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Abstract
For all but finitely many compact orientable surfaces, wewstioat any super-
injective map from the complex of separating curves intelftss induced by an
element of the extended mapping class group. We apply tBidtreo proving that
any finite index subgroup of the Johnson kernel is co-Hopffamalogous properties
are shown for the Torelli complex and the Torelli group.

1. Introduction

Let S= §p be a connected, compact and orientable surface of ggnuih p
boundary components. Unless otherwise stated, we asswaha gurface satisfies these
conditions. Theextended mapping class grolyod*(S) for S is defined as the group
of isotopy classes of homeomorphisms frdgnonto itself, where isotopy may move
points in the boundary of. A simple closed curve ir§ is said to beessentialin S
if it is neither homotopic to a single point @& nor isotopic to a boundary component
of S. The complex of curvesor S, denoted byC(S), is defined as the abstract sim-
plicial complex whose vertices are isotopy classes of ¢sdesimple closed curves in
S and simplices are non-empty finite sets of such isotopy etaksving mutually dis-
joint representatives. This complex was introduced by E\af8]. The group Mod(S)
naturally acts onC(S) as simplicial automorphisms. It is known that any simpglici
automorphism ofC(S) is generally induced by an element of M¢8), as proved in
[12], [16] and [17]. This fact is used to describe any isonmism between finite index
subgroups of Mod(S).

A superinjective mapp: C(S) — C(9), introduced by Irmak [9], is defined as a
simplicial mapg¢: C(S) — C(S) preserving non-adjacency of two vertices@(S). Any
superinjective map fron€(S) into itself is easily seen to be injective. In [1], [2], [9],
[10] and [11], any superinjective map frod(S) into itself is shown to be surjective
and thus induced by an element of M¢8). This leads to the co-Hopfian property of
any finite index subgroup of MddS), where a groupl” is said to beco-Hopfianif
any injective homomorphism frorfi into itself is surjective.
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Several variants of the complex of curves are introducedotiovi the same line
as above for some important subgroups of M&)J. An essential simple closed curve
in Sis said to beseparatingin S if its complement inS is not connected. We de-
fine the Johnson kernél(S) for S as the subgroup of Md¢S) generated by all Dehn
twists about separating curves $ Note thatC(S) is a normal subgroup of Mdds).
The complex of separating curvesr S, denoted byCs(S), is defined to be the full
subcomplex ofC(S) spanned by all vertices @f(S) corresponding to separating curves
in S. It is shown in [3], [4] and [15] that for all but finitely manyugfacesS, any
simplicial automorphism ofs(S) is induced by an element of Md¢(5), as precisely
stated in Theorem 2.4. This result is applied to proving that abstract commensu-
rator of KC(S) is naturally isomorphic to Mod(S). The aim of this paper is to prove
that any superinjective map fro@y(S) into itself is surjective and is thus induced by
an element of Mo(S). As a result, any finite index subgroup &XS) is shown to be
co-Hopfian.

Theorem 1.1. Let S= §;, be a surface satisfying one of the following three
conditons g=1and p>3;g=2and p>2;org>3and p>0. Then
(i) any superinjective map froi(S) into itself is induced by an element bfod*(S);
(i) if T is a finite index subgroup of(S) and if f: I' — IC(S) is an injective homo-
morphism then there exists a uniqugy € Mod*(S) satisfying the equality (/) =
Yorye © for any y € I'. In particular, I' is co-Hopfian.

Most of the paper is devoted to the proof of assertion (i). Wet dhe proof of
assertion (ii) since the process to derive it from asser{ipris already discussed in
Section 5 of [3] and Section 6.3 of [15]. We obtain similar clusions for the Torelli
complex7(S) and the Torelli groupZ(S) for S, which are defined in Section 2.

Theorem 1.2. Let S be the surface iftheorem 1.1 Then
(i) any superinjective map fro (S) into itself is induced by an element kfod*(S);
(iiy if A is a finite index subgroup df(S) and if h: A — Z(S) is an injective homo-
morphism then there exists a uniqug € Mod*(S) satisfying the equality (3) = Aokxgl
for any A € A. In particular, A is co-Hopfian.

The proof of this theorem uses Theorem 1.1 and is present&edtion 9. We
refer to Remark 1.3 in [15] for known facts on the complex gbaating curves and
the Torelli complex for a surface which is not dealt with inebnems 1.1 and 1.2.
Among other things, it is notable th&k(S: ;) consists of countably infinitely many
No-regular trees. This is a direct consequence of Theoremn7[14i].

Although the same conclusions as Theorems 1.1 and 1.2 feedlsurfaces are
asserted in Theorems 1.6 and 1.8 of Brendle and Margalitemf), their argument
contains a gap as precisely discussed in Remark 5.4. Themprpaper fills this gap
by considering not only closed surfaces but also non-clasess, while Brendle and
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Margalit deal with only closed ones. In fact, assertion (i)Timeorem 1.1 is proved by
induction ong and p, whose first step is the casg, (p) = (1, 3).

This paper is organized as follows. In Section 2, we intredthe terminology and
notation employed throughout the paper and review the tiefinof the complexes and
subgroups of the mapping class group discussed above. Lioi$&; we introduce the
simplicial graphD associated withS, , and provide basic properties of it, which will
be used in subsequent sections. In Section 4, we obtain ti@usion of Theorem 1.1
for surfaces of genus one. In Section 5, given a surfaceith its genus at least two
and a superinjective map: Cs(S) — Cs(S), we explain how to exteng to a simpli-
cial map @: C(S) — C(S). Using the map®, we prove surjectivity of¢p for S, in
Section 6 and prove it for the remainder of surfaces othen &g by induction ong
and p in Section 7. We deal witl&; o independently in Section 8. Finally, we deduce
Theorem 1.2 from Theorem 1.1 in Section 9.

2. Preliminaries

2.1. Terminology. Let S=§;, be a surface of genug with p boundary com-
ponents. We defin&/(S) to be the set of isotopy classes of essential simple closed
curves inS. When there is no confusion, we mean by a curveSirither an essential
simple closed curve irS or the isotopy class of it. An essential simple closed curve
a in Sis said to beseparatingin Sif S\ a is not connected, and otherwiseis said
to be non-separatingn S. Whether an essential simple closed curveSiis separating
in S or not depends only on its isotopy class. A pair of non-sepayecurves inS,

{a, b}, is called abounding pair(BP) in Sif a andb are disjoint and non-isotopic and
if S\ (auUb) is not connected. These conditions depend only on thepgattasses of
a andb.

We mean by éandlea surface homeomorphic 8 ; and mean by gair of pants
a surface homeomorphic t§ 3. Let a be a separating curve i6. If a cuts off a
handle fromS, thena is called anh-curvein S. If a cuts off a pair of pants frons,
thena is called ap-curvein S.

Suppose thad S is non-empty. A simple art in Sis said to beessentialin S if
e 0l consists of two distinct points afS;

e | meetsdS only at its end points; and

e | is not isotopic relative tdl to an arc indS.

Let A(S) denote the set of isotopy classes of essential simple ar& where isotopy
may move the end points of arcs, keeping them stayingSnWe say that two elem-
ents of V(S) L A(S) are disjoint if they have disjoint representatives. Frequently, we
do not distinguish an element d4(S) and its representative if there is no confusion.
An essential simple art in Sis said to beseparatingin Sif S\ | is not connected.
Otherwisel is said to benon-separatingn S. Whether an essential simple arc $is
separating inS or not depends only on its isotopy class. Given two compan@nto,

of 0S, we say that an essential simple &rm S connect$; and 9, if one of the end
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points ofl lies in 9; and another ims.

2.2. The mapping class group and its subgroups.Let S be a surface. The
mapping class groupod(S) for Sis defined as the subgroup of Md®) consisting of
all isotopy classes of orientation-preserving homeomisrmph from S onto itself. The
pure mapping class grouPMod(S) for Sis defined as the subgroup of Md&) con-
sisting of all isotopy classes of orientation-preservirgmeomorphisms frons onto
itself that fix each boundary component $fas a set. Both Mo@®) and PModg) are
normal subgroups of MdqS) of finite index.

For eacha € V(S), we denote byt; € PMod(S) the (eft) Dehn twistabout a.
The Johnson kernel’(S) for S is the subgroup of PMod&) generated by all Dehn
twists about separating curves B The Torelli group Z(S) for S is defined as the
subgroup of PMod$) generated by all Dehn twists about separating curveS and
all elements of the formatb‘l with {a, b} a BP in S. Note thatKX(S) and Z(S) are
normal subgroups of MdqS). Originally, the Torelli group are defined in a different
way when the number of boundary componentsSois at most one. Thanks to [13]
and [19], the Torelli group defined originally is equal to thee defined above.

2.3. Simplicial complexes associated to a surfacelLet S be a surface. We de-
note byi: V(S x V(S) — Zso the geometric intersection numher.e., the minimal
cardinality of the intersection of representatives for telements ofV(S). Let (S
denote the set of non-empty finite subsetsf V(S) with i(«,8) =0 for any«, B € 0.
We extendi to the symmetric function orM(S) LI (S))? so thati(a,0) = Y peoi (@ B)
andi(o, ) = Zﬁewer i(B,y) for anyx € V(S) ando, 7 € £(S). We say that two
elementso, T of V(S) U X(S) are disjoint if i(o, 7) = 0, and otherwise we say that
they intersect

For eacho € 2(S), we denote byS, the surface obtained by cutting along all
curves ino. Wheno consists of a single curvae, we denote it byS, for simplic-
ity. We often identify a component d§ with a complementary component of a tubu-
lar neighborhood of a one-dimensional submanifold reprtasg o in S if there is no
confusion. If Q is a component of5,, thenV (Q) is naturally identified with a subset
of V(9.

The complex of curveg(S) for Sis the abstract simplicial complex such that the
set of vertices and simplices aké(S) and (S), respectively. LetVs(S) denote the
subset ofV(S) consisting of separating curves 8 The complex of separating curves
for S, denoted byCs(S), is defined as the full subcomplex 6{S) spanned byws(S).

Let Vpy(S) denote the set of isotopy classes of BPsSinWe often regard an elem-
ent of Vyp(S) as an edge of(S). The Torelli complexfor S, denoted by7(S), is de-
fined to be the abstract simplicial complex such that the &efedices is the disjoint
union Vs(S) U Vip(S), and a non-empty finite subset of Vs(S) U Vpp(S) is a simplex
of 7(9S) if and only if any two elements of are disjoint. The Torelli complex (with
additional structure and for closed surfaces) were intteduby Farb—Ivanov [5].
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Connectivity of C5(S) and 7(S) is discussed in [5] and [18] wheB is closed.
Applying Putman’s idea in Lemma 2.1 of [20] to prove connétti of a simplicial
complex on which PModg) acts, we obtain the following lemma without effort.

Lemma 2.1. Let S= §;, be a surface and assume one of the following three
conditions g=1and p>3;g=2and p>2; and g> 3 and p> 0. Then both
Cs(S) and T(9S) are connected.

The proof of this lemma uses a family of simple closed curves,idescribed in
Fig. 7 (a), such that the Dehn twists about them generate PBJlod( similar argument
to apply Putman’s idea appears in the proof of Lemmas 3.3a6dl7.1.

2.4. Superinjective maps. Let S be a surface, and leX be one of the sim-
plicial complexesC(S), Cs(S) and 7(S). We denote byV(X) the set of vertices of
X. Note that a mapp: V(X) — V(X) defines a simplicial map fronX into itself
if and only if i(¢(a), (b)) = 0 for any two verticesa, b € V(X) with i(a, b) = 0.
We mean by asuperinjective mag: X — X a simplicial map¢: X — X satisfying
i(¢(a), (b)) # 0 for any two verticesa, b € V(X) with i(a, b) # 0. This property was
introduced by Irmak [9] wherX = C(S).

Any superinjective magy: X — X is injective. For if there were two distinct ver-
ticesa,b € V(X) with ¢(a) = ¢(b), then superinjectivity ofp would implyi(a,b) = 0.
Sincea andb are distinct, we can choosec V(X) with i(a,c) = 0 andi(b,c) # 0. By
superinjectivity of¢, we havei (¢(a), ¢(c)) = 0 andi(¢(b), ¢(c)) # 0. This contradicts
the equalityg(a) = ¢(b).

We note that for any superinjective map X — X, if the induced map fronV (X)
into itself is surjective, the is a simplicial automorphism oK.

2.5. Known results. To prove surjectivity of a superinjective map: Cs(S) —
Cs(S) when C4(S) is connected, it is enough to show thatsends the link of each
vertex a of Cs(S) onto the link of ¢(«). We apply induction ong and p to proving
it because the link of a vertex @f(S) consists of the complexes of separating curves
for surfaces withg or p smaller than those o8. The following theorems will be used
to complete this inductive argument.

Theorem 2.2([12], [16], [17]). Let S= §;, be a surface witiBg + p—4 > 0.
If (g, p) # (1,2), then any automorphism @¥(S) is induced by an element dlod*(S).
If (g, p) = (1, 2), then any automorphism @f(S) that preserves vertices corresponding
to separating curves in S is induced by an elemenviotl*(S).

Any superinjective map fron€(S) into itself is shown to be surjective in [1], [2],
[9], [10] and [11]. More generally, the following theorem ibtained.
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Theorem 2.3 ([21]). Let S= §;, be a surface wittBg + p—4 > 0. Then any
injective simplicial map fronC(S) into itself is surjective.

The same conclusion as Theorem 2.2 is obtained for the capwplef separating
curves for certain surfaces.

Theorem 2.4([3], [4], [15]). Let S= S, , be a surface satisfying one of the follow-
ing three conditionsg =1 and p> 3;g=2and p> 2;or g > 3and p> 0. Then any
automorphism o€s(S) is induced by an element dfod*(S).

3. Graph D

Throughout this section, we piR = S, and focus on the simplicial graph =
D(R) defined as follows.

Graph D = D(R). The set of vertices oD is defined to beVs(R) and denoted
by V(D). Two verticesa, B € V(D) are connected by an edge Dfif and only if we
havei(a, B) = 4.

The aim of this section is to prove the following:

Proposition 3.1. Any injective simplicial map fronD into itself is surjective.

We fix the notation employed throughout this section. &etnda, denote the two
boundary components d®. We note that there is a one-to-one correspondence between
the isotopy classes of separating curvesRiand essential simple arcs R connecting
01 and d,, where isotopy of essential simple arcs fFnmay move the end points of
arcs, keeping them staying iWR. Namely, one associates to a separating cunie
R an arc connecting; and 9, and disjoint frome, which is uniquely determined up
to isotopy. This arc is denoted Hy (see Fig. 1 (a)). Conversely, for each essential
simple arcl in R connectingd; and d,, the separating curve iR corresponding td
is obtained as a boundary component of a regular neighbdrlebddhe unionl U 9R
in R.

Note that if for eachk = 1, 2, I¥ and|¥ are essential simple arcs R such that
e each ofl¥ andl¥ connectsd; and d,; and
e X andl are disjoint and non-isotopic,
then there exists a homeomorphidinfrom R onto itself preserving an orientation of
R and satisfyingF(d,) = 91, F(32) = 9, and F(l jl) = I]-2 for eachj = 1, 2. For if
we cut R along ¥ andl¥, then we obtain an annuludy. One can then construct a
homeomorphism fromA; onto A, sending arcs irf A; corresponding td]—1 to arcs in
d A, corresponding td)j2 for eachj = 1,2 and inducing a desired homeomorphism from
R onto itself.
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Fig. 1.

Lemma 3.2. For any two distinct verticesr, g € V(D), we have («, ) = 4 if
and only if |, and Iz are disjoint.

Proof. Using the criterion on intersection numbers in EXp8s Proposition 10 of
[6], one can check that the curvesand g described in Fig. 1 (a) satisfy«, 8) =
The “if” part thus follows from the argument right before tlmmma.

Pick two verticesa, B of D with i(«, B) = 4. Let A and B be representatives of
«a and B, respectively, withl)A N B| = 4. We denote byH the handle cut off byA
from R and naturally identifyH with a subset ofR. The intersectiorB N H consists
of two simple arcs inH, denoted byb; andb,. Neitherb; nor b, are isotopic relative
to their end points to an arc iAH becauseA and B intersect minimally. It follows
thatb; andb, are essential simple arcs K. The arcsb; andb, are isotopic because
otherwisep would be non-separating iR.

We denote byP the pair of pants cut off byA from R and naturally identify it
with a subset ofR. The intersectiorB N P consists of two essential simple arcs
which are isotopic. Leb; and b, denote the two components & N P.

Fix an orientation ofA. For eachj =1, 2, we putdb; = {p;, gj} so thatps, qi,
02 and p, appear alongA in this order. For eaclk = 3, 4, the arch connects neither
p. andq; nor p, andg, because otherwisle, and either; or b, would form a simple
closed curve. For eack = 3, 4, the archs connects neithep; and g, nor p, andq;
becausey is separating inP. It turns out thatbs and b, connect eithemp,; and p, or
¢1 and dp.

Let | and J denote the components &\ {p;, p2} and A\ {qi, 02}, respectively,
that contain no point oAN B. Note thatl and J lie in the same component ¢ \ B.
We may assume thdt and 9; (resp.J and d,) lie in the same component @@ \ B.
Pick essential simple arag andr, in P such that
e 1 connects a point of; with a point of I, andr, connects a point of, with a
point of J; and
e bothry; andr, are disjoint fromB N P.

Since |l and J lie in the same component dfl \ B, we can find an essential simple
arcrz in H disjoint from B N H and connecting the point af, N | with the point
of r, N J. We definer as the unionr; U r, U rsz, which is an essential simple arc
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in R connectingd; and 9, and disjoint fromB. Pick an essential simple atcin P
connectingd; and d, and disjoint fromr; andr,. Sincel is an essential simple arc in
R disjoint from A andr, the “only if” part of the lemma follows. [l

The last lemma and the observation right before the lemmadyitiat for any two
edges{as, B1}, {a2, B2} of D, there exists an element of PMod(R) with f(«1) =
ap and f(B81) = B,. For any edge{«, B} of D, we can find a non-separating curve
in R disjoint from « and g, which is uniquely determined up to isotopy, because the
surface obtained by cuttin® alongl, andlgz is an annulus. This non-separating curve
is denoted byc(«, B) € V(R) (see Fig. 1 (a)).

3.1. Geometric properties of D. The following basic property oD is shown
by applying Putman’s idea in Lemma 2.1 of [20].

Lemma 3.3. The graphD is connected.

Proof. Leta be the curve in Fig. 1 (a). We pick a vertexe V(D) and show
that « and y can be connected by a path . We defineT as the set consisting
of the Dehn twists about the curves in Fig. 1 (b) and their risws. It is known that
PMod(R) is generated byl (see [7]). Sincex and y are sent to each other by an
element of PModR), we can find elementhy, ..., h, of T with y =h;---hy,a. We
note that for eacth € T, eitherha = « or ha and« are connected by an edge B
The sequence of vertices @1,

o, hj_O{, hlhz(x, ey hl---hnO{ =Y,
therefore forms a path i®. ]

We make observation on a fibered structure in the link of eamttex of D. To
describe it, we recall simplicial graphs associatedstg and t0 § 4.

Graph F(X). Let X be a surface homeomorphic & ; or $ 4. We defineF(X)
as the simplicial graph such that the set of verticesF¢K) is V(X) and two vertices
a, B € V(X) are connected by an edge &f(X) if and only if we havei(«, B) = 1
when X is homeomorphic td5; ;, and we have (¢, 8) = 2 when X is homeomorphic
to %,4-

It is known thatF(X) is isomorphic to the Farey graph (see Section 3.2 in [17]).
We mean by ariangle of a simplicial graphG a subgraph ofG consisting of three
vertices and three edges. Let us say that two triangleg\” in a simplicial graphg
are chain-connectedn G if there exists a sequence of trianglesfAq, ..., Ay, with
Ay = A and A, = A" and with A; N Aj,; an edge ofG for eachj =1,...,n—1.
The following properties of the Farey graph are notable:
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e Any vertex of F is contained in a triangle aF.

e Any two triangles of F are chain-connected ii.

e For any edgee of F, there exist exactly two triangles of containinge.

Using these facts, one can show that any injective simpliciap from F into itself
is surjective.

In the rest of this subsection, we fix a vertexe V(D). We defineL to be the
link of « in D and defineV (L) to be the set of vertices df. We denote byH the
handle cut off bya from R and denote byF the graphZ(H) defined above.

Let 7: L — F be the simplicial map defined by(8) = c(«,B) for eachp € V(L).
Simpliciality of 7 is proved as follows. If{g, y} is an edge ofL, then one can find
essential simple ardg, Iz andl, in R such that
e for eachsé € {«, B, y}, |Is connectsd; and 9, and is disjoint from a representative
of §; and
e |, lg andl, are pairwise disjoint.

Let Q denote the surface obtained by cuttiRgalongl,, which is a handle. Note that
7(B) (resp.m(y)) is the only curve inQ disjoint from Iz (resp.l,). Sincelg andl,
are disjoint, we obtain either(8) = = (y) or i(z(B), = (y)) = 1.

Let h € Mod(R) be the half twist aboutr exchangingd; and 9, and being the
identity on H, which satisfiesh? = t,. We now describe the fiber of over a triangle
of F.

Lemma 3.4. Pick two curves pc in H with i(b, c) = 1. We set
B={BeV()|n(B)=b}, I'={yeV(L)|n(y)=ch

Then we have a numbering of elemers= {Bn}nez and I' = {ym}mez, Such that

e h(Bn) = fn+1 and Nym) = ym+1 for any n m € Z; and

e the full subgraph ofD spanned by BJT is the bi-infinite line withg, adjacent
to y, and y,1 for each ne Z.

Proof. We describe the curvésandc as in Fig. 2 (a) and defingy as the curve
in R described in Fig. 2 (b). Note tha, belongs toB. We say that two vertices,
v of a simplicial graphgG lie in a diagonal position of two adjacent triangles 6f if
there exist two triangles\;, A, of G such thatu € A, v € A, and A; N Ay is an
edge ofG containing neitheiu nor v. One can check that the two vertices By of
F(Ry) lie in a diagonal position of two adjacent triangles BtRy). It follows that for
each vertexg of B, « and 8 lie in a diagonal position of two adjacent triangles of
F(Rp) because any two edges ©f are sent to each other by an element of PMR)d(
Since the cyclic group generated hyacts transitively on the set of triangles #{Ry)
containing«, it also acts transitively on the set of vertices Bf We thus have the
equality B = {h"(Bo)}nez.
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Let yo and y; = h(yo) be the curves inR described in Fig. 2 (b). Note thaf
and y; belong tol". The argument in the previous paragraph implies the egquBlit
{h"(y0)}nez. We put By = h"(Bo) and ym = h™(yo) for anyn, m e Z.

Using the criterion on intersection numbers in Exposé 3p&siion 10 of [6], one
can check the equality(Bn, Bm) = 8/n —m| for any n, m € Z. It follows that any two
distinct elements oB are not adjacent ifD. The same property holds for elements of
I in place of those oB. For eachn € Z, we obtain the equality(Bo, vn) = 4/2n — 1]
by using the same criterion in [6]. It follows thay and y; are exactly the elements
of I adjacent toBy in D. Applying h, we see that the full subgraph &f spanned by
B U T is the bi-infinite line with B, adjacent toy, and ;1 for eachn € Z. ]

Lemma 3.4 shows that for any edgle, c} of 7 and any vertexg in 7=1(b), there
exists a vertexy in w~1(c) with {8, y} an edge ofL. Connectivity of F and of the
fiber of = over any edge ofF therefore implies connectivity of.

Choose three vertice, y and§ of D so that the three ards;, |, andl; are
described as in Fig. 3 (a). Note that eachlgfl, andl; is disjoint froml,. Setting
Bn = h"(B), y» = h"(y) and§, = h"(8) for eachn € Z, we obtain the equalities

7771(77(:3)) = {Bntnez, 7771(77()/)) = {Vn}nez, 7771(77(5)) = {Sntnez

by Lemma 3.4. The fiber of the map L — F over the triangle ofF consisting of the
three verticest(8), 7 (y) andz(§) is the sequence of triangles described in Fig. 3 (b).

3.2. Proof of Proposition 3.1. Let ¥ : D — D be an injective simplicial map.
For eacha € V(D), we denote byL, the link of @ in D. To prove surjectivity ofyr,
it is enough to show that for eaahe V (D), the mapy,: L, — Ly () defined as the
restriction ofyr is surjective sinceD is connected as proved in Lemma 3.3.

In what follows, we fixa € V(D) and putL = L,. We denote by (L) the set
of vertices ofL. To prove surjectivity ofy,,, we show the following two lemmas.

Lemma 3.5. For each edge e of Lthere exist exactly three triangles of L
containing e.
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Lemma 3.6. Any two triangles of L are chain-connected in L.

Using Lemmas 3.5 and 3.6, we can show surjectivity of the migpL, — Ly
as follows. Lemma 3.5 and injectivity af, imply that if A is a triangle ofL,, then
Yo(Ly) contains any triangle ot () containing an edge of the triangig,(A). By
Lemma 3.6,¥,(L,) contains any triangle ok ). Surjectivity of v, follows because
any vertex ofL () is contained in a triangle of ;).

We now prove Lemmas 3.5 and 3.6. Lidt denote the handle cut off by from
R, and letF denote the grapbF(H) introduced in Section 3.1.

Proof of Lemma 3.5. We note that any two edged oére sent to each other by
an element of the stabilizer af in Mod(R). This fact follows from Lemma 3.4 and
transitivity of the action of Modfl) on the set of edges of. Let {8,y} be an edge of
L. We define separating curvésande in R so that the arck andl. are described in
Fig. 3 (a), respectively. Let € Mod(R) be the half twist about exchangingd; and d,
and being the identity od. Each of the three sets of verticd$, y,8}, {8,v,h™(¢)}
and {8, y, €}, forms a triangle ofL.

We show that there exist at most three trianglesLotontaining {8, y}. If we
cut R along the arcd, andlg, then we obtain the annulud whose boundary can
be described as in Fig. 4 (a) becauBeis orientable. The art¢, is then given by
an arc in A connecting a point of an arc correspondingatowith a point of an arc
corresponding td,. This arc in A connects two points in distinct components &4
because otherwisk, would be isotopic to eithek, or Iz. If we cut A alongl,, then
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al 82

Fig. 4.
we obtain the diskD in Fig. 4 (b), where the order of the symbols 6D,
3, 1y, 92,15, 91,15, 82, - . -,

may be reversed. This depends on the orientation®\ gind D and on arcs in0A
corresponding td), andd, in which the end points of, lie. There exist exactly three
arcs in D connecting a point of an arc corresponding &0 with a point of an arc
corresponding td),, up to isotopy, as described in Fig. 4 (b). It turns out thareh
exist at most three triangles &f containing the edgé¢g, v}. ]

Recall that we have the simplicial map: L — F defined byx(B8) = c(«, B) for
eachp € V(L), wherec(x, B) is the curve in Fig. 1 (a).

Proof of Lemma 3.6. LetA and A’ be triangles ofL. The argument in the first
paragraph of the proof of Lemma 3.5 shows that if we pick aneedfjL and the
three triangles ofL containing it, then the image of them via consists of two tri-
angles ofF sharing an edge. Since any two trianglesfofare chain-connected i,
there exists a triangle\” of 7~%(w(A")) such thatA and A” are chain-connected in
L. We conclude that\ and A" are chain-connected ih because any two triangles in
7Y (A")) are chain-connected in~((A")) as described in Fig. 3 (b). O

4. S, with p=3

When S = S, is a surface withp > 3, we show that any superinjective map
¢ from Cs(S) into itself is induced by an element of MO). The proof relies on
induction onp.

4.1. The casep = 3. We putS= S 3 In this subsection, we show that any
superinjective magh: Cs(S) — Cs(S) is surjective. Theorem 2.4 then implies thatis
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B3 B2

B

Fig. 5. A hexagon inCs(S; 3)

induced by an element of M&(S). We first review several facts ofis(S) discussed

in [15].
We mean by @exagonin Cs(S) the full subgraph of’s(S) spanned by exactly six
verticesvy, . .., v With i(vj, vj+1) = 0, i(vj, vj42) # 0 andi(vj, vj4+3) # O for each

j mod 6 (see Fig. 5). Any superinjective map Cs(S) — Cs(S) preserves hexagons
in Cs(S). Fundamental properties of hexagonsCg(S) and superinjective maps from
Cs(9) into itself are stated in the following two propositions.

Proposition 4.1 ([15, Theorem 5.2]) Let S= S 3 be a surface. Then for any two
hexagondy, I, in Cs(S), there exists an element f BMod(S) with f(ITy) = IT>.

Proposition 4.2 ([15, Lemma 5.6]) Let S= S 3 be a surface. Then any super-
injective map fromCs(S) into itself preserves vertices corresponding to h-curved a
p-curves in $respectively.

We note that each separating curveSris either an h-curve or a p-curve B and
that for each h-curve (resp. p-curve)in S, any separating curve i disjoint from «
and non-isotopic tar is a p-curve (resp. an h-curve) B

Theorem 4.3. Let S= S 3 be a surface. Then any superinjective map ficyts)
into itself is surjective.

Proof. PutS= S 3 and letg: Cs(S) — Cs(S) be a superinjective map. Sincg(S)
is connected, it is enough to show that for eacte Vs(S), the mapg, : Lks(a) —
Lks(¢(«)) defined as the restriction af is surjective, where for eachi € Vs(S), we
denote by Lk(B8) the link of g in Cs(S).

We first assume that is an h-curve inS. Let Q; and Q, denote the components
of §, and S, respectively, that are homeomorphic $94. For any two verticesy,
ap of Lkg(a) with i(aq,a2) = 2, we obtaini (¢(a1), ¢(a2)) = 2 by using Proposition 4.1
and the fact thatp preserves hexagons @(S). It follows that ¢, induces an injective
simplicial map from the graptF(Q;) into the graphZ(Q) and is thus surjective.
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We next assume that is a p-curve inS. Let R; and R, denote the components
of § and &), respectively, that are homeomorphic $9,. Similarly, Proposition 4.1
implies that¢, induces an injective simplicial map from the grapi{R;) into D(Ry)
and is thus surjective by Proposition 3.1. O

Combining the last theorem with Theorem 2.4, we obtain thHieviing:

Corollary 4.4. Let S= S 3 be a surface. Then any superinjective map from
Cs(S) into itself is induced by an element bfod*(S).

4.2. The casep > 4. Let S= S, be a surface withp > 4 and fix a super-
injective map¢: Cs(S) — Cs(S). By induction onp, we show thaty is induced by
an element of Mot(S). For each integeg with 2 < q < p, we mean by ag-HBC
(hole-bounding curvein S a separating curve in S such that the component &,
of genus zero contains exactty components o S. Note that each separating curve
in Sis ag-HBC for some integeq with 2 < q < p. By Lemma 3.19 of [15], for
each integelg with 2 < q < p, the map¢ preserves)-HBCs in S.

Lemma 4.5. Leta be a g-HBC in S witl2 < q < p. Then the map

®o : LKs(ar) — LKs(¢(@))

defined as the restriction af is surjective where for eachg € V(S), we denote by
Lks(B) the link of B in Cs(S).

Proof. If q =2, then Lk(x) is identified withCs(S;,p-1), and¢, is surjective by
the hypothesis of the induction. ¢f = p, then Lk(«) is identified withC(S p+1), and
¢, is surjective by Theorem 2.3.

We assume X q < p—1. Let Q and R denote the two components & with
R of genus one, and leQ; and R; denote the two components &) with Ry of
genus one. As proved in Lemma 3.19 of [15], we have the inohssi

$(V(Q) CV(Q1) and ¢(Vs(R)) C Vs(Ry).

Choosing an h-curvgg in S disjoint from & and applying Theorem 2.3 to the compo-
nent of § of genus zero, we obtain the equalityV (Q)) = V(Q1). Choosing a sepa-
rating curvey in Q and applying the hypothesis of the induction to the compboén
S, of genus one, we obtain the equalipfVs(R)) = Vs(Ry). O

Lemma 4.5 implies that is surjective becausés(S) is connected. Combining
Theorem 2.4, we obtain the following:
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Theorem 4.6. Let S= S, be a surface with p> 4. Then any superinjective
map fromCs(S) into itself is induced by an element bfod*(S).

5. Construction of @ and its simpliciality

In [3], for a closed surfacé with its genus at least three and a superinjective map
¢: Cs(S) — Cs(S), Brendle and Margalit construct a map: V(S) — V(S) which co-
incides with¢ on Vs(S). They prove thatb defines an automorphism 6XS) if ¢ is
an automorphism ofs(S). Their construction can also be applied to the c8se §;
with g > 2 and|x(S)| = 20 + p—2 > 4 as discussed in [15]. In this section, we re-
view the construction ofb and prove simpliciality of® without assuming thap is an
automorphism. Sharing pairs defined below play an impontalet in the construction
of @.

If S= §p is a surface withg > 2 and|x(S)| = 3, then for each h-curve (or
its isotopy classyx in S, we denote byH, the handle cut off byx from S, which is
naturally identified with a subsurface &

DEFINITION 5.1. LetS = § , be a surface withg > 2 and [x(S)| = 3. Let
a, B € V5(S) be h-curves inS andc € V(S) a non-separating curve i8. We say that
«a and B share cif there exist representatives, B and C of «, 8 andc, respectively,
such that we havg¢A N B| = i(a, B), Ha N Hg is an annulus with its core cung,
and S\ (Ha U Hp) is connected. In this case, we also say thats} is a sharing pair
for c.

It is shown that any two sharing pairs B are sent to each other by an element
of PMod(S). Note that wherS is a surface of genus less than two, there exists no pair
{a, B} of h-curves inS satisfying the condition in Definition 5.1.

Given a sharing paifw, B} for a non-separating curve in S, one can associate a
BP b(x, B) in S as follows. Choosing representativés B of «, 8, respectively, with
|ANB| =i(x,B) =4 and choosing a regular neighborhoNdof AUB in S, we define
b(x, B) € Z(S) as the set of isotopy classes of boundary componentd efhich are
essential inS and whose isotopy classes are not equat.tdhe setb(e, B) is in fact
a BP in S which cuts off a surface homeomorphic 8, and containingy, g and c.

The following is a summary of properties of superinjectivaps fromCs(S) into
itself which will be needed to construd.

Lemma 5.2 ([15, Lemmas 3.18 and 3.19]) Let S= §; ;, be a surface with g 2
and [x(9)| = 4, and let¢: Cs(S) — Cs(S) be a superinjective map. Theh preserves
the topological type of each vertex @f(S). Namely for each separating curve in S,
if Q1 and Q denote the components of &nd if R and R denote the components
of S, then for each j=1, 2,

e the inclusiong(Vs(Q;)) C Vs(R;) holds and
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e Q; and R are homeomorphic
after exchanging the indices if necessary.

The following proposition is essentially due to [3], whelesed surfaces are dealt
with (see Section 5.3 in [15] for the case where a surface basempty boundary).

Proposition 5.3. Let S= §;, be a surface with g~ 2 and [x(S)| > 4, and let
¢: Cs(S) — Cs(S) be a superinjective map. Then the following assertions :hold
(i) The map¢ preserves sharing pairs.
(i) Pick a non-separating curve c in S and let;, 81} and {«>, B2} be sharing pairs
for c. Then{¢(x1), ¢(B1)} and {¢(a2), ¢(B2)} are sharing pairs for the same non-
separating curve in S.

Given a superinjective mag: Cs(S) — Cs(S), we define a mapb: V(S) — V(S
as follows. Picka € V(9). If « is separating inS, then we setd(x) = ¢(«). If « is
non-separating irs, then we choose a sharing paj, y} for « and define®(«) to be
the non-separating curve shared by the gais8), ¢#(y)}. This is well-defined thanks
to Proposition 5.3.

REMARK 5.4. In Section 4.3 of [3], Brendle and Margalit assert thaSifs a
closed surface of genus more than three ang:ifCs(S) — Cs(S) is a superinjective
map, then the mapb: V(S) — V(S) constructed above defines a superinjective map
from C(S) into itself. We point out gaps in their argument to prove esurectivity of
®. (We notice thatp and ® are denoted bys, and ¢,, respectively, in [3].) To prove
that for anya, 8 € V(S), we havei(x, 8) = 0 if and only if i (®(«), ®(8)) = 0, Brendle
and Margalit make the following three steps:

(1) When botha and g are separating irS, the desired equivalence far and 8 fol-
lows because we havé = ¢ on V4(S) and ¢ is superinjective.

(2) When botha and g are non-separating its, Brendle and Margalit claim that
and g are disjoint if and only if there exist sharing paifa;, a;} for « and {by, b}

for g with i(aj, by) = 0 for any j, k =1, 2. They assert that the desired equivalence
for « and g follows from this claim.

(3) Whena is separating inS and B is non-separating ir5, Brendle and Margalit
claim thata and g are disjoint if and only if either is a part of a sharing pair fof

or there exists a sharing pair f@ whose curves are disjoint froma. They assert that
the desired equivalence for and g follows from this claim.

First, we point out that the claim in (2) is not correct. Thishiecause itxr and j
are non-separating curves $iand if a andb are disjoint and non-isotopic h-curves in
S with @ € V(Hy) and g € V(Hy), then the surface obtained by cuttisgalong« and
B is connected and thugy, g} is not a BP inS. It follows that if {«, B} is a BP in
S, then there exist no sharing paifa;, a;} for o and{by, by} for g with i(a;,by) =0
for any j,k =1, 2. The claim in (2) can be modified as follows.



THE CO-HOPFIAN PROPERTY 325

Lemma 5.5. Let S= §;, be a surface with g 2 and [x(S)| > 3. Let« and
be non-separating curves in S which are non-isotopic. Therhawve {«, 8) = 0 and
{a, B} is not a BP in S if and only if there exist non-isotopic and alisj h-curves a
b in S withe € V(H,) and 8 € V(Hp).

Proof. The “if” part follows becausé¢l, and H, are disjoint when they are iden-
tified with their image via the natural inclusion in@ If i(«, 8) = 0 and{«, B} is not
a BP in S, then the surfac&) obtained by cuttingS alonga and g is homeomorphic
to §-2,p+4. Choose p-curves, b in Q such thati(a, b) = 0 and the pair of pants
cut off by a (resp.b) from Q contains the two components 8f) corresponding tax
(resp.pB). The curvesa andb are h-curves inS via the inclusion ofV(Q) into V(S),
which cut off handles fronS containinga and 8, respectively. []

By the definition of®, if y is a non-separating curve i8 and c is an h-curve
in Swith y € V(Hc), then we haved(y) € V(Hy()). Using this fact and Lemma 5.5,
one can directly show that it and g are disjoint non-separating curves $such that
{a, B} is not a BP inS, then ®(«) and ®(B) are disjoint.

Second, the claim in (3) does not immediately imply that foy aeparating curve
« in S and any non-separating curyein S with i(®(«), ®(B8)) = 0, we have («, 8) =
0. This is because we do not assume surjectivityp of

In conclusion, to fill these gaps, we need to show that
(@) if {a, B} is a BP inS, theni(®(x), ®(B)) = 0; and
(b) if « and B are curves inS with i(®(x), ®(8)) = 0 and if B is non-separating in
S, theni(«, B) = 0.

We will prove assertion (a) in Lemma 5.6 and also prove {ld&w), ®(B8)} is a BP in
S for each BP{«,8} in S by using facts on the grapP shown in Section 3. Although
we do not prove assertion (b) directly, we show tldatis induced by an element of
Mod*(S) by proving surjectivity ofg.

If ¢ is an automorphism ofs(S), then @ is a bijection fromV (S) into itself and
the map fromV(S) into itself associated t¢—! is equal tod~L. In this case, we can
show simpliciality of® (and thus that ofd~1) without effort as precisely discussed in
the proof of Theorem 5.18 of [15]. Brendle and Margalit's drad their Main The-
orem 1 in [3] and Theorem 1 in [4], stating the natural isonhism between Mot(S)
and the abstract commensurator /6(S) when S is a closed surface of genus at least
three, is therefore valid.

We now prove simpliciality of® in the following:
Lemma 5.6. Let S= §;, be a surface with ¢= 2 and [x(S)| > 4, and let

¢: Cs(S) — Cs(S) be a superinjective map. Then the m&pV(S) — V(S) constructed
right after Proposition 5.3defines a simplicial map frord(S) into itself.
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Before proving this lemma, we make a brief observation onshieA(H) of iso-
topy classes of essential simple arcs in a hardledefined in Section 3. For each
| € A(H) and eacha € V(H), we definei(l, a) to be the minimal cardinality of the
intersection of representatives fbrand a.

Lemma 5.7. Let H be a handle and choose two curvesan H with i(a,c) = 1.
Then for each k A(H), we have either(i,a) =0 ori(l,c) = 0if and only if we have
i(l, @) =i(,t-@) = L.

Proof. There is a one-to-one correspondence between eigeroéV (H) and of
A(H). Namely, for eacH € A(H), there exists a unique elemeaofl) € V(H) with
i(l,c()) =0, and vice versa. A representative cff) is obtained as a boundary com-
ponent of a regular neighborhood of the unionodd and a representative éfin H.
Note that for each € A(H) and eachc € V(H), we havei(l,c) = 1 if and only if we
havei(c(l), c) = 1.

Each of{a, ¢, t,(a)} and {a, c, t;1(a)} forms a triangle in the graptF(H). Since
a andc are the only vertices adjacent to bdtlfa) andt;(a) in F(H), for eachb e
V(H), we havei (b, t;(a)) = i(b, t-1(a)) = 1 if and only if b is equal to eithea or c.
The claim thus follows. O

Proof of Lemma 5.6. It follows from the definition @b that in general, ifw is
an h-curve inS and c is a non-separating curve iH,, then ®(«) is also an h-curve
in S, and ®(c) is a curve in the handl¢le,).

Let « and g be disjoint curves inS. If both @ and g are separating ir5, then
d(«) and ®(B) are disjoint because is simplicial. If « is separating inS and g is
non-separating inS, then there exists an h-curye in S with i(y,«) =0 andg €
V(H,). Sincex is either equal toy or in the component o5, that is not a handle,
the curves®(«) and ®(B) are disjoint.

Finally, we suppose that and 8 are both non-separating i8 and non-isotopic.
If there exist non-isotopic and disjoint h-curvgsand é in S with « € V(H,) and
B € V(H;), then ®(«) and ®(B) are disjoint becausél,,y and Hy are disjoint and
we have®(a) € V(Hy)) and @(B) € V(Hyi)). Otherwisea and g form a BP inS
by Lemma 5.5. After proving the following two claims, we shoat ®(«) and ©(8)
are disjoint in this case.

Claim 5.8. Let{«,B} be a sharing pair in S. We denote by R the surface cut off
by the BP lf, 8) from S and containinge and g. Similarly, we denote by (R) the
surface cut off by the BP(®(«), #(8)) from S and containingb(«) and ¢(8). Then
we have the inclusion(Vs(R)) C Vs(¢(R)).

Proof. Note that each oR and ¢(R) is homeomorphic tdS ,. Choose a sepa-
rating curvey in S cutting off a surface which containR and is homeomorphic to
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$.1. We pick a separating curvé in S with i(«, §) =i(8,8) = 0 andi(y, §) # O.
By Lemma 5.2,¢(y) cuts off from S a surface homeomorphic 8§, 1 and containing
¢(R). Superinjectivity of¢ implies that¢(s) is disjoint from ¢(«) and ¢(8) and inter-
sects¢(y). It follows that if C and D are representatives @f(y) and ¢(8), respect-
ively, with |C N D| =i(¢(y), ¢(3)), then the two curves i(¢(«), ¢(B)) are boundary
components of a regular neighborhood ®fU D in S. If a separating curve in S
satisfiesi (¢(y), €) = i(¢(8), €) = 0 and eitheri (p(«), €) # 0 ori(¢(B), €) # 0, thene
is a curve ing(R). The claim thus follows. []

Claim 5.9. For each h-curvex in S, the restriction of® to V(H,) induces an
isomorphism between the grapiigH,) and F(Hg)).

Proof. Choose an h-curvgy in S such that{«, Bo} is a sharing pair inS. To
prove the claim, we may assumga) = o and ¢(Bo) = Bo. Let R denote the sur-
face cut off by the BFo(«, Bg) from S and containingx and By. Proposition 5.3 and
Claim 5.8 show thatp induces an injective simplicial map fro® = D(R) into it-
self, which is an automorphism @ by Proposition 3.1. In particulag induces an
automorphism ofL, the link of @ in D. Put F = F(H,) and letx: L — F be the
simplicial map defined in Section 3.1.

We now show that for any two curvds c € V(H,) with i(b, c) = 1, the equality
i(®(b), ©(c)) = 1 holds, that is,® preserves edges of. We choose an edggs, y}
of L with #(8) = b andz(y) = c. Since¢ induces an automorphism df, the two
vertices¢(B) and ¢(y) form an edge ofL. Since the fiber ofr over each vertex ofF
is zero-dimensional by Lemma 3.4, the two vertiee®(8)) and 7 (¢(y)) are distinct
and thus form an edge of. Since we haver(¢(B)) = ®(b) and 7 (¢(y)) = ®(c) by
the definition of ®, we obtaini (®(b), ®(c)) = 1.

Proposition 5.3 shows that for each vertdxof F, the inclusion(r~(d)) C
7~1(®(d)) holds. Since the fiber ofr over an edge ofF is a bi-infinite line by
Lemma 3.4 and since is injective, the equalityp(7~2({b,c})) = 7~1(®({b,c})) holds
for each edgelb, ¢} of F. We thus havep(r~%(d)) = #~(®(d)) for each vertexd
of F. Injectivity of ¢ again implies thatb induces an injective simplicial map from
F into itself and thus an automorphism &f. [

Claim 5.10. If a and b are non-separating curves in S with, b} a BP in §
then we haved(a) # ®(b) and i(®(a), ®(b)) = 0.

Proof. When two non-separating curngsande in S satisfy the equality(d,e) =
1, let us writed L e for simplicity.

Choose a non-separating curwen S with a L ¢ andb L c. We denote byH the
handle filled bya andc. If A andC are representatives @f and c, respectively, with
|[ANC| =i(a,c)=1, thenH is obtained as a regular neighborhoodAfJ C. Let «
denote the boundary curve &f. Similarly, we denote byK the handle filled byb and
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¢ and denote bys the boundary curve oK. Let ¢(H) and ¢(K) denote the handles
cut off by ¢(«) and ¢(8) from S, respectively. The handle(H) is filled by ®(a)
and @(c) because we havé(a) L ®(c) by Claim 5.9. Similarly, the handle(K) is
filled by ®(b) and ®(c) because we haveé(b) L ®(c) by Claim 5.9. It follows from

¢() # ¢(B) that we haved(a) # @(b).
We set

U={deV(H)|dLc}=({tl@)|nez}.
By Claim 5.9, we have
(U) = {d € V(p(H)) | d L ®(0)} = {tg(®(@)) | n € Z}.
The two equalities
@) ={deU |dLa}, {ty(P@)} ={ecdU)|eLl b))
imply the equality{®(t:*(a))} = {t55(®(@))}. Claim 5.9 then implies
®(@) L (c), (b) L (), P(b) L typ((a)),

where the third relation follows fronb L t¥l(a). The first and second relations show
that ®(b) N ¢(H) consists of an essential simple drin ¢(H) intersectingd(c) once
and essential simple arcs i#(H) which are disjoint from®(c) and mutually isotopic.

If there were a component of ®(b) N ¢(H) disjoint from ®(c), thenr would inter-
secttg(lc)@(a)) once, respectively, because we habé) L t;f(lc)(d>(a)). The third re-
lation then implies that does not intersectgf(lc)(@(a)). This is impossible because
a curve ing(H) disjoint from | uniquely exists up to isotopy. We thus proved that
®(b) N ¢(H) consists of onlyl. Sincel intersects®(c) and t;ﬁ(lc)(é(a)) once, respect-
ively, Lemma 5.7 implies thdt is disjoint from ®(a). We therefore conclude that(b)

is disjoint from ®(a). [l

As discussed before Claim 5.8, Claim 5.10 completes thefmbbemma 5.6. [
The following fact will be used in Section 8.

Lemma 5.11. In the notation of Lemma&.6, the map® preserves BPs in S. That
is, if {a, b} is a BP in S then so is{®(a), ®(b)}.

Proof. Suppose that there exists a BE b} in S such that{®(a), ®(b)} is not
a BP inS. By Claim 5.10, the surfac€ obtained by cuttingS along ®(a) and ®(b)
is homeomorphic t0§;_, p+4. On the other hand, there exists a simptexof Cs(S)
consisting ofg — 1 h-curves inS disjoint from a and b. Choose h-curves and ¢
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in S with a e V(Hs), be V(H,) andi(s, o) = i(e, 0) = 0. For eachy € o, both
®(a) and ®(b) are curves in the component &) that is not a handle since we
have ®(a) € V(Hyis)) and ®(b) € V(Hy)). It follows that ¢(y) is an h-curve inQ
for eachy € o. This is a contradiction because any collection of pairwisa-isotopic
and disjoint h-curves irQ consists of at mosy — 2 curves. O

6. S

We put S= S, and fix a superinjective map: Cs(S) — Cs(S) throughout this
section. We denote byp: C(S) — C(S) the simplicial map extending, constructed
right after Proposition 5.3. For each non-separating carve S, let

Dc: Lk(c) N Cs(S) — Lk(D(c)) N Cs(S)

be the simplicial map defined as the restrictiondgfwhere for eachr € V(S), we de-
note by Lkg) the link of @ in C(S). In Lemma 6.4, we will prove tha®. is surjective
for eachc. Once this lemma is shown, we can readily prove thais injective and is
therefore an automorphism 6{S) by Theorem 2.3 (see the proof of Theorem 6.5 for
a precise argument). A large part of this section is thus @evto proving surjectivity
of ..

We fix a non-separating cunein S and may assumeé(c) = c until Lemma 6.4
to prove surjectivity of®d.. Let 9; and 9, denote the boundary components ®f cor-
responding tac. We first introduce a simplicial graph associatedcto

Graph £. We define the simplicial graph as follows. The set of vertices df,
denoted byV (&), is defined as the set of all elements \&f(S) corresponding to an
h-curve« in S such thatc is a curve in the handle cut off by from S. Two vertices
of £ are connected by an edge &fif and only if the two h-curves corresponding to
them form a sharing pair foc in S.

For eachy € V(£), we denote by Lk(x) the link of« in € and denote by (Lk¢ («))
the set of vertices of Lk(«).

Lemma 6.1. The graph& is connected.

Proof. We note thaV¥ (&) is naturally identified with the subset (&) consist-
ing of all elements corresponding to a p-curve Sa cutting off a pair of pants con-
taining 0; and 9,. Let @ be the curve in Fig. 6 (a). We definkE as the set consist-
ing of the Dehn twists about the curves in Fig. 6 (b) and theweises. The group
PMod(&) is generated byl (see [7]). Since for each € T, eitherha = « or ha
and« are connected by an edge &fand since any two vertices &f are sent to each
other by an element of PMo8&(), connectivity of£ can be proved as in the proof of
Lemma 3.3. O
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Fig. 6. The surface obtained by cuttirf§jalong c is described.
The pair{«, B} is an edge of the grapé.

We next introduce a set of arcs as follows.

Set A,. Pick @ € V(€) and let £, denote the component d§, that is not a
handle. We defineéd, to be the subset oA(%,) consisting of all elements whose rep-
resentatives are non-separating3p and connect two distinct points of the boundary
component ofx, corresponding tax.

For each edgde, g} of £, we define an element,(B8) of A, as follows. Let
b(a, B) be the BP inS associated with the sharing pdir, 8} in S, defined right after
Definition 5.1. Sinceb(«, B) cuts off a pair of pants fromx,, we have an essen-
tial simple arc inX, disjoint from b(«, 8) and connecting two distinct points of the
boundary component oE, corresponding tarx, which uniquely exists up to isotopy.
Let r,(B) denote the isotopy class of that essential simple arZ,jn

The element,(B) can also be characterized in the following way. EketS} be an
edge off, and choose representativAsand B of « and 8, respectively, with ANB| =
i(a, B). We denote byx 5 the component of the surface obtained by cuttiiglong A
that is not a handle. The intersecti@® N X, consists of exactly two essential simple
arcs in X whose isotopy classes are equalr{gp).

Lemma 6.2. For each curvea € V(€) and each arc re Ay, there exists a
curve g € V(Lkg (@) satisfying the equality gy (¢(8)) =r.

Proof. Letg,: Cs(2y) — Cs(Xg)) be the map defined as the restriction ¢of
Corollary 4.4 shows thap, is induced by a homeomorphism froR, into X4, which
sendsx to ¢(x). Let W be the set of all elements d&(Z4()) disjoint fromr. Note that
r is the only element oA, disjoint from all elements oiV. There exists a unique
elementq € A, such thatg; (W) is equal to the set of all elements ¥E(Z,) dis-
joint from g. Choosep € V(Lkg(«)) with r,(8) = g. Since each element ef; (W)
is disjoint from g, each element o¥V is disjoint from¢(8). We then have the equality

Fo@)(@(B)) =T. o
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By Corollary 4.4, for eachr € V (&), the restriction ofp to Cs(X,) is induced by
a homeomorphism fronkE, onto X,,) sendinga to ¢(x). We thus have the induced
bijection @y : Ay = Ag)-

Lemma 6.3. Picke € V() and r € A,, and set

B ={B e V(Lke()) [ro(B) =T}

Then we have the equality
¢(B) = {6 € V(Lke(#())) | rp()(8) = Pau(r)}.

Proof. By using the set of all elements @§(%,) disjoint fromr as in the proof
of Lemma 6.2, we can show that the left hand side is containetié right hand side
in the desired equality.

Let s be an element of\, such thats is disjoint and distinct fronr, and the end
points of disjoint representatives bfands appear alternatively along (see Fig. 6 (c)).
Let h e Mod(&) be the half twist about exchangingd; and 3, and being the identity
on X,. We set

I'={y e V(Lke(@)) | raly) = s}

Applying the argument in the proof of Lemma 3.4, we have a rennlg of elements,
B = {Bn}nez and " = {¥m}mez, such that

e h(Bn) = Bnt1 andh(ym) = ym+1 for anyn, me z; and

e the full subgraph of spanned byB UT is the bi-infinite line withp,, adjacent to
vn and yn1 for eachn € Z.

We also have the inclusions

#(B) C {8 € V(Lke(#(a))) | rp(e)(8) = Pulr)},

() C {e € V(Lke(d(@))) | To@)(e) = Pa(9)}.
Since the mapd,: A, — Ay is induced by a homeomorphism frol, onto Xy
sendingax to ¢(«), the two elementsb,(r) and ®,(s) are disjoint and distinct, and the
end points of disjoint representatives®f(r) and®,(s) appear alternatively along(«).
The argument in the proof of Lemma 3.4 shows that the subgoaghspanned by the

union of the right hand sides of the above two inclusions issth bi-infinite line. In-
jectivity of ¢ implies that both of the converse inclusions hold. The lenfioflaws. []

Lemma 6.4. If ®(c) = c, then the map
®c: Lk(c) N Cs(S) — Lk(c) N Cs(S)

defined as the restriction ab is surjective.
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Proof. Sincep preserves sharing pairs for¢ induces a simplicial map.: £ — £.
Lemmas 6.2 and 6.3 show that for eacke V(£), the map from Lk(«) into Lke(¢())
induced byg. is surjective. It follows from Lemma 6.1 that the map: £ — £ is a
simplicial automorphism. In particular, the image®§ contains all h-curvea in S with
®(c) =c e V(Hy).

Let B € V()N Vs(S) be a curve which is not an h-curve Bicutting off a handle
containingc. There then exists an h-curye in S with ¢ € V(H,) andi(y, ) = 0.
The argument in the previous paragraph shows that therésexisurvea € V(€) with
®¢(a) = y. Theorem 4.3 implies that the mafy,: Cs(X.) — Cs(2,) defined as the
restriction of¢ is surjective. In particular, the image ¢f, containsg, and so doe%..

O

Using the last lemma, we conclude the following:

Theorem 6.5. Let S= S, be a surface. Then any superinjective map ficyts)
into itself is induced by an element bfod*(S).

Proof. Letc andd be non-separating curves Biwith ®(c) = ®(d). Lemma 6.4
shows that the two maps

D.: Lk(c) N Cs(S) — Lk(P(c)) N Cs(S),
Dy: Lk(d) N Cs(S) — Lk(@(d)) N Cs(S)

defined as the restriction ab are surjective, and their images are equal. Since these
two maps are restrictions of the injective map we obtain the equalitc = d. It
follows that @ is injective and is thus induced by an element of M@ by The-
orems 2.2 and 2.3. O

7. S§pwith g>=2and|x|=5

Let S= §;p be a surface withg > 2 and|x(S)| =29+ p—2 > 5. For each
superinjective mapp: Cs(S) — Cs(S), we prove that the simplicial mag: C(S) —
C(S) constructed right after Proposition 5.3 is induced by amant of Mod(S), by
induction on the lexicographic order ofj,(p). The following lemma will be used to
complete the inductive argument. We mean byhgAacurvein S a curve inS which is
either an h-curve or a p-curve i8.

Lemma 7.1. Let X be a surface with its genus at least two dpdX)| > 4. Then
the full subcomplex ofs(X) spanned by all vertices corresponding to hp-curves in X
is connected.

Proof. The idea to prove this lemma is based on Lemma 2.1 ¢fd&0n Lem-
mas 3.3 and 6.1. It suffices to show that any two vertice€s0X) corresponding to
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(a) (b)

Fig. 7. If Sis a surface of positive genus, then PM8d(s gen-
erated by the Dehn twists about the curves in (a) (see [7]).

h-curves inX can be connected by a path @(X) consisting of vertices correspond-
ing to hp-curves inX because for any p-curva in X, there exists an h-curve iX
disjoint from a.

We defineT to be the set consisting of the Dehn twists about the curv&igin7 (a)
and their inverses. It is known that PMot) is generated byl (see [7]). Lete denote
the h-curve in Fig. 7 (b). One can check that for eich T, eitherha = « or there
exists an hp-curvgs in X with i(ha, 8) = i(x, B) = 0. Since any two h-curves iX
are sent to each other by an element of PMOdthe same argument as in Lemma 3.3
concludes the lemma. O

Theorem 7.2. Let S= §;, be a surface with g 2 and |x(S)| = 5. Then any
superinjective map fronfs(S) into itself is induced by an element bfod*(S).

Proof. If @ is an h-curve inS, then the component 0§, that is not a han-
dle is homeomorphic tg;_1p41. If « is a p-curve inS, thenp > 2 and the com-
ponent of §, that is not a pair of pants is homeomorphic $, 1. Since we as-
sume @, p) # (2, 2), (3, 0), Theorems 4.6 and 6.5 and the hypothesis ofrttiection
imply that the mapp, : Lks(a) — Lks(¢(«)) defined as the restriction @f is an iso-
morphism for each hp-curve in S, where Lk(B) denotes the link of8 in Cs(S) for
eachp € V5(S). Lemma 7.1 implies tha is surjective. Applying Theorem 2.4, we
conclude the theorem. ]

8. S

We put S = S5 throughout this section. This case is dealt with indepetigen
because the component of the surface obtained by cu8iatpng an h-curve irS is
homeomorphic t0S; ; and inductive argument as in Section 7 cannot be applied. We
first prove that any superinjective map from the Torelli complex7(S) into itself is
induced by an element of M&(S).
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Fig. 8.

Proposition 8.1. Any superinjective mag: 7(S) — 7(9) is induced by an elem-
ent of Mod*(9).

Proof. By Lemma 3.7 in [15], we know that preserves vertices which corres-
pond to separating curves and BPsSnrespectively. Applying the construction of a
simplicial map fromC(S) into itself, discussed right after Proposition 5.3, to tiee
striction of ¥ to Cs(S), we obtain a simplicial mapl': C(S) — C(9).

Claim 8.2. The equality

{W(by), W(b2)} = ¥({by, bo})
holds for each BP(by, by} in S.

Proof. Pick a BP{by, by} in S. Let oy and an be the curves inS described in
Fig. 8. We note thatay,a,} is a sharing pair irS with b(aq,a2) = {by,b,}. In general,
for each sharing paife, 8} in S, b(«, ) is the only BP inS disjoint froma and 8. By
Lemma 5.11{W¥(b;),¥(by)} is a BP inS. Since{W¥(by),¥(by)} and v ({bs,b,}) are BPs
in S disjoint from the sharing paify (a1), ¥ (a2)}, we have the desired equality. []

Let ¢ be a non-separating curve B8 We define a simplicial map.: Cs(S) —
Cs(Sw()) as follows. Picka € V5(&). If the curvew is separating inS, then we set
Ye(a) = Y(«). Otherwise{w, c} is a BP inS and we have the equality ({«, c}) =
{¥(x), ¥(c)} by Claim 8.2. In this case, we seéf.(¢) = V(). Sincey: T(S) —
T(S) is superinjective, so isfc. Theorem 6.5 shows thaf.: Cs(S) — Cs(Su() Is
an isomorphism.

If ¢ andd are non-separating curves Biwith w(c) = w(d), then the images of
the two mapsy. and vy are equal. Sincer is injective, the equalitys(S) = Cs(S)
holds, and we thus have = d. It follows that ¥ is injective. Theorems 2.2 and 2.3
show thatV is induced by an element of M&¢5). ]
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Let ¢: Cs(S) — Cs(S) be a superinjective map, and lét: C(S) — C(S) be the
simplicial map constructed right after Proposition 5.3. the rest of this section, we
prove that® is an automorphism by using Proposition 8.1. We note thahduces a
simplicial map from7(S) into itself by Lemma 5.11. This induced map is also denoted
by the same symbob.

Lemma 8.3. Let b be a BP in Sand let R and R denote the two compo-
nents of § We suppose that the equali(b) = b holds and that for each + 1, 2,
the inclusion

D(C(Rj) NCs(9) C C(R)) NCs(S)
holds. Then for each £ 1, 2, the map

®;: C(Rj) NCs(S) — C(R)) NCs(S)
defined as the restriction ab is surjective.

Proof. For eachj = 1, 2, the map®; preserves two separating curves i}
whose intersection number is equal to four sigcereserves sharing pairs B It fol-
lows that®; induces an injective simplicial map from the graph= D(R;), defined
in Section 3, into itself. Proposition 3.1 then shows tHgtis surjective. []

Lemma 8.4. The simplicial mapd: 7(S) — T7(S) is superinjective.

Proof. We first prove that i is a separating curve i andb = {bs,b,} is a BP
in S with i(a, b) # 0, theni(®(a), (b)) # 0. Choose separating curves, o, 1 and
B2 in S as described in Fig. 8. It follows fron(a, b) # 0 that there exisf, k € {1, 2}
with i(a, ;) # 0 andi(a, Bc) # 0. Superinjectivity ofg impliesi(¢(a), ¢(«;)) # 0 and
i(¢(a), #(Bk)) # 0. Sinceg(xrj) and ¢(Bx) are curves in distinct components 8,
we havei (®(a), (b)) # 0.

We next prove thaib is injective onVpy(S), the set of vertices off (S) corres-
ponding to BPs inS. Let b andc be BPs inS with ®(b) = ®(c). Lemma 8.3 shows
that both of the maps

®p: Lki(b) N Cs(S) — Lki(@(b)) N Cs(9),
®c: Lki(C) N Cs(S) — Lk (@(c)) N Cs(S)

defined as the restriction ab are surjective, where Lkd) denotes the link ofd in
T(S) for each BPd in S. The images ofd, and &, are then equal. Since the map
¢: Cs(S) — Cs(9) is injective, we obtain the equality = c.

Note that for anyb, c € Vp(S), we haveb # c if and only if i(b,c) # 0. Injectivity
of @ on Vpp(S) impliesi(®(b), &(c)) # 0 for anyb, ¢ € Vpp(S) with i(b, c) # 0. The
lemma then follows. O
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The last lemma and Proposition 8.1 imply the following:

Theorem 8.5. Let S= S be a surface. Then any superinjective map ficyts)
into itself is induced by an element bfod*(S).

9. Proof of Theorem 1.2

Let S be the surface in Theorem 1.2, and §et7(S) — T(S) be a superinjective
map. We now prove thap is induced by an element of M&(S). It is shown in
Lemma 3.7 and Proposition 3.16 of [15] thatpreserves vertices corresponding to sep-
arating curves and BPs i8, respectively. Applying Theorem 1.1 (i) to the restriction
of ¢ to Cs(S), we can findy € Mod*(S) such that the equality(a) = ya holds for
any a € Vq(S).

We define a simplicial mago: 7(S) — T(S) by settinggo(a) = y *¢(a) for each
vertexa of 7(S). For each BPb in S, one can find a collectiofr of finitely many
separating curves ifs such thatb is the only BP inS disjoint from any curve inF
(see Fig. 8 for example). Singg, is the identity onF, it also fixesb. It follows that
¢o is the identity and thap is induced byy.

We have proved assertion (i) of Theorem 1.2. We omit the pobafssertion (ii) of
Theorem 1.2 because assertion (ii) can be derived fromtassé along the argument
in Section 5 of [3] and Section 6.3 of [15].
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