Nakamura, I. Osaka J. Math. **49** (2012), 875–899

UNKNOTTING THE SPUN T²-KNOT OF A CLASSICAL TORUS KNOT

INASA NAKAMURA

(Received May 11, 2009, revised February 15, 2011)

Abstract

We show that for the closure of a classical braid which satisfies certain conditions, the spun T^2 -knot of the classical knot has the unknotting number one. This gives an alternative proof of the fact that the spun T^2 -knot of a classical torus knot has the unknotting number one.

0. Introduction

A surface knot is the image of a smooth embedding of a closed connected surface into the Euclidean 4-space \mathbb{R}^4 . Kanenobu and Marumoto [10] showed that the spun 2-knot of a classical torus knot has the unknotting number one. Hence it follows that the spun T^2 -knot of a classical torus knot has the unknotting number one. Here, the spun T^2 -knot of a classical knot K is the product of K in a 3-ball B^3 with a circle S^1 , embedded into \mathbb{R}^4 via the natural embedding of $B^3 \times S^1$ into \mathbb{R}^4 ([15, 2]). In this paper, we show that for the closure of a classical braid which satisfies certain conditions, the spun T^2 -knot of the classical knot has the unknotting number one (Theorem 3.1). Theorem 3.1 gives an alternative proof of the above-mentioned fact that the spun T^2 -knot of a classical torus knot has the unknotting number one (Corollary 3.2). The proof of Theorem 3.1 is shown by a diagrammatic method, by using a surface link chart presenting the spun T^2 -knot.

A surface link chart is a sort of finite graph in a 2-disk with some additional data ([5, 8, 9]). Any oriented surface knot is presented by a surface link chart ([7, 8, 9]). An unknotted surface knot is presented by an unknotted chart ([5, 9]). It is known [4] that any oriented surface knot *S* can be deformed to an unknotted surface knot by applying 1-handle surgeries along a finite number of mutually disjoint oriented 1-handles. The *unknotting number* of *S* is the minimum number of such 1-handles necessary to deform *S* to be unknotted. A *free edge* is an edge in a chart such that the end points are vertices of degree one. Applying a 1-handle surgery to an oriented surface knot *S* along a nice 1-handle is presented by adding a free edge to a surface link chart presenting *S* ([6]).

²⁰¹⁰ Mathematics Subject Classification. Primary 57Q45; Secondary 57Q35.

I. NAKAMURA

Theorem 3.1 is shown as follows. First, we obtain a surface link chart presenting the spun T^2 -knot. Then we add a free edge to the chart, and deform it to an unknotted chart (a configuration consisting of free edges) by equivalence relations. We obtain a surface link chart presenting the spun T^2 -knot, as follows. We showed in [14] (see Theorem 2.2) how to obtain a surface link chart which presents a surface knot in the form of a branched covering over the standard torus. We call such a surface knot a *torus-covering knot* ([13], see Definition 2.1). Since a spun T^2 -knot by [14].

This paper is organized as follows. In Section 1, we review a braided surface and its chart description, and prepare several notations. In Section 2, we review the definition of a torus-covering knot and Theorem 2.2. In Section 3, we show Theorem 3.1 and Corollary 3.2.

1. A braided surface and its chart description

A braided surface was defined in [16, 7, 9]. A surface braid is a braided surface with some boundary condition, and a notion of a chart was introduced [5, 9] to present a simple surface braid. Equivalent simple surface braids have distinct chart presentations. The notion of C-move equivalence between two charts of the same degree was introduced [5, 8, 9] to give the equivalence class of the chart which represents the equivalence class of a simple surface braid. The notion of a chart can be easily extended to a chart presenting a simple braided surface. In this section, we review a braided surface, and extend the notion of a chart description to a simple braided surface. We review the fact that any oriented surface knot is presented by the closure of a simple surface braid ([7, 9]); thus it is presented by a chart. In order to present a certain chart called an "oval nest", we introduce a notation, and we prepare several equivalence relations between oval nests.

DEFINITION 1.1. A compact and oriented 2-manifold *S* embedded in a bidisk $D_1 \times D_2$ properly and locally flatly is called a *braided surface* of degree *m* if *S* satisfies the following conditions:

(i) $p_2|_S \colon S \to D_2$ is a branched covering map of degree m,

(ii) ∂S is a closed *m*-braid in $D_1 \times \partial D_2$, where D_1 , D_2 are 2-disks, and $p_2: D_1 \times D_2 \rightarrow D_2$ is the projection to the second factor.

Two braided surfaces are *equivalent* if there is a fiber-preserving ambient isotopy of $D_1 \times D_2$ rel $D_1 \times \partial D_2$ which carries one to the other. A braided surface S is called simple if $\#(S \cap p_2^{-1}(x)) = m - 1$ or m for each $x \in D_2$. A braided surface S is called a surface braid if ∂S is the trivial closed braid. A surface braid $Q_m \times D_2$ is called trivial, where Q_m is a set of m interior points of D_1 .

When a simple braided surface S is given, we obtain a graph on D_2 , as follows. Identify D_1 with $I \times I$, where I = [0, 1]. Consider the singular set $\text{Sing}(p_1(S))$ of the

Fig. 1.1. Vertices in a chart.

image of *S* by the projection p_1 to $I \times D_2$. Perturbing *S* if necessary, we can assume that $\operatorname{Sing}(p_1(S))$ consists of double point curves, triple points, and branch points. Moreover we can assume that the singular set of the image of $\operatorname{Sing}(p_1(S))$ by the projection to D_2 consists of a finite number of double points such that the preimages belong to double point curves of $\operatorname{Sing}(p_1(S))$. Thus the image of $\operatorname{Sing}(p_1(S))$ by the projection to D_2 forms a finite graph Γ on D_2 such that the degree of its vertex is either 1, 4 or 6. An edge of Γ corresponds to a double point curve, and a vertex of degree 1 (resp. 6) corresponds to a branch point (resp. triple point).

For such a graph Γ obtained from a simple braided surface *S*, we give orientations and labels to the edges of Γ , as follows. Let us consider a path ρ in D_2 such that $\rho \cap \Gamma$ is a point *P* of an edge *e* of Γ . Then $S \cap p_2^{-1}(\rho)$ is a classical *m*-braid with one crossing in $p_2^{-1}(\rho)$ such that *P* corresponds to the crossing of the *m*-braid. Let $\sigma_1, \sigma_2, \ldots, \sigma_{m-1}$ be the standard generators of the *m*-braid group B_m . Let σ_i^{ϵ} ($i \in$ $\{1, 2, \ldots, m-1\}, \epsilon \in \{+1, -1\}$) be the presentation of $S \cap p_2^{-1}(\rho)$. Then label the edge *e* by *i*, and moreover give *e* an orientation such that the normal vector of ρ corresponds (resp. does not correspond) to the orientation of *e* if $\epsilon = +1$ (resp. -1). We call such an oriented and labeled graph a *chart of S*.

In general, we define a chart on D_2 as follows.

DEFINITION 1.2. Let *m* be a positive integer. A finite graph Γ on a 2-disk D_2 is called a *chart* of degree *m* if it satisfies the following conditions:

- (i) $\Gamma \cap \partial D_2$ consists of a finite number of vertices of degree 1.
- (ii) Every edge is oriented and labeled by an element of $\{1, 2, ..., m-1\}$.
- (iii) Every vertex has degree 1, 4, or 6.

(iv) The adjacent edges around each vertex in $Int(D_2)$ are oriented and labeled as shown in Fig. 1.1, where we depict a vertex of degree 1 by a black vertex, and a vertex of degree 6 by a white vertex.

In a chart, an edge without end points is called a *loop*. An edge whose end points are black vertices is called a *free edge*. A configuration consisting of a free edge and a finite number of concentric simple loops such that the loops are surrounding the free edge is called an *oval nest*.

A black vertex (resp. white vertex) of a chart corresponds to a branch point (resp. triple point) of the simple braided surface presented by the chart. A chart presents a simple braided surface. In particular, a chart Γ such that $\Gamma \cap \partial D_2 = \emptyset$ presents a simple surface braid.

When a chart Γ on D_2 is given, we can reconstruct a simple braided surface Sover D_2 as follows. Let m be the degree of Γ , and let $N(\Gamma)$ be a neighborhood of Γ in D_2 . Let us consider a trivial braided surface $S = Q_m \times (D_2 - N(\Gamma))$ over $D_2 - N(\Gamma)$, where Q_m is a set of m interior points of D_1 . We extend S over a neighborhood of each edge as follows. Identify a neighborhood of an edge e with $I \times I$ such that e is identified with $\{1/2\} \times I$. Let i be the label attached to e, and let $\epsilon = +1$ (resp. -1) if the orientation of e corresponds (resp. does not correspond) to the orientation of $\{0\} \times I$. Then let the braided surface S over the neighborhood of e be the braided surface which has a presentation $\sigma_i^{\epsilon} \times I$ and the image of the double point curve of $p_1(S)$ by the projection to D_2 is e. Since Γ is as in Fig. 1.1 around each vertex, S can be extended naturally over a neighborhood of each vertex. See [3, 6, 9] for more details. Thus we can construct a simple braided surface S over D_2 such that the original chart is a chart of S.

The boundary of a simple surface braid S consists of trivial closed *m*-braid. Consider a natural embedding of $D_1 \times D_2$ in \mathbb{R}^4 , and paste *m* disks to S to obtain an embedding of a closed surface in \mathbb{R}^4 . The resulting surface is called the *closure* of S. It is known [7, 9] that any oriented surface knot is presented by the closure of a simple surface braid; thus it is presented by a chart Γ on D_2 such that $\Gamma \cap D_2 = \emptyset$. We call such a chart presenting a surface link a *surface link chart*.

In [5, 9], a surface link chart is called simply a chart. However, in this paper we distinguish a "surface link chart" from a "chart".

Two charts on D_2 of the same degree are *C*-move equivalent if they are related by a finite sequence of ambient isotopies of D_2 and C-moves (CI, CII, CIII-moves) as follows.

Let Γ and Γ' be two charts on D_2 of the same degree. Then Γ' is said to be obtained from Γ (or Γ is said to be obtained from Γ') by a *CI-move*, *CII-move* or *CIII-move* if there exists a 2-disk *E* in D_2 such that the loop ∂E is in general position with respect to Γ and Γ' and $\Gamma \cap (D_2 - E) = \Gamma' \cap (D_2 - E)$ and the following condition holds: (CI) There are no black vertices in $\Gamma \cap E$ nor $\Gamma' \cap E$.

A CI-move as in Fig. 1.2 is called a CI-move of type (1), (2) or (3) respectively; see [9] for the complete set of CI-moves.

(CII) $\Gamma \cap E$ and $\Gamma' \cap E$ are as in Fig. 1.3, where |i - j| > 1.

(CIII) $\Gamma \cap E$ and $\Gamma' \cap E$ are as in Fig. 1.4, where |i - j| = 1.

It is shown as a minor modification of [5, 8, 9] that two simple braided surfaces of the same degree are equivalent if and only if their charts are C-move equivalent. Two surface knots are *equivalent* if there is an ambient isotopy of \mathbb{R}^4 which carries one to the other. Thus it follows that for two surface link charts of the same degree, their presenting surface knots are equivalent if the charts are C-move equivalent.

Fig. 1.2. CI-moves of types (1), (2) and (3).

Fig. 1.3. CII-moves, where |i - j| > 1.

Fig. 1.4. CIII-moves, where |i - j| = 1.

I. NAKAMURA

Fig. 1.5. An oval nest $O(2; \bar{3}21)$.

Throughout this paper, let us denote the oval nest with a free edge with the label i and its surrounding loops with the labels i_1, i_2, \ldots, i_n and the orientation $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ from the free edge outward by $O(i; i_1^* i_2^* \cdots i_n^*)$, where $\epsilon_j = \pm 1$ and $i_j^* = i_j$ (resp. \overline{i}_j) if $\epsilon_j = +1$ (resp. -1) (see Fig. 1.5). In particular, let us denote the free edge $O(i; \emptyset)$ by F_i . For 0 < i < j, let us denote $i(i+1)\cdots j$ (resp. $\overline{i}(\overline{i+1})\cdots \overline{j}$) by $i \nearrow j$ (resp. $\overline{i} \nearrow \overline{j}$), and for 0 < j < i, let us denote $i(i-1)\cdots j$ (resp. $\overline{i}(\overline{i-1})\cdots \overline{j}$) by $i \searrow j$ (resp. $\overline{i} \searrow \overline{j}$).

Let Γ_1 and Γ_2 be charts of the same degree in 2-disks D_1 and D_2 respectively, where $D_i = [0, 1] \times [0, 1]$ for i = 1, 2. Identifying D_1 with $[0, 1] \times [0, 1/2]$ and D_2 with $[0, 1] \times [1/2, 1]$, we have a new chart $\Gamma_1 \cup \Gamma_2$ in $D_1 \cup D_2 = [0, 1] \times [0, 1]$. We will call it a *split union* of Γ_1 and Γ_2 , and use the notation $\Gamma_1 \cup \Gamma_2$.

Let us define the braid group relations between two sequences of integers as follows: 1. $\emptyset \sim i \cdot \overline{i} \sim \overline{i} \cdot i$, for a positive integer *i*,

2. $i \cdot j \sim j \cdot i$, for positive integers*i*, *j* with |i - j| > 1,

3. $i \cdot j \cdot i \sim j \cdot i \cdot j$, for positive integers *i*, *j* with |i - j| = 1.

In this paper, we will identify a braid $\sigma_{i_1}^{\epsilon_1} \sigma_{i_2}^{\epsilon_2} \cdots \sigma_{i_n}^{\epsilon_n}$ with a sequence of integers $i_1^* i_2^* \cdots i_n^*$ with the braid group relations, where $i_j^* = i_j$ (resp. \overline{i}_j) if $\epsilon_j = +1$ (resp. -1). Then we have the following lemma.

Lemma 1.3. For positive integers *i*, *j* and braids *b*, *c* such that $\overline{b}ib = \overline{c}jc$, the following oval nests are equivalent:

(1.1)
$$O(i;b) \sim O(j;c).$$

Before the proof, we review the notions of a braid system of a chart and slide equivalence.

Let Γ be a chart of degree *m* on a 2-disk D_2 . Let q_0 be a fixed point on the boundary of D_2 , and $\Sigma(\Gamma)$ the set of black vertices in Γ . Let $\mathfrak{A} = (a_1, a_2, \ldots, a_n)$ be a *Hurwitz arc system* with the starting point set $\Sigma(\Gamma)$ and the terminal point q_0 , which is, for any *i* and *j*, $a_i \cap a_j = \{q_0\}$ and the normal vector of a_i points to a_{i+1} . For each

i = 1, 2, ..., n, consider a loop c_i in $D_2 \setminus \Sigma(\Gamma)$ with the base point q_0 such that it starts from q_0 and goes along a_i , turns around the starting point of a_i (the black vertex in Γ which is at the other end of a_i) anti-clockwise and comes back along a_i to q_0 . Let η_i be the element of $\pi_1(D_2 \setminus \Sigma(\Gamma), q_0)$ represented by this loop c_i . The fundamental group is a free group of rank *n* generated by $\eta_1, \eta_2, ..., \eta_n$. We call $\eta_1, \eta_2, ..., \eta_n$ the *Hurwitz* generators of $\pi_1(D_2 \setminus \Sigma(\Gamma), q_0)$ associated with \mathfrak{A} . A braid system $\vec{b} = (b_1, b_2, ..., b_n)$ of the chart Γ is an ordered *n*-tuple of elements of B_m such that each b_i is the *m*-braid represented by η_i , i.e. η_i in $\pi_1(D_2 \setminus \Sigma(\Gamma), q_0)$ represents the *m*-braid b_i in the simple surface braid of degree *m* which is represented by Γ on D_2 .

Two braid systems are *slide equivalent* if we can transform one to the other by applying a finite sequence of the following equivalence relations:

$$(b_1,\ldots,b_i,b_{i+1},\ldots,b_n) \sim (b_1,\ldots,b_{i-1},b_{i+1},b_{i+1}^{-1},b_i,b_{i+1},b_{i+2},\ldots,b_n).$$

Two charts of the same degree are equivalent if and only if their braid systems are slide equivalent (see [7, Chapter 17 and Section 18.10]).

Proof of Lemma 1.3. We can take a braid system of \vec{b} of O(i; b) to be $\vec{b} = (b^{-1}\sigma_i b, b^{-1}\sigma_i^{-1}b)$. Since $\bar{b}ib = \bar{c}jc$, we have $\vec{b} = (c^{-1}\sigma_j c, c^{-1}\sigma_j^{-1}c)$, which is a braid system of O(j; c).

By Lemma 1.3, in particular the following equivalent deformations hold. We will prove several of them using C-moves. Let i, j be positive integers and b, b', c, c' be braids. For a positive integer k, Let $k^* \in \{k, \overline{k}\}$. If b = b', then

(1.2)
$$O(i;b) \sim O(i;b')$$

(1.3) $O(i;i^*) \sim O(i;\emptyset) = F_i \quad \text{(see Fig. 1.6)},$

(1.4) $O(i; j^*) \sim O(i; \emptyset) = F_i$, where |i - j| > 1 (see Fig. 1.7),

(1.5)
$$O(i; j) \sim O(j; i)$$
, where $|i - j| = 1$ (see Fig. 1.8)

If $O(i;c) \sim O(j;c')$, then

(1.6)
$$O(i;cb) \sim O(j;c'b).$$

Moreover, applying a CI-move of type (2) between the outermost loop labeled j of the oval nest $O(i; b \cdot j^*)$ and the free edge F_j , we can see that

(1.7)
$$O(i; b \cdot j^*) \cup F_i \sim O(i; b) \cup F_i,$$

where b is a braid.

Fig. 1.6. $O(i; \overline{i}) \sim O(i; \emptyset) = F_i$.

Fig. 1.7. $O(i; j) \sim O(i; \emptyset) = F_i$, where |i - j| > 1.

Fig. 1.8. $O(i; j) \sim O(j; \bar{i})$, where |i - j| = 1.

Fig. 2.1. A chart on T presenting the spun T^2 -knot of a trefoil.

2. A torus-covering knot and its chart description

It is known [7, 9] that any oriented surface knot can be presented by a branched covering over the standard 2-sphere. A torus-covering knot was introduced in [13] as a new construction of a surface knot, by considering the standard torus instead of the standard 2-sphere. In this section, we give the definition of a torus-covering knot (see also [13]). The spun T^2 -knot of a classical knot is a torus-covering knot. A torus-covering knot is presented by a chart on the standard torus T. We can obtain a surface link chart presenting a torus-covering knot from its chart on T ([14], see Theorem 2.2). Part of the obtained surface link chart is called a 1-handle chart. We obtain the 1-handle chart for the spun T^2 -knot (Lemma 2.4).

Let *T* be a standard torus in \mathbb{R}^4 , that is, the boundary of an unknotted solid torus in a 3-space in \mathbb{R}^4 . Let us consider a tubular neighborhood N(T) of *T*, and identify N(T) with $D^2 \times S^1 \times S^1$, where D^2 is a 2-disk, and S^1 is a circle. The first S^1 corresponds to the meridian, and the second S^1 corresponds to the longitude of *T*. Let us identify S^1 with I/\sim , where I = [0, 1] and $0 \sim 1$. For a manifold *S* in N(T), let us denote by $S \cap (D^2 \times I \times I)$ the manifold in $D^2 \times I \times I$ obtained from *S* by cutting it at $D^2 \times S^1 \times \{0\}$ and $D^2 \times \{0\} \times S^1$.

DEFINITION 2.1. A *torus-covering knot* is a surface knot S in \mathbb{R}^4 such that $S \subset N(T)$ and moreover $S \cap (D^2 \times I \times I)$ is a simple braided surface.

By definition, a torus-covering knot S is presented by a chart on T. As we mentioned, for two charts of the same degree, their presenting braided surfaces are equivalent if the charts are C-move equivalent. Hence it follows that for two charts on T of the same degree, their presenting torus-covering knots are equivalent if the charts are C-move equivalent.

The spun T^2 -knot of a classical knot K is the product of K in a 3-ball B^3 with S^1 , embedded into \mathbb{R}^4 via the natural embedding of $B^3 \times S^1$ into \mathbb{R}^4 ([15, 2]). Identify S^1 with the longitude of T. Since any classical knot is equivalent to a closed braid by Alexander's Theorem, the spun T^2 -knot of any K is a torus-covering knot (see [13, Propositions 2.11]); see Fig. 2.1 for example.

Now we review a theorem, which shows how to obtain a surface link chart from a chart on T ([14]). A chart is presented by a simple braided surface. A simple braided surface is presented by a motion picture consisting of isotopic transformations

and hyperbolic transformations. A *motion picture* of a braided surface $S \subset B^3 \times I$ is a one-parameter family $\{\pi(S \cap (B^3 \times \{t\}))\}_{t \in I}$, where $\pi \colon B^3 \times I \to B^3$ is the projection (see [9]).

Let $\{h_t\}_{t \in [0,1]}$ be an ambient isotopy of \mathbb{R}^3 . For a classical link *L*, we have an isotopy (a one-parameter family) $\{h_t(L)\}$ of classical links. We say that $h_1(L)$ is obtained from *L* by an *isotopic transformation*, and we use the notation that $L \to h_1(L)$ is an isotopic transformation (see [9, Section 9.1]).

Let *L* be a classical link in \mathbb{R}^3 . A 2-disk *B* in \mathbb{R}^3 is called a *band* attaching to *L* if $L \cap B$ is a pair of disjoint arcs in ∂B . A *band set* attaching to *L* is a union $\mathcal{B} = B_1 \cup B_2 \cup \cdots \cup B_m$ of mutually disjoint bands B_1, B_2, \ldots, B_m attaching to *L*. For a subset *X* of a space, let us denote by Cl(X) the closure of *X*. Define a link $h(L; \mathcal{B})$ by

$$h(L; \mathcal{B}) = \operatorname{Cl}((L \cup \partial \mathcal{B}) - (L \cap \mathcal{B})).$$

We say that the link $h(L; \mathcal{B})$ is obtained from L by a hyperbolic transformation along \mathcal{B} , and we use the notation that $L \to h(L; \mathcal{B})$ is a hyperbolic transformation (see [9, Section 9.1]).

For a classical *m*-braid *c*, let $\iota_k^l(c)$ be the (m + k + l)-braid obtained from *c* by adding *k* (resp. *l*) trivial strings before (resp. after) *c*, and put

$$\Pi_i^m = \sigma_{m+1}\sigma_{m+2}\cdots\sigma_{m+i}, \quad \Pi_i^{\prime m} = \sigma_{m-1}\sigma_{m-2}\cdots\sigma_{m-i},$$

$$\Delta_m = \Pi_{m-1}^m \Pi_{m-2}^m\cdots\Pi_1^m, \quad \Delta_m^{\prime} = \Pi_{m-1}^{\prime m} \Pi_{m-2}^{\prime m}\cdots\Pi_1^{\prime m},$$

$$\Theta_m = \sigma_m \cdot \Pi_{m-1}^{\prime m} \cdot \Pi_{m-1}^m \cdot \sigma_m \cdot \Pi_{m-2}^{\prime m} \cdot \Pi_{m-2}^m \cdots \sigma_m \cdot \Pi_1^{\prime m} \cdot \Pi_1^m \cdot \sigma_m$$

Theorem 2.2 ([14]). Let Γ_T be a chart of degree m on $I \times I$, obtained from a chart on T (of degree m) by cutting T by the meridian and the longitude. Let a (resp. b) be a classical m-braid presented by $\Gamma_T \cap (I \times \{0\})$ (resp. $\Gamma_T \cap (\{0\} \times I)$). Then the torus-covering knot presented by Γ_T is presented by a surface link chart Γ_S of degree 2m as in Fig. 2.2. Here H_b is a chart of degree 2m presenting the simple braided surface whose motion picture is as follows:

$$\begin{split} \iota_0^m(b) &\to \iota_0^m(b) \cdot (\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \Delta'_m \cdot \Delta_m \xrightarrow{} \iota_0^m(b) \cdot (\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \Theta_m \\ &\to (\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \iota_0^m(\bar{b}^*) \cdot \Theta_m \to (\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \Theta_m \cdot \iota_m^0(\bar{b}^*) \\ & \xrightarrow{} (\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \Delta'_m \cdot \Delta_m \cdot \iota_m^0(\bar{b}^*) \to \iota_m^0(\bar{b}^*), \end{split}$$

where \rightarrow is an isotopic transformation and \rightarrow is a hyperbolic transformation along bands corresponding to the m σ_m 's, and $-(H_b)^*$ is the orientation-reversed mirror image of H_b , and \bar{b}^* is the m-braid obtained from the classical m-braid b by taking its mirror image and reversing all the crossings.

DEFINITION 2.3. We call H_b the 1-handle chart of Γ_T .

Fig. 2.2. The surface link chart Γ_S of degree 2m.

Let us consider the spun T^2 -knot of \hat{b} , where \hat{b} denotes the closure of a classical braid b. Let us determine Γ_T on $I \times I$ to be a chart presenting the braided surface $b \times I$; then the braids presented by $\Gamma_T \cap (I \times \{0\})$ and $\Gamma_T \cap (\{0\} \times I)$ are b and erespectively, where e is the trivial braid. The 1-handle chart of Γ_T is H_e . We obtain H_e , as follows.

Lemma 2.4. Let e be the trivial m-braid. Then the 1-handle chart H_e is equivalent to the chart as follows:

$$H_e \sim \bigcup_{k=0}^{m-1} O_k,$$

where O_k is the oval nest

$$O_k = O\left(m; \prod_{j=0}^{k-1} (m-1 \searrow m-k+j) \prod_{j=0}^{k-1} (m+1 \nearrow m+k-j)\right)$$

for k = 0, 1, 2, ..., m - 1. Note that for $k = 0, O_0 = O(m; \emptyset) = F_m$.

Proof. By Theorem 2.2, H_e is a chart presenting the simple braided surface as follows:

(2.1)

$$e \to (\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \Delta'_m \cdot \Delta_m$$

$$\to (\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \Theta_m$$

$$\to (\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \Delta'_m \cdot \Delta_m \to e,$$

Fig. 2.3. Moving a free edge across an edge.

where \rightarrow means an isotopy transformation and \rightarrow means a hyperbolic transformation along bands corresponding to the $m \sigma_m$'s. Here e is the trivial 2m-braid. Note that since (2.1) presents a simple surface braid, H_e does not have a boundary. The 1-handle chart H_e has m free edges, whose labels are all m. All the other edges have labels other than m and neither of them is connected with a black vertex. Draw H_e on $[0, 1/2] \times [0, 1]$ such that we can read the braids e, $(\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \Delta'_m \cdot \Delta_m$, $(\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \Theta_m$, $(\Delta'_m)^{-1} \cdot$ $\Delta_m^{-1} \cdot \Delta'_m \cdot \Delta_m$ and e of (2.1) at $[0, 1/2] \times \{t_1\}, \ldots, [0, 1/2] \times \{t_5\}$ respectively, where $0 < t_1 < \cdots < t_5 < 1$. Let q_k ($k = 0, 1, \ldots, m - 1$) be the black vertex corresponding to the (m - k)-th σ_m of the braid $(\Delta'_m)^{-1} \cdot \Delta_m^{-1} \cdot \Theta_m$.

Let us denote by F_k the free edge connected with the black vertex q_k . Let us move the free edges into $[1/2, 1] \times [0, 1]$ using CI-moves of type (2) as in Fig. 2.3 to be a split sum of oval nests and H'_e , where H'_e is the chart $H_e - (\bigcup_{k=0}^{m-1} F_k)$. Since H'_e has no black vertices, we can eliminate it by a CI-move. Thus we have a split sum of oval nests.

Let O_k (k = 0, 1, ..., m - 1) be the oval nest F_k becomes. We will see that each \tilde{O}_k is equivalent to the oval nest O_k . First we will obtain \tilde{O}_k . It suffices to see what edges F_k crosses as it moves into $[1/2, 1] \times [0, 1]$. We have

$$\Theta_m = \sigma_m \cdot \Pi_{m-1}^{\prime m} \cdot \Pi_{m-1}^m \cdot \sigma_m \cdot \Pi_{m-2}^{\prime m} \cdot \Pi_{m-2}^m \cdot \cdots \sigma_m \cdot \Pi_1^{\prime m} \cdot \Pi_1^m \cdot \sigma_m.$$

The first free edge F_0 does not cross any edge. Hence $\tilde{O}_0 = F_0$. Then the second free edge F_1 crosses edges representing $\Pi_1^{\prime m} \cdot \Pi_1^m = \sigma_{m-1}\sigma_{m+1}$, so it becomes the oval nest $\tilde{O}_1 = O(m; m - 1m + 1)$. The third free edge F_2 crosses edges representing $\Pi_2^{\prime m} \cdot \Pi_2^m \cdot \Pi_1^m = (\sigma_{m-1}\sigma_{m-2})(\sigma_{m+1}\sigma_{m+2})\sigma_{m-1}\sigma_{m+1}$. Hence it becomes the oval nest $\tilde{O}_2 = O(m; (m-1)(m-2) \cdot (m+1)(m+2) \cdot (m-1) \cdot (m+1))$. Repeating this step, we see that in general F_k crosses edges representing $\Pi_k^{\prime m} \cdot \Pi_k^m \cdot \Pi_{k-1}^m \cdot \Pi_k^m \cdot \Pi_1^m \cdot \Pi_1^m$, so it becomes an oval nest $\tilde{O}_k = O(m; \prod_{j=0}^{k-1}((m-1) \setminus m-k+j) \cdot (m+1 \nearrow m+k-j)))$ for $k = 0, 1, \ldots, m-1$.

We can show that if i + 1 < k then $(i \searrow j)(k \nearrow l)$ can be transformed to $(k \searrow l)(i \nearrow j)$ by the braid group relation 2, i.e.

(2.2)
$$(i \searrow j)(k \nearrow l) \sim (k \searrow l)(i \nearrow j).$$

Using (2.2), we see that $\tilde{O}_k \sim O\left(m; \prod_{j=0}^{k-1} (m-1 \searrow m-k+j) \prod_{j=0}^{k-1} (m+1 \nearrow m+k-j)\right)$, which is O_k .

3. Main theorem

An oriented surface knot is *unknotted* if it is equivalent to the connected sum of several standard tori. It is known [4] that any oriented surface knot S can be deformed to an unknotted surface knot by applying a finite number of oriented 1-handle surgeries. The *unknotting number* of S is the minimum number of oriented 1-handle surgeries necessary to deform it to be unknotted. In this section, we show Theorem 3.1 and Corollary 3.2.

Theorem 3.1. Let S be the spun T^2 -knot of a classical knot \hat{b} , where b is a classical m-braid (m > 1) such that there exists a permutation τ of degree m - 1 which satisfies the following conditions:

(a1) There is an integer $r \in \{1, 2, \dots, m-1\}$ such that for each $k \in \{1, 2, \dots, m-1\} - \{r\}$, $\sigma_k \cdot b = b \cdot \sigma_{\tau(k)}$, and

(a2) For each $i, j \in \{1, 2, ..., m-1\}$, if $i \neq j$, then $\tau^i(1) \neq \tau^j(1)$. Note that then $\tau^{m-1}(1) = 1$.

Moreover assume that S is not unknotted. Then the unknotting number of S is one.

By Theorem 3.1 we have an alternative proof of the fact [10] that the spun T^2 -knot of a torus (p, q)-knot has the unknotting number one.

Corollary 3.2. The spun T^2 -knot of a classical torus (p,q)-knot has the unknotting number one.

Proof. First we show that the spun T^2 -knot is not unknotted. The knot group of the spun T^2 -knot of a classical torus (p, q)-knot is isomorphic to the knot group of the classical torus (p, q)-knot ([15]). Hence we can see that the spun T^2 -knot is not unknotted.

We determine the braid *b* and the permutation τ , as follows. A classical torus (p, q)-knot is presented by the closure of the *p*-braid $b = (\sigma_1 \sigma_2 \cdots \sigma_{p-1})^q$, where *p* and *q* are coprime integers and moreover p > 1. Let *r* be defined by *q* mod *p* such that $r \in \{0, 1, 2, \dots, p-1\}$. Since *p* and *q* are coprime, $r \neq 0$ and it follows that $r \in \{1, 2, \dots, p-1\}$. Let us define a permutation τ of degree p-1 by

Fig. 3.1. The braid associated with τ if r - 1 .

We show that Condition (a1) of Theorem 3.1 holds, as follows. If $k \neq 1$, then we can show that $\sigma_k(\sigma_1\sigma_2\cdots\sigma_{p-1}) = (\sigma_1\sigma_2\cdots\sigma_{p-1})\sigma_{k-1}$. Similarly we have $\sigma_1(\sigma_1\sigma_2\cdots\sigma_{p-1})^2 = (\sigma_1\sigma_2\cdots\sigma_{p-1})^2\sigma_{p-1}$. From these two equations, we have $\sigma_k \cdot b = b \cdot \sigma_{\tau(k)}$ for each $k \in \{1, 2, \dots, p-1\} - \{r\}$. Thus Condition (a1) holds.

Next we will show that τ satisfies Condition (a2) of Theorem 3.1. Let us define Condition (a2)' as follows.

(a2)' The permutation τ is associated with a classical braid c such that \hat{c} is a knot, i.e. \hat{c} is connected.

We can see that if the permutation τ satisfies (a2)', then (a2) holds, as follows. If Condition (a2) does not hold, then $\tau^i(1) = \tau^j(1)$ for some $i, j \in \{1, 2, ..., p-1\}$ with $i \neq j$. We can assume that j > i. Then we have $\tau^{j-i}(1) = 1$, where 0 < j-i < p-1. On the other hand, if τ is associated with a classical braid c such that \hat{c} is a knot, then $\tau^k(1) \neq 1$ for any k with 0 < k < p-1. This is a contradiction.

From now on we will show that τ satisfies (a2)'. Since $r \in \{1, 2, ..., p-1\}$ with $r = q \mod p$, and p and q are coprime integers, we see that r = 1 or p and r are coprime. If r - 1 = p - r - 1, then p = 2r. Since r = 1 or p and r are coprime, we have r = 1 and p = 2. Then $\tau = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, which is associated with the trivial braid of degree one, whose associated closed braid is a trivial knot. Hence we can assume that $r - 1 \neq p - r - 1$. If $r - 1 , then the permutation <math>\tau$ is associated with a braid whose diagram is as in Fig. 3.1, where we omit the crossing information. Here we have $\tau(r - j) = p - j$ for j = 1, 2, ..., r - 1 and $\tau(p - j) = p - r - j$ for j = 1, 2, ..., r - 1. Hence we have $\tau^2(r - j) = \tau - r - j$ for j = 1, 2, ..., r - 1, which means that the (r - j)-th string of the closed braid is connected with the (p - j)-th string, which is connected with the (r - j)-th string of the closed braid is connected braid is connected with the (p - r - j)-th string of the closed braid is connected braid is connected with the (p - r - j)-th string. Hence we can assume that the (p - r - j)-th string, where j = 1, 2, ..., r - 1 (see Fig. 3.1).

Thus it suffices to show that the following permutation satisfies (a2)':

(3.1)
$$\begin{pmatrix} 1 & 2 & \cdots & r & r+1 & r+2 & \cdots & p-r \\ p-2r+1 & p-2r+2 & \cdots & p-r & 1 & 2 & \cdots & p-2r \end{pmatrix}$$
.

Similarly, if r - 1 > p - r - 1, then we have $\tau^2(r - j) = \tau(p - j) = p - r - j$ for j = 1, 2, ..., p - r - 1. Hence it suffices to show that the following permutation satisfies (a2)':

(3.2)

If r-1 < p-r-1 (resp. r-1 > p-r-1), then p-r > r (resp. r > p-r). Hence together with $1 \le r \le p-1$, we can see that p-r > 1 (resp. r > 1). Thus the permutation (3.1) (resp. (3.2)) is associated with the *m*-braid $c = (\sigma_1 \sigma_2 \cdots \sigma_{m-1})^n$, where m = p-r (resp. r) is the degree of (3.1) (resp. (3.2)) with m > 1, and $n = m-\tau(1) + 1$. Since for (3.1) (resp. (3.2)) we have m = p-r (resp. r) and $\tau(1) = p-2r+1$ (resp. p-r+1), it follows that (m,n) = (p-r,r) (resp. (m,n) = (r,2r-p)). Note that in both cases n > 0. Since r = 1 or p and r are coprime, together with m > 1 and n > 0, it follows that in both cases n = 1 or m and n are coprime. If n = 1, then \hat{c} ($c = \sigma_1 \sigma_2 \cdots \sigma_{m-1}$) is a trivial knot, and if m and n are coprime, then \hat{c} ($c = (\sigma_1 \sigma_2 \cdots \sigma_{m-1})^n$) is a torus (m, n)-knot. Thus τ satisfies (a2)', and it follows that τ satisfies (a2). Therefore the spun T^2 -knot has the unknotting number one by Theorem 3.1.

Proof of Theorem 3.1. We show that the unknotting number of *S* is one. Let Γ_S be a surface link chart presenting *S*. An *unknotted chart* is a chart presented by a configuration consisting of free edges ([5]). An unknotted oriented surface knot is presented by an unknotted chart ([5]). For an oriented surface knot, adding a free edge to the surface link chart corresponds to a nice 1-handle surgery, which is an oriented 1-handle surgery ([6]). Thus it suffices to see that the surface link chart obtained from Γ_S by adding a free edge is equivalent to an unknotted chart.

We will determine Γ_S by [14] (see Theorem 2.2). The chart Γ_T on $I \times I$ presents the braided surface $b \times I$; thus the braids presented by $\Gamma_T \cap (I \times \{0\})$ and $\Gamma_T \cap (\{0\} \times I)$ are *b* and *e* respectively (see Section 2). By Lemma 2.4 and (3.26) of Lemma 3.3, we can assume that the 1-handle chart H_e is as follows:

$$H_e = \bigcup_{k=0}^{m-1} O_k,$$

where

$$(3.3) O_k = O(m-k; (\overline{m-k+1} \nearrow \overline{m})(m+1 \nearrow m+k)),$$

Let us define and O'_k as follows:

(3.4)
$$O'_k = O(m-k; (\overline{m-k+1} \nearrow \overline{m})(m+1 \nearrow m+k) \cdot b).$$

The oval nest O'_k is obtained from O_k by adding loops describing *b* around it. By [14] (see Theorem 2.2), the surface link chart Γ_S obtained from Γ_T is as follows:

(3.5)
$$\Gamma_S = \bigcup_{i=0}^{m-1} O_i \cup \bigcup_{i=0}^{m-1} O'_i.$$

Remark that Γ_S is a ribbon chart of degree 2m (see [5, 9]).

We will show that the surface link chart Γ_s can be deformed to an unknotted chart by adding a free edge.

STEP 1. We show that

$$O_{m-k-1} \cup O_{m-k} \cup F_{2m-k} \sim O_{m-k-1} \cup F_k \cup F_{2m-k},$$

for $k \in \{1, 2, \dots, m-1\}$.

By (3.3) and (1.7), we have

$$O_{m-k} \cup F_{2m-k}$$

= $O(k; (\overline{k+1} \nearrow \overline{m})(m+1 \nearrow 2m-k)) \cup F_{2m-k}$
~ $O(k; (\overline{k+1} \nearrow \overline{m})(m+1 \nearrow 2m-k-1)) \cup F_{2m-k}.$

Let us denote $O(k; (\overline{k+1} \nearrow \overline{m})(m+1 \nearrow 2m-k-1))$ by \tilde{O}_{m-k} . By (1.7) we have

$$O(k+1; \emptyset) \cup O(k; \overline{k+1}) \sim O(k+1; \emptyset) \cup O(k; \emptyset).$$

Hence we have

(3.6)
$$O(k+1;c) \cup O(k;\overline{k+1}\cdot c) \sim O(k+1;c) \cup O(k;c)$$

for a braid c by (1.6). By (3.3) and (3.6) we have

$$\begin{split} O_{m-k-1} &\cup \tilde{O}_{m-k} \\ &= O(k+1; (\overline{k+2} \nearrow \overline{m})(m+1 \nearrow 2m-k-1)) \\ &\cup O(k; (\overline{k+1}) \cdot (\overline{k+2} \nearrow \overline{m})(m+1 \nearrow 2m-k-1)) \\ &\sim O(k+1; (\overline{k+2} \nearrow \overline{m})(m+1 \nearrow 2m-k-1)) \\ &\cup O(k; (\overline{k+2} \nearrow \overline{m})(m+1 \nearrow 2m-k-1)) \\ &= O_{m-k-1} \cup O(k; (\overline{k+2} \nearrow \overline{m})(m+1 \nearrow 2m-k-1)). \end{split}$$

890

By (1.4) we see that

$$O(k; (\overline{k+2} \nearrow \overline{m})(m+1 \nearrow 2m-k-1)) \sim O(k; \emptyset) = F_k.$$

Thus we have

$$O_{m-k-1} \cup O_{m-k} \cup F_{2m-k} \sim O_{m-k-1} \cup F_k \cup F_{2m-k}$$

STEP 2. Similarly, we show that

$$O'_{m-k-1} \cup O'_{m-k} \cup F_{\tau(k)} \sim O'_{m-k-1} \cup F_{2m-k} \cup F_{\tau(k)}$$

for $k \in \{1, 2, \dots, m-1\} - \{r\}$.

By (a1), $b^{-1}\sigma_k b = \sigma_{\tau(k)}$ for $k \in \{1, 2, ..., m-1\} - \{r\}$. Hence we have

$$(3.7) O(k;b) \sim F_{\tau(k)}$$

for $k \in \{1, 2, \dots, m-1\} - \{r\}$ by Lemma 1.3.

Similarly to Step 1, using (3.27) of Lemma 3.3, we have

$$(3.8) O_{m-k-1} \cup O_{m-k} \cup F_k \sim O_{m-k-1} \cup F_k \cup F_{2m-k}$$

for $k \in \{1, 2, ..., m - 1\}$. By (3.8) and (1.6), we have

(3.9)
$$O'_{m-k-1} \cup O'_{m-k} \cup O(k;b) \sim O'_{m-k-1} \cup O(k;b) \cup O(2m-k;b).$$

By (3.7), $O(k; b) \sim F_{\tau(k)}$ for $k \in \{1, 2, ..., m-1\} - \{r\}$. On the other hand, by (1.4) and 2m - k > (m - 1) + 1, we have $O(2m - k; b) \sim O(2m - k; \emptyset) = F_{2m-k}$. Hence together with (3.9), we see that

$$O_{m-k-1}'\cup O_{m-k}'\cup F_{ au(k)}\sim O_{m-k-1}'\cup F_{2m-k}\cup F_{ au(k)}$$

for $k \in \{1, 2, \dots, m-1\} - \{r\}$.

STEP 3. Let us denote Step 1 as follows:

$$\phi_l \colon O_{l-1} \cup O_l \cup F_{m+l} \to O_{l-1} \cup F_{m-l} \cup F_{m+l}$$

for $l \in \{1, 2, ..., m - 1\}$, and Step 2 as

$$\psi_l \colon O'_{l-1} \cup O'_l \cup F_{\tau(m-l)} \to O'_{l-1} \cup F_{m+l} \cup F_{\tau(m-l)}$$

for $l \in \{1, 2, \ldots, m-1\} - \{m-r\}$.

We introduce several notations to make things easy to see. Let us define F^{l} , F'^{l} and F''^{l} as follows:

for $l \in \{1, 2, ..., m-1\}$. Moreover, for an integer s, let us define τ_s to be

$$\tau_s := m - \tau^{-s}(r).$$

Step 1 is written as follows:

(3.14)
$$\phi_l \colon O_{l-1} \cup O_l \cup F'^l \to O_{l-1} \cup F^l \cup F'^l,$$

for $l \in \{1, 2, ..., m - 1\}$, and Step 2 is

(3.15)
$$\psi_l \colon O'_{l-1} \cup O'_l \cup F''^l \to O'_{l-1} \cup F'^l \cup F''^l,$$

for $l \in \{1, 2, ..., m-1\} - \{m-r\}$. Since by definition (3.13) $m-r = \tau_0$, Step 2 holds true for $l \in \{1, 2, ..., m-1\} - \{\tau_0\}$.

From now on we show that Γ_S can be deformed to an unknotted chart by adding a free edge F_r . Let us define charts $I_0, I_1, \ldots, I_{2m-4}$ of degree 2m. First, define I_0 as follows:

$$I_0 := \Gamma_S \cup F_r,$$

which is by (3.5) as follows:

(3.16)

$$I_0 = O_0 \cup O_{\tau_1} \cup O_{\tau_2} \cup \cdots \cup O_{\tau_{m-2}} \cup O_{\tau_0}$$

$$\cup O'_0 \cup O'_{\tau_1} \cup O'_{\tau_2} \cup \cdots \cup O'_{\tau_{m-2}} \cup O'_{\tau_0}$$

$$\cup F_r.$$

Note that by (a2), $\{\tau_0, \tau_1, \dots, \tau_{m-2}\} = \{1, 2, \dots, m-1\}$. For $n = 1, 2, \dots, m-2$, let us define I_{2n} as follows:

$$(3.17) Imes I_{2n} := O_0 \cup O_{\tau_{n+1}} \cup O_{\tau_{n+2}} \cup \cdots \cup O_{\tau_{m-2}} \cup O_{\tau_0} \cup F^{\tau_1} \cup F^{\tau_2} \cup \cdots \cup F^{\tau_n} \cup O'_0 \cup O'_{\tau_{n+1}} \cup O'_{\tau_{n+2}} \cup \cdots \cup O'_{\tau_{m-2}} \cup O'_{\tau_0} \cup F'^{\tau_1} \cup F'^{\tau_2} \cup \cdots \cup F'^{\tau_n} \cup F_r.$$

And for n = 0, 1, 2, ..., m - 3, let us define I_{2n+1} as follows:

(3.18)
$$I_{2n+1} := (I_{2n} - O'_{\tau_{n+1}}) \cup F'^{\tau_{n+1}}$$

We will show that I_{2n+1} (resp. I_{2n+2}) is obtained from I_{2n} (resp. I_{2n+1}) by applying Steps 2 (resp. Steps 1) for n = 0, 1, ..., m - 3.

When we have I_{2n} (n = 0, 1, ..., m - 3), there is an integer $l_0 < \tau_{n+1}$ such that for any l with $l_0 < l < \tau_{n+1}$, $O'_l \not\subset I_{2n}$ and $O'_{l_0} \subset I_{2n}$. Note that such an l_0 exists, for $0 < \tau_{n+1}$ and $O'_0 \subset I_{2n}$ for every $n \in \{0, 1, ..., m - 3\}$. Since $r = \tau^0(r) = \tau(m - (m - \tau^{-1}(r))) = \tau(m - \tau_1)$, by the definition of F'' (3.12) we have

(3.19)
$$F_r = F''^{\tau_1}$$

For n = 0, by (3.16) we have $l_0 = \tau_1 - 1$, and by (3.19) we see that

(3.20)
$$I_0 \supset F''^{\tau_1} \cup O'_{\tau_1-1} \cup O'_{\tau_1}$$

By the definitions (3.10) and (3.13), we have

$$F_{\tau^{-s}(r)} = F_{m-(m-\tau^{-s}(r))} = F^{m-\tau^{-s}(r)} = F^{\tau_s},$$

and by the definitions (3.12) and (3.13), we have

$$F_{\tau^{-s}(r)} = F_{\tau(\tau^{-(s+1)}(r))} = F''^{m-\tau^{-(s+1)}(r)} = F''^{\tau_{s+1}}.$$

Hence we have

(3.21)
$$F^{\tau_s} = F''^{\tau_{s+1}}$$

for each s. By the definition of I_{2n} (3.17) and (3.21) we have

$$(3.22) I_{2n} = O_0 \cup O_{\tau_{n+1}} \cup O_{\tau_{n+2}} \cup \cdots \cup O_{\tau_{m-2}} \cup O_{\tau_0} \cup F''^{\tau_2} \cup F''^{\tau_3} \cup \cdots \cup F''^{\tau_{n+1}}$$
$$\cup O'_0 \cup O'_{\tau_{n+1}} \cup O'_{\tau_{n+2}} \cup \cdots \cup O'_{\tau_{m-2}} \cup O'_{\tau_0} \cup F'^{\tau_1} \cup F'^{\tau_2} \cup \cdots \cup F'^{\tau_n}$$
$$\cup F_r$$

for n = 1, 2, ..., m - 3. By (3.22) and (3.19), we can see that if $F'^l \subset I_{2n}$, then $F''^l \subset I_{2n}$. So together with (3.20), we have

(3.23)
$$I_{2n} \supset F''^{l_0+1} \cup F''^{l_0+2} \cup \cdots \cup F''^{\tau_{n+1}-1} \cup F''^{\tau_{n+1}} \cup O'_{l_0} \cup F'^{l_0+1} \cup F'^{l_0+2} \cup \cdots \cup F'^{\tau_{n+1}-1} \cup O'_{\tau_{n+1}}$$

for n = 0, 1, ..., m - 3. By (3.22), we can see that if $F'^l \subset I_{2n}$, then $l \in \{\tau_1, \tau_2, ..., \tau_n\}$. Hence $l_0 + 1, l_0 + 2, ..., \tau_{n+1} - 1 \in \{\tau_1, \tau_2, ..., \tau_n\}$. By (a2) and $n \le m - 3$, none of $l_0 + 1, l_0 + 2, ..., \tau_{n+1} - 1, \tau_{n+1}$ is τ_0 . So we can apply Steps 2 (3.15) and its inverses to I_{2n} to deform $O'_{\tau_{n+1}}$ to $F'^{\tau_{n+1}}$. The result is I_{2n+1} by the definition of I_{2n+1} (3.18):

$$(3.24) \qquad \psi_{l_0+1} \circ \cdots \circ \psi_{\tau_{n+1}-1} \circ \psi_{\tau_{n+1}} \circ \psi_{\tau_{n+1}-1}^{-1} \circ \cdots \circ \psi_{l_0+2}^{-1} \circ \psi_{l_0+1}^{-1}(I_{2n}) = I_{2n+1}$$

for $n = 0, 1, \ldots, m - 3$.

By (3.16) and (3.17), we see that if $O'_l \subset I_{2n}$, then $O_l \subset I_{2n}$, and if $F'^l \subset I_{2n}$, then $F^l \subset I_{2n}$. Hence, by the definition of I_{2n+1} (3.18),

$$I_{2n+1} \supset O_{l_0} \cup F^{l_0+1} \cup F^{l_0+2} \cup \dots \cup F^{\tau_{n+1}-1} \cup O_{\tau_{n+1}}$$
$$\cup F'^{l_0+1} \cup F'^{l_0+2} \cup \dots \cup F'^{\tau_{n+1}}$$

for n = 0, 1, ..., m - 3, where l_0 is the same integer used in deforming I_{2n} to I_{2n+1} . And by the definitions (3.16), (3.17) and (3.18) we have

$$I_{2n+2} = (I_{2n} - O'_{\tau_{n+1}} - O_{\tau_{n+1}}) \cup F'^{\tau_{n+1}} \cup F^{\tau_{n+1}}$$
$$= (I_{2n+1} - O_{\tau_{n+1}}) \cup F^{\tau_{n+1}}$$

for n = 0, 1, ..., m - 3. Similarly to (3.24), we can deform I_{2n+1} to I_{2n+2} by applying Steps 1 (3.14) and its inverses and deforming $O_{\tau_{n+1}}$ to $F^{\tau_{n+1}}$:

$$(3.25) \quad \phi_{l_0+1} \circ \cdots \circ \phi_{\tau_{n+1}-1} \circ \phi_{\tau_{n+1}} \circ \phi_{\tau_{n+1}-1}^{-1} \circ \cdots \circ \phi_{l_0+2}^{-1} \circ \phi_{l_0+1}^{-1}(I_{2n+1}) = I_{2n+2}$$

for $n = 0, 1, \ldots, m - 3$.

Thus, repeating Steps 2 (3.24) and Steps 1 (3.25) alternately m - 2 times each, we have

$$I_{2(m-2)} = O_0 \cup O_{\tau_0} \cup \bigcup_{n=1}^{m-2} F^{\tau_n}$$
$$\cup O'_0 \cup O'_{\tau_0} \cup \bigcup_{n=1}^{m-2} F'^{\tau_n}$$
$$\cup F_r.$$

By (a2), we have $\{\tau_1, \tau_2, \dots, \tau_{m-2}\} = \{1, 2, \dots, m-1\} - \{\tau_0\} = \{1, 2, \dots, m-1\} - \{m-r\}$. Hence together with (3.10) and (3.11) we have

$$I_{2(m-2)} = O_0 \cup O_{m-r} \cup O'_0 \cup O'_{m-r} \cup \bigcup_{k \neq m, 2m-r} F_k$$

where

$$O_{m-r} \sim O(2m-r; (\overline{2m-r-1} \searrow \overline{m})(m-1 \searrow r))$$

by (3.27) of Lemma 3.3. On the other hand, by definition $O_0 = F_m$. Hence, we have free edges of all labels except 2m - r, using which and (1.7) we can deform the oval nest O_{m-r} to the free edge F_{2m-r} .

Therefore $\Gamma_S \cup F_r$ can be deformed to a chart containing $\bigcup_{k=1}^{2m-1} F_k$, using which and (1.7) we can deform $\Gamma_S \cup F_r$ to have only free edges, which is an unknotted chart.

894

Lemma 3.3. The oval nest of Lemma 2.4

$$O_k = O\left(m; \prod_{j=0}^{k-1} (m-1 \searrow m-k+j) \prod_{j=0}^{k-1} (m+1 \nearrow m+k-j)\right)$$

for k = 1, 2, ..., m - 1, is equivalent to the following:

$$(3.26) O_k \sim O(m-k; (\overline{m-k+1} \nearrow \overline{m})(m+1 \nearrow m+k))$$

(3.27)
$$\sim O(m+k; (\overline{m+k-1} \searrow \overline{m})(m-1 \searrow m-k)).$$

Proof. First, we will show that the braid $\prod_{j=0}^{k-1}(m-1 \searrow m-k+j)$ is equivalent to $\prod_{j=0}^{k-1}(m-k+j \searrow m-k)$, i.e.

(3.28)
$$\prod_{j=0}^{k-1} (m-1 \searrow m-k+j) \sim \prod_{j=0}^{k-1} (m-k+j \searrow m-k).$$

For positive integers l, i_1 , i_2 with $l \ge i_2 > i_1$, we have $(l \searrow i_1)i_2 \sim (i_2 - 1)(l \searrow i_1)$. Hence we can see that

$$(3.29) (l \searrow i_1)(l \searrow i_2) \sim (l-1 \searrow i_2-1)(l \searrow i_1).$$

By (3.29), we see that

$$\prod_{j=0}^{k-1} (m-1 \searrow m-k+j)$$

$$= (m-1 \searrow m-k) \cdot \prod_{j=1}^{k-1} (m-1 \searrow m-k+j)$$

$$\sim \prod_{j=1}^{k-1} (m-2 \searrow m-k+j-1) \cdot (m-1 \searrow m-k)$$

$$\sim \cdots$$

$$\sim \prod_{j=s-1}^{k-1} (m-s \searrow m-k+j-(s-1)) \prod_{j=k-(s-1)}^{k-1} (m-k+j \searrow m-k)$$

$$= (m-s \searrow m-k) \prod_{j=s}^{k-1} (m-s \searrow m-k+j-(s-1)) \prod_{j=k-(s-1)}^{k-1} (m-k+j \searrow m-k)$$

$$\sim \prod_{j=s}^{k-1} (m-s-1 \searrow m-k+j-s) \cdot (m-k+(k-s) \searrow m-k)$$
$$\cdot \prod_{j=k-(s-1)}^{k-1} (m-k+j \searrow m-k)$$
$$= \prod_{j=s}^{k-1} (m-(s+1) \searrow m-k+j-s) \cdot \prod_{j=k-s}^{k-1} (m-k+j \searrow m-k)$$
$$\sim \cdots$$
$$\sim (m-k) \prod_{j=1}^{k-1} (m-k+j \searrow m-k),$$
$$= \prod_{j=0}^{k-1} (m-k+j \searrow m-k),$$

which is (3.28). Similarly, we have another equivalence relation:

(3.30)
$$\prod_{j=0}^{k-1} (m+1 \nearrow m+k-j) \sim \prod_{j=0}^{k-1} (m+k-j \nearrow m+k).$$

Note that for positive integers l, i_1 , i_2 with $l \leq i_2 < i_1$, we can easily show that $(l \nearrow i_1)(l \nearrow i_2) \sim (l+1 \nearrow i_2+1)(l \nearrow i_1)$.

Using (1.4), we can show that if m - 1 > i, then

$$(3.31) O(m; (i \searrow j) \cdot c) \sim O(m; c)$$

for a braid c. Similarly we can show that if m + 1 < i, then

$$(3.32) O(m; (i \nearrow j) \cdot c) \sim O(m; c).$$

By (3.28) and (3.30), we have

$$O_{k} = O\left(m; \prod_{j=0}^{k-1} (m-1 \searrow m-k+j) \prod_{j=0}^{k-1} (m+1 \nearrow m+k-j)\right)$$
$$\sim O\left(m; \prod_{j=0}^{k-2} (m-k+j \searrow m-k) \cdot (m-1 \searrow m-k) \right)$$
$$\cdot \prod_{j=0}^{k-2} (m+k-j \nearrow m+k) \cdot (m+1 \nearrow m+k)\right).$$

896

For j = 0, 1, ..., k - 2, we have (m + k - j) - ((m - 1) + 1) = k - j > 0. Hence m + k - j > (m - 1) + 1. By (2.2), we have

$$O_k \sim O\left(m; \prod_{j=0}^{k-2} (m-k+j \searrow m-k) \cdot \prod_{j=0}^{k-2} (m+k-j \nearrow m+k) \cdot (m-1 \searrow m-k)(m+1 \nearrow m+k)\right).$$

By (3.31) and (3.32), we have

$$(3.33) O_k \sim O(m; (m-1 \searrow m-k)(m+1 \nearrow m+k)).$$

Now we will show that

$$(3.34) O(m; (m-1 \searrow m-k) \cdot c) \sim O(m-k; (\overline{m-k+1} \nearrow \overline{m}) \cdot c),$$

where c is a braid. For positive integers i_1, i_2 with $i_1 > i_2$, by (1.5) and (1.6) we have $O(i_1; (i_1 - 1 \searrow i_2)) \sim O(i_1 - 1; \overline{i_1} \cdot (i_1 - 2 \searrow i_2))$, which is equivalent to $O(i_1 - 1; (i_1 - 2 \searrow i_2))$, which is equivalent to $O(i_1 - 1; (i_1 - 2 \searrow i_2))$. Thus we have

(3.35)
$$O(i_1; (i_1 - 1 \searrow i_2)) \sim O(i_1 - 1; (i_1 - 2 \searrow i_2) \cdot \overline{i_1}).$$

Using (3.35) and (1.6), we can see that

$$O(m; (m-1 \searrow m-k))$$

$$\sim O(m-1; (m-2 \searrow m-k) \cdot \overline{m})$$

$$\sim \cdots$$

$$\sim O(m-s; (m-s-1 \searrow m-k) \cdot (\overline{m-s+1} \nearrow \overline{m}))$$

$$\sim O(m-s-1; (m-s-2 \searrow m-k) \cdot (\overline{m-s}) \cdot (\overline{m-s+1} \nearrow \overline{m}))$$

$$= O(m-s-1; (m-s-2 \searrow m-k) \cdot (\overline{m-s} \nearrow \overline{m}))$$

$$\sim \cdots$$

$$\sim O(m-k; (\overline{m-k+1} \nearrow \overline{m})).$$

Hence by (1.6), we have (3.34). By (3.33) and (3.34), we have

$$O_k \sim O(m; (m-1 \searrow m-k)(m+1 \nearrow m+k))$$

$$\sim O(m-k; (\overline{m-k+1} \nearrow \overline{m})(m+1 \nearrow m+k)),$$

which is (3.26).

By (3.33) and (2.2), we can see that

$$(3.36) \qquad O(m; (m-1 \searrow m-k) \cdot (m+1 \nearrow m+k)) \\ \sim O(m; (m+1 \nearrow m+k) \cdot (m-1 \searrow m-k)).$$

And similarly to (3.34), we can see that

$$(3.37) O(m; (m+1 \nearrow m+k) \cdot c) \sim O(m+k; (\overline{m+k-1} \searrow \overline{m}) \cdot c),$$

for a braid c. Hence by (3.36) and (3.37) we have the other equivalence relation (3.27):

$$O_k \sim O(m+k; (\overline{m+k-1} \searrow \overline{m})(m-1 \searrow m-k)).$$

ACKNOWLEDGEMENTS. The author would like to thank the referee for the helpful and kind advice. The author is supported by JSPS Research Fellowships for Young Scientists.

References

- [1] J.S. Birman: Braids, Links, and Mapping Class Groups, Annals of Mathematics Studies **82**, Princeton Univ. Press, Princeton, NJ, 1974.
- [2] J. Boyle: Classifying 1-handles attached to knotted surfaces, Trans. Amer. Math. Soc. 306 (1988), 475–487.
- [3] J.S. Carter and M. Saito: Knotted Surfaces and Their Diagrams, Mathematical Surveys and Monographs 55, Amer. Math. Soc., Providence, RI, 1998.
- [4] F. Hosokawa and A. Kawauchi: Proposals for unknotted surfaces in four-spaces, Osaka J. Math. 16 (1979), 233–248.
- [5] S. Kamada: Surfaces in R⁴ of braid index three are ribbon, J. Knot Theory Ramifications 1 (1992), 137–160.
- [6] S. Kamada: 2-dimensional braids and chart descriptions; in Topics in Knot Theory (Erzurum, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 399, Kluwer Acad. Publ., Dordrecht, 1993, 277–287.
- S. Kamada: A characterization of groups of closed orientable surfaces in 4-space, Topology 33 (1994), 113–122.
- [8] S. Kamada: An observation of surface braids via chart description, J. Knot Theory Ramifications 5 (1996), 517–529.
- [9] S. Kamada: Braid and Knot Theory in Dimension Four, Mathematical Surveys and Monographs 95, Amer. Math. Soc., Providence, RI, 2002.
- [10] T. Kanenobu and Y. Marumoto: Unknotting and fusion numbers of ribbon 2-knots, Osaka J. Math. 34 (1997), 525–540.
- [11] A. Kawauchi: A Survey of Knot Theory, translated and revised from the 1990 Japanese original by the author, Birkhäuser, Basel, 1996.
- [12] J.M. Montesinos: On twins in the four-sphere, I, Quart. J. Math. Oxford Ser. (2) 34 (1983), 171–199.
- [13] I. Nakamura: Surface links which are coverings over the standard torus, Algebr. Geom. Topol. 11 (2011), 1497–1540.

898

- [14] I. Nakamura: Braiding surface links which are coverings over the standard torus, J. Knot Theory Ramifications 21 (2012), 1250011, 25 pp.
- [15] C. Livingston: Stably irreducible surfaces in S⁴, Pacific J. Math. **116** (1985), 77–84.
- [16] L. Rudolph: Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), 1–37.

Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502 Japan

Current address: Department of Mathematics Gakushuin University 1-5-1 Mejiro Toshima-ku Tokyo, 171-8588 Japan e-mail: inasa@math.gakushuin.ac.jp