY; = zX% so that
(25) Yi=2zX%, Y,=T 1Y 4T 1, and YY; =YY, for 1<i,j<k
In the affine braid group
(2.6) TYiYiir =YiYiT.

Assume thaty—q! is invertible inC and defineE; in the group algebra of the affine
braid group by

(2.7) TYi = YiaTi —(@— 97 )Yl - E).

The affine BMW algebra Wis the quotient of the group algebkaBy of the affine
braid groupBy by the relations

(2.8) ET* =T*E = z7'E, ETE = ETYHE =7°E,

(2.9) EiYIE1 = ZE1, EYiYiy1=E =YY E.

The affine Hecke algebra His the affine BMW algebr&Vi with the additional relations
(2.10) Ei=0, for i=1,...,k—1.

Fix by, ..., b € C. The cyclotomic BMW algebra W(b, ..., b) is the affine BMW
algebraW with the additional relation

(2.11) (Y1—b1)--(Y1—-b)=0.

The cyclotomic Hecke algebra (b, ..., b;) is the affine Hecke algebrll with the
additional relation (2.11).

Since the composite map[Y;, ..., Y& — CB — Wi — H is injective and the
last two maps are surjections, it follows that the Laurenympomial ring C[Y?, ...,
YF1] is a subalgebra o€ B, and Wk.

Proposition 2.1. The affine BMW algebra MWcoincides with the one defined
in [28].

Proof. In [28] the affine BMW algebra is defined as the quotiehthe group
algebra of the affine braid group by the relations in (2.8) ahhare [28, (6.3b) and
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(6.3c)], the first relation in (2.9) which is [28, (6.3d)],etrsecond relation in (2.9) for
i = 1 which is [28, (6.3e)], and the second relation in (2.15pheWhere, in [28], the
elementE; is defined by the first equation in (2.13) below.

Working in W, sinceY_4(TiY))Yi41 = YIHY.Y.JrlTI =Y, T, conjugating (2.7) by

i+1
Y7, gives
(2.12) YiTi = TiYies— (@ —a )1~ E)Yisa
Left multiplying (2.7) by ,+1 and using the second identity in (2.5) shows that (2.7)
is equivalent toT, — T,"* = (@ — g !)(1 — E;), so that
T-T _
(2.13) E =1— and TTaETAT = E.1.

q—q
Thus theE; in Wi coincides with theE; used in [28].

Multiply the second relation in (2.13) on the left and the tigly E;, and then use
the relations in (2.8) to get

Ei Ei-~—lEi = EiTiTi+1E T+1T 1E| = E T|+1E T+1E| =ZzET, +1E| =&,
so that
) z-z1

(2.14) E Eii1E = E, and Ei = (l+ —_1) E;

a—q
is obtained by multiplying the first equation in (2.13) &y and using (2.8). As one
can construct representations on whieh acts non-trivially, the first relation in (2.9)
implies
z* 1 1

— and ([T —z)(Ti +q )(Ti—q) =0,

@15)  zO@ =14 2=
since T =z )M +q )T - =T -z NTP-@-a HT - T = (T -
YT -T 7 =@-g N =T -zYa-q9)-E)=—~z"'~-z)a-agHE =0.
This shows that the relation [28, (6.3a)] follows from thdations in W.

To complete the proof let us show that the relationsVif follow from [28,
(6.3a-e)]. Given the equivalence of the definitionsEf as established in (2.13), and
the coincidences of the relations [28, (6.3b-e)] with thiatiens in (2.8) and (2.9) it
only remains to show that the second set of relations in (2d)i > 1 follow from
[28, (6.3a-e)]. But this is established by [28, (6.12)] ahd tdentity

T -T1
q-qt

T Tt
q-q*

EiYiYiy= (1— )Y|Y|+1—Y.Y|+1(1— ) YiYiiiEi,

which follows from (2.6). []
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The relations

(2.16) Eis1E = Eis1TiTivr, EiEiyr = T3AT  Eiya,

(2.17) TEnE =TAE, and EETg=EaT
are consequences of (2.8), and the second relation in (2.13)

2.2. The degenerate affine braid algebraBy. Let C be a commutative ring,
and letS denote the symmetric group dd,...,k}. Fori € {1,...,k}, write 5 for
the transposition iS5, that switches andi + 1. The degenerate affine braid algebra
is the algebraB, over C generated by

(2.18) tu (Ue ), ko k1, and Vyi, ..., Yk

with relations

(2.19) tuty =tw, VY] = Vj¥i, Koki=Kkiko, koYi = Yiko, KiYi = Yik1,

(220) Kots = tsKo, K:]_tle;]_ts1 = tlej_tlel, and Kj_tsj = tst]_, for j 75 1,
(221) (Vi tVYi+) = +Vi+dts, and yjts =tgy;, for j#ii+1,
(2.22) Kkits Yits) = ts, Yats ka,

and

(2.23) blaNivilsals = Vitvive, |
where i1 =VYi1—tsyits for i=1,..., k-2

In the degenerate affine braid algel#a let ¢co = xo and

Cj =K0+2(y1+"'+yj),
(2.24) 1
so that y; = E(Cj —Cj_1), for j=1,...,k

Thency, ..., &k commute with each other, commute with, and the relations (2.21)
are equivalent to

(2.25) tsCc; = cjtg, for j #i.

Theorem 2.2. The degenerate affine braid algebiZ has another presentation
by generators

ty, for ueS, «o ...,k and yj,

(2.26)
for 0<i,j <k with i#]j,



AFFINE BMW ALGEBRAS. THE CENTER 263
and relations

(227) tutu = th! twKi tw*1 = Kuw(i)» twylltw’1 = Yw(i),w(j)»
(2.28) KiKj = KjKi, Kiim = N,mKi,
(2.29) % =vVii» Yoem=WNmVpr, and yi i +vir) = Wir + Vi )%

forp#land pZmandr#landrZmandi# j,i #r and j#r.
The commutation relations between theand they; ; can be rewritten in the form

(2.30) ki, nml =0, [Vl,j: n.ml =0, and ﬁ’l,jv Yiml = [Vim, Vj,m],

forallr and alli #1 andi #mandj #1 andj # m.

Proof of Theorem 2.2. The generators in (2.26) are writteteims of the gen-
erators in (2.18) by the formulas

(2.31) Ko = Ko, Kk1=kK1, t, =1y,

(2.32) yo1=Yy1— %Kl, and yjj+1=Yj+1—tyyjtsy, for j=1,..., k-1,
and

(2.33) km = tukity1,  yom =tuyoatur  and yj = tyya oty 1,

for u, v € & such thatu(l) = m, v(1) =i andv(2) = j.
The generators in (2.18) are written in terms of the genesaio (2.26) by the
formulas

1
(2.34) ko = ko, Kk1i=k1, t, =1, and y;= EKJ' + Z Ni-

0<l<j

Let us show that relations in (2.19)—(2.22) follow from theations in (2.27)—(2.29).
(a) The relationt,t, = t,, in (2.19) is the first relation in (2.27).

(b) The relationy;y; = y;yi in (2.19): Assume that < j. Using the relations in (2.28)
and (2.29),

i, yj] = |:%Ki + i, %K,» + Zl’m,j:| = [Z nis Zm}

I <i m<j I <i m<j

I<i m<j I <i

ZZ[MJ’ZVm,j} =Z{m,(m,j S ym,j:| —0.

m<j
m#l, m#i
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(c) The relationkox; = k1x0 in (2.19) is part of the first relation in (2.28), and the
relationskoy; = Yiko and k1y; = Yiky in (2.19) follow from the relationsix; = «j«;
and ki m = N.mki in (2.28).

(d) The relationscots = tsxo andxats, =t kg for j # 1 from (2.20) follow from the
relation tw/qt,;l = ky() IN (2.27), and the relatiom ts kits, = ts katsx1 from (2.20)
follows from x1k2 = k2k1, Which is part of the first relation in (2.28).

(e) The relations in (2.21) and (2.23) all follow from theaw@bnst,«it, 1 = kg and
tw¥i,jtw1 = Yul),w() N (2.27).

(f) By second relation in (2.28) and the (already estabti3hsecond relation
in (2.20)

1 1
[K1, tslyltsq] = | k1, ts | Y1 — éKl ts, + Etsllfltsl
1
= | K1, Yo2 + étsalfltsa =0,

which establishes (2.22).

To complete the proof let us show that the relations of (2x2Zp9) follow from
the relations in (2.19)—(2.22).
(&) The relationt,t, = ty, in (2.27) is the first relation in (2.19).
(b) The relationst,kit, 1 = kyg) in (2.27) follow from the first and last relations in
(2.20) (and force the definition of,, in (2.33)).
(c) Sinceyp1 = y1 — (1/2)1, the relationst, yo jt,+ = Yo in (2.28) follow from
the last relation in each of (2.20) and (2.21) (and force t&f@ndion of ypm in (2.33)).
(d) Sinceyi = y»—tg Vits, the first relation in (2.21) gives thak 1 = 12 since

tsv1,2ls, — y1.2 = (ts, Yols, — Y1) — Y2 + tg Yits,

(2.35)
=15 (Y1 + Y2)ts, — (Y1 + ¥2) = 0.

The relationst, y1 st = yw@we N (2.27) then follow from (2.35) and the last rela-
tion in (2.21) (and force the definitiong ; = t,y1,2t,+ in (2.33)).

(e) The third relation in (2.19) isok1 = k1k0 and the second relation in (2.20) gives
K1ko = Kkak1. The relationskixj = «jki in (2.28) then follow from the second set of
relations in (2.27).

(f) The second relation in (2.20) givesi|«,] = 0. Multiplying (2.22) on the left and
right by ts, gives [y1, k2] = [y1, tg,k1ts,] = 0. Using these and the relations in (2.19),

1 1
(2.36) k1, vo,2+ y1,0 = [Kl, (Y2 - EKZ - )/1,2) + )/1,2} = —[Kl. EKz] =0,

and

1 1 1
(2.37) bo.1 Y02+ yi2 = [Y1 — 5L Yo — EKZ] = Z[Klu k2] =0,
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so that
[v0,1, k2] = [v0,1, 2¥2 — 2(v0,2 + ¥1,2)] = [v0,1, 22l

1
= [Y1 — 5L 2y2:| = —[k1, yo] = 0.
Conjugating the last relation b, gives

[K].! J/O,Z] = O, and '[hUS I{l, )/1,2] = 0,

by (2.36). By the third and fourth relations in (2.19),

1 1
[ko, Y0,1] = |:Ko, y1— EKl] =0, and ki, 41 = |:Kly y1— §K1:| =0.

By the relations in (2.20) and (2.19),

[0, Y1,2] = [K0, Yo —ts,Yats] =0 and [, y2,3] = [k1, Y3 —ts,Yots,] = 0.

Putting these together with the (already establishedjioelsin (2.27) provides the sec-
ond set of relations in (2.28).
(g) From the commutativity of thg; and the second relation in (2.21)

Yr2v3,a = (Y2 — tg Yits ) (Va — tg Yals,) = (Va — ts Yals ) (Y2 — ts, Yals) = ¥3.4v1,2.

By the last relation in (2.19) and the last relation in (2,20)

1
[vo,1, ¥2,3] = [Y1 — kL Y3 - t92y2t52i| =0.

Together with the (already established) relations in (R.2ve obtain the first set of
relations in (2.29).

(h) Conjugating (2.37) bys,tsts, gives fo.2, 0,3+ y2,3 = 0, and this and the (already
established) relations in (2.28) and the first set of retetion (2.29) provide

2 2
= [y0.2+ v1.2: 0,3+ Y13+ ¥2.3 = [¥1.2 0,3+ 1,3+ v2.3 = [¥1,2 v1,3+ ¥2,3l.

1 1
0=1[yo y3] = [—Kz +Y,2+ V1,2, k3 + Y03+ i3+ J/z,s]

Note also that

[v1,2 Y1,0 + ¥2,0l = [Y1.2 Y01+ v0,2] = —[¥0,1, ¥1.2l + [¥1,2, ¥0,2]
= [v0,1 v0.2] + [¥1.2s ¥0.2l = ts[v0.2+ ¥1.2, Yoalts, = O,

by (two applications of) (2.37). The last set of relationg2:29) now follow from the
last set of relations in (2.27). []
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By the first formula in (2.24) and the last formula in (2.34),
j
(2.38) G=> k+2 Y Am
i=0 0<l<msj

2.3. The degenerate affine BMW algebrayVi. Let C be a commutative ring
and let Bx be the degenerate affine braid algebra oems defined in Section 2.2.
Define g in the degenerate affine braid algebra by

(2.39) tsVi = Viyats —(1—¢g), for i=1,2,..., k=1,
so that, withy; 41 as in (2.23),
(2.40) Vii+ils =1—a.

Fix constants

e =41 and zg)eC, for | € Zso.

The degenerate affine Birman-Wenzl-MurakafBMW) algebra W (with parameters
€ and zg)) is the quotient of the degenerate affine braid algefyay the relations

(2.41) ats =8 =e€a, ats,8 =eaty,,6 =8,

(2.42) eyier = 2061, (i + Yis1) = 0= (¥ + Yiro)e.

The degenerate affine Hecke algebté is the quotient oW by the relations
(2.43) =0, for i=1,...,k—1.

Fix by, ..., b € C. The degenerate cyclotomic BMW algeb&; «(by, . .., by) is the
degenerate affine BMW algebra with the additional relation

(2.44) 1 —Db1)---(y1—b)=0.

The degenerate cyclotomic Hecke algelfia(by,...,b;) is the degenerate affine Hecke
algebra#, with the additional relation (2.44).

Since the composite ma@[ys, ..., Y] = Bx — Wk — Hx is injective (see [20,
Theorem 3.2.2]) and the last two maps are surjections, libvisl that the polynomial
ring C[yi, .- ., Ykl is a subalgebra o, and Wk.

Proposition 2.3. Let C = C, kg, k1 € C and ¢ = 1. Then the degenerate affine
BMW algebra)Vi coincides with the one defined [&7].
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Proof. In [27], the degenerate affine BMW algebra is definedh whie first two
relations in (2.19) and the second set of relations in (2.2hich are [27, (4.1)] and
the first relations in [27, (1.2) and (1.3)], the relations(t39) which are [27, (4.2)],
the relations in (2.42) which are [27, (4.3) and (4.4)], thetfielations in (2.41) which
is the third set of relations in [27, (1.2)], the relations(48) below which are the
last two relations in [27, (1.3)] and the second relation 2i,[(1.2)], the relations in
(2.50) below which are [27, (1.4)], and the relations

(2.45) et =tse and ee; =g, for [j—i|>1,

which are the second and third relations in [27, (1.5)].
Working in Wi and conjugating (2.39) big and using the first relation in (2.41)
gives

(2.46) Vits =ts¥iq1 —(L—8&).
Then, by (2.40) and (2.23),
(2.47) vitr =15 —ee, and ei1 =tsts, 615,15,

Multiply the second relation in (2.47) on the left and the tily e, and then use the
relations in (2.41) to get

€€4+16 = ats t3+1at3+1tSa = atSHatSHa = EatSHQ =8,
so that
(2.48) eq.16 =4q. Note that & = zZq

is, fori = 1, a special case of the first identity in (2.42) and then, famagali, follows
from the second identity in (2.47). The relations

(2-49) €116 = a+1ts ts+1y €€ 4+1 = ts+1tsa+1,
(2.50) ts€18 =t5,,6, and ei6ts,, = €ty

result from (2.41) and the second relation in (2.47). Thatrehs in (2.45) follow from
(2.39) the first two relations in (2.19) and the last relatiom (2.21). Thus the relations
in the definition of the degenerate affine BMW algebra in [21]ofe from the defining
relations of Wk.

To complete the proof we must show that the first relation2i21), the relations
in (2.23), and the second relations in (2.41) follow from thefining relations used in
[27]. Because of the assumption thaf, k1 € C the other relations in (2.19)—(2.23)
are automatic.
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(&) Multiplying the first relation in (2.50) on the left by and using the first relations

in (2.41) and the first relations in (2.48) provides part ¢ gecond relations in (2.41)
and the other part is obtained similarly by multiplying thecend relations in (2.50)
on the right bye ;1.

(b) Conjugating (2.39) byts produces (2.46) and then adding (2.39) and (2.46) pro-
duces the first relations in (2.21).

(c) Using (2.50),

8+1=tsls (81t )ts =tsts@ bty ts =I5t a1t
which, with (2.39), gives the relations in (2.23). ]

3. Identities in affine and degenerate affine BMW algebras

In [27], Nazarov defined some naturally occurring centrahnednts in the degen-
erate affine BMW algebraVi and proved a remarkable recursion for them. This re-
cursion was generalized to analogous central elementseiraffine BMW algebran
by Beliakova—Blanchet [4]. In both cases, the recursion wesomplished with an
involved computation. In this section, we provide a new probthe Nazarov and
Beliakova—Blanchet recursions by lifting them out of theteg, to intertwiner-like iden-
tities in Wy and W (Propositions 3.1 and 3.3). These intertwiner-like icigifor the
degenerate affine and affine BMW algebras are reminiscenteointertwiner identities
for the degenerate affine and affine Hecke algebras foundeXample, in [21, Prop-
osition 2.5 (c)] and [30, Proposition 2.14 (c)], respedtivelhe central element recur-
sions of [27] and [4] are then obtained by multiplying theentiviner-like identities by
the projectorsss and Ey, respectively. We shall not include our new proofs of Prepos
ition 3.1 and Theorem 3.2 here since, given our parallelpsefuthe degenerate affine
and the affine BMW algebras in Section 2, the proof is exacthalpe to the proofs
of Proposition 3.3 and Theorem 3.4.

3.1. The degenerate affine case.Let Wi be the degenerate affine BMW alge-
bra as defined in (2.41)—(2.42) and lekl <k — 1. Letu be a variable and let

1
i

(3.1) ut = S and u = .
u—Vi u-+V

Proposition 3.1. In the degenerate affine BMW algebva; .4,

1 1
(al—yiH BT +yi+1))(al—yi T +yi+1))
(U (9 + Yier) + D@~ (v + Yier) — 1)
(2u— (¥i + Yi1))?

(3.2)
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and

1 1
ut +t _a—)—uﬂ—(u* +t _a—)uﬂ_
( LTS 20— (v + Vi) AT (TR A

1
3.3 tsu't +t P —
(3:3) (S‘ I R T +ya+1))
—)u.+ .
2u—(yi + Yit1) HH

The identities (3.4) and (3.5) of the following theorem a2&,[Lemma 2.5], and
[27, Lemma 3.8], respectively.

.H(au 6 +eq—g

Theorem 3.2 ([27]). Let Wk be the degenerate affine BMW algebra as defined in
(2.41)(2.42) and let1 <i <k—1. Let (u) = ¥, zu™'. Then

1 1 1 1
4 T e — — + S = _ - _
(3.4) (GU| € Zu)(QU,-i-E ZU)a (e+2u)(e ZU)a,
and

N 1
€+1li, g +€— U €11
(3.5)

_ (ZO(U) ) l—[ U4y —u+y + 1) _yj)ze,
u LUt y)Pu—y + -y —1)

3.2. The affine case. Let Wy be the affine BMW algebra as defined in (2.8)—

(2.9) and let 1I=i <k —1. Letu be a variable,

Y, YiYii1
36) U"=——, andnotethat U U*, = — > (U*+U 1).
( ) i U—Yi i+1 2_YiYi+l( + I+l+ )

By the definition ofE; in (2.7),
U—=Yi )T =T(u—-Y) - (@-a Y1l — E),
and, by (2.12),

U=Y)Ti =TiuU—Yiy)+@—g)1—-E)Yi,
so that
1 1 1 1

Y;
7 T = T (d—agbh—"" 1_E
(3.7) Y Y, m Yi+1| a-q )u Yi+1( |)u Y,
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and

1 1
3.8 Ti Ti *1— )
(3.8) YL Uy i+(@—q ) ( )u_Yi+1

The relations

TV =U" T (@ -q ™y (- BT

(3.9) B
=V (T = (@-9H@a-E)yh),
and
(3.10) T UL =U T —(@ -9 YU EU, + (-9 Uy, 07

= U (T + (@ -a )1 - E)Yy)

are obtained by multiplying (3.7) and (3.8) on the right frekeft) by Y; and using the
relation TV = Yi 1Tt
Taking the coefficient oti~(+1) on each side of (3.7) and (3.8) gives

Y =Y T —@—-a )Y ,Q-E)+YIa-EB)Y +

R Yl BNV

(3.12) TY =Y T+ @—a ) 0= E)Yip + Y 21— E)YZ, + -
+(1-E)Y,y),

respectively, fol € Z-o. Therefore,

(313  TY = i;'lTi +@-g Y- E)Y e+ - EDY),

(314) TV =Y'T—@-ghA-E)+- + Y- BV

Proposition 3.3. Let Q= q—q L. Then in the affine BMW algebra W;,

Yit1 Ti YiYis1 Yi Ti_l YiYii1
Ei T 2_VvYvV . Ei R~ S vEva
U—Ya Q@ w—vvi J\Tu=v T QT @YY

(3.15)
_ (U —g?YiYi )P — g Y Yig)

Q%(U% —Y;Yit1)? ,
and

T Y:Y

U~+ L E. i T+l
( eI TR A
T YY,
— QAU + 1)(ui++1 + L 2'—'+1)ui+

(3 16) Q us — YiYi—+—l

T A
TUFT 4 2 - B —
(' QTN Y,
YiYit1

E.
Q2 |+1(EiUi+Ei —+ Z6I — Ei m)(ul_ﬂ_ + 1)
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Proof. Putting (3.6) into (3.9) says that if

A_Ti YiYit1
=t
Q u*=YiVYi;1
and
B_Eu++T_l_&
Q u-YViu
then
YiVYi
AU* ulilB—z'—'“.
us—=YiYis1
Next,
AE = EA

follows from (2.8) and (2.9). So

(E Yit1 Ti YiYii1 )(E Yi Ti_l YiYit1 )
Y. O wZ_vY vy TTo Tweovv,
u—Yi1 Q U =YYy u-Yi  Q U*—YiYiy

Y.Y,
B)— AB = E; (Aui+ + u2l—\l(+Y11) - AB
— hh+

= E (U|+1

Y.y,
= AEUY —B)+ B oy
I+

:_(E_I_ YiYiqa )(Tl_l_ YiYiga )+E- YiYiia
Q u-YYi )\ Q u2-YiYiy A

and, by (2.13), multiplying out the right hand side giveslg).

Rewrite T7*U;%, = U Tt + QU (1 - E)(UY, + 1) as

T U = QUL + DU = U T = QUFE (U, + 1),
and multiply on the left byT; to get
(3.17) Ut — QT + DU =TU T 1 _QTUE (U, +1).

Then, sinceT; = Tt + Q(1 — E;), equations (3.10) and (3.9) imply

Ti(Uh, + 1) = QU + 1)(Q +(1- E)UIH)

and

-1
U = QU|+1(TiQ _(1_Ei)Ui+)'
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and so (3.17) is

Ut — Qz(u++1)(Q+(1 E)Ul+1)

(3.18) T +
=TU T - QZU.+1( Qi —@1- Ei)U‘+) B+ D).
Using (3.6) and adding

Ti £ YiYiga 2 YiYig

S EBs—Vo——Q5— U +1EU 1
Q qu_YiYi+1 U2—YiYi+l( + DE( |+1+ )

to each side of (3.18) gives

T Y},
Ulj_l I _Ei 2 1 Ti4+1
Q us—YiVYiz1
T Y:Yi
= TUT 4+ QI By '\'(“;1
=YiYii1

Tt VY
2 + i i Ti+l
EUF 4+ — 1t
Q I+l( U] + Q UZ—YiYi+1
' Q W-YYin
Ei YiYi
2 + i i Ti+1
UTE +2— — E—— 2
° '“( TR T TN

T YiY,

20 1+ + i i Ti+1 +
- Q*(Ur + 1)U — —E———t— |U
ol )( T 'uZ—WH) |

)E. Ut +1)

)i+,
completing the proof of (3.16). ]

Let Z§ and Z; be the generating functions

zg =Y zPu' and z; = > z{u.

| €Z>o | €Z<o

Y_fl
(3.19) U~ = IY-‘l then EU, =EU~ and U7,
I

E| = UI_ E|,

by the second identity in (2.9). The first identity in (2.9)egquivalent to
EiU; Ex = (28 — ZD)E,.

In the following theorem, the identity (3.20) is equivaleiot [13, Lemma 2.8, parts
(2) and (3)] or [14, Lemma 2.6(4)] and the identity (3.21) quizalent to the identity
found in [4, Lemma 7.4].
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Theorem 3.4([4, 13, 14]) Let W, be the affine BMW algebra as defined in
(2.82.9)and let1 <i <k—1. Then

~ ! 1 N z 1
EU, _q—q—l_uz—l EU, +q_q_1—u2_l E;

3.20
(320 —( - -q? _

W-12@q-q12
and

z 1
(Ei+1UiJ§_1 + q9—q1t T 1) Ei1
(3.21) B (Z+ N Z—l B u2 ) 1'_[ (U _ Y].)Z(u _ q72yj—l)(u _ quj_l) c
°Ta-at -1\ YR —aEYy) )

Proof. Multiply (3.15) on the right byE; and useZi(g)1 =1+(z-zY/(q-qg™d
to ge (3.20).

Multiplying (3.16) on the left and right byEj, 1 and using the relations in (2.8),
(2.9), (2.14), and

EiaTi Ui+Ti71Ei+1 = Ei+1TiTi+1Ui+Ti111-|TlEi+1 = Ei+1EiUi+ E Eit1,
gives

z 1
(Ei+1Ui11 + 6 - m) Ei+1(1 - QZ(Ui+ + l)Ui+)
z

. 1
= Ein| BU; +Q 71 )FEn

z 1
- QU Ei+1(Ei U+ 6 - m) EE+i(U +1)

=(1- QZLUi’ RUi+1)(Ei+1(Ei Ui+ + é - Uz%.) E; Ei+1)

where Ly~ is the operator of left multiplication by~ and Ry-,1 is the operator of
right multiplication byU;~ 4+ 1. Then, by induction,

z 1 i
(Bettitat g =gy ) B [Ta- QU7 U 1)
j=1

‘ 1
= (1_[(1—QZ|—Uj Ruj+1))(Ei+1Ei Ez(ElUf+é—m) E1Ez--- Ej Ei+1)
j=1
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i
z 1
[[@-Q%Ly; Rujﬂ)(EmEi E Ez(zg—zg°’+ o~ u2—1) EiEz--- Ei+1)
j=1

z 1 i
= (ZJ—ZéO)+6— u2—1) (1_[(1—QZ|—Uj Ruj+1)>(Ei+1Ei - E3E1Ez -+ EiEj11)
j=1
z 1 !
0 _ _
- (zg—zg)+6—u2_1) [ [@-Q%U; (U] +1)Ei.s.
j=1

So (3.21) follows from

1-(q—-q MU, (U; +1)

1-(@—-a U/ U +1)

_ =@ gAY /=Y 4+ 1)
1-@—ah2Y/(u=Yj)(Y;/(u=Y)) + 1)

_ (u—Yp D2 —(@—a H2Y;tu)(@/(u - Y h?)
((U=Y;)2=(@—g™)2Yju)(L/(u-Y;)?)

=g YU =Y Hu— Y)Y

C(U—g2Y))(u—g?Y))(u— YY)

and Zéo) =1+ 2Z-z2Y/(q-qg™. O

4. The center of the affine and degenerate affine BMW algebras

In this section, we identify the center dfk and Wi. Both centers arise as alge-
bras of symmetric functions with a “cancellation proper{iri the language of [29]) or
“wheel condition” (in the language of [9]). In the degeneragse,Z(WW) is the ring
of symmetric functions inyy, ..., Yk with the Q-cancellation property of Pragacz. By
[29, Theorem 2.11 (Q)], this is the same ring as the ring geedrby the odd power
sums, which is the way that Nazarov [27] identifi@gd/Vk).

The cancellation property in the case \0f is analogous, exhibiting the center of
the affine BMW algebraZz (W) as a subalgebra of the ring of symmetric Laurent poly-
nomials. At the end of this section, in an attempt to make tieony for the affine
BMW algebra completely analogous to that for the degenertileaBMW algebra,
we have formulated an alternate descriptionZg¥\) as a ring generated by “negative”
power sums.

4.1. Bases ofW and Wy. The Brauer algebra, depending on a parameter
is given by generator®y, ..., &-1 and s, ..., k-1 and relations as given in [27,
(1.2)—(1.5)] (where our is denoteds; and ourx is denotedN). The Brauer algebra
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also has a diagrammatic presentation (see [5]) with basis
(4.1) Dy = {diagrams ork dotg,

where a Brauer) diagramon k dots is a graph wittk dots in the top rowk dots in

the bottom row andk edges pairing the dots. We label the vertices of the top row,
left to right, with 1, 2,..., k and the vertices in the bottom row, left to right, with
1,2,...,K so that, for example,

4.2) d= 7”% = (13)(21)(45)(66)(74)(27)(35)

is a Brauer diagram on 7 dots. Setting

(0)

X=12y and § = ety

realizes the Brauer algebra as a subalgebra of the degersdfiae BMW algebra/\.
The Brauer algebra is also the quotient)dk by y; = 0 and, hence, can be viewed
as the degenerate cyclotomic BMW algebfa x(0).

Theorem 4.1([27, 2]). Let Wi be the degenerate affine BMW algebra and let
Wi k(by,...,br) be the degenerate cyclotomic BMW algebra as defing@.4il)}(2.42)
and (2.43), respectively. For g, ..., ng € Z>o and a diagram d on k dots let

o=yt yifl“d%hl SRV

where in the lexicographic ordering of the edgés, j1), - - ., (ik, jk) of d, iz, ...,
are in the top row of d andiq, ..., ik are in the bottom row of d. Let Dbe the set
of diagrams on k dotsas in (4.1).

(@) If ko, k1 € C and

o (oo (G- (00 () oey

then {d™—"™ | d € Dy, Ny, ..., Nk € Z>o} is a C-basis ok.
(b) If ko, k1 € C, (4.3) holds and

v () (s ([135)

i=1

then {d™ ™ | d € Dy, 0<ny,...,ng <r —1} is a C-basis ofW,k(by, ..., b).

Part (a) of Theorem 4.1 is [27, Theorem 4.6] (see also [2, fdm02.12]) and
part (b) is [2, Proposition 2.15 and Theorem 5.5].
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Theorem 4.2([14, 39]). Let W, be the affine BMW algebra and let, Wb, . . .,
b/) be the cyclotomic BMW algebra as definedSaction 2.1 Let d € Dy be a Brauer
diagram where L is as in(4.1). Choose a minimal length expression of d as a prod-
uctofq,...,e_1,S1, ..., S1,

d:a'l-..a'li aie{el""lwfllsli"'lafl}!

such that the number of $n this product is the number of crossings in d. For each
g which is in{sy, ..., 51} fix a choice of sigre; = £1 and set

E, if a=g,
TY, if aj=s.

Ta=A1--- A, where A:{
|
Forng, ..., ngeZ let

Tdnl ----- M _ Ylle .. Y|?I TdY-n'H . Yi:k’

41

where in the lexicographic ordering of the edgés, ji1), ..., (ik, jx) of d, i1, ...,
are in the top row of d andiq, ..., ik are in the bottom row of d.
(@) If

B z u? N z1 u?
(ZO S gq-gqt uz—l)(z0 e uz—l)
(- -q7?)

W -1%g-qg b2
then {T/*™ | d € Dy, Ny, ..., Nk € Z} is a C-basis of W.
(b) If (4.5) holds and

z1! u? z uz u—bt
+ _ _ i
(4.6) s Sy (q_q_1+u2_l)]_[

(4.5)

then {T/*™|d e Dy, 0<ny,...,ng <r —1} is a C-basis of Wk(by, ..., b).

Part (a) of Theorem 4.2 is [14, Theorem 2.25] and part (b) #& [Theorem 5.5]
and [39, Theorem 8.1]. We refer to these references for preafiarking only that one
key point in showing thafT /"™ | d € Dy, ny, ..., nx € Z} spansW is that if (, j)
is a top-to-bottom edge id then
4.7) Yi Ty = TqY; + (terms with fewer crossings),
and, if ¢, j) is a top-to-top edge i then

(4.8) YTy = Yj‘le + (terms with fewer crossings).
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4.2. The center ofWx. The degenerate affine BMW algebra is the algeldia
over C defined in Section 2.3 and the polynomial ri@gys, ..., k] is a subalgebra of
Wk. The symmetric groufs acts onC[ys, ..., Y] by permuting the variables. A clas-
sical fact (see, for example, [20, Theorem 3.3.1]) is that ¢center of the degenerate
affine Hecke algebr&iy is the ring of symmetric functions

ZH) =Clyr, ..., Wl¥ ={f €C[ys, ..., W] | wf = f, for w € S}.

Theorem 4.3 gives an analogous characterization of theecefitthe degenerate affine
BMW algebra. We shall not include the proof here since, givan marallel setup of

the degenerate affine BMW algebras and the affine BMW algebra&&eation 2, the

proof is exactly parallel to the proof of Theorem 4.4.

Theorem 4.3. The center of the degenerate affine BMW algelva is
Ri=1{f €Clyr, ..., WI¥ | (¥, =1, ¥3, -, ) = F(0,0,y3, ..., Y}
The power sum symmetric functions @re given by
=Y, +Yyo+---+yl, for iezZ.

The Hall-Littlewood polynomialgsee [25, Chapter Il (2.1)]) are given by

1 i,
Pk(y:t)zP)L(yl,--.,yk;t)zv_(t)Zw<yi»1‘__y¢k 1—[ >; t;J),
A i — X

weS 1<i<j=k

where v, (t) is a normalizing constant (a polynomial i) so that the coefficient of
yfl---y(}k in P,(y;t) is equal to 1. TheSchur Q-functions(see [25, Chapter IlI
(8.7)]) are

Q, = 0, if A is not strict,
T 2MP(y; —1), if A is strict,

wherel(A) is the number of (nonzero) parts af and the partitionx is strict if all
its (nonzero) parts are distinct. L&y be as in Theorem 4.3. Then (see [27, Corol-
lary 4.10], [29, Theorem 2.11 (Q)] and [25, Chapter Il 88])

(4.9) Rk = C[p1, p3, Ps, - -.] = Cspan{Q;. | A is stricg.

More generally, letr € Z.o and letz be a primitiverth root of unity. Define

Rryk = {f € Z[f][Yl, vy yk]& |
f(ylr ;yl, ey Cr_lyll Vitdsov e yk) = f(0= 0" L Oly|’+11 I Yk)}
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Then

(4.10) Rk ®z1:1 Q(6) = Q(¢)[pi [T # 0 modr],

and

(4.11) Rik has Z[¢]-basis {Pi(y;¢) | mi(A) <r and iy <k},

wherem; (1) is the number parts of sizein 1. The ring R,k is studied in [26], [23],
[25, Chapter Ill Example 5.7 and Example 7.7], [37], [9], amithers. The proofs of
(4.10) and (4.11) follow from [25, Chapter Ill Example 7.1B7, Lemma 2.2 and
following remarks] and the arguments in the proofs of [9, bean3.2 and Propos-
ition 3.5].

4.3. The center ofWx. The affine BMW algebra is the algebk& over C de-
fined in Section 2.1 and the ring of Laurent polynomi@gY:L, ..., Y,*1] is a sub-
algebra ofWy. The symmetric groug acts onC[Y;™, ..., V1] by permuting the
variables. A classical fact (see, for example, [16, Prdmosi2.1]) is that the center of
the affine Hecke algebrély is the ring of symmetric functions,

Z(H) = C[Y{?, ., Y ) x = (feCY{, . Y | wf = f, for w € ).
Theorem 4.4 is a characterization of the center of the affivB\Balgebra.

Theorem 4.4. The center of the affine BMW algebra, \i¢

Re={f eClY ., Y5 | f(YL Yoh Ve, oo, V) = (L, 1, Y5, ..., ).

Proof. SEP1: f € Wi commutes with allY; & f € C[Y{,..., Y, !]: Assume
f € W and write

(i, j) of d such thatj #i’. Then, by (4.7) and (4.8),
the coefficient of Y, Tj*™ in Yif is c{ ™

and
the coefficient of Y, T/*™ in fY; is O.

If Y; f = fY; it follows that there is no such edge, andde- 1 (and therefordly = 1).
Thus f € C[Y;tL, ..., Y. Conversely, if f € C[YL, ..., YEY, thenY; f = fY,.
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Step 2: f e C[Y{L, ..., YFY] commutes with allT, < f € R¢ Assumef €
ClY:L, ..., Y and write

f= Y2YPfap, where fapeC[Y;7h ..., V.

a,bez

Then f(1,1,Y3, ..., Yi) = Y apez fap and

(4.12) FOYL Y Ya, o M) = D Vi Pfap=>Y) <Z f|+b,b>.

a,beZ leZ beZ

By direct computation using (3.12) and (3.14),

Y2YP — s1(Y2YD)

WYY = VT = s(MY) T+ (@ -0 ) =5
2

+ gb—a 1

where

|
—(@—-9™) YEY,  if 1>0,
r=1

@-aH) Y VT rEYh ifl <0,
r=1
0, if | =0.

&

It follows that

(4.13) Tif=@EHT+@- q_l)i +Y & <Z fl+b,b)-

-1
1 - Y1Y2 |€Z#0 beZ
Thus, if (Y2, Y72, Ya, ..., Yi) = f(1, 1,5, ..., Y) then, by (4.12),

(4.14) > fipp =0, for I#0.
beZ

Hence, if f € C[Y/L, ..., Y5 and f(Y1, Y71, Y3, ..., Ye) = f(1,1,Ys, ..., Yk) then
s f = f and (4.14) holds so that, by (4.13); f = fT;. Similarly, f commutes with
all Tj.

Conversely, iff € C[YL, ..., Y and Ti f = fT; then

sf=1f and > fipp=0, for |#0,
bezZ

so thatf € C[Y;f, ..., Y15 and f(Y1, Y714, Ya, .., V) = f(L,1,Y3, ..., Yi).
It follows from (2.7) thatRy = Z(W). []
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The symmetric grougs acts onZ¥ by permuting the factors. The ring
CIYi™, ..., Y% has basis {(m;, | A € ZX with A1 > A5 > -+ > Ay,

where

m, = Y Y{tee Y
HESA

The elementary symmetric functiomse
& = Mu o and e, =mger 1y), for r=0,1,...,k,
and thepower sum symmetric functiorse
Ppr =Mooy and p =My, for reZ.o.

The Newton identities (see [25, Chapter | (2)D1say

| |
(4.15) le =) (-1 'pa, and ley =) (1) pre g,

r=1 r=1

where the second equation is obtained from the first by rea¥, with Y,"1. For
leZ andi = (Ag, ..., A) € ZK,

dm, =m, gy, where A+ (15 =G1+1,..., i +1).
In particular,
(4.16) e, =¢g'a, for r=0,...,k
Define
(4.17) pr=p +pi and p=p—p, for ieZ..

The consequence of (4.16) and (4.15) is that

ClY:, .. Y S =cleft ey, ..., 6]

=CleMlen e, - - -, €2l &€ (-1)2): - - - » €2, E&E_1]
=Cle'len e - - ., €2 - ((1y2)s - - -+ €2, €]
= Cl6EM[p1, P2 - - -+ Plkj2ls P-(k-1)2s - - -» P2, P1]

= C[qitl][ pf! p;a ceey pﬁ(/zJa p[(k—l)/ZJl c ey pgv pI]
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For v € ZX with v, > --- >y > 0 define

pf=pl---p; and p;=p, - P

lez,I(0) < {EJ,I(M) < LkLzlJ}

In analogy with (4.9) we expect that R¢ is as in Theorem 4.4 then

Then

CIYEL, ..., Y% has basis {e{( PP,

R« =Clefpy, Py - - -1
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