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Abstract
In this paper we investigate what kind of manifolds arise fes tbtal spaces of
iterated S*-bundles. A real Bott tower studied in [2], [13] and [14] is arample
of an iteratedS'-bundle. We show that the total space of an iterafebundle is
homeomorphic to an infra-nilmanifold. A real Bott manifplhich is the total space
of a real Bott tower, provides an example of a closed flat Rierizan manifold. We
also show that real Bott manifolds are the only closed flatrRienian manifolds

obtained from iterated® P-bundles. Finally we classify the homeomorphism types
of the total spaces of iterate®!-bundles in dimension 3.

1. Introduction

In this paper, anSt-bundle is a fiber bundle with the circls® as a fiber and an
iterated S-bundleof heightn is a sequence of smoo®t-bundles starting with a point:

(1.1 Xn = Xp1 —> -+ = Xy — Xp = {a point.

The total spaceX,, of an iteratedS'-bundle is a closed aspherical manifold of dimen-
sion n. Our concern is what kind of aspherical manifolds arise &sttal spaceX,.

If all the S'-bundlesX; — Xi_; in (1.1) are principal, then one sees that the funda-
mental group ofX, is nilpotent and hence, is homeomorphic to a nilmanifold, and
conversely any closed nilmanifold arises as the total sjdan iteratedprincipal S'-
bundle (see [5, Proposition 3.1]). Our first main result is following.

Theorem 1.1. The total space Xof an iterated $-bundle of height n is homeo-
morphic to an infra-niimanifold. In fagtsome2"-cover of X%, is homeomorphic to
a nilmanifold.

The projectivization of a plane bundle, called RP1-bundle, is anS*-bundle, so
an iteratedR P!-bundle is an iterateds'-bundle. The total spaces of iterat@®P*-
bundles are somewhat special. For instance, the first Bettiber b;(X,; Z;) of the
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total spaceX, in (1.1) with Z,-coefficient, wherezZ, = Z/2Z, is at mostn and it turns
out that X, is the total space of an iteratd®iP*-bundle if and only ifb;(X,; Z2) = n.

When every plane bundle used to projectivise in the iter&tBd-bundle is a Whitney
sum of two line bundles, the iterat@®P!-bundle is called aeal Bott towerand the to-
tal spaceX, is called areal Bott manifold A real Bott manifold provides an example of
a flat Riemannian manifold and the diffeomorphism clasdificaof real Bott manifolds
has been completed in [2], see also [13] and [14]. Unlesy/gane bundle used to pro-
jectivise in the iterate@® P-bundle is a Whitney sum of two line bundles, the total space
X, is not necessarily flat Riemannian. However, we may ask venettore flat Riemann-
ian manifolds than real Bott manifolds can be produced frmratedR P*-bundles. The
following theorem says that the answer is no.

Theorem 1.2. If the total space of an iterate® P-bundle is homeomorphic to
a closed flat Riemannian manifolthen it is homeomorphic to a real Bott manifold.

The total spaceX, of an iteratedS'-bundle of height 2 is either the toru§)? or
the Klein bottle. However, the total spac¥s of iterated St-bundles of height 3 are
abundant and we classify them up to homeomorphism. It tutristiat there are six
flat Riemannian manifolds, an infinite family of nilmanifsldand an infinite family of
infra-nilmanifolds, see Theorem 5.9 for details. It is kmothat there are ten homeo-
morphism classes of closed flat Riemannian manifolds in d#iom 3 and our result
shows that six of them arise from iterat&4-bundles while four of them arise from it-
eratedR P1-bundles. In a forthcoming paper, we will classify 4-dimiensl closed flat
Riemannian manifolds arising from iterate®l-bundles. It is known in [1] that there
are 74 homeomorphism classes of closed flat Riemannian of@sifn dimension 4
and it turns out that 35 of them arise from iterat®8bundles while 12 of them arise
from iteratedR P*-bundles.

This paper is organized as follows. We study fundamentaliggoof S'-bundles in
Section 2 and of iterate@*-bundles in Section 3. In Section 4 we prove that the to-
tal space of an iterate8'-bundle of heightn contains a nilpotent normal subgroup of
index 21 in its fundamental group, which implies Theorem 1.1. In 8&c6 we clas-
sify isomorphism classes of possible fundamental grouptheftotal spaces of iterated
St-bundles of height 3 and then show that those isomorphisssetacan be realized
by iteratedS'-bundles of height 3. Section 6 is devoted to the proof of Teenl1.2.

2. S'-bundles

When & is a plane bundle with an Euclidean fiber metric, the unitleitoundle
S(£) of £ is an St-bundle. Conversely, if the base spa@és a closed smooth manifold,
then anySt-bundle overB can be regarded as the unit circle bundle of some plane
bundle with an Euclidean fiber metric because the inclusi@p ®(2)— Diff( S') is
known to be homotopy equivalent so that the structure grdughe circle bundle, that
is Diff(S'), reduces to O(2). This also shows that a smo8ttbundle over a closed
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smooth manifold is isomorphic to a princip&t-bundle if and only if theSt-bundle is
orientable (see [16, Proposition 6.15] for a direct proof).

The projectivizationP () of a plane bundle;, called theRP-bundlg is also an
St-bundle and fiber-wisely double covered 8n). If n is orientable, them admits
a complex structure so that one can form its 2-fold tensodybn ®c n over the
complex number< and thenP(n) = S(n ®c n).

Lemma 2.1. Let & i> X 5 B be an $-bundle over an arcwise connected space
B and letzr1(B) be finitely presented as follows

(X1, oo Xp | fj(Xe, ..., xp) =1 (1= ] =q))
and let i.: 71(SY) — m1(X) be injective. Thenry(X) has a presentation of the form
Xty -y Xp, 0 | XioXTh =0T fj(xg, ..., Xp) =0 (1<i<p,1=<j=q))

for some integers ja
Moreover the following are equivalent
(i) the S-bundle X— B is fiber-wisely double covered by another-tsindle
(i) every integer @ above is even
(i) by(X;Zy) = bi(B;Zy) + 1 where h(;Z;) denotes the first Betti number with
Z»-coefficient.

Proof. The S'-bundle X — B induces a short exact sequence-1mi(S') —
m1(X) — m1(B) — 1. Takingo as a generator ofr1(S'), it can be seen easily that
the first part of the Lemma holds.

(1) = (2). Assume that thé&'-bundle X — B is fiber-wisely double covered by
anotherSt-bundle Y — B. Then there is a fiber preserving mapbetween them

¢

@
@

—_—
/

[
—_—

We—— < <—

.

W—— X<—

where¢: Y — X and the restriction on the fibef: S — S' are double covering pro-
jections.  Therefore¢ induces the following commuting diagram between exact
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sequences of groups

(S s (Y) = m(B) 1
I
ee——— % 7'[1(51) - JT]_(Y) - 7T]_(B) 1.

Sincei, and ¢, are injective,i.¢, = ¢.i yields thati/ is injective. Lett be a gen-
erator of r1(S') of the fiber St of the bundleY — B so that¢.(r) = 02. We choose
a lift of x; € 71(B) to 71(X) throughm, for eachi and use the same notatiof for
the lift. Then, we choose a lift ok € 71(X) to 71(Y) through¢, and denote it byy;.
Recalling that

(YY) = (Yo Y T YTy T =T fi(yn oY) = 7)),

m(X) = (Xg, -, Xp, 0 | XioX = o=, fi(xq, ..., Xp) = o)
for some integersy andbj, we must have thap.(fj(ys, ..., ¥p)) = ¢.(r?) and so
fj(x1, ..., Xp) = 0. Hencea; = 2b; for all j.

(2) = (1). Conversely suppose that the fundamental group of tta spaceX
of the St-bundle X — B has a presentation of the form as above with all the integers
a; even. Consider the subgroup of 7;1(X) generated by, ..., X, ando?. Then
H has index 2 inz1(X). Let Y be the double covering space &f corresponding to
H with covering projectionp: Y — X. Thenz’ =n¢: Y — B is a bundle with fiber
F = ¢1(SY) and we have the commutative diagram

¢
_—

— @

W<——<<«—T
ls
W— X<—

f

where ¢ is the restriction ofp.

Now we will show thatF = S' and ¢ is a double covering projection. Notice
that ¢, : m1(Y) = H — m1(X) is the inclusionH < 71(X) and hence the composition
), = m.p.: m1(Y) — m1(B) is surjective by the choice dfl. It follows thatwo(F) = 1,
i.e., F is arcwise connected. Henge F — S' is a (double) covering projection [15,
Lemma 2.1, p.150] and sb = S'.

(2) & (3). We note thatH;(X; Z,) = Hi(X; Z) ® Z, which follows from the
universal coefficient theorem for homology groups becaHgéX; Z) is torsion free.
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Therefore,H;1(X; Z,) agrees with the abelianization afi(X) over Z,. Looking at the
description ofz;(X) and 71(B), one easily sees the equivalence between (2) and (3).
[

The last part of the proof above essentially proves théX; Z,) = by(B; Z,) or
b:(B;Z,)+ 1. This fact can also be seen in terms of 2nd Stiefel-Whitegscas follows.

Lemma 2.2. Let p: X — B be the unit circle bundle of a plane bundjeover
a connected space B. Then(K; Z,) = by(B; Z;,) or by(B;Z,) + 1 and the former
occurs whenw,(¢) # 0 and the latter occurs whem,(¢) = 0.

Proof. Consider the Thom-Gysin sequence associated with Shbundle
p: X — B:

0=H 1B) 22 HiB) L Hi(X) - HOB) 22 H2(B)

where the coefficients are taken wih. Here the last map above is injectiveub (&) #
0 and zero ifw,(&) = 0. This implies the lemma since°(B) = Z.. []

REMARK 2.3. The proof of the equivalence between (2) and (3) in Len2ma
works with Z-coefficient for any prime numbep, and we have thab;(X;Zp) <
b1(B; Z,) + 1 and the equality holds if and only if every integgyis divisible by p,
whereby( ;Z,) denotes the first Betti number with,-coefficient. Therefore, th&'-
bundle: X — B is trivial if and only if bi(X; Zp) = bi(B; Zp) + 1 for any prime
number p.

3. lterated St-bundles

An iterated S-bundleof heightn is a sequence of smoo®t-bundles starting with
a point:

3.1) Xy = Xpo1 — -+ — X1 — Xp = {a poin{.

Each X; is a closed connected aspherical manifold of dimensidor i =1, 2,...,n
and theSt-bundle X; — X;_; induces a short exact sequence:

1— m(SH = m(X) = m(Xi1) — 1.

The total spaceX,, is diffeomorphic to am-dimensional torus if evergt-bundle X; —
Xi_1 in (3.1) is trivial. The converse is also true.
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Proposition 3.1. The following are equivalent
(1) X, is diffeomorphic to an n-dimensional torus
(2) Hi(Xn: Z) is isomorphic toz",
(3) every S-bundle X — X;_1 in (3.1) is trivial.

Proof. It suffices to prove (2} (3). Suppose thaH;(X,; Z) is isomorphic to
Z". Thenby(Xn:Z,) = n for any prime numberp by the universal coefficient theorem.
On the other hand, repeated use of Remark 2.3 showsbiliat,; Z,) < n and the
equality holds for any prime numbey only when everySt-bundle X; — X;_; in (3.1)
is trivial. O

Unless theS'-bundles in (3.1) are trivial, the topology ok, is complicated
in general.

Lemma 3.2. m1(X,) has a presentation of the form
el & 3" e 1<i i<
St,...,% | SS§ =% siiys) (I<i<j=n)

wheree;; = +1 and the é are some integers. Moreovehe S-bundle X — X, 11n
(3.1)is orlentable(equalently principal) if and only ifej =1foralli =1,...,j—

Proof. The former statement follows by applying Lemma 2.durtively.

The proof of the latter is as follows. Note that ti#-bundle X; — X;_4 is ori-
entable if and only if any loop in the base spaXg ; induces the identity map on
the first cohomology group of the fiber over the base point ef ldop. Equivalently,
m1(Xj-1,b) acts onH(Fyp) trivially for all b e B. This exactly means thas; st= S;
for all the generators; of m1(X;_1). O

Since the projectivization of a plane bundle, that isRad*-bundle, is anS*-bundle,
an iteratedR P1-bundle is an iterate&'-bundle.

Proposition 3.3. Let X, be the total space of an iterated-8undle (3.1). Then
b1(Xn; Z2) < n. Moreoverthe following are equivalent.
(1) X, is the total space of an iterate® P -bundle.
(2) All the exponentsi‘fq in Lemmag3.2 are even.
(3) bi(Xn:Z2) = n.

Proof. The former statement follows from Lemma 2.2. Theelafollows by ap-
plying Lemma 2.1 repeatedly. O

Finally, we give an example of iteratéRlP-bundle which motivated the study of
this paper.
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ExaMmPLE 3.4 (Real Bott tower). An iterate®® P1-bundle of heightn:
(8.2) B, > By 1 — -+ — By — By = {a point,

where each fibratioB; — Bj_; for i =1, 2,...,n is the projectivization of a Whitney
sum of two line bundles oveB;_; is called areal Bott towerof heightn, and the
total spaceB, is called areal Bott manifold At each stage, one of the two line bundles
may be assumed to be trivial without loss of generality beeaarojectivization remain
unchanged under tensor product with a line bundle. The samgtrciction works in the
complex category and in this case the tower is called a Betetand the total space
B, is called a Bott manifold. A two stage Bott manifold is notfpibut a Hirzebruch
surface. A Bott manifold provides an example of a closed d¢maoaric variety and a
real Bott manifold provides an example of a closed smooth taeec variety.

A real Bott manifold B, also provides an example of a flat Riemannian manifold.
In fact, it can be described as the quotienfRSf by a groupm, generated by Euclidean
motionss’s (i = 1,...,n) on R" defined by

1 i i
S(Xll < ey Xn) = Xll ey Xi*ll Xi + E; Ei+lxi+ll e ey Ean ]

Wheree‘j =41forl<i<j<nand ei]-'s are determined by the line bundles used
to define the real Bott tower (3.2). The action @f on R" is free so thatr, is the
fundamental group of the real Bott manifol8,. It is generated by's (i =1,...,n)
with relations

ssis ' = sfl" for 1<i<j<n.
The subgroup ofr, generated bygz’s (i =1,...,n) is the translationZ" and the
quotientw,/Z" is an elementary 2-group of rank Note that the natural projections
R" - R™ — ... - Rl - RO = {a poin{ induce a real Bott tower.

The diffeomorphism classification of real Bott manifoldsshideen completed in
[2]. The paper [2] also relates the diffeomorphism clasaiftm of real Bott manifolds
with the classification of acyclic digraphs (directed graptith no direct cycles) up to
some equivalence.

4. Infra-nilmanifolds

The purpose of this section is to prove Theorem 1.1 in theothiction. We con-
tinue to use notations in Section 3. A gro@ is called supersolvablef there exists
a finite normal series

G=G;1DG;D--D2GDGe1=1

such that each quotient grou /G;,1 is cyclic and eachG; is normal inG.
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Lemma 4.1. m1(X,) is a supersolvable group.

Proof. We consider the subgroups of 71(X,) generated bys;, ..., s,. Then
we have a finite normal series

Trl(xn)ZﬁlDfl’zD'--Df[nDﬁn+1=1

such thatw /7.1 =~ (5). By Lemma 3.2, it follows easily that each is a normal
subgroup ofry(X,). ]

However, the normal series in the above proof is not alwaysrdral series. This
implies thatzy(X,) is not always a nilpotent group. We will show in Theorem 4.3
that 71(X;) is always virtually nilpotent. Note further that the subgp 7; of 71(Xp)
is isomorphic tomry (Xn—i+1)-

The projectionmy(Xj) — m1(Xj_1) sendss; to sj for j =1,...,i —1 with kernel
71(SY) = (s). For the simplicity, we will writerr; = 71(X;) and A, = 71(S") with
generators. Thus we have a short exact sequence

(4.2) 1- A -7 = m_g — 1.

Let I'; be the subgroup ofrj generated b)Sf, R 532. ThenT; is mapped ontd"j_;
under the projectionr; — mj_; with kernel (32), which induces a short exact sequence

(4.2) 1— (32) —TI - Ti_1— 1.
Lemma 4.2. T, is a normal subgroup ofr, with index2".

Proof. For eacls, we denote by(s) the conjugation by . Sincec(s)(s,) = s;",
the conjugate automorphisofs) on m, induces the following commutative diagram

1 An TTn TTn-1 1
lC(s ) lC(s ) lC(é )
1 An TTn TTn—1

where§ is the image ofs undern, — m,_1. This diagram gives rise to the following
commutative diagram of short exact sequences

1 (sh) Ty Tno1 1
lC(s ) lC(s ) lC(s )
1 () ry LN 1
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whereI';, andT';_; are the images of', and I'n_1 underc(s) and c(5) respectively.
In order to show thaf’, is a normal subgroup of, it suffices to show thal'; = I'y.
For this purpose we will use induction am It is clear thatl'; = I'y. Assume that
I/, = In_1. Consider an elemeraats]-ZS(l of I'). It is mapped to the elemel§t§j2§(1

of I, = h 1. Hence§§?5" is a word of§Z, ..., §5_;. This therefore implies that
ssjzs‘l is a word ofs?, ..., 2, 2, which means thas sjzs;l € I'y. Consequently
I =T,

Furthermore, we have the following commutative diagramhafrsexact sequences

1 1 1
1 Z; 7n/Tn n-1/Tpo1 ——1
1 A, TTh -1 1
1 (s?) Iy | - 1
1 1 1
This, in particular, shows that the order of/T", equals 2 by induction. []

Lemma 4.3. T, is a nilpotent group of rank n. Therefqre, is a torsion-free
virtually nilpotent group of rank n.

Proof. It suffices to show thdt,, has a finite central series
M=riors...orcorett =1

such that the quotient groupd /T"+1 are isomorphic to som&%. We will use induc-
tion onn to show that the series

2 2

(43)  To=(... (..., H D D€, D)D)

is a required central series with successive quotient graspmorphic toZ.

The case wher@ = 1 is obvious and hence we assume the followilg_; has
such a central series. To avoid confusion let us &se. ., §,_1 in the presentation of
-1 given in Lemma 3.2 so thag € =, is mapped to5 € npg fori =1,...,n—1.
ThenT'y_1 = (53,...,82 ;) with index 21 in 7,_4, and by induction hypothesi$,_1
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has a central series
(4.4) 1= (8 ... ) D(& ... &) D D(§1) DY

with successive quotient groups isomorphiczio Using the short exact sequence-l

(%) — I'n £ I'n.1 — 1, we take the pullback of the series (4.4). Namely, for each
subgroup(&?,...,52_;) of I'n_1, we consider the subgroup*((8%,...,52_;)) of I'y. This
group fits in a short exact sequence1(s?) — p 1((§%,...,82 ;) — (§%,...,52 ;) > 1,
which induces thap=((§?,...,52 ;)) = (..., s?). Therefore, we have the following
commutative diagram

1 (Sﬁ) Fn anl 1
l—s () —— (S ) —— (&, ... &) —1
1 (s7) (0 &) ——— (F) ——1
1— () () 1 1

Finally we note that since the most right vertical is a cdnéexies, so is the induced
middle vertical. Clearly the rank of, is n. O

In fact, 7, contains another nilpotent normal subgroup which is slglarger than
'y as is shown in the following lemma.

Lemma 4.4. Let A, be the subgroup ofr, generated by %...,s2 |, s,. Then
An is a nilpotent normal subgroup of, which has rank n and inde"2.

Proof. Under the short exact sequence~1(s,) - nn — mp1 — 1, we take
the pullback of the subgroup,_1 of m,_;. Then we obtain the short exact sequence
11— (sy) > Ay — I'ho1 — 1. Sincel',,_; is normal inm,_1, it follows that A, is a
normal subgroup ofr,.

On the other handA, fits in the following short exact sequenceslI'y — Ap —

Z, — 1. Sinces sqg‘l = gfin, we haveqzsns‘2 = g, and so the extension is central.
Hence sincd™, is nilpotent, we see thad, is nilpotent. O
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Now we are in a position to prove our first main theorem statethé introduction.

Theorem 4.5. The total space Xof an iterated $-bundle of height n is homeo-
morphic to an infra-niimanifold. In fagtsome2"-cover of X%, is homeomorphic to
a nilmanifold.

Proof. LetX, be the total space of an iterat&l-bundle and letz, be its funda-
mental group as before. By [12, Corollary 3.2.1], there isrdra-nilmanifold X whose
fundamental group is isomorphic tg,. Therefore, two aspherical manifold§, and X
are homotopic. By [6, Theorem 6.3K, and X are homeomorphic except possibly for
n=3,4.

Since X4 is aspherical andr, is virtually nilpotent, X, has an infra-nil structure
by [7, Corollary 2.21]. (In fact, this is true for alh # 3. See also F. Quinn’s Math
Review of the paper [6].) NamelyK, is homeomorphic to an infra-nilmanifold.

It is well known that all 3-dimensional infra-nilmanifoldsre Seifert manifolds. It
is evident that the Seifert manifolds; and X are sufficiently large, see [10, Propos-
ition 2]. By works of Waldhausen [19] and Heil [9, Theorem A{z is homeomorphic
to X.

By Lemmas 4.2 and 4.4y, has a normal nilpotent subgroup, of index 22,
The covering space associated with the nilpotent graypis a 2'~-cover of X, and
it is homeomorphic to a nilmanifold. O

REMARK 4.6. The closed nilmanifolds are precisely the total spadfeiserated
principal S'-bundles up to homeomorphism as remarked in the introductio

We conclude this section with the following lemma.

Lemma 4.7. =, is isomorphic to a Bieberbach groym other words X, is homeo-
morphic to a flat Riemannian manifgld@ and only if I, is isomorphic toZ".

Proof. The if part is clear. Suppose that is a Bieberbach group. TheR"/x,
is a flat Riemannian manifold, so is its finite covRf/I"y. On the other hand, it is
known by Gromoll-Wolf [8] and Yau [21] that if the fundamehigroup of a com-
pact nonpositively curved manifold is nilpotent, then itabelian. Thereforel', is
isomorphic toZ". O

5. lterated S'-bundles of height 3

In this section we classify the 3-dimensional total spadesined as iterate®'-
bundles of height 3 up to homeomorphism (equivalently upitie@morphism because
diffeomorphism classification is the same as homeomorplikssification in dimen-
sion 3). This classification reduces to the classificatiomsomorphism classes of their
fundamental groups by Theorem 4.5.
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5.1. Isomorphism classes oft3. In the 3-dimensional case, by Lemma 3.2, the
fundamental grouprs of the total space of an iteratest-bundle of height 3 is gener-
ated bys,, s, s3 with relations

€1

(5.1) S9STt = S5S5, SiSeSTt =S5, 9%t = SY

wherea € Z ande, €1, € € {£1}. We shall denote the groups with the relation (5.1)
by I(a, €, €1, €2).

Lemma 5.1. TlI(a, ¢, €1, €2) is a Bieberbach group if and only ife + €1)(e2 +
l)a = 0.

Proof. By Lemma 4.7T1(a, ¢, €1, €2) is a Bieberbach group if and only SFSJZ =
sfs? for 1 <i < j < 3. The latter two identities in (5.1) imply thag commutes withs?
ands2. Therefore it suffices to show thefs? = s?s? if and only if (e +€1)(e2+1)a = 0.
We note that the latter two identities in (5.1) imply

(5.2) ss) =si’s for i=1,2andbezZ.

We distinguish two cases according to the value: of
The case where = 1. In this cases;s, = sisys; by the first identity in (5.1).
Using this together with (5.2), we have

S = 51(519)S = S1(SF9S)S = S (S19)(S152)
= S$(S5,51) (S5951) = S5 Ty (s18) 1

— %Gla-‘ra-‘relezasz(sgszsl)sl — 33312_

Sgla+a+eleza+eza
Therefores?s? = s3s? if and only if the exponent ofs in the last term above is zero.
This is equivalent to the assertion in the lemma becausel.

The case where = —1. In this cases;s, = sgsz‘lsl by the first identity in (5.1).
Moreover, by taking inverse at the both sides of the first iideerib (5.1) and using
(5.2), we obtains;s;* = s;*s;51. Using these two identities together with (5.2),
we have

$I% = s1(s192)81 = S1(S5S;781)%2 = 557157 1) (S1%2)
— S;la(S;EZaSQS_]_)(SES;lS[L) — §1a7€2a+€1€2a52(5:|_3271)5[|_
— Sgla—eza-&-elezasz(sgezaszsl)si — S§1a—eza+eleza—aS§S]2-.
Therefores?s? = s3s? if and only if the exponent of; in the last term above is zero.
This is equivalent to the assertion in the lemma because—1. ]

Lemma 5.1 implies that where (€1, €2) = (1, 1, 1) or (1, -1, 1), TI(a, €, €1, €2)
is a Bieberbach group if and only & = 0. This condition thatq €1, €2) = (1, 1, 1)
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or (-1, -1, 1) appears from another viewpoint as is seen in (the préothe follow-

ing lemma.
Lemma 5.2. Unless(e, €1, €2) = (1, 1, 1) or (-1, -1, 1),

I1(0, €, €1, €2) if a is even
I1(1, ¢, €1,€5) if ais odd

I(a, €, €1, €2) =~ {
Proof. Changing the lift of; ands,, we may replace
sk S's, 5%, S S

whereb and c can be any integers. Setting

1 = sgbsl, =5, t3=ss

the second and third identities of (5.1) remain unchanget svreplaced byt but the

first one turns into
(5.3) 5ttt (t5t) ™ = 5 (t5t) .
The left hand side of (5.3) reduces to
toraceby g, L
while the right hand side of (5.3) reduces to

{t§+°t2 when € =1,

ts°t,1 when e =—1.

Therefore the first identity in (5.1) turns into

L gt trertey,  when e =1,
titoty ~ = t§+(6271)b7(61+ez)ct2_1 when ¢ = —1.

This implies the lemma.
There are more isomorphisms among groli{g, ¢, €1, €2).
Lemma 5.3. The following isomorphisms hold

(1) TI(a, €, €1, €2) = TI(—3a, €, €3, €2).

(2) T(a, €, €1, €2) = TI(a, €, €162, €2).
3) Ti(a, 1,¢€1, €2) = T(a, 1, €3, €1).
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(4) Ti(a, €, —¢, 1) = T(a, —¢, €, 1).

Proof. The following isomorphisms are desired ones for thet three cases:
D) ss—s, =9 555
2 s> 5% 9 S S
@) i~ -5, 5—>50
It would be obvious that the first two above are the desirech@phisms. We shall
check it for (3). We set; = s, t; = 51 andtz = 33—1. Then

ity ' = 9915, = 5% = t5ty,
il " = 98’8, =57 =t
blety " = si57s " = % = 4
and this proves the isomorphism (3) in the lemma.
The proof of (4) is as follows. By Lemma 5.2 we may assume that O or 1.
Then
St—~>S, $—% SS—> when a=0,
S-S, =% S s%se when a=1,

are the desired isomorphisms. The check is left to the reader ]

There are ten diffeomorphism classes of closed flat 3-dimeakRiemannian mani-
folds; six orientable one®1, &,, &3, B4, &5, B and four non-orientable onédy, By,
B3, By, see [20, Theorems 3.5.5 and 3.5.9]. It is known that &,, B, B3 appear
as real Bott manifolds ([13], [14]).

Proposition 5.4. The isomorphism classes af = Tl(a, ¢, €1, €2) are classified
into the following three types
(1) Six Bieberbach groups

H (3, €, €1, €2) ‘ a ‘ (€, €1, €2) H
&, 0 (1,1, 1)
&, 0 (-1,-1,1)
B, even| (1,1,-1), (1,-1,1), (1,-1,-1), -1, 1, 1)
B, odd | (1,1,-1), (1,-1, 1), (1,-1,-1), (-1, 1, 1)
B3 even (-1,1,-1),(-1,-1,-1)
By odd (-1,1,-1), (-1,-1,-1)

(2) An infinite family of nilpotent groups

M, 1,1, 1)~ TI(—a, 1, 1,1) with a#0.
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(3) An infinite family of virtually nilpotent groups
M(a, -1,-1, 1) = 1(—a, -1, -1, 1) with a# 0.

Proof. (1) First we note that groud3(a, ¢, €1, €2)'s for values of §, ¢, €1, €2)
in a same row in the table above are isomorphic to each othé&ehbymas 5.2 and 5.3.
Three dimensional Bieberbach groups are classified anémegsin [20, Theorems 3.5.5
and 3.5.9] with generators and relations, and we shall iiyeotir groupsTi(a, ¢, €1, €2)
with them.

(&1). Clearly T1(0, 1, 1, 1) isZ® and isomorphic ta®;.

(&,). Takinga = s1,t; =5, andts = s3, we see thaf1(0,—1,—1,1) is isomorphic
to &,.

(B1). We takee =s;, t; = S2, tp = 53, t3 = S, 1. Then{e, ty, to, t3} generates
I1(0, -1, 1, 1) and satisfies

e€=1t, ehel=1t, egel=t"

This shows thaf1(0, —1, 1, 1) is isomorphic td53;.
(B2). We takee =s;, t; = 2, t, = 57°s3, t3 = 5. Then{e, ty, to, t3} generates
(1, -1, 1, 1) and satisfies

&€ =1t, ebe =1, ekel=rtts

This shows thatl1(1, —1, 1, 1) is isomorphic tcB,.
(B3). We takea =51, e =, t1 = 2, tp = %, t3 = S3. Then{e, € ty, t, t3}
generated1(0, —1, —1, —1) and satisfies

o’ = 1, atzofl = tgl, at3a71 = tgl,
€=t etel=1, egel=1t;', exel=tu.
This shows thaf1(0, —1, —1, —1) is isomorphic toBs.
(Bs). We takea = s, 6=, t) =2, t, = 52, t3 = 53 Then{e, e ty, tp, t3}
generatedI(1, —1, -1, —1) and satisfies

al = 11, OthOl_l = tz_l, (thOl_l = t3_1,
&€=t etel=1t, ekel=1t;!, exe =totzax.
This shows thatl1(1, —1, —1, —1) is isomorphic toB,.
(2) The isomorphism in (2) of the proposition follows fromrhma 5.3 (1). Since

the first homology group ofl(a, 1, 1, 1) is a cyclic group of ordgg|, I(a, 1, 1, 1) is
isomorphic toll(b, 1, 1, 1) if and only if|a| = |b|. For I1(a, 1, 1, 1) witha # 0,

[s1, 9] =S5, [s1, ] =[S s8] =1,
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so the group has a central series

M(a, 1,1, 1)= (s1, &, S3) D (Sa)

and hence is nilpotent.
(3) The isomorphism in (3) of the proposition also followsrfr Lemma 5.3 (1).
For I(a, —1, -1, 1) with a # 0, we have

(8, 52] =552, [s5, s3] = [, Sa] = 1.

So the subgrougH, = (s?, s, s5) of TI(a, —1, —1, 1) with a # O is isomorphic to the
nilpotent groupll(2a,1,1,1) in (2). Moreover, since the subgrotiy is of index 2, it is
normal and the quotient groufd(2a,1,1,1YH, is an order two cyclic group. Therefore
Ha is the uniqgue maximal nilpotent normal subgroupldf2a, 1,1,1) andll(2a,1,1, 1)
is virtually nilpotent. Finally, ifT1(a, —1,—1, 1) is isomorphic tol(b, —1,—1, 1), then
their maximal normal nilpotent subgroups, and H, are isomorphic; sda| = |b| by
(2) above. O

REMARK 5.5. One can see thai(a, —1,—1, —1) with a ## 0 is isomorphic to an
almost Bieberbach group (in short, an AB-group) of Seifemdie type 3 in [4, Propos-
ition 6.1], or 3 (the subscript 3 also stands for Seifert bundle type 3) inliteof [3,
p. 799]. Since the unigue maximal normal nilpotent subgrbypof I(a, —1,-1,-1) is
isomorphic toll(2a, 0, 0, 0), our clasgl(a, —1, —1, —1) consists of all of the infinitely
many non-isomorphic AB-groups of type 3.

5.2. Realization. We shall observe that all the isomorphism classes of the
groupsIl(a, €, €1, €2) in Proposition 5.4 can be realized by itera@®dbundles of height 3.

By Theorem 4.5, the total space of an iterafebundle of height 3 is a 3-dimensionall
infra-nilmanifold. The 3-dimensional infra-nilmanifaddre well understood. In fact, these
are ten flat Riemannian manifolds mentioned before or infimanifolds covered by the
simply connected 3-dimensional nilpotent Lie group Nillea the Heisenberg group,

1 x z
(5.4) NiI={|:O 1 y:| x,y,zeR}.
0 0 1

As mentioned before®,, &,, B,, B3 appear as real Bott manifolds ([13], [14]),
and in addition to them$B, and B, appear as iterate&'-bundles as is shown in the
following example.
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ExamMpPLE 5.6 (Flat Riemannian manifolds of typ&3, and B,).

X,y,2 = x+1 —z+1
Sl lyl - 2,€yy 4 y

SZ(X! y! Z) = (Xv y+ %1 —Z),
SS(X! Y, Z) = (X, Y, Z+ %)

The group generated bsi, S, sz acts freely onR® and has relations
995 =585, 9SS =5, %8 =S

The subgroup generated Is§, s?, s2 is the groupZ? of translations. The natural pro-
jectionsR® — R? — R induce an iteratecs'-bundle of height 3.

The groupIl(a, 1, 1, 1) in Proposition 5.4 (2) can be realized by an iterafd
bundle as follows.

ExampPLE 5.7 (Nilmanifolds). It is well known that a lattice (i.e., artion free
discrete cocompact subgroup) of Nil is isomorphic to

(5.5) Ma:=TM(a 1,1, 1)= (s, S S| [s1, 2] =S5, [51, 8] =[S, s8] = 1)

for somea # 0. This group is realized as a lattice of Nil if one takes

110 1 00 10
ss=10 1 0|, =101 1|, 3= 0 1
0 0 1 0 0 1 0 0

Then the orbit space Nill, is a nilmanifold withTT, as the fundamental group.
The product of the matrix in (5.4) witg (i =1, 2, 3) from the left is respectively
given by

R Ok

1 x+1 z+4vy 1 x z 1 x z+}
0 1y |, [0 1y+1| |g 1 O
0 0 1 0 0 1 0 0 1

Therefore, if we identify the matrix in (5.4) with the poink,(y, z) in R3, then the
left multiplication by s on Nil for i =1, 2, 3 can respectively be identified with the
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following diffeomorphism ofR3:
six, ¥,2) =(x+1,y,2+Y),
(%, Y,2) = (X, y+1,2),

(%, Y, 2) = (x, Y, z+ g)

So, the natural projectionR® — R? — R induce an iteratec'-bundle of height 3:
Nil /TI, — R?/Z? = (S')? - R/Z = S.

Note that NiJTI, — (S')? above is the unit sphere bundle of an oriented plane bundle
over (SY)? whose Euler class ia times a generator oH?((SY)?; Z).

It is well known that all 3-dimensional infra-nilmanifolds! covered by Nil are
Seifert manifolds (see [18]); namely] is a circle bundle over a 2-dimensional orbifold
with singularities. It is known [4, Proposition 6.1] thattle are fifteen classes of distinct
closed 3-dimensional manifoldg with a Nil-geometry up to Seifert local invariant.

It is known (cf. [3, 4]) that the group Aut(Nil) of automorgms of Nil is iso-
morphic toR? x GL(2, R). In fact, an element

([5“3 SD € R” x GL(2, R)

z 1 ax+ by z
y|—=1|0 1 cx +dy |,
1

acts on Nil as follows:

|

Z = (ad—bo)z+ %(acx2 + 2bcxy+ bdy?) — (au + cv)x — (bu + dv)y.

o o
o - X

0 0 1

where

An infra-nilmanifold of dimension 3 is an orbit space of N la cocompact discrete
subgroup of the affine group Aff(Nil¥E Nil x Aut(Nil) of Nil acting on Nil freely.

ExampLE 5.8 (Infra-nilmanifolds). Leta # 0 as before. We consider affine
diffeomorphismss,;, s, s3 in Aff(Nil) given as follows:

(Lo} o 2}

o K NIk
o O
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@

Il
[EEN
= NI
/N
—
o o
[E—
| —
o
= O
I
N——

(00
- 1

10 - i
- 2a | (To][1 O
*=1lo1 o ["\[o]]o 1,
00 1

In other words, if we identify Nil withR® as before, then the diffeomorphisres s;,
sz are described as follows:

(gt y
SCI.(X! Y, Z) - (X + E! =Y, —Z- E)a
(%Y. 2) = (X, y+1,2,

S(x, ¥,2) = (x, y, Z—z—la)-

One can check that the group, generated bys,, s, S3 has relations

Losssit =51, gosst=9

(5.6) 1557 = S5y
and the action oA, on Nil is free. The subgroup ok, generated b)Sf, S, S3 agrees
with TT_, in Example 5.7 and NJIIT_,, — Nil /A, is a double covering. Note that the
natural projection®® — R? — R induce an iterate®'-bundle of height 3 with NjlA,

as the total space.
We summarize what we have observed as follows.

Theorem 5.9. The total spaces of iterated*®undles of heighB are classified
into the following three types up to homeomorphism
(1) Closed flat Riemannian manifolds of typ&s, &2, 51, B2, B3z, Ba.
(2) Nilmanifolds Nil /TT, in Example 5.7parametrized by positive integers a.
(3) Infra-nilmanifolds Nil /A, in Example 5.8parametrized by positive integers a.

6. Flat Riemannian iterated RP!-bundles

A real Bott manifold (see Example 3.4) is flat Riemannianaltfh the total space
of an iteratedR P-bundle is not necessarily flat Riemannian. The purpose isfstc-
tion is to show that real Bott manifolds are precisely flatrRamnian manifolds among
the total spaces of iterateRP*-bundles. In fact, we prove the following, which is
essentially same as Theorem 1.2 in the Introduction.
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Theorem 6.1. Let X, be the total space of an iteratéRP-bundle of height n.
If the fundamental group of Xis a Bieberbach groupthen it is isomorphic to the
fundamental group of a real Bott manifoldThis means that if Xis homeomorphic
to a flat Riemannian manifoJadhen it is homeomorphic to a real Bott manifgld.

We consider the following setting:

6. ssist=s's" with a;e€Z, e =+1 for 1<i<j<n,
' ssns‘l:sﬁ with ¢ =41 for 1<i <n.

Lemma 6.2. s’s? = s7s” for i < j if and only if (¢ + €;j)(¢j + L)aj = O.
Proof. The proof is essentially same as that in Lemma 5.1, smmvit it. [
Lemma 6.3. Fix 1 <k < n and suppose
(6.2) g; =0 forall i>k
Then for k <i < j < n, we have
(€j —Daki = (6 — Day; if €5 =1,
() —Dax = (6 +€jag if € =—1.

Proof. We conjugate the both sides of the former identity 6ril) by sc. Then
the left hand side turns into

(5515 st = (5SS (s s )
(63) — (Shak. Seki)(S"lakj Sjekj)(Sh isgki)_l

— S1akl +€iaj—€j &i gEki ijk] Sfeki
while sincea;; = 0 for i > k by assumption, the right hand side of (6.1) conjugated
by s turns into

o 4 [ss"
(6.4) SIS =1 .
S

when €j = 1,

jekjS;Ekj when €j = -1.

When eij = 1, 5551 = sj and hences™s;"s ™ = s/. Therefore, comparing ex-
ponents ofs, at (6.3) and (6.4), we obtain the former identity in the lemnvihen
€ = —1, a similar argument yields the latter identity in the lemma [l

Lemma 6.4. Let (6.2) be satisfied and ki < j < n as inLemma 6.3 Then
the following hold.
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(1) If & =¢€; = -1, then a; = &;.
(2) If e =1and a; # 0, thene; =1 ande; =¢ fork <1 <.

Proof. (1) This is obvious from Lemma 6.3.
(2) The first assertiore; = 1 is obvious from Lemma 6.3. To prove the lat-

ter assertion, we apply Lemma 6.3 with=1 and j = i. When¢; = 1, we have
ay (6 — 1) = aki(e) — 1). This implies¢, = 1 because; = 1 anday # 0 by assump-
tion. Whene; = —1, we haveay(¢; — 1) = aki(e + €). This implies¢ = —1 because
¢ =1 anda # 0. In any caseg; = ¢. ]

Proof of Theorem 6.1. It suffices to prove that(X,) is generated b, ..., s,
with relations of the form (6.1) witte;; = O because the fundamental group of a real
Bott manifold has such a presentation, see Example 3.4. \Oeepthis assertion by
induction onn. The assertion is clearly true when= 2. Whenn = 3, m;(X3) is of
the form (5.1), that is
-1 — S;z.

Herea = 0 when €, €1, €2) = (1, 1,1) or £1,-1, 1) by Lemma 5.1 ané is even
otherwise by Proposition 3.3 (2). Therefore one can assame0 by Lemma 5.2, so
the assertion is true whem= 3.

Now we assume that the assertion is true #g(X,_;) with somen > 4. Then
m1(Xn) is generated by, ..., s, with relations of the form (6.1). We shall show that
we can achievey; = 0 by replacings (1 <i < n) by sPs with suitableb; € Z.

First we look at the following (last) three relations amosgz, S-1, Sh:

Si2S-15, 2 = S8 1 SioSS2 = ST Siass = S

wherea = a,_» n_1 and € = e, n_1. Since X, is an iteratedR P1-bundle, one can
assumea = 0 by the same reason as the case 3.

Now suppose that for somle < n — 2, we have achieved;; = 0 for all i > k;
so we are under the situation of Lemmas 6.3 and 6.4. What wle mioze is that we
can achieves;; = 0 for all i > k. Let p > k. If a,, = 0, we have nothing to do; so
we assumes, # 0. We distinguish two cases according to the value pf

The case where, = —1. We replaces, by sPs.. This replacement does not affect
relations fors ands; with k <i < j, so it keepsaj = 0 for k <i < j. But the

relation ssps. t = sh°sp” turns into

Q(Sps(_l — Sﬂakp+2bsf)kp
because, = —1. Sinceayp is even by Proposition 3.3 (2), one can tdke- —ayp/2 so
that the exponent of, above becomes zero. For othgr k with ¢ = —1, axq = axp
by Lemma 6.4 (1). Therefordy is independent ofp with €, = —1.
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The case where, = 1. We noteej = 1 for any j > k by Lemma 6.4 (2). We
replacesy by sSsp. In this case, it is not obvious that this replacement kesps= 0

for k <i < j but it does. In fact, its suffices to check that the relatiepss,' = sf”‘

for p<j andsspg?t = SS" for | < p remain unchanged and one can easily check
that the former identity remains unchanged becayse 1 and the latter one remains
unchanged becausg = 1 by assumption andj, = ¢ by Lemma 6.4 (2). However,
the relationss,s.* = s1"sp” turns into

(6.5) SSpSc L = snak”(ek_fkp)csf,kp.

On the other hand, sincgsj = s3sZ, we have  +€xp)(€p + 1)axp = 0 by Lemma 6.2.
Sinceagp # 0 andep, = 1, this impliesex = —exp and hences, — exp = £2. Sinceayp
is even by Proposition 3.3 (2), one can take= —ax,/(ex — €kp) SO that the exponent
of s, becomes zero in (6.5).

In any case, we can achiegg, = 0 for any p > k keepinga;; =0 fork <i < j.
This completes the induction step and proves the theorem. ]
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