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Introduction

In a previous note [10] the author has defined a class of CW-complexes such
that if K is such a complex, then there is a CW-complex w(K) which is a subspace
of the loops £(K) in K, and such that the injection map induces an isomorphism of
the homotopy groups of w(K) and 2(K).

In this paper, we consider firstly CW-complexes which have free monoid struc-
ture. Secondly if L is such a complex we construct from L a new CW-complex K
such that L=w(K), and such that K is obtained by an identification d: LXI— K.
Each point x of w(K) defines a standard loop d: (x) XI— K, and o(K) is regarded
as the subset of 2(K). As a standard path in K, we mean a linear part of a
standard loop in K. We define a complex w(K, K,) of standard paths which start in
a subcomplex K, of K and end at the base point ¢,.

Our fundamental theorem is stated as follows (§4):

TaeoreEM. m;(o(K, K,)) ~r;,(K, K,) for all i.

The application of our theory to the homotopy theory is based on the fact that
for any simply connected space X there exists a complex K on which we may define

(K) and there exists a map f: K— X such that f induces isomorphisms of homo-
Jpy groups.

One purpose of the paper is to prove the following connectedness theorem for
(n+1)-ad homotopy groups (§6). Let X be a CW-complex and let Y, Y, -, Y,
be subcomplexes of X such that Y;~Y;=Y for i==j and Y,“Y---YY,=X. Set
X;=X—(Y;—Y). Let @ be a class of abelian groups which satisfies the condition
(D), (Ig) and IID of [9].

TueoreM. If Y is simply connected, (Y;, Y) are 2-connected and H,(Y;, Y) € @
for p<qg;+1. Thennp(X; Xy,, Xn) €@ for p<Q=2q; and ng,,(X; Xy, -, X,) is
@~isomorphic to the divect sum of (n—1)! copies of Hg . (Y,, )X KRHy, .1 (Y,, Y).

1. Preliminaries.
Denote by I” the unit n-cube and by I” its boundary :
I"={(xy, -, 2)]|0< %<1},  I"={(x,-,x,) €I"|TT x;(1—x,)=0}.

According to J.H.C. Whitehead [12] K is a CW-complex; if K is a closure
finite cell complex, i.e., K is a Hausdorff space which is the union of disjoint open
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cells ¢f with characteristic maps ¢, : I”—&? such that ¢,|(I”—I") is a homeomor-
phism onto e? and 0e?=¢,(I”) is contained in the union of a finite number of cells
whose dimensionalities do not exceed n—1; and if K has the weak topology, i.e., a
subset XC K is closed provided Xz is closed for each cell eCK. A subcomplex of
a CW-complex is also a CW-complex. We list here some properties of CW-complex
from [12]:

(1.1) A map f: K— X is continuous provided f|K~2 is continuous for each cell
eCK.

(1.2) If XCK is compact, then X meets only a finite number of cells.

(1.3) Let f: K—~L be a map of a CW-complex K onto a closure finite complex L
which has the identification topology determined by f and if f(¢) meets only a finite
number of cells of L for each ¢CK, then L is a CW-complex.

(1.4) If K is a CW-complex and L is a locally finite complex, then the topological
product Kx L is a CW-complex by the natural cell-decomposition.

(1.5) Let K and L be CW-complexes. Then a map f: K->L is a homotopy equiv-

alence if and only if f induces isomorphisms of the homotopy groups.

Hereafter we consider that to each CW-complex characteristic maps of the cells
are given and fixed.

Let K and L be CW-complexes. Consider the topological product Kx L which
is a closure finite complex, a cell of KX L is the product ej;xef of cells efC K and
¢8CL and the characteristic map of elx e is given by ¢g,p(%, ¥)=(¢.(x), ¢s(3))
for the characteristic maps ¢, and ¢g of e} and ¢§. We do not know whether the com-
plex KX L has the weak topology or not. Hence we change the topology of Kx L
to the weak topology and let Kx,L be the resulting CW-complex. The natural
map KX4,L—KXL is a homeomorphism on finite subcomplexes.

Let K and K, be a CW-complex and a subcomplex. Let Hy(K, K,)=>_ Hp(K, K,)
be the (cubical) singular homology groups, then H,(K” K" ') is a free module
generated by the classes of the characteristic maps ¢,: (I% 1) — (22, Be?)
C(K" K" '). We denote by the same symbol e? the class of ¢,. Set H,(K", K"1)
=C,(K) and >} C,(K)=C(K), then C(X) is a chain group with the boundary
homomorphisms 0,,: C,(K)—C,-,(K) defined by the composition jy°0: H,(K”, K"*)
—H, (K" —H, (K", K"-?). As is well known
(1.6) H,K)~H,C(K)=Xernel 0,/Image 0,., and H,K, K)~H,(C(K)—C(K,) .

A cellular map f: (K, K;) - (L, L,) induces chain homomorphisms fyx: C(K, K,)
=C(K)—(K,) - C(L, Ly)=C(L)—C(L,) and fgz induces the homomorphism
Jx: Hy(K, Ko) = Hy(L, Ly).

Consider the natural map f: KX,L—KxL. Since a singular chain covers only
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a finite number of cells in KX L (KX,L), f induces isomorphisms fy: Hy(KX L)
~Hy(KxL) and fu: C(KX,L)~C(KxL). The generators of C(KX,L) are chains
ez X ¢g, the classes of ¢, 5, and the correspondence ef (X ¢ — ez X ¢ induces an isomor-
phism: C(K) QR C(L) - C(KX,L). We have that 8(esx €f) =0eyx 3+ (—1)" e X 0.
The chain group C(K)Q C(L) is refered to as the tensor product of C(K) and C(L).
Then we have the formula of Kiinneth [4], [2]: H,(C(K) X C(L)) ziJr};‘:pHi(C(K )

K H;(C(L)) +i+j§_1H5(C(K))*Hj(C(L))-

Let @ be a class of abelian group which satisfies the axioms (I) and (IIg) of
[9], then we have that

(1.6) Let Ccp», -+, Ccry be chain groups such that H,(C;) € @ for p<lg;, i=1,--,7,

and let @Q=>1¢;. Then Hy(Cy® R Cery) € @ for p<Q and Ho(CiyR -+ R Cery)
is @-isomorphic to Hy (Cci)) Q-+ R Hy, (Cery).

Let EZ be disjoint n—cubes, let >)" be the union of E7 and let }_}" be its bound-
ary. Then the cross-products induces isomorphisms H,(X)® H,(3", Z”)szM(,X
Xx3M™ X% 3™ and the diagram

Hy(X) QH, (3", 37" a2 Hp, (X XS, X3
.7 Fe @i l (Fx i)
Hy(Y) QH, ", S a Hy, (Y XS, Y31

is commutative, where f: X— Y is a map and 7 is the identity on >*. This is a
special case of the Kiinneth’s formula and a simple proof was given in a remark of
[11, p. 213].

Next we recall the following Hurewicz theorem :

(1.8) Let X and Y be a space and a subspace. If Hy(X, Y)=0 for p<» and if
(X, Y) is n—simple, then 7, (X, Y)~H,(X, Y).

For the proof see [5]. If X is arcwise connected, then #,(X)-— H,(X) is onto.
Therefore we have that

(1.8)" if mp(X)=0 for 0<"p<#, then Hy(X)=0 for 0<p<n.
Let @ be a class of abelian groups which satisfies (I), (Ilg) and tIID), then from [9],

(1.9) If X and Y are simply connected, (X, Y) is 2-connecied and if Hy(X, Y)€ @
for p<m, then (X, Y) € @ for p<n and n,(X, Y) is @-isomorphic to H,(X, V).

Suppose that in the following homomorphisms between two exact sequences {G,}
and {H,}:

the commutativity holds. Then we have that (cf. [4])
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(1.10) a) if f,: and f,-, are onto and if f;1,(0)=0, then f, is onto; b) if f,1»
is onto and if f,y,, f,—; and f,_, are isomorphisms, then f, is an isomorphism.

2. FM-complexes and complexes of standard paths.

i) FM-complexes: An FM-complex is a CW-complex L having a free monoid
structure. More precisely, an FM-complex L has a multiplication (product) (%, y)
—>%-y which satisfies the following conditions (2.1),—-(2.1);.

(2.1); f(x,9)=x-y defines a continuous map f: LX,L— L.

(2.1), The O-section L° constitutes of a single point ¢, which acts as the unit
element: x-¢,=¢,-x=x for all x€ L.

2.1); (xy)-z=x-(y-2) (denoted by x-y-2).
We denote A-B={a-bla€ A, b€ B} for two subsets A and B of L.

{2.1), The product ¢”-¢” of 2-cells ¢” and ¢™ is also a cell whose characteristic map
¢yt I — "™ is given by ¢5(¢, u) =¢,(¢)-¢,(u), where ¢, and ¢, are characteristic

maps of ¢” and ™.
{2.1)s; There are no relations but (2.1), and (2.1), in the product.

By a primitive point ¥ we mean a point which is not decomposable, i.e., x=y-z
implies x=y or x=2. If x=y-zfor x€¢" y€e” and z€¢”, then from (2.1), we have
that ¢"=e"-¢”, y=m+n and that f|e”x¢™ is a homeomorphism onth ¢”-¢”. Therefore
if a point of a cell ¢ is primitive, then the other points of ¢ are also primitive, and
the cell ¢ is said to be primitive. Then any cell ¢” of a positive dimention # >0 is
the product of a finite number of primitive cells o¢; of prositive dimention #, such
that n=>]#n,. By (2.1); the expression ¢”"=g, --- g, has to be unique.

Therefore L is a free monoid whose generators are the primitive points.

Let L, be an FM-complex. Consider maps f,: I”#—L3s~! and a CW-complex
L’=L,+2>¢" which is obtained from L, attaching the cells ¢”¢ by the maps fy.

(2.2) There exist‘s an FM-complex L which contains L, as a submonoid and L’ as

a subcomplex such that the primitive cells of L are the those of L, and e".

In fact, we consider a free monoid L generated by the primitive points of L, and
the points of ¢”®. Then the products of the primitive cells of L, and ¢”* form a
decomposition of L, and L becomes FM-complex if we give the topology on each
closure of a cell by (2.1), and next take the weak topology on the whole of L. This
process is possible since L is a closure finite complex.

The product f: LX,L—L ihduces the chain homomorphism fu: C(L)& C(L)
—C(L). We write as ¢-¢' € fu(c@c) for ¢, ¢’ € C(L). By a primitive chain o we
mean the class of the characteristic map of a primitive cell o.
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Proposition (2.3) The chain group C(L) of a FM-complex L is a graded free
ring (Pontrjagin ring) generated by the primitive chains. The boundary operator is
an anti-derivation, i.e. 9(c”-¢™)=(0c")-c"+(—1)"c"-(0c™) for c¢"€C,(L) and
c”€Cy,(L).

The proof is immediate.

ii) Complexes of standard loops. Here we shall construct a CW-complex K
such that a subspace of its loops space is an FM-complex L. We shall refer to L
as the complex of the standard loops in K, and K as a complex which admits standard
paths.

LEMMA (2.4). Let L be an FM-complex, then there exists a real valued func-
tion o of L such that o(x-y)=p0(x)+0(y), %, y3L and such that p(x) >0 for x=Fe,.

We define p presisely as follows: Let L(n#) be a subcomplex whose cells are the
products of primitive cells of dimension <<#. Since L(0)=¢,, we set o(¢,)=0 and p
is defined on L(0). Suppose that p is defined on L(z—1). Let o, be a primitive
n—cell and let ¢,: I"—&, be its characteristic map, then p is defined on 9, since
L*'CL(n—1). For a point x of I”, we denote by [, #] the point which divides
x and the center (3, ---,%) of I” in the ratio £; 1—£f. We set o(¢u[x, t])=0—¢)
o(¢u (%)) +tn for each a, then p is extended over L(x) by the linearity o(x-y)
=o0(x)+0(y). From (2.1);-(2.1); and (1.1) p is single valued and continuous.
Then p is defined by induction on #.

This function o is defined uniquely since we fixed the characteristic maps for
each CW-complex.

Let K=B(L) be a space which is defined from the product complex LXxI by an
identification d: LxI— B(L)=K such that

d<eOy t):d<eO) O)ZeOEK;

t
m d(s1=5) i
" 11 =i<1,
where x, y€ L, x-y==¢, and 1= o(%)
’ ’ ’ ox-y)

We see that d(LxI)=e¢, and d(e-e’xI)=d(exI)~Yd(e’xI). Therefore B(L) is
the union of the disjoint sets d(ox (I —I)) for the primitive cells ¢. Since there is
no relation on ¢”x (I—I) if dimension #>>0,d|¢"x (I—I) is a homeomorphism.
Denote the image d(¢”x (I—I)) by Eo" and define a characteristic map ¢’: I*+!
—Ed® by ¢ (%, , Zpp) =A%y, -, %), ¥u1) Where ¢ is the characteristic map of
6". Then B(L)=e¢,+>! Ec becomes a closure finite cell complex. Since d(o,--- ar)
CUEg;, the identification d: LxI—B(L) satisfies the condition of (1.3), and hence
K=B(L) is a CW-complex.

We write L=w(K) ; this means that L is an FM-complex such that K=B(L).
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We say that a CW-complex K admits standard paths if there exists an FM-complex
L such that K=B(L).

For each point x of o(K), we define a standard loop I.: (I, I) — (K, &) by the
formula /,(f)=d(x,{),t€1 Then the correspondence x—/, defines a 1-1 continuous
map i: o(K)—82(K), where 2(K) denotes the space of loops in K based at e,.
Hence w(K) is regarded as the subset of £2(K) changing its topology from weak
topology, and it is called the complex of standard loops in K.

Define a suspension homomorphism E: C,(0o(K))—C, ,(K) by setting E(c)
=di(c®1,), where ¢, is the class of the identity of (J, I) on itself. Then we have
that

(2.6) E is a chain homomorphism. E maps C(w(K))-{e} onto C(K)—{e} and

its kernel is generated by the decomposable elements.

In the case that the union of the primitive cells forms a subcomplex L, of
L, K=B(L) is a suspension of L, and d shrinks LyxI“e,xI to a single point e,.
Then L becomes the reduced product space of L, in the sense of [6].

iii) Complexes of standard paths. Let L=w(K) be an FM-complex. Define a
space w(K, K) from o(K)xI be the identification d: w(K)xI—w(K, K) such that

d(e, )=d(e,, ) =¢,€ 0(K, K) ,
@7 B B .
d(x-y,f)=d<y,—V) if A<t<1,
1-1
where x, y€ w(K), x-y=F¢, and A= p‘()(yfy
Since d has no relations on w(K)x(0), d|w(K)x (0) is a homeomorphism onto
a subset of w(K, K). We imbed w(K) into w(K, K) by identifying each x€ w(K)
to d(x, 0) €w(K, K). The product in o(K) is extended to the product

(2.8) oK, K) X yo(K) —> o(K, K)
by setting d(x, £)-y=d (x-y —t0—<x—)—) . Denote A-B={x-ylx€A,ycB} for
’ " o(x-9)

ACw(K, K) and BCw(K), then A-¢y=A, ¢)»B=B and A-(B-B")=(A-B)-B".
Define a projection
2.9 p: oK, K) — K
by the formula p(d(x, £))=d(x, t), then p(z-2)=p(2) for z€ w(K, K) and x¢€ o(K).
Hence if y=d(x, ) for a primitive point x€ w(K) then p~*(3)=d(x, £)-0(K). Let

¢ be a primitive cell and denote by Do the image d(ox (I—I)). Since the identifi-

cation d has no retation on ox (I—I), d maps ¢x (I—I) homeomorphically onto Da.
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(2.10) The product defines a homeomorphism of DoX w(K) onto a subset Do-w(K)
of w(K,K). w(K, K) is the union of the disjoint subset Do-w(K) over all primitive

cells a. (Dey=e,).

Proof. First we prove that the product in w(K) defines a homeomorphism of
oXw(K) onto g-w(K). Since w(K) is free this correspondence is one to one. Then
it is sufficient to prove that ¢xz and ¢-2 are homeomorphic, and this follows from
(2.1), since oxe and ¢-2 both have the identification topology given by their charac-

teristic maps. Let o=F¢, and let f: (c-0(K))x (I—I)—c-0(K)xICwo(K)XI be a
to(x)
o(x-9)
M of w(K)xI. The map d is a homeomorphism of M onto D¢-w(K) since

d is one to one and has no relation on M. Since d|ox (I—I) is a homeomor-
phism onto Ds, DeXw(K) is homeomorphic to (o-w(K))x (I—I), to M and to
Do-w(K), and this homeomorphism is given by the product (2.8). The second part
of (2.10) is easily verified. ’

By (2.10), (K, K) is a closure finite cell complex consisting of the cells Do-e, ¢

map defined by f(x-9,1)= (x 9, ), then f is a homeomorphism onto a subset

. k -
Cw(K) ; o primitive. Since d(g,* =0 XI)C U Do;*0;41+---+0r, d satisfies the con-
=1

dition of (1.3). Therefore we have that
(2.11) w(K, K) is a CW-complex.

Let K’ be a subcomplex of K. Then p~'(K’) is a subcomplex of w(K, K)
which consists of cells Dog-e where eCw(K) and ¢ is a primitive cell such that
EocCK’. We denote this complex by w(K, K’). Obviously w(K, K")-o(K)Cw(K, K').

To each point d(x,t) of w(K, K’), x¢(K),tcI, we associate a standard path
lvcty: I— K which is defined by /Iy (u)=d(x, t+u—tu), Let f: (K, K")XI—K be
the map given by f(d(x, ), w) =d(x, t+u—tu), then f is continuous. Therefore the
correspondence d(x, £) — Iy defines a continuous map

it oK, K) — 2K, K,
where 2(K, K’) denotes the space of paths in K which start in K’ and end at the
point ¢,. The map ¢/ maps w(K, K’) one to one continuously onto a subset of
2(K, K’). We remark that the map 7 is homeomorphism on compact subsets of
o(K, K’) but not always homeomorphic on the whole of w(K, K’).
The product of (2.8) defines a chain homomorphism: C(w(K, K"))® C(w(K))

— C(w(K, K)), and we denote the image of ¢(Xc¢ by c¢-¢’. Next we define a
homomorphism

D: Cy(0(K)) —> Cpu(o(K, K))

by D(c™) =dy(c"R1,), then pzD(c)=FE(c) for the projection p of (2.9). Immediate
calculation shows that
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(2.12) a) 9(c"-c"™)=(0c™)-c"+ (—1)" "= (9c™) ,
b) 9(Dc™)=D(0c™) + (—1)"*+*c".
Define homotopy 7:: o(K, K) »w(K, K) by (r:f) @) =ft+u(1—1%)), then we
have that

(2.13) w(K, K) is contractible to ¢,.

3. Some lemmas

In this §, K and K, means always a CW-complex which admits standard paths
and a subcomplex. We shall use the notations of the previous $.

Since w(K) and 2(K) are both H-spaces [8], w(K) and 2(K) are simple for
all dimensions.

Let V: (K, Ky) x2(K)—82(K, K,) be a map which is given by

@0 0<t<%,

FVe®= {g(2t—1) 3<t<1,

where f: (I, (0), (1))~ (K, Ky, e), g: (I,[)—>(K,e) and t€I Define a path
P(f,g,s): I-K for few(K, K,), g €w(K) and s€ by
L) o=i=a.

S

g[=k) A<,

P(f, g ()= {
1—4

_(2=9) o(f)+sp(g)
where As= 20(f-2) .

3.1) P: o(K, K,) Xwo(K)xI —> 2(K, K,)

Then we have a continuous map

SuCh that P(f, g, 0>:f' ’ P(fy gy 1)=fvg and P(e07 eO’ S)ZeO‘
LEMMA (3.2) Let i: w(K, K,)—>2(K, K,) be the natural map, then the follow-

ing two conditions are equivalent:

a) iy: H,(o(K, K)))~H,(2(K, K,)) for all n,
b) iy: m(w(K, Ky)) =~n,(2(K, K,)) for all n.

Proof. Let £ be the mapping cylinder of 7. We represent the points of £ by
(%, 1), x€w(K, K,), t€l and by y€ 2(K, K,) with the relation x=(x,1) and i(x)
=(x,0). Since K'=K}=¢,, m,(K, K))=n,(2(K, K;))=0, i.e. (K, K,) is arcwise-
connected. Since w(K, K,) has only a vertex e¢,, (K, K,) is arcwise connected.
Then the conditions a) and b) are equivalent to the following conditions a’) and b")
respectively :
a") H,(2, w(K, K;))=0 for all # >0,
) 7,(&2, (K, K;))=0 for all #>0.

Now we shall prove the following two assertions:
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(3.3) (&, oK, K))=0,
(3.4) m(w(K, K,)) operates trivially on 7,(&2’, (K, K)) .
Then Lemma (3.2) is proved immediately from (1.8).

Proof of (3.3) Since K'=Ki=¢,, n,(K,)=0 and m,(K)—m,(K, K,) is onto.
Then 7,(K, K,) is generated by the classes of characteristic maps of 2—-cells in K— K,
which are the suspension of the classes of characteristic maps of 1-cells in w(K).
Therefore 7, (0(K))—>n (2K, K,))=nrn,(K,K,) is onto, and m,(o(K, K,))
-, (2(K, K,)) is onto, that is, (2, o(K, K,))=0.

Proof of (3.4) Since w(K, K,)—w(K) has at least 2-dimension, m,(w(K))
—m(w(K, K,)) is onto. Therefore it is saficient to prove that
(3.4) pB*=B for a€n,(w(K)) and Ben, (2, oK, K,)).

Let a: (I, ) — (w(K), ¢;) and b: ar; 1= j»-H - (2, (K, K,), e¢,) be repre-
sentatives of « and S respectively, where I*~'=]""'x (0)CI” and J n-1_J7_Int.
I"™-'. Denote by [, £] a point of I” which divides a point % of I” and the center
(3,-,% of I" in the ratio #: 1—#¢ Define a homotopy bs: (I” I"* J*1)
(&, o(K, Ky), ¢,) by

7(b(L, 01)) 0=<r<3,
([, £ = { o
npl[=55]) s=r=n
for 0<<s<{1 and by
7 (b(T, 01)) 0<t<,
b= ([, D= | P(r(b([x, 01)), 230 $St<3,
[ 3t—s S
rlnll=5=0) 2)  g=r=n

for 1<<s<{2, where r;; £ — & is a retraction of 2’ onto (K, K,) given by 7:(x, u)
=(x, A=) u), and Py(f,u): I-K(fc 2(K, K,)) is a path defined by

2t 1+u
f( 1+u> 0=t= 2 7

¢ 1;u§t_<1.

Then b=0, and b, represent the same element (3. Next define a homotopy
hs: (I", 1778 J7=1) — (&2, (K, Ky), a(s)), s€l, by

Po(f,w) ()= {

7o (b([x, 01)-a(s)) 0=t< L,
he([% D= { PO([x, 0D, a(e), 8-1)  $<t<2,
R ZCI EE
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Then we have that Zy,=h=0,. In the other words, the homotopy %s shows that the
class of h, is B” Therefore (3.3)’ is proved. Consequently Lemma (3.2) is
established.

Let ¢,: I"— &2 be the characteristic map of a primitive n—cell 6% of w(K,). Let
V7= {[x, £]|#<<1<1}, and denote by E7*! the subset d(¢,(V*)x V) of D¢%, and
let 3" be the union of E% for all ¢%Cw(K,). E%' are (n+1)-cubes disjoint
from each other. Denote by >**! the boundary of >"*.

Define a homotopy #s of D% on itself by

Sl 20)0) e osusi
7 (¢u(Tx, 0D, 25) o<t<ios, fouc 2t
ro(@ (T 1D, w0 = | 4 (9|5 ZESTE]), EE T 1o ey

o252 0) i,

x,t,s€Il, x€I". Then 7, is the identity and 7, maps the interior of E%*! onto Doj.
7s fixes the points of 0oZ.
Define homotopies

$s 1 2" X0(K) —> o (K, K§™),

@51 2MIXQ(K) —> 2(K, K§'),
by ¢s(x, )= (7sx)-y and ¢s'(x, y)=(7sx) Vy for y€w(K), y € 2(K) and x€3""
Denote ¢=¢, and ¢'=g¢,, then ¢(Z‘,”+1Xw(K))Cw(K, K?) and ¢’(Z‘"“><.Q(K))
CR(K.KD).

PROPOSITION (3.5) The maps ¢ and ¢’ induce isomorphisms of relative homology
groups and the diagram

Hy (S5 o(K), Y% o(K)) = Hy(o(K, K5, oK, K3)

. by
Hy (S Q(K), Smix Q(K)) ~ Hy(2(K, K30, 2(K, KD)
is commutative, wheve the vertical homomorphisms are induced by the natural maps.

Proof. The commutativity follows from the homotopy (3.1). By (2.10),
¢ maps (QIPTi—3mt) X @(K) homeomorphically onto w(K, Ki*')—w(K, K¥). Hence
¢4 is an isomorphism.

Let p: 2(K, K,) — K, be the projection, then (K, K§™) =p~"'(K§™) and 2(K, K
=p~'(K%). p maps 2" homeomorphically onto a subset of K3t'—K?% and we
denote this subset by 3W*! and its bundary by 3%*. Let X be the closure of
Kpt—>w+ Consider the diagram
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. by’
H G < Q(K), "% Q2(K)) —> Hy(p~"(Kg*), p~"(KP)

’ ;7

. Jx
Hy(p=* (8™, p7ICHM) 2 Hy(p~*(K§™), p71(X))

1

where j and j/ are injections. From the homotopy ¢+, we have that the diagram is
commutative. Now we shall prove that the homomorphisms jy, jx and ¢y are
isomorphisms, then ¢y is an isomorphism.

As is easily seen K7 is a deformation retract of X, therefore p~'(K7p) is a defor-
mation retract of p~'(X) by the covering homotopy theorem. Then Hy(p~'(X),
p~*(K%))=0 and this implies that jy  is the isomorphism. Let W"+'=p(gy (")
and Witl=Wnr+t— (31> Then jy is the composition of two injection homo-
morphisms  jiy 1 Hy(p* (4™, p7'CH™) —Hy(p~ (W™D, p~* (W)  and
Jox: Hy(p~' (W), p= (W) - Hy(p~"(K§*™), p~*(X)). The two pairs (3™,
Sy and (W, W2+Y) have the same homotopy type, then (p~1(S1*1), ALY
and (p~*(W=+Y), p~(W2+1)) have the same homotopy type by the covering homotopy.
Thus j is the isomorphism. Since Int. p~*(X) UInt. p=*(W"*™)=p-"(K§*), jox is
the excision isomorphism. Therefore jy is an isomorphism.

The map ¢, is a homotopy equivalence. In fact, define a map ¢: (p~*(C5*),
PO > (S Q(K), Sk Q(K)) and  homotopies Qs: ("X Q2(K),
S Q(KD) > ("X Q(K), 3xQ(K)) and  Re: (07, p7 ()
— (P D, p7ICH) by
a-2t), 0<t<3,

FH=(BC, 9, $(HD= {f(ZH) by

ra—2, ogtg%,
Qlx, )= (x,0/(2), Q@H=] rut=3s+1), <1<,
i), s

I(1-21), 0<t< .,

R(NH(W={ 1at-3s+D,  S<t<3,

) ==t

where / and /' are standard paths in >*** such that p([)=p(f) and p()=x.

Then Q,=¢o¢,,, Ri=¢,/c¢ and @, and R, are identities. Therefore ¢, is a homotopy

equivalence and ¢,y is an isomorphism. Conseuuently Proposition (3.5) is proved.
From (1.7) and Proposition (3.5), we have the following lemma:

LEMMA (3.6) If iy: Hy(w(K))~Hy(2(K)) for p<N, then iy: Hy(o(K, K%,
o(K, K3™)) ~ H,(2(K, K%), 2(K, K1) for p<<N-+m,
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4. The fundamental theorem.
Let K be a complex which admits standard paths, and let K, be a subcomplex
of K. Then the fundamental theorem of our theory is stated as follows:
TueoreM (4.1) The natural map iy: o(K, K,) — 2(K, K,) induces isomorphisms
ix: mp(w(K, Ky))~npy(2(K, Ky)), p=0.

To a map f: (I?, I?) > (Q(K, K,), e,), we associate a map f: (I?*, I?, J?)
— (K, K,, ¢,) given by f(x, -, %p31)=(f(%y, -+, %p))(%p,,). Then we have the
isomorphism £2': my(w(K, K,)) ~n,,,(K, K;) which is induced by the correspondence
f—R2f. In the same way we have homomorphism £2: m,(0(K, K,)) —mp+,(K, Ky),
then combining the isomorphisms £ and iy we have that

TueoreEM (4.1)7 Q: mpy(o(K, K))=~mnp (K, K,) .
By (3.2) the theorem (4.1) is equivalent to the following proposition :
ProprosITION (4.2) iy: Hy(o(K, K,))~Hy(2(K, Ky)), p=>0.
First we shall prove (4.2) in the case K,=¢,, that is,
(4.3) it Hp(o(K)~Hy(2(K)), p=>0.

Proof. Denote Hp(o(K, K™)=Hp, H,(o(K, K™), o(K, K"))=Hp™"' H,
(2(K, K™)="Hp, and Hy(R(K, K™), (K, K™ ))="H®»™? Since w(K) and
Q(K) are both arcwise connected, (4.3) is true if p=0. Now suppose that (4.3) is
true for p<m. Then from (3.6), iy: Hp™ l=~’HpP™ ' for p<n+m. Applying
(1.10), a) and b) to the following diagram

Hppt — Hist —> Hiy —> Hpp? HIW.H Hp —> Hypn!
iyt — Hst — Hitn — HEP — HET — HR —> Hpr,

we have that

4.4),, if iy: HR—H®, is onto and if iy: H?—>HD? is an isomorphism, that
iy: H271—"Hp31 is onto for m>3 and iy : H? '—’H7' is an isomorphism for m>2.

If m>p, then mp (K, K™)=m,(2(K, K™))=0, and by (1.8)" Hy(Q(K, K™))
=0 for m>p>0. By (2.13), Hpy(o(K, K))=0 for p>0. Since the dimension of
the cells of w(K, K)—w(K, K™) are at least m+1, Hy(o(K, K), o(K, K™))=0 for
m=>p. Hence H,(w(K, K™))=0 for m>p>0. Then the hypothesis of (4.4),, is
true for m>wn+1. Applying (4.4),, for m=n+2, n+1,---,3, 2, we have that
ix: HL—~’H} is an isomorphism. Since K'=e¢,, this means that (4.3) is true for
p=n. Therefore (4.3) is proved by the induction on p.

Proof of (4.2) Denote Hy(o(K, K§))=Gp, Hpy(o(K, K, o(K, K1) =Gpm !,
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H,(Q(K, K™)='Gp, and H,(2(K, Kp), 2(K, K§™1))="Gp»™'. We shall prove that
(4.5),, iy: GR~'GPr  for all p.

By (4.3), (4.5), is true. Then, by (3.6), ix: G 1='Gp™ ! for all p and m.
Now suppose that (4.5),,-, is true. Applying the five lemma (1.10), b) to the
diagram

Gy — Gt — G — Gprt —> G-

‘Grt — Gpl —— 'GP —> 'Gpml — Gyl

we have that (4.5),, is true. Therefore (4.5),, is true for all m.

We may consider that Hy(w(K, K;)) and H,(2(K, K,)) are limit groups of {G}}
and {’G}} respectively since any compact subsets of 2(K, K,)=p"'(K,) and o(K, K,)
are in Q(K, K§)=p""(K®) and w(K, K¥) respectively for sufficiently large m. Then
(4.5) implies (4.2).

For the application of our theory to homotopy problems the following theorem is
useful.

THEOREM (4.6) Let X be a simply connected space. Then there is a CW-
complex K which admits standard paths, and there is a map f: K—>X such that
fa: mp(K) =~mp(X), p=>0.

Proof. We shall construct a CW-complex K (#) which admits standard paths
and a map f,: K(n)—>X such that K(n)DK(n—1), fo|K(n—1)=f,—, and that
Sux: mp(K(n)) —mp(X) is onto for #=# and isomorphic for p< n. Set K(0)=e, and
take f, arbitary. Now suppose that K(x#) and f, are constructed for n<m. Consider
the generators ¢, of the kernel of fx: m,(K(m))—>m,(X). By (4.1) there exist
maps g,: I”— o(K(m)) which represent 2-'¢,. Let &g be the generators of m,,.,(X).
Attaching cells ¢ by the maps g, and ¢§ by the trivial maps I”—¢,, we have a
CW-complex o(K(m))+31en+>1¢8. According to (2.2) we construct an FM-
complex L whose primitive cells are those of w(K(m)), €% and ¢§. Define K(m+1)
=B(L), then K(m+1)=K(m)+> Ee?+> Eeg, and E¢2 and E¢j are attached by
representatives of ¢, and the trivial maps respectively. Since f,x(&,)=0, the
map f,,|0Een is extendable over Ee%. Next extend f,, over Ee¢g, which is (m-+1)-
sphere, such that E¢p— X represents £g. Then we obtain an extension fp.i:
K(m+1)— X of f,,. Asis easily seen that m,(K(m)) ~n,(K(m+1)) for p<m, hence
Fonrow: mp(K(m+1))~np(X) for p<m. The injection homomorphism 7,,(K(m))
—7,(K(m+1)) is onto and its kernel is generated by ¢&,. Therefore fu.ix:
T(K(m+1)) —»x,,(X) is an isomorphism. Since f,.,|>] €3 represent the generators
Of 7,,1(X), Fmrrse: Tmsr(K(m+1)) —17,,,,(X) is onto. By the induction on %, K(n)
and f, are constructed. We set K=“K(n) and define f: K—X by flK(n)=fy.
Then f satisfies the condition of (4.6),
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CoROLLARY (4.7) Any simply connected CW-complex is homotopy equivalent to
a CW-complex which admits standard paths. (by (1.5))

THEOREM (4.8) Let XDX, be simply commected spaces. Then there exist a
CW-complex K which admits standard paths, its subcomplex K, and a map f: (K, K)
— (X, Xo) suchthat fy: mp(K)=~ny(X), mp(Ky) m=np(X,y) and np(K, Ky) =1p(X, Xp).

Proof. First construct K, and f,(=f|K,): K,— X, as (4.6). Nextset K(0)=K,
in the proof of (4.6), then we obtain K and f: (K, K,)—> (X, X,) such that
St wp(K)=~mp(X). Then the proof of n,(K, K,) ~mp(X, X,) is a simple application

of the five lemma.

5. A filtration.

The notations in §2 will be used in this $.

Denote by Con(w(K, K,)) the subgroup of C(w(K, K,)) which is generated by
the products ¢,¢---+0, and D¢-0,*+--+0,-, for primitive elements ¢,, -, d,€ C(w(K))
and ¢ € C(w(K,)) of positive dimensions. Note that Ce(w(K))=C(w(K, ¢,)) and
Con((K, K))={e,}. Next define C(o(K, K)) by CT(o(K, K,)) =qu1 Cenr(o(K, Ky)),
then C™ gives a filtration of C(w(K, K,)): -

G.D Cr(0(K, K)) DCT ™ (o(K, Ky)) ,
CP(o(K, Kp))-C(o(K, Kp) =CT™(o(K, Ky)) ,
and 0CT(0(K, K) CCT(o(K, Ky))

Proof. The first two formulas are obvious. Since each 1-cell ¢ of w(K, K,) is
primitive and forms a circle S' with the vertex ¢,, 96=0. Hence 0C®(w(K, K,))
CClo(K, Ky))—{e}=C®P(w(K, K,)). Now suppose that 9C“->CC”-, then §C™
=0(CPCT-D) = (§CD):CT D+ CD. (§CT-"D)YCCP-CTP=C, Therefore the last
formula is proved by the induction on 7.

Define the boundary operator on C¢y as that of the difference chain group
CP—CYY, Then from (2.3) and (2.12) we have a chain isomorphism (»>0):

(r—-1)-fold
(5.2) Con(0(K, Ky)) R Cony(0(K)) Q-+ R Cory(0(K)) = Cony(0(K, Kp))
given by ¢QRec,® - Qer—y—>c-¢1o+-2cr—y. By (2.6) we have a chain isomorphism
(suspension) E: C¢y(0(K))=~C(K)—{e,}, and we have that
(5.3) Hy(Coiy(0(K)), Con(w(Ky)))~Hy, (K, Ky, »>0.

We see that Coy(0(K, Ky))=Cqy(o(Ky, Ky)) + (Ceiy(0(K))— Cepy(w(K,)) and

Coy(w(K,, K,)) is closed under the boundary operator of Cqy(w(K, K;)). The formula

b) of (2.12) shows that C¢,(w(K,, K;)) is chain equivalent to 0. Then we have
easily that

(5.4) the injection C¢y(w(K))—Cqy(w(Ky)) — C»(K, K,)) is chain equivalence
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and the inverse is given by the projection of C¢,;(w(K, K,)) onto its direct factor
Cepy(0(K)) — Copy(0(Ky)).

As a corollary we have that
(5.4) Hp(Coy(0(K, Ky))) = Hp,,(K, K,)  for p>0.

Let M, M,,---, M, be subcomplexes of K such that M;~M;=M for i=Fj and
K=M"“--YM,. Let K, -, K, be subcomplexes of K given by K;=K— (M;—M),
i=1,---,n. Let @ be a class of abelian groups which satisfies the conditions (I)
and (IIg) of [9].

LemMA (5.6) If Hy(K, K;) € @ for p<q;+1 and if Ha;+1(K, K;) is @-isomor-
phic to a group G;. Then Hy(Cr(w(K, K,)), 7;21 Cpo(K,, K; ~K,)))=0 for r<m,

=1
and € @ for r=>nand p<Q+r—mn, where Q=>1q;. The group Ho(Cc,,(0(K, K,)),
%i: Com(w(K;, Ki~K,))) is @-isomorphic to the dirvect sum of (n—1)! copies of
GiRRG,.

Proof. By (5.2), Cu(w(K, K,))— Z Cen(w(K;, K;~K,)) is chain isomorphic
to Coy(o(K, K,.)) Q[Cep(w(K))T '~ L (Cay (0(K;, K; A K)) @ [Copy (KT,
where [AJ indicates the #-fold temsor product AR - XA. Since M,—M=K;
—(K;i~nK,)=K—K,, i=1, -+ ,n—1, the injections C¢;,(M,)— Cc,(M) — Ce;y(0(K;, K;

K,)) and C¢,(M,)—Cqy(M) —Cey(o(K, K,)) are chain equivalences by (5.4),
and their inverse are the projections to the factor C<1>(Mn)~C<D(M ). Then we have

that the injection of (Ceyy(M,)—Copy(M)) R ([Cory(@(K)) T~ b3 [Ccn(w(K NI
into (Copy(0(K, K,,) )R Copy(0(K))T 1 — L(Cm(w(K,,KmKn))(X)[Cm(w(K))]’ D
is a chain equivalence.

For the simplicity we denote that Cey(w(M))=B,, Cay(w(M;))— Cqy(w(M))=B;
for i=1, -+, n, then C(l)(“’(K)):Z:Bi: C(l)(w(Ki>>:%Bj» 0B,CB, and 0B;CB,+ B;.
=

Then the assertion of (5.6) is reworded to that
5.6Y H(B,@ ([ 3 BT~ X [3 BT
satisfies the assertion of (5.6).

Applying the Kiinnth’s formula (1.6), (5.6)" is rewritten as
(5.6)” If Hy(B,)=0, Hy(B;)€ @ for 1<<i<nm—1 and p<(q; and if He;(B;) is @-
isomorphic to a group G;. Then Hp(([ﬁ BT -t— Z_. [2] BT~ =0 for < n, and
€@ for r>n and p<Q +r—m, where Q=0—q,. The group HQ(Z.: [B;]*~*
— L [}_; Bj]"') is @-isomorphic to the sum of (#—1)! copies of G1® - RGpy-q.

Proof of (5.6)” A factor Bi Q- X Biy—, of [jﬁ‘ B;j]"-' is in nif[% B;] -
=1 =1 j&i
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if and only if the set {i;, - ,4,—,} of indices is contained in one of {0, 1, - ,n—1, n}
—{i} for ¢=1,---,n—1. Hence a factor B ®Bi,—; is in [J}:.Z‘l B!
}_,[L B;]"-' if and only if {i,,---,éir—,} contains {1,--,n—1}.

In the case <z, we have obviously [L BT - 2]11 [j}_,j; B;j1"~'=0. Therefore
(5.6)” is proved for »<n.

Let »>n. Since Hy(B;) € @ for p<1,i=0, 1,---,n—1, we have easily from
(1.6) that
(5.7) a) if {4, iy} contains {1,--,n—1}, then H,(Bi;yR--Q Bir-,) € @ for
p<Q+r—m; b) if {iy, - ,i,-1}={1,---,n—1}, then H,y(Bi;yKQ - KX Bir-,) is ©-
isomorphic to G, R - R G,-;.

Now we can arrange the factors Bi;(Q-- R Bi,~, in an order such that if
{Dp; k=1,2,---} is such an ordered set of {Bi;X)---X Bi,—,} then 0D,C ED
Denote E,= Z D;, then E are chain subgroups, and Ek—[Z" B! Z. [L BJ:I"1
for sufﬁmently large k. Consider an exact sequence H,(Ep) —>Hp<Ek+1) ~>H 1i,(Ek+1 Er)
=H,(Dr). By (5.7), a) Hp(Dp) € @ for p< @ +7r—n. Hence H,(Ep) € @ implies
Hy(Ep,,) € @ for p<Q+7r—mn. By induction on k, we have that H,(E;) € @ for
p<Q+r—mn and for all k, and (5.6)” is proved for the case » >#n and p<Q +r—n.
In the case r=#n, Dr=Bi R - QBi,-, for some {7, ,7,-4+=1{1,-,n—1}. Then
0DrCDr. Therefore Ho' (Ec,-1! )=¥ Hy'(Dy) and it is @-isomorphic to the sum of
(n—1)! copies of G,® - RG,-1, by (5.7), b).

Consequently (5.6)” and hence (5.6) is proved.

LemmA (5.8) From the hypothesis of (5.6) we have that H,(o(K, K,),
U oK, KinKD) €@ for p<Q and Ho(o(K,K,), U o(Ki, Kin ) is @-
isomorphic to the direct sum of (n—1)! copies of G;R - R Gy.

Proof. Denote C=C(w(K, K,,))~Z, C(w(K;, K;NK,)) and Cery=Ce(o(K, K,))
- ZJ Con(o(K;, K; ~K,)), then Cm—C”) C”*,  Since the chains of C(w(K, K,.))
—-Ck (w(K, K,)) have at least dimension 7, Hy(w(K, K,), n}___‘,l o(K;, K;~K,))
=H,(C®)~H,(C®, C®™). Consider the exact sequence: HP(C(,:) ;:HI,(C(’), C )
—Hp(C®, CT™)—Hy(CO. CP)—>Hy,(CP, CY)~Hy,(Cery). I r<m, Hy(Cery)
=0 by (5.6) and then H,(C®, C"™)~H,(C®, C"). Hence H,(C®, C™)
~Hp(C®, C®)=0. Therefore Hy(Ceny)~H,(C®, C™). If r>n, by (5.6)
Hy(Ciry) € @ for p<Q+1, then Hp(C®, CT*D) and H,(C®, C?) are @-isomorphic
for p=<@. Hence H,(C®)~H,(C®, C?»™) is @-isomorphic to H,(C®, C"D)
~H,(Ceyy) for p<<Q. Then (5.8) follows from (5.6).
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6. Connectedness theorem for (+1)-ad homotopy groups.

Let (X; Xy, -, Xn, %) be (n+1)-ad and let 7,(X; X, -, X,,) be the homotopy
group of the (n+1)-ad [1].

We consider the group 7,(X; Xi,--,X,) as the set of the homotopy classes of
maps f: (I3 74, 7Y Jih) — (X Xy, o+, X, %), where I770={(xy, -+, %p) € Ip| %
—0} and J7' =7 Int. ( ) I5D).

=1

For a map g: (J#; IT™*, -, I3, Jich) — (2(X, X, ; 2(X1, Xun X)), oo, 2( X1,
Xn-1~Xn), 1o), define a map Qg: (I 14, I3, Ji) — (X5 Xy, -+, Xp, %) by
Rg(xy, -+, 2p1)=8(%1, *+ , Xns,y Fny1, * , Xpy1) (Xn), where fo(I)=1x,. Then the cor-
respondance g« g defined the isomorphism
6.1) Q: 12X, X,) 5 2Ky, XinXn)s s 8Kty Xpmin X))

' R«’ﬂp+1(.X; le M) Xn) . i

We introduce here some elementary properties of the homotopy groups of
(n+1)-ad (cf. [1,1ID.

(6.2) mp(X; Xy, -, Xp)=np(X; Xoey, ++, Xowy) for a permutation ¢ of {1, n}.
(6.3) (X Xy, o, X =rp(X; Xy, o, Xu-v) if X,-,0X,.
(6.4) The following sequence of homomorphisms is exact:
> (X X, X)) —— (X XA X, XA XD
—> (X5 Xy, o, X)) — mp(X; Xy, o, X)) —>
A map f: (X; X;,,X)—(Y; Y,,--,Y,) defines the induced homomorphism
f*: ﬂp(X; Xl: an>'_>7TP(Y; -‘Y-ly Tty Yn)

(6.5) The induced homomorphisms commute with the exact sequences (6.4) of
(-X; le R Xn) and (Y; Y'ly ) Yn>'

Let K be a CW-complex and let K, ---, K,, be subcomplexes such that K, ~ -~ K,
e, a vertex. Denote by I(n) the set of indices {1,.---,#n}. For each subset J of
I(n), we associate the subcomplex Kj=Kj ~--~Kjr where {j,, - ,j-t=J. Denote
0Ky= J%}gKJ’, M=Kr., and M;— K, (i)

Then the connectedness theorem for (z-+1)-ad homotopy groups is stated as
follows :

THEOREM (6.6), Assume that K=M,~ .-~ M, n,(M)=n,(M)=n,(M;)=n,(M;)
=0, 7,(Mj, M)=0 and Hy(M; M) € @ for p<q;, i=1,--,n. Let Q=>1q;. Then
(K5 Ky, ,K,) €@ for p<<Q and no.(K; K,, - ,K,) is @-isomorphic to the
direct sum of (n—1)! copies of Hypi(My, M) Q-+ QH,, (M, M).

Here @ indicates a class of abelian groups which satisfies the conditions (I),
(Ig) and (III) of [9]. For a general combinatorial (z-+1)-ad, we have the following :
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THEOREM (6.7), Assume that n,(Ky)=m,(K7)=n,(Kr, 0Ks) and H,(Kj, 0KJ)
€@ for p<q,, JTI(n). Let Q be the ninimum of the sums qy-+--+q; such that
Jin - ~Js=¢ (empty set). Then np(K; K, - ,K,) € @ for p<Q.

First we show that
LemMmA (6.8) (6.6), and (6.7), for r<n imply (6.7),.

Proof. Let {Jx; k=1, ---,2"} be an ordered set of the indices JC I(n) such that
Ji=In), Jimy=I(n)—{i} for i=1,---,n and that J,CJ, implies k>k. Set K(k)
:]Z%K]j, then K(k) is a subcomplex of K and K(k)—K(k—1)=Kj,—0Kj.. (6.6),
means that (6.7), is true if K=K(n+1), or that (6.7), is true for (K(n+1);
K ~Kn+1),-,K,~K(n+1)). Now suppose that (6.7), is true for an (n-+1)-ad
(K(k—1); K,~AK(k—1) , - K, ~K(k—1)), k>n+2. Let J={j,,,jr} be a subset
of I(n) such that K(k)—K(k—1)=Kj—¢Ky. By (6.4) we have the exact sequence:
np(K(k—1); K, ~ K(k—1), -, K, ~ K(k—1)) > m,(K(k) ; K, ~ K(k) , -, K, ~nK(k))
—n,(K(k); K(k—1), K, ~K(k),- ,K, ~K(k)). Since K(k) ~K;=K(k—1) for
i€I(n)—J, we have from (6.2) and (6.3) that n,(K(k); K(k—1), K;,~K(k), -,
K,~K(k))~n,(K(k); K(k—1), Kij~K(k), - ,Kjy~K(k)). Since k>n+1, r<n—2
and r+1< n, we can apply (6.7),,, to the group n,(K(k); K(k—1), Kjj~K(k), -,
Kj, ~K(k)), and we shall prove that

(6.9) mp(K(k) ; K(k—1), Kii~nK(k), -, Kir~K(k)) € @  for p=Q.

Then 7,(K(k—1); K, ~K(k—1),,K,~K(k—1))€ @ implies m(K(k);
K. ~K), - ,K,~K(k)) €@ for p<Q. By induction on k>n+2, (6.7), is verified
and (6.8) is proved.

Proof of (6.9) Set K(k)=L, K(k—1)=L, and Kj;~K(k)=L;,, for i=1,---,7.
The conditions no(Lag) =n,(La)=mn,(La, 0La)=0, ACI(r+1), are easily verified. Let
b4 be an integer such that Hy(La, ®La) € @ for p<<pa. If A=I(r+1)—{1}, then
Ls—0,La=Kj—0Kj and hence pa=gq;. If A I(r+1)—{1}, then La—0La=¢ and
pa=oo. Consider subsets A, -, As of I(r+1) such that A;~ - ~As=¢, then there
is at least one A; which does not contain 1. If A; S I(7+1)— {1}, then pa,+ -+ pas=oco.
Now we suppose that A4;31 for 1<<i<t and Ai=I(r+1)—{1} for t<i>s, (t<s).
Denote by B; a subset {j,|b+1€ (I(r+1)—A;)} of I(n), i<, then La;—0La, is the
union of Kjp—0Kj. such that Jp~B;=¢ and #»_>k. Therefore pa;>Min.
@7, JenBi=9) and pa,+--+pa>Min. (g, + - +q;/+(s—Dq;: J/ ~B;=¢). Since
AiA R A=11L Blu"'uBt:{jl»"':jr}:] and fl/u“'U]t/r\]:¢ if Ji~Bi=9¢.
From the hypothesis of (6.7),, pa,++pa,>Q, and we have (6.9) from (6.7),,,.

Proof of (6.6), By (6.8), it is sufficient to prove that (6.7),, r<# implies
(6.6),. According to (4.8), we construct CW-complex M’, M/, --- , M,/ which admit
standard paths and maps f;: M;—M; such that M/ ~M;=M’ and f;|M’'=f;|M
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for i=+j and that fiy: my(M;) =np,(M;) and n,(M") ~=r,(M). By (2.2) we see that
the union K’=“M; admits standard paths. Define a map.f: K'—K by f|M;/=f;
and set K;'=K’'— (M;—M"). Since the complexes are simply connected, the isomor-
phisms of homotopy groups provide isomorphisms of homology groups fy: Hyu(M”)
~ Hy (M) and H*(Mi’)xH*(Mi), and hence fy: Hy(Ky) =~ Hy(Ky). Then f induces
isomorphisms fy: 7,(K'7) ~mp(Kj). Applying (6.5) and the five lemma, we have
that f induces isomorphisms fy: m(K’; K/,---,K,) ~n,(K; K, ---, K,). Therefore
we may assume that K’=K, i.e., K admits standard paths.

By (4.2), iy: Hy(o(K, K,))~Hy(R(K, K,)) and Hy(o(K;, K;~K,))
~H,.(2(K;, K;~K,)). Asiseasily seen that 2(K, K,) and 2(K;, K; ~ K,,) are simply
connected. Repeating the above discussion on the map f: K’— K for the injection
i: oK, K, —2(K, K,), we have isomorphisms my(0(K, K,,); o(K,, K;~K,, -,
0Ky, Ky nK)) =7 (2(K, Ky 5 2(Ky, Ky A KD, -, (K-, Ky-1~ Ky)).  Com-
bining (6.1) to this isomorphisms, we have isomorphisms 7wy (K; K, -, K,)
=n,(0(K, K,); oK, K, ~K,), ,0(K,-1,K,-1 ~K,)). Set L=ow(K, K, and
Li=0(K;, K;~K,) fori=1,--- ,n—1. We apply (6.7),-, to an n-ad (0L; L,,---,L,-1).
The simply connectedness of Ly and L is easily verified. By (5.8), H,(Ls, 0Ly)=0
for p<'4 and 7,(Ls, ®Ly)=0, this is a special case of (6.6),. Applying (5.8) to
Li=w(Ks, K7~ K,), we have that H,(Lj, dLs) € @ for p_<_g€1_ > g)tg,—1. If

@®m—-1)—J

]1/\‘“{'\]5=/Q§(s>1>y ]kCI(?’l_l), k=1,~~-,s, then i (( 2 qk>+Qn_'1>
k=1 E

iI€I(n—-1-J1
> (Z};ji qr) +5(g,—1) >@Q. Therefore we have from (6.7),-, that jz,,((@L s Ly, ,L,—))
€ @ for p<@Q-+1. From the exact sequence (6.4) for an (+1)-ad (L; 0L, L,, -,
L, ., we have that =n,(L; L,,---,L,-,) is (@-isomorphic to z,(L; &L,L,-,
L,-,) for p<@Q+1. Since L;COL, i=1,---,n—1, we have from (6.2) and (6.3)
that 7w,(L; 0L, Ly, ,L,-)~mn,(L; 0L). Consequently  7,,,(K; Ky, -, K,)

~mny(L; Ly, -, L,—y) is @-isomorphic to 7,(L ; OL) =m,(w(K, Kn),nol o(K;, K;~K,))
i=1

for p<ZQ+1. By (1.9) and (5.8), np(L, 9L) is @-isomorphic to H,(L, 0L) for

p<Q+1. Then (6.6), follows from (5.8).
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