Complex of the standard paths and n-ad homotopy groups

By Hirosi Toda

(Received Oct. 3, 1955)

Introduction

In a previous note [10] the author has defined a class of CW-complexes such that if K is such a complex, then there is a CW-complex $\omega(K)$ which is a subspace of the loops $\mathcal{Q}(K)$ in K, and such that the injection map induces an isomorphism of the homotopy groups of $\omega(K)$ and $\mathcal{Q}(K)$.

In this paper, we consider firstly CW-complexes which have free monoid structure. Secondly if L is such a complex we construct from L a new CW-complex Ksuch that $L=\omega(K)$, and such that K is obtained by an identification $d: L \times I \rightarrow K$. Each point x of $\omega(K)$ defines a standard loop $d: (x) \times I \rightarrow K$, and $\omega(K)$ is regarded as the subset of $\mathcal{Q}(K)$. As a standard path in K, we mean a linear part of a standard loop in K. We define a complex $\omega(K, K_0)$ of standard paths which start in a subcomplex K_0 of K and end at the base point e_0 .

Our fundamental theorem is stated as follows $(\S 4)$:

Theorem. $\pi_i(\omega(K, K_0)) \approx \pi_{i+1}(K, K_0)$ for all i.

The application of our theory to the homotopy theory is based on the fact that for any simply connected space X there exists a complex K on which we may define (K) and there exists a map $f: K \rightarrow X$ such that f induces isomorphisms of homoppy groups.

One purpose of the paper is to prove the following connectedness theorem for (n+1)-ad homotopy groups (§6). Let X be a CW-complex and let Y, Y_1, \dots, Y_n be subcomplexes of X such that $Y_{i} \cap Y_j = Y$ for $i \neq j$ and $Y_1 \cup \dots \cup Y_n = X$. Set $X_i = X - (Y_i - Y)$. Let \mathcal{Q} be a class of abelian groups which satisfies the condition (I), (II_B) and (III) of [9].

THEOREM. If Y is simply connected, (Y_i, Y) are 2-connected and $H_p(Y_i, Y) \in \mathcal{O}$ for $p < q_i+1$. Then $\pi_p(X; X_1, \dots, X_n) \in \mathcal{O}$ for $p \le Q = \sum q_i$ and $\pi_{Q+1}(X; X_1, \dots, X_n)$ is \mathcal{O} -isomorphic to the direct sum of (n-1)! copies of $H_{q_1+1}(Y_1, Y) \otimes \dots \otimes H_{q_n+1}(Y_n, Y)$.

1. Preliminaries.

Denote by I^n the unit *n*-cube and by \dot{I}^n its boundary:

 $I^{n} = \{(x_{1}, \dots, x_{n}) \mid 0 \le x_{i} \le 1\}, \qquad \dot{I}^{n} = \{(x_{1}, \dots, x_{n}) \in I^{n} \mid \prod x_{i}(1-x_{i}) = 0\}.$

According to J. H. C. Whitehead [12] K is a CW-complex; if K is a closure finite cell complex, i. e., K is a Hausdorff space which is the union of disjoint open

Hirosi Toda

cells e_{α}^{n} with characteristic maps $\psi_{\alpha}: I^{n} \to \bar{e}_{\alpha}^{n}$ such that $\psi_{\alpha}|(I^{n} - \dot{I}^{n})$ is a homeomorphism onto e_{α}^{n} and $\partial e_{\alpha}^{n} = \psi_{\alpha}(\dot{I}^{n})$ is contained in the union of a finite number of cells whose dimensionalities do not exceed n-1; and if K has the weak topology, i.e., a subset $X \subset K$ is closed provided $X_{\bigcap}\bar{e}$ is closed for each cell $e \subset K$. A subcomplex of a *CW*-complex is also a *CW*-complex. We list here some properties of *CW*-complex from [12]:

(1.1) A map $f: K \to X$ is continuous provided $f|K_{\bigcap}\bar{e}$ is continuous for each cell $e \subset K$.

(1.2) If $X \subset K$ is compact, then X meets only a finite number of cells.

(1.3) Let $f: K \to L$ be a map of a *CW*-complex *K* onto a closure finite complex *L* which has the identification topology determined by *f* and if $f(\bar{e})$ meets only a finite number of cells of *L* for each $e \subset K$, then *L* is a *CW*-complex.

(1.4) If K is a CW-complex and L is a locally finite complex, then the topological product $K \times L$ is a CW-complex by the natural cell-decomposition.

(1.5) Let K and L be CW-complexes. Then a map $f: K \rightarrow L$ is a homotopy equivalence if and only if f induces isomorphisms of the homotopy groups.

Hereafter we consider that to each CW-complex characteristic maps of the cells are given and fixed.

Let K and L be CW-complexes. Consider the topological product $K \times L$ which is a closure finite complex, a cell of $K \times L$ is the product $e^n_{\alpha} \times e^m_{\beta}$ of cells $e^n_{\alpha} \subset K$ and $e^m_{\beta} \subset L$ and the characteristic map of $e^n_{\alpha} \times e^m_{\beta}$ is given by $\psi_{\alpha,\beta}(x, y) = (\psi_{\alpha}(x), \psi_{\beta}(y))$ for the characteristic maps ψ_{α} and ψ_{β} of e^n_{α} and e^m_{β} . We do not know whether the complex $K \times L$ has the weak topology or not. Hence we change the topology of $K \times L$ to the weak topology and let $K \times wL$ be the resulting CW-complex. The natural map $K \times wL \to K \times L$ is a homeomorphism on finite subcomplexes.

Let K and K_0 be a CW-complex and a subcomplex. Let $H_*(K, K_0) = \sum H_p(K, K_0)$ be the (cubical) singular homology groups, then $H_n(K^n, K^{n-1})$ is a free module generated by the classes of the characteristic maps $\psi_{\alpha} : (I^n, \dot{I}^n) \to (\bar{e}^n_{\alpha}, \partial e^n_{\alpha}) \subset (K^n, K^{n-1})$. We denote by the same symbol e^n_{α} the class of ψ_{α} . Set $H_n(K^n, K^{n-1}) = C_n(K)$ and $\sum C_n(K) = C(K)$, then C(K) is a chain group with the boundary homomorphisms $\partial_n : C_n(K) \to C_{n-1}(K)$ defined by the composition $j_* \circ \partial : H_n(K^n, K^{n-1}) \to H_{n-1}(K^{n-1}) \to H_{n-1}(K^{n-1}, K^{n-2})$. As is well known

 $(1.6) \quad H_n(K) \approx H_n(C(K)) = \text{Kernel } \partial_n/\text{Image } \partial_{n+1} \text{ and } H_n(K, K_0) \approx H_n(C(K) - C(K_0)) \text{ .}$

A cellular map $f: (K, K_0) \to (L, L_0)$ induces chain homomorphisms $f_{\#}: C(K, K_0) = C(K) - \mathcal{L}(K_0) \to C(L, L_0) = C(L) - C(L_0)$ and $f_{\#}$ induces the homomorphism $f_{\#}: H_{\#}(K, K_0) \to H_{\#}(L, L_0).$

Consider the natural map $f: K \times_w L \rightarrow K \times L$. Since a singular chain covers only

a finite number of cells in $K \times L$ ($K \times_w L$), f induces isomorphisms $f_* \colon H_*(K \times_w L) \approx H_*(K \times L)$ and $f_{\ddagger} \colon C(K \times_w L) \approx C(K \times L)$. The generators of $C(K \times_w L)$ are chains $e_a^n \times e_\beta^m$, the classes of $\psi_{a,\beta}$, and the correspondence $e_a^n \otimes e_\beta^m \to e_a^n \times e_\beta^m$ induces an isomorphism $\colon C(K) \otimes C(L) \to C(K \times_w L)$. We have that $\partial(e_a^n \times e_\beta^m) = \partial e_a^n \times e_\beta^m + (-1)^n e_a^n \times \partial e_\beta^n$. The chain group $C(K) \otimes C(L)$ is referred to as the tensor product of C(K) and C(L). Then we have the formula of Künneth [4], [2]: $H_p(C(K) \otimes C(L)) \approx \sum_{i+j=p} H_i(C(K)) \otimes H_j(C(L)) + \sum_{i+j=p-1} H_i(C(K)) * H_j(C(L))$.

Let @ be a class of abelian group which satisfies the axioms (I) and (II_B) of [9], then we have that

(1.6) Let $C_{(1)}, \dots, C_{(r)}$ be chain groups such that $H_p(C_{(i)}) \in \mathcal{O}$ for $p < q_i, i=1,\dots,r$, and let $Q = \sum q_i$. Then $H_p(C_{(1)} \otimes \dots \otimes C_{(r)}) \in \mathcal{O}$ for p < Q and $H_Q(C_{(1)} \otimes \dots \otimes C_{(r)})$ is \mathcal{O} -isomorphic to $H_{q_1}(C_{(1)}) \otimes \dots \otimes H_{q_r}(C_{(r)})$.

Let E_{α}^{n} be disjoint *n*-cubes, let \sum^{n} be the union of E_{α}^{n} and let $\dot{\sum}^{m}$ be its boundary. Then the cross-products induces isomorphisms $H_{p}(X) \otimes H_{n}(\sum^{n}, \dot{\sum}^{n}) \approx H_{p+n}(X \times \sum^{n}, X \times \dot{\sum}^{n})$ and the diagram

(1.7)
$$H_{p}(X) \otimes H_{n}(\sum^{n}, \underline{\sum}^{in}) \approx H_{p+n}(X \times \underline{\sum}^{n}, X \times \underline{\underline{\sum}}^{in}) \\ \downarrow f_{*} \otimes i_{*} \qquad \qquad \downarrow (f \times i)_{*} \\ H_{p}(Y) \otimes H_{n}(\underline{\sum}^{n}, \underline{\underline{\sum}}^{in}) \approx H_{p+n}(Y \times \underline{\sum}^{in}, Y \times \underline{\underline{\sum}}^{in})$$

is commutative, where $f: X \to Y$ is a map and *i* is the identity on \sum^{n} . This is a special case of the Künneth's formula and a simple proof was given in a remark of [11, p. 213].

Next we recall the following Hurewicz theorem:

(1.8) Let X and Y be a space and a subspace. If $H_p(X, Y) = 0$ for p < n and if (X, Y) is *n*-simple, then $\pi_n(X, Y) \approx H_n(X, Y)$.

For the proof see [5]. If X is arcwise connected, then $\pi_1(X) \to H_1(X)$ is onto. Therefore we have that

(1.8)' if $\pi_p(X) = 0$ for $0 \le p \le n$, then $H_p(X) = 0$ for $0 \le p \le n$.

Let \mathcal{Q} be a class of abelian groups which satisfies (I), (II_B) and (III), then from [9], (1.9) If X and Y are simply connected, (X, Y) is 2-connected and if $H_p(X, Y) \in \mathcal{Q}$ for p < n, then $\pi_p(X, Y) \in \mathcal{Q}$ for p < n and $\pi_n(X, Y)$ is \mathcal{Q} -isomorphic to $H_n(X, Y)$.

Suppose that in the following homomorphisms between two exact sequences $\{G_n\}$ and $\{H_n\}$:

$$\begin{array}{c} G_{n+2} \longrightarrow G_{n+1} \longrightarrow G_n \longrightarrow G_{n-1} \longrightarrow G_{n-2} \\ \downarrow f_{n+2} \qquad \downarrow f_{n+1} \qquad \downarrow f_n \qquad \downarrow f_{n-1} \qquad \downarrow f_{n-2} \\ H_{n+2} \longrightarrow H_{n+1} \longrightarrow H_n \longrightarrow H_{n-1} \longrightarrow H_{n-2} \end{array}$$

the commutativity holds. Then we have that (cf. [4])

Hirosi Toda

(1.10) a) if f_{n+1} and f_{n-1} are onto and if $f_{n-2}^{-1}(0)=0$, then f_n is onto; b) if f_{n+2} is onto and if f_{n+1} , f_{n-1} and f_{n-2} are isomorphisms, then f_n is an isomorphism.

2. FM-complexes and complexes of standard paths.

i) *FM-complexes*: An *FM*-complex is a *CW*-complex *L* having a free monoid structure. More precisely, an *FM*-complex *L* has a multiplication (product) $(x, y) \rightarrow x \cdot y$ which satisfies the following conditions $(2.1)_1 - (2.1)_5$.

 $(2.1)_1$ $f(x, y) = x \cdot y$ defines a continuous map $f: L \times_w L \to L$.

 $(2,1)_2$ The 0-section L^0 constitutes of a single point e_0 which acts as the unit element: $x \cdot e_0 = e_0 \cdot x = x$ for all $x \in L$.

 $(2.1)_3$ $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ (denoted by $x \cdot y \cdot z$).

We denote $A \cdot B = \{a \cdot b | a \in A, b \in B\}$ for two subsets A and B of L.

(2.1)₄ The product $e^n \cdot e^m$ of 2-cells e^n and e^m is also a cell whose characteristic map ψ_3 : $I^{n+m} \rightarrow \overline{e^n \cdot e^m}$ is given by $\psi_3(t, u) = \psi_1(t) \cdot \psi_2(u)$, where ψ_1 and ψ_2 are characteristic maps of e^n and e^m .

 $(2.1)_5$ There are no relations but $(2.1)_2$ and $(2.1)_3$ in the product.

By a primitive point x we mean a point which is not decomposable, i. e., $x=y \cdot z$ implies x=y or x=z. If $x=y \cdot z$ for $x \in e^n$, $y \in e^m$ and $z \in e^r$, then from $(2, 1)_4$ we have that $e^r = e^n \cdot e^m$, r=m+n and that $f|e^n \times e^m$ is a homeomorphism onth $e^n \cdot e^m$. Therefore if a point of a cell σ is primitive, then the other points of σ are also primitive, and the cell σ is said to be *primitive*. Then any cell e^n of a positive dimention n > 0 is the product of a finite number of primitive cells σ_i of prositive dimention n_i such that $n=\sum n_i$. By $(2,1)_5$ the expression $e^n = \sigma_1 \cdots \sigma_r$ has to be unique.

Therefore L is a free monoid whose generators are the primitive points.

Let L_0 be an *FM*-complex. Consider maps $f_{\alpha}: \dot{I}^{n_{\alpha}} \to L_0^{n_{\alpha}-1}$ and a *CW*-complex $L' = L_0 + \sum e^{n_{\alpha}}$ which is obtained from L_0 attaching the cells $e^{n_{\alpha}}$ by the maps f_{α} .

(2.2) There exists an *FM*-complex *L* which contains L_0 as a submonoid and *L'* as a subcomplex such that the primitive cells of *L* are the those of L_0 and $e^{n_{\alpha}}$.

In fact, we consider a free monoid L generated by the primitive points of L_0 and the points of e^{n_A} . Then the products of the primitive cells of L_0 and e^{n_A} form a decomposition of L, and L becomes FM-complex if we give the topology on each closure of a cell by $(2,1)_4$ and next take the weak topology on the whole of L. This process is possible since L is a closure finite complex.

The product $f: L \times_w L \to L$ induces the chain homomorphism $f_{\#}: C(L) \otimes C(L) \to C(L)$. We write as $c \cdot c' \in f_{\#}(c \otimes c')$ for $c, c' \in C(L)$. By a *primitive chain* σ we mean the class of the characteristic map of a primitive cell σ .

Proposition (2.3) The chain group C(L) of a *FM*-complex *L* is a graded free ring (Pontrjagin ring) generated by the primitive chains. The boundary operator is an anti-derivation, i.e. $\partial(c^n \cdot c^m) = (\partial c^n) \cdot c^m + (-1)^n c^n \cdot (\partial c^m)$ for $c^n \in C_n(L)$ and $c^m \in C_m(L)$.

The proof is immediate.

ii) Complexes of standard loops. Here we shall construct a CW-complex K such that a subspace of its loops space is an FM-complex L. We shall refer to L as the complex of the standard loops in K, and K as a complex which admits standard paths.

LEMMA (2.4). Let L be an FM-complex, then there exists a real valued function ρ of L such that $\rho(x \cdot y) = \rho(x) + \rho(y)$, $x, y \ni L$ and such that $\rho(x) > 0$ for $x \neq e_0$.

We define ρ presisely as follows: Let L(n) be a subcomplex whose cells are the products of primitive cells of dimension $\leq n$. Since $L(0) = e_0$, we set $\rho(e_0) = 0$ and ρ is defined on L(0). Suppose that ρ is defined on L(n-1). Let σ_{α} be a primitive *n*-cell and let $\psi_{\alpha}: I^n \to \overline{\sigma}_{\alpha}$ be its characteristic map, then ρ is defined on $\partial \sigma_{\alpha}$ since $L^{n-1} \subset L(n-1)$. For a point x of I^n , we denote by [x, t] the point which divides x and the center $(\frac{1}{2}, \dots, \frac{1}{2})$ of I^n in the ratio t; 1-t. We set $\rho(\psi_{\alpha}[x, t]) = (1-t)$ $\rho(\psi_{\alpha}(x)) + tn$ for each α , then ρ is extended over L(n) by the linearity $\rho(x \cdot y) = \rho(x) + \rho(y)$. From $(2.1)_1 - (2.1)_5$ and (1.1) ρ is single valued and continuous. Then ρ is defined by induction on n.

This function ρ is defined uniquely since we fixed the characteristic maps for each *CW*-complex.

Let K=B(L) be a space which is defined from the product complex $L \times I$ by an identification $d: L \times I \rightarrow B(L) = K$ such that

(2.5)
$$d(e_0, t) = d(e_0, 0) = e_0 \in K,$$
$$d(x \cdot y, t) = \begin{cases} d\left(x, \frac{t}{\lambda}\right), & 0 \le t \le \lambda, \\ d\left(y, \frac{t-\lambda}{1-\lambda}\right) & \lambda \le t \le 1, \end{cases}$$

where $x, y \in L, x \cdot y \neq e_0$ and $\lambda = \frac{\rho(x)}{\rho(x \cdot y)}$.

We see that $d(L \times \dot{I}) = e_0$ and $d(e \cdot e' \times I) = d(e \times I) \cup d(e' \times I)$. Therefore B(L) is the union of the disjoint sets $d(\sigma \times (I - \dot{I}))$ for the primitive cells σ . Since there is no relation on $\sigma^n \times (I - \dot{I})$ if dimension $n > 0, d | \sigma^n \times (I - \dot{I})$ is a homeomorphism. Denote the image $d(\sigma^n \times (I - \dot{I}))$ by $E\sigma^n$ and define a characteristic map $\psi': I^{n+1} \rightarrow \overline{E\sigma^n}$ by $\psi'(x_1, \dots, x_{n+1}) = d(\psi(x_1, \dots, x_n), x_{n+1})$ where ψ is the characteristic map of σ^n . Then $B(L) = e_0 + \sum E\sigma$ becomes a closure finite cell complex. Since $\overline{d(\sigma_1 \cdots \sigma_r)} \subset \bigcup \overline{E\sigma_i}$, the identification $d: L \times I \rightarrow B(L)$ satisfies the condition of (1.3), and hence K = B(L) is a CW-complex.

We write $L = \omega(K)$; this means that L is an FM-complex such that K = B(L).

We say that a CW-complex K admits standard paths if there exists an FM-complex L such that K = B(L).

For each point x of $\omega(K)$, we define a standard loop $l_x: (I, \dot{I}) \rightarrow (K, e_0)$ by the formula $l_x(t) = d(x, t), t \in I$. Then the correspondence $x \to l_x$ defines a 1-1 continuous map $i: \omega(K) \to \mathcal{Q}(K)$, where $\mathcal{Q}(K)$ denotes the space of loops in K based at e_0 . Hence $\omega(K)$ is regarded as the subset of $\mathcal{Q}(K)$ changing its topology from weak topology, and it is called the complex of standard loops in K.

Define a suspension homomorphism $E: C_n(\omega(K)) \to C_{n+1}(K)$ by setting E(c) $=d_{\#}(c \otimes i_1)$, where i_1 is the class of the identity of (I, \dot{I}) on itself. Then we have that

E is a chain homomorphism. E maps $C(\omega(K)) - \{e_0\}$ onto $C(K) - \{e_0\}$ and (2.6)its kernel is generated by the decomposable elements.

In the case that the union of the primitive cells forms a subcomplex L_0 of L, K = B(L) is a suspension of L_0 and d shrinks $L_0 \times I \cup e_0 \times \dot{I}$ to a single point e_0 . Then L becomes the reduced product space of L_0 in the sense of [6].

iii) Complexes of standard paths. Let $L = \omega(K)$ be an FM-complex. Define a space $\omega(K, K)$ from $\omega(K) \times I$ be the identification $\overline{d}: \omega(K) \times I \rightarrow \omega(K, K)$ such that

(2.7)
$$\overline{d}(e_0, t) = d(e_0, 0) = e_0 \in \omega(K, K) ,$$
$$\overline{d}(x \cdot y, t) = \overline{d}\left(y, \frac{t - \lambda}{1 - \lambda}\right) \quad \text{if} \quad \lambda \le t \le 1 ,$$

where $x, y \in \omega(K), x \cdot y \neq e_0$ and $\lambda = \frac{\rho(x)}{\rho(x \cdot y)}$. Since \overline{d} has no relations on $\omega(K) \times (0), \overline{d} \mid \omega(K) \times (0)$ is a homeomorphism onto a subset of $\omega(K, K)$. We imbed $\omega(K)$ into $\omega(K, K)$ by identifying each $x \in \omega(K)$ to $\overline{d}(x, 0) \in \omega(K, K)$. The product in $\omega(K)$ is extended to the product

(2.8)
$$\omega(K, K) \times_{w} \omega(K) \longrightarrow \omega(K, K)$$

setting $d(x, t) \cdot y = \overline{d} \left(x \cdot y, \frac{t_{\rho}(x)}{\rho(x \cdot y)} \right)$. Denote $A \cdot B = \{x \cdot y \mid x \in A, y \in B\}$ by for $A \subset \omega(K, K)$ and $B \subset \omega(K)$, then $A \cdot e_0 = A$, $e_0 \cdot B = B$ and $A \cdot (B \cdot B') = (A \cdot B) \cdot B'$.

Define a projection

$$(2.9) \qquad p: \omega(K, K) \longrightarrow K$$

by the formula $p(\overline{d}(x,t)) = d(x,t)$, then $p(z \cdot x) = p(z)$ for $z \in \omega(K, K)$ and $x \in \omega(K)$. Hence if y=d(x, t) for a primitive point $x \in \omega(K)$ then $p^{-1}(y) = \overline{d(x, t)} \cdot \omega(K)$. Let σ be a primitive cell and denote by $D\sigma$ the image $\overline{d}(\sigma \times (I - \dot{I}))$. Since the identification \overline{d} has no retation on $\sigma \times (I - \dot{I})$, \overline{d} maps $\sigma \times (I - \dot{I})$ homeomorphically onto $D\sigma$. (2.10) The product defines a homeomorphism of $D\sigma \times \omega(K)$ onto a subset $D\sigma \cdot \omega(K)$ of $\omega(K, K)$. $\omega(K, K)$ is the union of the disjoint subset $D\sigma \cdot \omega(K)$ over all primitive cells σ . $(De_0 = e_0)$.

Proof. First we prove that the product in $\omega(K)$ defines a homeomorphism of $\sigma \times \omega(K)$ onto $\sigma \cdot \omega(K)$. Since $\omega(K)$ is free this correspondence is one to one. Then it is sufficient to prove that $\sigma \times \bar{e}$ and $\sigma \cdot \bar{e}$ are homeomorphic, and this follows from $(2, 1)_4$ since $\sigma \times \bar{e}$ and $\sigma \cdot \bar{e}$ both have the identification topology given by their characteristic maps. Let $\sigma \neq e_0$ and let $f: (\sigma \cdot \omega(K)) \times (I - I) \rightarrow \sigma \cdot \omega(K) \times I \subset \omega(K) \times I$ be a map defined by $f(x \cdot y, t) = \left(x \cdot y, \frac{t\rho(x)}{\rho(x \cdot y)}\right)$, then f is a homeomorphism onto a subset M of $\omega(K) \times I$. The map \bar{d} is a homeomorphism of M onto $D\sigma \cdot \omega(K)$ since \bar{d} is one to one and has no relation on M. Since $\bar{d} \mid \sigma \times (I - I)$ is a homeomorphism onto $D\sigma \cdot \omega(K)$ is homeomorphic to $(\sigma \cdot \omega(K)) \times (I - I)$, to M and to $D\sigma \cdot \omega(K)$, and this homeomorphism is given by the product (2.8). The second part of (2.10) is easily verified.

By (2.10), $\omega(K, K)$ is a closure finite cell complex consisting of the cells $D\sigma \cdot e, e \subset \omega(K)$; σ primitive. Since $\overline{d}(\overline{\sigma_1 \cdot \cdots \cdot \sigma_k} \times I) \subset \bigcup_{i=1}^k \overline{D\sigma_i \cdot \sigma_{i+1} \cdot \cdots \cdot \sigma_k}, \overline{d}$ satisfies the condition of (1.3). Therefore we have that

(2.11) $\omega(K, K)$ is a CW-complex.

Let K' be a subcomplex of K. Then $p^{-1}(K')$ is a subcomplex of $\omega(K, K)$ which consists of cells $D\sigma \cdot e$ where $e \subset \omega(K)$ and σ is a primitive cell such that $E\sigma \subset K'$. We denote this complex by $\omega(K, K')$. Obviously $\omega(K, K') \cdot \omega(K) \subset \omega(K, K')$.

To each point $\bar{d}(x, t)$ of $\omega(K, K'), x \in (K), t \in I$, we associate a standard path $l_{x(t)}: I \to K$ which is defined by $l_{x(t)}(u) = d(x, t+u-tu)$, Let $f: \omega(K, K') \times I \to K$ be the map given by $f(\bar{d}(x, t), u) = d(x, t+u-tu)$, then f is continuous. Therefore the correspondence $\bar{d}(x, t) \to l_{x(t)}$ defines a continuous map

$$i: \omega(K, K') \longrightarrow \mathcal{Q}(K, K'),$$

where $\mathcal{Q}(K, K')$ denotes the space of paths in K which start in K' and end at the point e_0 . The map *i* maps $\omega(K, K')$ one to one continuously onto a subset of $\mathcal{Q}(K, K')$. We remark that the map *i* is homeomorphism on compact subsets of $\omega(K, K')$ but not always homeomorphic on the whole of $\omega(K, K')$.

The product of (2.8) defines a chain homomorphism: $C(\omega(K, K')) \otimes C(\omega(K)) \rightarrow C(\omega(K, K'))$, and we denote the image of $c \otimes c'$ by $c \cdot c'$. Next we define a homomorphism

$$D: C_n(\omega(K)) \longrightarrow C_{n+1}(\omega(K, K))$$

by $D(c^n) = \bar{d}_*(c^n \otimes i_1)$, then $p_{\#}D(c) = E(c)$ for the projection p of (2.9). Immediate calculation shows that

Hirosi TODA

a)
$$\partial (c^n \cdot c^m) = (\partial c^n) \cdot c^m + (-1)^n c^n \cdot (\partial c^m)$$
,
b) $\partial (Dc^n) = D(\partial c^n) + (-1)^{n+1}c^n$.

Define homotopy $r_t: \omega(K, K) \to \omega(K, K)$ by $(r_t f)(u) = f(t+u(1-t))$, then we have that

(2.13) $\omega(K, K)$ is contractible to e_0 .

3. Some lemmas

In this \S , K and K_0 means always a CW-complex which admits standard paths and a subcomplex. We shall use the notations of the previous \S .

Since $\omega(K)$ and $\Omega(K)$ are both *H*-spaces [8], $\omega(K)$ and $\Omega(K)$ are simple for all dimensions.

Let $\vee: \mathcal{Q}(K, K_0) \times \mathcal{Q}(K) \to \mathcal{Q}(K, K_0)$ be a map which is given by

$$(f^{\vee}g)(t) = \begin{cases} f(2t) & 0 \leq t \leq \frac{1}{2}, \\ g(2t-1) & \frac{1}{2} \leq t \leq 1, \end{cases}$$

where $f: (I, (0), (1)) \rightarrow (K, K_0, e_0), g: (I, \dot{I}) \rightarrow (K, e_0)$ and $t \in I$. Define a path $P(f, g, s): I \rightarrow K$ for $f \in \omega(K, K_0), g \in \omega(K)$ and $s \in I$ by

$$P(f, g, s)(t) = \begin{cases} f\left(\frac{t}{\lambda_s}\right) & 0 \le t \le \lambda_s, \\ g\left(\frac{t-\lambda_s}{1-\lambda_s}\right) & \lambda_s \le t \le 1, \end{cases}$$

where $\lambda_s = \frac{(2-s) \rho(f) + s\rho(g)}{2\rho(f \cdot g)}$. Then we have a continuous map (3.1) $P: \omega(K, K_0) \times_w \omega(K) \times I \longrightarrow \Omega(K, K_0)$

such that $P(f, g, 0) = f \cdot g, P(f, g, 1) = f \lor g$ and $P(e_0, e_0, s) = e_0$.

LEMMA (3.2) Let $i: \omega(K, K_0) \rightarrow \Omega(K, K_0)$ be the natural map, then the following two conditions are equivalent:

a)
$$i_*: H_n(\omega(K, K_0)) \approx H_n(\Omega(K, K_0))$$
 for all n ,
b) $i_*: \pi_n(\omega(K, K_0)) \approx \pi_n(\Omega(K, K_0))$ for all n .

Proof. Let Ω' be the mapping cylinder of *i*. We represent the points of Ω' by $(x, t), x \in \omega(K, K_0), t \in I$ and by $y \in \Omega(K, K_0)$ with the relation x=(x, 1) and i(x) = (x, 0). Since $K^1 = K_0^1 = e_0, \pi_1(K, K_0) = \pi_0(\Omega(K, K_0)) = 0$, i.e. $\Omega(K, K_0)$ is arcwise-connected. Since $\omega(K, K_0)$ has only a vertex $e_0, \omega(K, K_0)$ is arcwise connected. Then the conditions a) and b) are equivalent to the following conditions a') and b') respectively:

a')
$$H_n(\mathcal{Q}', \omega(K, K_0)) = 0$$
 for all $n > 0$,
b') $\pi_n(\mathcal{Q}', \omega(K, K_0)) = 0$ for all $n > 0$.

Now we shall prove the following two assertions:

- (3.3) $\pi_1(\Omega', \omega(K, K_0)) = 0$,
- (3.4) $\pi_1(\omega(K, K_0))$ operates trivially on $\pi_n(\Omega', \omega(K, K_0))$.

Then Lemma (3.2) is proved immediately from (1.8).

Proof of (3.3) Since $K^1 = K_0^1 = e_0$, $\pi_1(K_0) = 0$ and $\pi_2(K) \to \pi_2(K, \dot{K}_0)$ is onto. Then $\pi_2(K, K_0)$ is generated by the classes of characteristic maps of 2-cells in $K - K_0$, which are the suspension of the classes of characteristic maps of 1-cells in $\omega(K)$. Therefore $\pi_1(\omega(K)) \to \pi_1(\mathcal{Q}(K, K_0)) = \pi_2(K, K_0)$ is onto, and $\pi_1(\omega(K, K_0)) \to \pi_1(\mathcal{Q}(K, K_0))$ is onto, that is, $\pi_1(\mathcal{Q}', \omega(K, K_0)) = 0$.

Proof of (3.4) Since $\omega(K, K_0) - \omega(K)$ has at least 2-dimension, $\pi_1(\omega(K)) \rightarrow \pi_1(\omega(K, K_0))$ is onto. Therefore it is saficient to prove that

(3.4)'
$$\beta^{\alpha} = \beta \text{ for } \alpha \in \pi_1(\omega(K)) \text{ and } \beta \in \pi_n(\Omega', \omega(K, K_0)).$$

Let $a: (I, \dot{I}) \to (\omega(K), e_0)$ and $b: (I^n; I^{n-1}, J^{n-1}) \to (\mathcal{Q}', \omega(K, K_0), e_0)$ be representatives of α and β respectively, where $I^{n-1} = I^{n-1} \times (0) \subset I^n$ and $J^{n-1} = \dot{I}^n$ -Int. I^{n-1} . Denote by [x, t] a point of I^n which divides a point x of \dot{I}^n and the center $(\frac{1}{2}, \dots, \frac{1}{2})$ of I^n in the ratio t: 1-t. Define a homotopy $b_s: (I^n, I^{n-1}, J^{n-1}) (\mathcal{Q}', \omega(K, K_0), e_0)$ by

$$b_s([x, t]) = \begin{cases} r_{3t}(b([x, 0])) & 0 \le t \le \frac{s}{3} \\ r_s\left(b\left(\left[x, \frac{3t-s}{3-s}\right]\right)\right) & \frac{s}{3} \le t \le 1 \end{cases}$$

for $0 \le s \le 1$ and by

$$b_{s} = ([x, t]) = \begin{cases} r_{3t}(b([x, 0])) & 0 \le t \le \frac{1}{3}, \\ P_{0}(r_{1}(b([x, 0])), 2-3t) & \frac{1}{3} \le t \le \frac{s}{3}, \\ P_{0}(r_{1}(b([x, \frac{3t-s}{3-s}])), 2-s) & \frac{s}{3} \le t \le 1, \end{cases}$$

for $1 \le s \le 2$, where r_t ; $\mathscr{Q}' \to \mathscr{Q}'$ is a retraction of \mathscr{Q}' onto $\mathscr{Q}(K, K_0)$ given by $r_t(x, u) = (x, (1-t)u)$, and $P_0(f, u): I \to K(f \in \mathscr{Q}(K, K_0))$ is a path defined by

$$P_{0}(f, u)(t) = \begin{cases} f\left(\frac{2t}{1+u}\right) & 0 \le t \le \frac{1+u}{2}, \\ e_{0} & \frac{1+u}{2} \le t \le 1. \end{cases}$$

Then $b=b_0$ and b_2 represent the same element β . Next define a homotopy $h_s: (I^n, I^{n-1}, J^{n-1}) \to (\mathcal{Q}', \omega(K, K_0), a(s)), s \in I$, by

$$h_{s}([x, t]) = \begin{cases} r_{3t}(b([x, 0]) \cdot a(s)) & 0 \le t \le \frac{1}{3}, \\ P(b([x, 0]), a(s), 3t-1) & \frac{1}{3} \le t \le \frac{2}{3}, \\ b([x, \frac{3t-s}{3-s}]) \lor a(s) & \frac{2}{3} \le t \le 1. \end{cases}$$

Then we have that $h_0 = h_1 = b_2$. In the other words, the homotopy h_s shows that the class of h_0 is β^{α} . Therefore (3.3)' is proved. Consequently Lemma (3.2) is established.

Let $\psi_{\alpha} \colon I^n \to \overline{\sigma}_{\alpha}^n$ be the characteristic map of a primitive *n*-cell σ_{α}^n of $\omega(K_0)$. Let $V^n = \{ [x, t] | \frac{1}{2} \le t \le 1 \}$, and denote by E_{α}^{n+1} the subset $\overline{d}(\psi_{\alpha}(V^n) \times V^1)$ of $D\sigma_{\alpha}^n$, and let \sum^{n+1} be the union of E_{α}^{n+1} for all $\sigma_{\alpha}^n \subset \omega(K_0)$. E_{α}^{n+1} are (n+1)-cubes disjoint from each other. Denote by \sum^{n+1} the boundary of \sum^{n+1} .

Define a homotopy r_s of $\overline{D\sigma_{\alpha}^n}$ on itself by

$$r_{s}(\bar{d}(\psi_{\alpha}([x, t]), u)) = \begin{cases} \bar{d}\left(\psi_{\alpha}(\left[x, \frac{t-2u}{1-2u}\right]\right), 0\right) & u \leq \frac{t}{2}, \ 0 \leq u \leq \frac{1-s}{4}, \\ \bar{d}\left(\psi_{\alpha}([x, 0]), \frac{2u-t}{2-2t}\right) & 0 \leq t \leq \frac{1-s}{2}, \ \frac{t}{2} \leq u \leq \frac{2-t}{2}, \\ d^{-}\left(\psi_{\alpha}\left(\left[x, \frac{2t+s-1}{s+1}\right]\right), \frac{4u+s-1}{2s+2}\right)\frac{1-s}{2} \leq t \leq 1, \\ & \frac{1-s}{4} \leq u \leq \frac{3+s}{4}, \\ \bar{d}\left(\psi_{\alpha}\left(\left[x, \frac{2u+t-2}{2u-1}\right], 1\right) & \frac{2-t}{2} \leq u, \ \frac{3+s}{4} \leq u \leq 1, \end{cases}$$

 $x, t, s \in I, x \in I^n$. Then r_1 is the identity and r_0 maps the interior of E_{α}^{n+1} onto $D\sigma_{\alpha}^n$. r_s fixes the points of $\partial \sigma_{\alpha}^n$.

Define homotopies

$$\phi_s: \sum^{n+1} \times \omega(K) \longrightarrow \omega(K, K_0^{n+1}),$$

$$\phi_s': \sum^{n+1} \times \mathcal{Q}(K) \longrightarrow \mathcal{Q}(K, K_0^{n+1}),$$

by $\phi_s(x, y) = (r_s x) \cdot y$ and $\phi_{s'}(x, y') = (r_s x) \vee y'$ for $y \in \omega(K)$, $y' \in \Omega(K)$ and $x \in \sum^{n+1}$. Denote $\phi = \phi_0$ and $\phi' = \phi_0'$, then $\phi(\sum^{n+1} \times \omega(K)) \subset \omega(K, K_0^n)$ and $\phi'(\sum^{n+1} \times \Omega(K)) \subset \Omega(K, K_0^n)$.

PROPOSITION (3.5) The maps ϕ and ϕ' induce isomorphisms of relative homology groups and the diagram

$$\begin{split} H_{*}(\sum^{n+1}\times\omega(K)\,, & \sum^{i+1}\times\omega(K)) \overset{\varphi_{*}}{\approx} H_{*}(\omega(K,K_{0}^{n+1})\,, & \omega(K,K_{0}^{n})) \\ & \downarrow & \downarrow \\ H_{*}(\sum^{n+1}\times\mathcal{Q}(K)\,, & \sum^{i+1}\times\mathcal{Q}(K)) \overset{\varphi_{*}'}{\approx} H_{*}(\mathcal{Q}(K,K_{0}^{n+1})\,, & \mathcal{Q}(K,K_{0}^{n})) \end{split}$$

is commutative, where the vertical homomorphisms are induced by the natural maps.

Proof. The commutativity follows from the homotopy (3.1). By (2.10), ϕ maps $(\sum^{n+1} - \sum^{n+1}) \times \omega(K)$ homeomorphically onto $\omega(K, K_0^{n+1}) - \omega(K, K_0^n)$. Hence ϕ_* is an isomorphism.

Let $p: \mathcal{Q}(K, K_0) \to K_0$ be the projection, then $\mathcal{Q}(K, K_0^{n+1}) = p^{-1}(K_0^{n+1})$ and $\mathcal{Q}(K, K_0^n) = p^{-1}(K_0^n)$. p maps $\sum_{k=1}^{n+1}$ homeomorphically onto a subset of $K_0^{n+1} - K_0^n$ and we denote this subset by $\sum_{k=1}^{n+1}$ and its bundary by $\sum_{k=1}^{n+1}$. Let X be the closure of $K_0^{n+1} - \sum_{k=1}^{n+1}$. Consider the diagram

Complex of the standard paths and n-ad homotopy groups

$$\begin{array}{ccc} H_{\ast}(\sum^{n+1} \times \mathcal{Q}(K) \ , & \stackrel{{}_{\ast}'^{n+1} \times \mathcal{Q}(K))}{\downarrow} & \stackrel{\phi_{\ast}'}{\longrightarrow} & H_{\ast}(p^{-1}(K_{0}^{n+1}) \ , & p^{-1}(K_{0}^{n})) \\ & & \downarrow & \downarrow & j_{\ast}' \\ H_{\ast}(p^{-1}(\sum^{n+1}_{0}) \ , & p^{-1}(\sum^{n+1}_{0})) & \stackrel{\phi_{\ast}'}{\longrightarrow} & H_{\ast}(p^{-1}(K_{0}^{n+1}) \ , & p^{-1}(X)) \end{array}$$

where j and j' are injections. From the homotopy $\phi_{s'}$, we have that the diagram is commutative. Now we shall prove that the homomorphisms $j_*, j_{*'}$ and $\phi_{1*'}$ are isomorphisms, then $\phi_{*'}$ is an isomorphism.

As is easily seen K_0^n is a deformation retract of X, therefore $p^{-1}(K_0^n)$ is a deformation retract of $p^{-1}(X)$ by the covering homotopy theorem. Then $H_*(p^{-1}(X), p^{-1}(K_0^n))=0$ and this implies that j_*' is the isomorphism. Let $W^{n+1}=p(\phi_1^{-1}(\sum_{n+1}^{n+1}))$ and $W_0^{n+1}=W^{n+1}-(\sum_{0}^{n+1}-\sum_{0}^{n+1})$. Then j_* is the composition of two injection homomorphisms $j_{1*}: H_*(p^{-1}(\sum_{0}^{n+1}), p^{-1}(\sum_{0}^{n+1})) \to H_*(p^{-1}(W^{n+1}), p^{-1}(W_0^{n+1}))$ and $j_{2*}: H_*(p^{-1}(W^{n+1}), p^{-1}(W_0^{n+1})) \to H_*(p^{-1}(K_0^{n+1}), p^{-1}(W_0^{n+1}))$ and $(p^{-1}(W^{n+1}), p^{-1}(W_0^{n+1})) \to H_*(p^{-1}(K_0^{n+1}), p^{-1}(\sum_{0}^{n+1}), p^{-1}(\sum_{0}^{n+1}))$ and $(p^{-1}(W^{n+1}), p^{-1}(W_0^{n+1}))$ have the same homotopy type, then $(p^{-1}(\sum_{0}^{n+1}), p^{-1}(\sum_{0}^{n+1}))$ and $(p^{-1}(W^{n+1}), p^{-1}(W_0^{n+1}))$ have the same homotopy type by the covering homotopy. Thus j_{1*} is the isomorphism. Since Int. $p^{-1}(X) \cup \text{Int. } p^{-1}(W^{n+1}) = p^{-1}(K_0^{n+1}), j_{2*}$ is the excision isomorphism. Therefore j_* is an isomorphism.

The map ϕ_1' is a homotopy equivalence. In fact, define a map $\overline{\phi}$: $(p^{-1}(\sum_{0}^{m+1}), p(\underline{\dot{\Sigma}}_{0}^{m+1})) \rightarrow (\sum_{0}^{n+1} \times \mathcal{Q}(K), \underline{\dot{\Sigma}}_{0}^{n+1} \times \mathcal{Q}(K))$ and homotopies $Q_s: (\sum_{0}^{n+1} \times \mathcal{Q}(K), \underline{\dot{\Sigma}}_{0}^{n+1} \times \mathcal{Q}(K)) \rightarrow (\sum_{0}^{n+1} \times \mathcal{Q}(K), \underline{\dot{\Sigma}}_{0}^{n+1} \times \mathcal{Q}(K))$ and $R_s: (p^{-1}(\sum_{0}^{n+1}), p^{-1}(\underline{\dot{\Sigma}}_{0}^{n+1})) \rightarrow (p^{-1}(\underline{\dot{\Sigma}}_{0}^{n+1}), p^{-1}(\underline{\dot{\Sigma}}_{0}^{n+1}))$ by

$$\begin{split} \bar{\phi}(f) &= (p(f), \psi(f)), \quad \psi(f)(t) = \begin{cases} l(1-2t), & 0 \le t \le \frac{1}{2}, \\ f(2t-1), & \frac{1}{2} \le t \le 1, \end{cases} \\ Q_s(x,g) &= (x, Q_s'(g)), \quad Q_s'(g)(t) = \begin{cases} l'(1-2t), & 0 \le t \le \frac{s}{2}, \\ l'(4t-3s+1), & \frac{s}{2} \le t \le \frac{3s}{4}, \\ g\left(\frac{4t-3s}{4-3s}\right), & \frac{3s}{4} \le t \le 1; \end{cases} \\ R_s(f)(t) &= \begin{cases} l(1-2t), & 0 \le t \le \frac{s}{2}, \\ l(4t-3s+1), & \frac{s}{2} \le t \le \frac{3s}{4}, \\ f\left(\frac{4t-3s}{4-3s}\right), & \frac{3s}{4} \le t \le 1; \end{cases} \end{split}$$

where l and l' are standard paths in \sum^{n+1} such that p(l) = p(f) and p(l') = x. Then $Q_1 = \phi \circ \phi_0'$, $R_1 = \overline{\phi_0'} \circ \phi$ and Q_1 and R_1 are identities. Therefore ϕ_0' is a homotopy equivalence and ϕ_{0*} is an isomorphism. Consequently Proposition (3.5) is proved. From (1.7) and Proposition (3.5), we have the following lemma:

LEMMA (3.6) If $i_*: H_p(\omega(K)) \approx H_p(\mathcal{Q}(K))$ for $p \leq N$, then $i_*: H_p(\omega(K, K_0^m), \omega(K, K_0^{m-1})) \approx H_p(\mathcal{Q}(K, K_0^m), \mathcal{Q}(K, K_0^{m-1}))$ for $p \leq N+m$,

4. The fundamental theorem.

Let K be a complex which admits standard paths, and let K_0 be a subcomplex of K. Then the fundamental theorem of our theory is stated as follows:

THEOREM (4.1) The natural map i_* : $\omega(K, K_0) \rightarrow \Omega(K, K_0)$ induces isomorphisms

$$i_*: \pi_p(\omega(K, K_0)) \approx \pi_p(\mathcal{Q}(K, K_0)), \quad p \geq 0$$

To a map $f: (I^{p}, \dot{I}^{p}) \rightarrow (\mathcal{Q}(K, K_{0}), e_{0})$, we associate a map $f: (I^{p+1}, I^{p}, J^{p}) \rightarrow (K, K_{0}, e_{0})$ given by $f(x_{1}, \dots, x_{p+1}) = (f(x_{1}, \dots, x_{p}))(x_{p+1})$. Then we have the isomorphism $\mathcal{Q}': \pi_{p}(\omega(K, K_{0})) \approx \pi_{p+1}(K, K_{0})$ which is induced by the correspondence $f \leftrightarrow \mathcal{Q}f$. In the same way we have homomorphism $\mathcal{Q}: \pi_{p}(\omega(K, K_{0})) \rightarrow \pi_{p+1}(K, K_{0})$, then combining the isomorphisms \mathcal{Q}' and i_{*} we have that

THEOREM (4.1)' $\Omega: \pi_p(\omega(K, K_0)) \approx \pi_{p+1}(K, K_0)$.

By (3.2) the theorem (4.1) is equivalent to the following proposition:

Proposition (4.2) $i_*: H_p(\omega(K, K_0)) \approx H_p(\mathcal{Q}(K, K_0)), p \ge 0.$

First we shall prove (4.2) in the case $K_0 = e_0$, that is,

(4.3)
$$i_*: H_p(\omega(K)) \approx H_p(\Omega(K)), \quad p \ge 0$$

Proof. Denote $H_p(\omega(K, K^m)) = H_p^m$, $H_p(\omega(K, K^m), \omega(K, K^{m-1})) = H_p^{m,m-1}$, $H_p(\mathcal{Q}(K, K^m)) = H_p^m$, and $H_p(\mathcal{Q}(K, K^m), \mathcal{Q}(K, K^{m-1})) = H_p^{m,m-1}$. Since $\omega(K)$ and $\mathcal{Q}(K)$ are both arcwise connected, (4.3) is true if p=0. Now suppose that (4.3) is true for p < n. Then from (3.6), $i_*: H_p^{m,m-1} \approx H_p^{m,m-1}$ for p < n+m. Applying (1.10), a) and b) to the following diagram

we have that

 $(4.4)_m$ if $i_*: H_{n+1}^m \to H_{n+1}^m$ is onto and if $i_*: H_n^m \to H_n^m$ is an isomorphism, that $i_*: H_{n+1}^{m-1} \to H_{n+1}^{m-1}$ is onto for $m \ge 3$ and $i_*: H_n^{m-1} \to H_n^{m-1}$ is an isomorphism for $m \ge 2$.

If m > p, then $\pi_{p+1}(K, K^m) = \pi_p(\mathfrak{Q}(K, K^m)) = 0$, and by $(1.8)' H_p(\mathfrak{Q}(K, K^m)) = 0$ for m > p > 0. By (2.13), $H_p(\omega(K, K)) = 0$ for p > 0. Since the dimension of the cells of $\omega(K, K) - \omega(K, K^m)$ are at least m+1, $H_p(\omega(K, K), \omega(K, K^m)) = 0$ for $m \ge p$. Hence $H_p(\omega(K, K^m)) = 0$ for m > p > 0. Then the hypothesis of $(4.4)_m$ is true for m > n+1. Applying $(4.4)_m$ for $m=n+2, n+1, \cdots, 3, 2$, we have that $i_*: H_n^1 \to H_n^1$ is an isomorphism. Since $K^1 = e_0$, this means that (4.3) is true for p=n. Therefore (4.3) is proved by the induction on p.

Proof of (4.2) Denote $H_p(\omega(K, K_0^m)) = G_n^m, H_p(\omega(K, K_0^m), \omega(K, K_0^{m-1})) = G_n^{m, m-1},$

$$\begin{split} H_p(\mathcal{Q}(K, K^m)) &= 'G_p^m, \text{ and } H_p(\mathcal{Q}(K, K_0^m), \mathcal{Q}(K, K_0^{m-1})) = 'G_p^{m, m-1}. \quad \text{We shall prove that} \\ (4.5)_m & i_* \colon G_p^m \approx 'G_1^m \quad \text{ for all } p. \end{split}$$

By (4.3), $(4.5)_0$ is true. Then, by (3.6), $i_*: G_p^{m,m-1} \approx G_r^{m,m-1}$ for all p and m. Now suppose that $(4.5)_{m-1}$ is true. Applying the five lemma (1.10), b) to the diagram

we have that $(4.5)_m$ is true. Therefore $(4.5)_m$ is true for all m.

We may consider that $H_p(\omega(K, K_0))$ and $H_p(\mathcal{Q}(K, K_0))$ are limit groups of $\{G_p^m\}$ and $\{'G_p^m\}$ respectively since any compact subsets of $\mathcal{Q}(K, K_0) = p^{-1}(K_0)$ and $\omega(K, K_0)$ are in $\mathcal{Q}(K, K_0^m) = p^{-1}(K_0^m)$ and $\omega(K, K_0^m)$ respectively for sufficiently large *m*. Then (4.5) implies (4.2).

For the application of our theory to homotopy problems the following theorem is useful.

THEOREM (4.6) Let X be a simply connected space. Then there is a CWcomplex K which admits standard paths, and there is a map $f: K \to X$ such that $f_*: \pi_p(K) \approx \pi_p(X), p \ge 0$.

Proof. We shall construct a CW-complex K(n) which admits standard paths and a map $f_n: K(n) \to X$ such that $K(n) \supset K(n-1), f_n \mid K(n-1) = f_{n-1}$ and that $f_{n*}: \pi_p(K(n)) \to \pi_p(X)$ is onto for r=n and isomorphic for p < n. Set $K(0) = e_0$ and take f_0 arbitrary. Now suppose that K(n) and f_n are constructed for $n \leq m$. Consider the generators ζ_{α} of the kernel of f_{m*} : $\pi_m(K(m)) \to \pi_m(X)$. By (4.1)' there exist maps $g_{\alpha}: \dot{I}^{m} \to \omega(K(m))$ which represent $\mathcal{Q}^{-1}\zeta_{\alpha}$. Let ξ_{β} be the generators of $\pi_{m+1}(X)$. Attaching cells e^m_{α} by the maps g_{α} and e^m_{β} by the trivial maps $I^m \to e_0$, we have a CW-complex $\omega(K(m)) + \sum e_{\alpha}^{m} + \sum e_{\alpha}^{m}$. According to (2.2) we construct an FMcomplex L whose primitive cells are those of $\omega(K(m))$, e_{α}^{m} and e_{β}^{m} . Define K(m+1)=B(L), then $K(m+1)=K(m)+\sum Ee_m^m+\sum Ee_B^m$, and Ee_a^m and Ee_B^m are attached by representatives of ζ_{α} and the trivial maps respectively. Since $f_{m*}(\zeta_{\alpha})=0$, the map $f_m | \partial E e^m_a$ is extendable over $\overline{E e^m_a}$. Next extend f_m over $\overline{E e^m_\beta}$, which is (m+1)sphere, such that $\overline{Ee_{m}^{m}} \rightarrow X$ represents ξ_{β} . Then we obtain an extension f_{m+1} : $K(m+1) \rightarrow X$ of f_m . As is easily seen that $\pi_p(K(m)) \approx \pi_p(K(m+1))$ for p < m, hence $f_{m+1*}: \pi_p(K(m+1)) \approx \pi_p(X)$ for p < m. The injection homomorphism $\pi_m(K(m))$ $\rightarrow \pi_m(K(m+1))$ is onto and its kernel is generated by ζ_{α} . Therefore f_{m+1*} : $\pi_m(K(m+1)) \to \pi_m(X)$ is an isomorphism. Since $f_{m+1}|\overline{\sum e_{\beta}^m}$ represent the generators of $\pi_{m+1}(X)$, f_{m+1*} : $\pi_{m+1}(K(m+1)) \rightarrow \pi_{m+1}(X)$ is onto. By the induction on n, K(n)and f_n are constructed. We set $K = \bigcup K(n)$ and define $f: K \to X$ by $f | K(n) = f_n$. Then f satisfies the condition of (4.6).

COROLLARY (4.7) Any simply connected CW-complex is homotopy equivalent to a CW-complex which admits standard paths. (by (1.5))

THEOREM (4.8) Let $X \supset X_0$ be simply connected spaces. Then there exist a CW-complex K which admits standard paths, its subcomplex K_0 and a map $f: (K, K_0) \rightarrow (X, X_0)$ such that $f_*: \pi_p(K) \approx \pi_p(X), \pi_p(K_0) \approx \pi_p(X_0)$ and $\pi_p(K, K_0) \approx \pi_p(X, X_0)$.

Proof. First construct K_0 and $f_0(=f|K_0): K_0 \to X_0$ as (4.6). Next set $K(0) = K_0$ in the proof of (4.6), then we obtain K and $f: (K, K_0) \to (X, X_0)$ such that $f_*: \pi_p(K) \approx \pi_p(X)$. Then the proof of $\pi_p(K, K_0) \approx \pi_p(X, X_0)$ is a simple application of the five lemma.

5. A filtration.

The notations in $\S 2$ will be used in this \S .

Denote by $C_{(r)}(\omega(K, K_0))$ the subgroup of $C(\omega(K, K_0))$ which is generated by the products $\sigma_1 \cdot \cdots \cdot \sigma_r$ and $D\sigma \cdot \sigma_1 \cdot \cdots \cdot \sigma_{r-1}$ for primitive elements $\sigma_1, \cdots, \sigma_r \in C(\omega(K))$ and $\sigma \in C(\omega(K_0))$ of positive dimensions. Note that $C_{(r)}(\omega(K)) = C_{(r)}(\omega(K, e_0))$ and $C_{(0)}(\omega(K, K_0)) = \{e_0\}$. Next define $C^{(r)}(\omega(K, K_0))$ by $C^{(r)}(\omega(K, K_0)) = \sum_{i \geq r} C_{(i)}(\omega(K, K_0))$, then $C^{(r)}$ gives a filtration of $C(\omega(K, K_0))$:

(5.1)
$$C^{(r)}(\omega(K, K_0)) \supset C^{(r+1)}(\omega(K, K_0)),$$

$$C^{(r)}(\omega(K, K_0)) \cdot C^{(s)}(\omega(K, K_0) = C^{(r+s)}(\omega(K, K_0)),$$

and $\partial C^{(r)}(\omega(K, K_0)) \subset C^{(r)}(\omega(K, K_0)).$

Proof. The first two formulas are obvious. Since each 1-cell σ of $\omega(K, K_0)$ is primitive and forms a circle S^1 with the vertex e_0 , $\partial \sigma = 0$. Hence $\partial C^{(1)}(\omega(K, K_0)) \subset C(\omega(K, K_0)) - \{e_0\} = C^{(1)}(\omega(K, K_0))$. Now suppose that $\partial C^{(r-1)} \subset C^{(r-1)}$, then $\partial C^{(r)} = \partial (C^{(1)} \cdot C^{(r-1)}) = (\partial C^{(1)}) \cdot C^{(r-1)} + C^{(1)} \cdot (\partial C^{(r-1)}) \subset C^{(1)} \cdot C^{(r-1)} = C^{(r)}$. Therefore the last formula is proved by the induction on r.

Define the boundary operator on $C_{(r)}$ as that of the difference chain group $C^{(r)}-C^{(r-1)}$. Then from (2.3) and (2.12) we have a chain isomorphism (r>0):

(5.2)
$$C_{(1)}(\omega(K, K_0)) \otimes C_{(1)}(\widetilde{\omega(K)}) \otimes \cdots \otimes C_{(1)}(\omega(K)) \approx C_{(r)}(\omega(K, K_0))$$

given by $c \otimes c_1 \otimes \cdots \otimes c_{r-1} \rightarrow c \cdot c_1 \cdot \cdots \cdot c_{r-1}$. By (2.6) we have a chain isomorphism (suspension) $E: C_{(1)}(\omega(K)) \approx C(K) - \{e_0\}$, and we have that

(5.3)
$$H_p(C_{(1)}(\omega(K)), C_{(1)}(\omega(K_0))) \approx H_{p+1}(K, K_0), \quad p \ge 0.$$

We see that $C_{(1)}(\omega(K, K_0)) = C_{(1)}(\omega(K_0, K_0)) + (C_{(1)}(\omega(K)) - C_{(1)}(\omega(K_0)))$ and $C_{(1)}(\omega(K_0, K_0))$ is closed under the boundary operator of $C_{(1)}(\omega(K, K_0))$. The formula b) of (2.12) shows that $C_{(1)}(\omega(K_0, K_0))$ is chain equivalent to 0. Then we have easily that

(5.4) the injection $C_{(1)}(\omega(K)) - C_{(1)}(\omega(K_0)) \rightarrow C_{(1)}(K, K_0))$ is chain equivalence

and the inverse is given by the projection of $C_{(1)}(\omega(K, K_0))$ onto its direct factor $C_{(1)}(\omega(K)) - C_{(1)}(\omega(K_0))$.

As a corollary we have that

$$(5.4)' H_p(C_{(1)}(\omega(K, K_0))) \approx H_{p+1}(K, K_0) for \ p > 0.$$

Let M, M_1, \dots, M_n be subcomplexes of K such that $M_i \cap M_j = M$ for $i \neq j$ and $K = M_1 \cup \dots \cup M_n$. Let K_1, \dots, K_n be subcomplexes of K given by $K_i = K - (M_i - M)$, $i = 1, \dots, n$. Let \mathcal{C} be a class of abelian groups which satisfies the conditions (I) and (II_B) of [9].

LEMMA (5.6) If $H_p(K, K_i) \in \mathcal{O}$ for $p < q_i+1$ and if $H_{q_i+1}(K, K_i)$ is \mathcal{O} -isomorphic to a group G_i . Then $H_p(C_{(r)}(\omega(K, K_n)), \sum_{i=1}^{n-1} C_{(r)}\omega(K_i, K_{i} \cap K_n)) = 0$ for r < n, and $\in \mathcal{O}$ for $r \ge n$ and p < Q+r-n, where $Q = \sum q_i$. The group $H_Q(C_{(n)}(\omega(K, K_n)))$, $\sum_{i=1}^{n-1} C_{(n)}(\omega(K_i, K_i \cap K_n)))$ is \mathcal{O} -isomorphic to the direct sum of (n-1)! copies of $G_1 \otimes \cdots \otimes G_n$.

Proof. By (5.2), $C_{(r)}(\omega(K, K_n)) - \sum_{i=1}^{n-1} C_{(r)}(\omega(K_i, K_i \cap K_n))$ is chain isomorphic to $C_{(1)}(\omega(K, K_n)) \otimes [C_{(1)}(\omega(K))]^{r-1} - \sum_{i=1}^{n-1} (C_{(1)}(\omega(K_i, K_i \cap K_n)) \otimes [C_{(1)}(\omega(K_i))]^{r-1})$, where $[A]^t$ indicates the *t*-fold tensor product $A \otimes \cdots \otimes A$. Since $M_n - M = K_i - (K_i \cap K_n) = K - K_n$, $i = 1, \cdots, n-1$, the injections $C_{(1)}(M_n) - C_{(1)}(M) \to C_{(1)}(\omega(K_i, K_i \cap K_n))$ and $C_{(1)}(M_n) - C_{(1)}(M) \to C_{(1)}(\omega(K, K_n))$ are chain equivalences by (5.4), and their inverse are the projections to the factor $C_{(1)}(M_n) - C_{(1)}(M)$. Then we have that the injection of $(C_{(1)}(M_n) - C_{(1)}(M)) \otimes ([C_{(1)}(\omega(K))]^{r-1} - \sum_{i=1}^{n-1} [C_{(1)}(\omega(K_i))]^{r-1})$ into $(C_{(1)}(\omega(K, K_n)) \otimes [C_{(1)}(\omega(K))]^{r-1} - \sum_{i=1}^{n-1} (C_{(1)}(\omega(K_i, K_i \cap K_n)) \otimes [C_{(1)}(\omega(K_i))]^{r-1})$ is a chain equivalence.

For the simplicity we denote that $C_{(1)}(\omega(M)) = B_0$, $C_{(1)}(\omega(M_i)) - C_{(1)}(\omega(M)) = B_i$ for $i=1, \dots, n$, then $C_{(1)}(\omega(K)) = \sum_{i \ge 0} B_i$, $C_{(1)}(\omega(K_i)) = \sum_{i \ne j} B_j$, $\partial B_0 \subset B_0$ and $\partial B_i \subset B_0 + B_i$. Then the assertion of (5.6) is reworded to that

(5.6)'
$$H_p(B_n \otimes ([\sum_{j=0}^n B_j]^{r-1} - \sum_{i=1}^{n-1} [\sum_{j\neq i} B_j]^{r-1})$$

satisfies the assertion of (5.6).

Applying the Künnth's formula (1.6), (5.6)' is rewritten as

 $(5.6)'' \text{ If } H_0(B_0) = 0, \ H_p(B_i) \in \mathcal{C} \text{ for } 1 \leq i \leq n-1 \text{ and } p < q_i \text{ and if } H_{q_i}(B_i) \text{ is } \mathcal{C}-i \text{ isomorphic to a group } G_i. \text{ Then } H_p(([\sum_{j=0}^n B_j]^{r-1} - \sum_{i=1}^{n-1} [\sum_{j\neq i} B_j]^{r-1}) = 0 \text{ for } r < n, \text{ and } e \in \mathcal{O} \text{ for } r \geq n \text{ and } p < \mathcal{Q}' + r - m, \text{ where } \mathcal{Q}' = \mathcal{Q} - q_n. \text{ The group } H_{\mathcal{Q}'}(\sum_{j=0}^n [B_j]^{n-1} - \sum_{i=1}^{n-1} [\sum_{j\neq i} B_j]^{n-1}) \text{ is } \mathcal{C}-i \text{ somorphic to the sum of } (n-1)! \text{ copies of } G_1 \otimes \cdots \otimes G_{n-1}.$ $Proof \ of \ (5.6)'' \text{ A factor } B_{i_1} \otimes \cdots \otimes B_{i_{r-1}} \text{ of } [\sum_{j=1}^n B_j]^{r-1} \text{ is in } \sum_{j=1}^{n-1} [\sum_{j\neq i} B_j]^{r-1}$

Hirosi TODA

if and only if the set $\{i_1, \dots, i_{r-1}\}$ of indices is contained in one of $\{0, 1, \dots, n-1, n\}$ $-\{i\}$ for $i=1, \dots, n-1$. Hence a factor $B_{i_1} \otimes \dots \otimes B_{i_{r-1}}$ is in $[\sum_{j=1}^n B_j]^{r-1}$ $-\sum_{i=1}^{n-1} [\sum_{j\neq i} B_j]^{r-1}$ if and only if $\{i_1, \dots, i_{r-1}\}$ contains $\{1, \dots, n-1\}$. In the case r < n, we have obviously $[\sum_{i=1}^n B_j]^{r-1} - \sum_{i=1}^{n-1} [\sum_{i \in i} B_j]^{r-1} = 0$. Therefore

(5.6)'' is proved for r < n.

Let $r \ge n$. Since $H_p(B_i) \in \mathcal{Q}$ for p < 1, $i=0, 1, \dots, n-1$, we have easily from (1.6) that

(5.7) a) if $\{i_1, \dots, i_{r-1}\}$ contains $\{1, \dots, n-1\}$, then $H_p(B_{i_1} \otimes \dots \otimes B_{i_{r-1}}) \in \mathcal{O}$ for p < Q' + r - n; b) if $\{i_1, \dots, i_{n-1}\} = \{1, \dots, n-1\}$, then $H_p(B_{i_1} \otimes \dots \otimes B_{i_{r-1}})$ is \mathcal{O}_{i_1} is morphic to $G_1 \otimes \dots \otimes G_{n-1}$.

Now we can arrange the factors $B_{i_1} \otimes \cdots \otimes B_{i_{r-1}}$ in an order such that if $\{D_k; k=1, 2, \cdots\}$ is such an ordered set of $\{B_{i_1} \otimes \cdots \otimes B_{i_{r-1}}\}$ then $\partial D_k \subset \sum_{i \leq k} D_i$. Denote $E_k = \sum_{i \leq k} D_i$, then E_k are chain subgroups, and $E_k = [\sum_{j=1}^n B_j]^{r-1} - \sum_{i=1}^{n-1} [\sum_{j \neq i} B_j]^{r-1}$ for sufficiently large k. Consider an exact sequence $H_p(E_k) \to H_p(E_{k+1}) \to H_p(E_{k+1}, E_k) = H_p(D_k)$. By (5.7), a) $H_p(D_k) \in \mathcal{C}$ for p < Q' + r - n. Hence $H_p(E_k) \in \mathcal{C}$ implies $H_p(E_{k+1}) \in \mathcal{C}$ for p < Q' + r - n. By induction on k, we have that $H_p(E_k) \in \mathcal{C}$ for p < Q' + r - n. In the case r=n, $D_k=B_{i_1}\otimes \cdots \otimes B_{i_{n-1}}$ for some $\{i_1, \cdots, i_{n-1}\} = \{1, \cdots, n-1\}$. Then $\partial D_k \subset D_k$. Therefore $H_Q'(E_{(n-1)}!) = \sum_k H_Q'(D_k)$ and it is \mathcal{C} -isomorphic to the sum of (n-1)! copies of $G_1 \otimes \cdots \otimes G_{n-1}$, by (5.7), b).

Consequently (5.6)'' and hence (5.6) is proved.

LEMMA (5.8) From the hypothesis of (5.6) we have that $H_p(\omega(K, K_n), \bigcup_{j=1}^{n-1} \omega(K_i, K_i \cap K_n)) \in \mathcal{O}$ for p < Q and $H_Q(\omega(K, K_n), \bigcup_{n=1}^{n-1} \omega(K_i, K_i \cap K_n))$ is \mathcal{O} isomorphic to the direct sum of (n-1)! copies of $G_1 \otimes \cdots \otimes G_n$.

 $\begin{array}{l} Proof. \text{ Denote } C^{(r)} = C^{(r)}(\omega(K,K_n)) - \sum_{i=1}^{n-1} C^{(r)}(\omega(K_i,K_i \cap K_n)) \text{ and } C_{(r)} = C_{(r)}(\omega(K,K_n)) \\ - \sum_{i=1}^{n-1} C_{(r)}(\omega(K_i,K_i \cap K_n)), \text{ then } C_{(r)} = C^{(r)} - C^{(r+1)}. \text{ Since the chains of } C(\omega(K,K_n)) \\ - C^{(r)}(\omega(K,K_n)) \text{ have at least dimension } r, H_p(\omega(K,K_n),\sum_{i=1}^{n-1} \omega(K_i,K_i \cap K_n)) \\ = H_p(C^{(0)}) \approx H_p(C^{(0)}, C^{(p+2)}). \text{ Consider the exact sequence: } H_p(C_{(r)}) \approx H_p(C^{(r)}, C^{(r+1)}) \\ \rightarrow H_p(C^{(0)}, C^{(r+1)}) \rightarrow H_p(C^{(0)}, C^{(r)}) \rightarrow H_{p-1}(C^{(r)}, C^{(r+1)}) \approx H_{p-1}(C_{(r)}). \text{ If } r < n, H_p(C_{(r)}) \\ = 0 \text{ by } (5.6) \text{ and then } H_p(C^{(0)}, C^{(r+1)}) \approx H_p(C^{(0)}, C^{(r)}). \text{ Hence } H_p(C^{(0)}, C^{(n)}) \\ \approx H_p(C^{(0)}, C^{(0)}) = 0. \text{ Therefore } H_p(C_{(n)}) \approx H_p(C^{(0)}, C^{(n+1)}). \text{ If } r \ge n, \text{ by } (5.6) \\ H_p(C_{(r)}) \in \mathcal{O} \text{ for } p < Q+1, \text{ then } H_p(C^{(0)}, C^{(r+1)}) \text{ and } H_p(C^{(0)}, C^{(r)}) \text{ are } \mathcal{O}-\text{isomorphic} \\ \text{for } p \le Q. \text{ Hence } H_p(C^{(0)}) \approx H_p(C^{(0)}, C^{(p+2)}) \text{ is } \mathcal{O}-\text{isomorphic to } H_p(C^{(0)}, C^{(n+1)}) \\ \approx H_p(C_{(n)}) \text{ for } p \le Q. \text{ Then } (5.8) \text{ follows from } (5.6). \end{array}$

6. Connectedness theorem for (n+1)-ad homotopy groups.

Let $(X; X_1, \dots, X_n, x_0)$ be (n+1)-ad and let $\pi_p(X; X_1, \dots, X_n)$ be the homotopy group of the (n+1)-ad [1].

We consider the group $\pi_p(X; X_1, \dots, X_n)$ as the set of the homotopy classes of maps $f: (I; I_1^{n-1}, \dots, I_n^{n-1}, J_n^{p-1}) \to (X; X_1, \dots, X_n, x_0)$, where $I_i^{p-1} = \{(x_1, \dots, x_p) \in I_p | x_i = 0\}$ and $J_n^{p-1} = \dot{I}^p$ -Int. $(\bigcup_{i=1}^{n} I_i^{p-1})$.

For a map $g: (I^p; I_1^{p-1}, \dots, I_{n-1}^{p-1}, J_{n-1}^{p-1}) \rightarrow (\mathcal{Q}(X, X_n); \mathcal{Q}(X_1, X_1 \cap X_n), \dots, \mathcal{Q}(X_{n-1}, X_{n-1} \cap X_n), f_0)$, define a map $\mathcal{Q}g: (I^{p+1}; I_1^n, \dots, I_n^n, J_n^p) \rightarrow (X; X_1, \dots, X_n, x_0)$ by $\mathcal{Q}g(x_1, \dots, x_{p+1}) = g(x_1, \dots, x_{n-1}, x_{n+1}, \dots, x_{p+1})(x_n)$, where $f_0(I) = x_0$. Then the correspondence $g \leftrightarrow \mathcal{Q}g$ defined the isomorphism

(6.1)
$$\mathcal{Q}: \pi_p(\mathcal{Q}(X, X_n); \mathcal{Q}(X_1, X_1 \cap X_n), \cdots, \mathcal{Q}(X_{n-1}, X_{n-1} \cap X_n)) \\ \approx \pi_{p+1}(X; X_1, \cdots, X_n).$$

We introduce here some elementary properties of the homotopy groups of (n+1)-ad (cf. [1, I]).

(6.2) $\pi_p(X; X_1, \dots, X_n) \approx \pi_p(X; X_{\sigma_{(1)}}, \dots, X_{\sigma_{(n)}})$ for a permutation σ of $\{1, \dots, n\}$.

(6.3)
$$\pi_p(X; X_1, \cdots, X_n) \approx \pi_p(X; X_1, \cdots, X_{n-1})$$
 if $X_{n-1} \supset X_n$.

(6.4) The following sequence of homomorphisms is exact:

$$\cdots \longrightarrow \pi_{p+1}(X; X_1, \cdots, X_n) \longrightarrow \pi_p(X_1; X_1 \cap X_2, \cdots, X_1 \cap X_n)$$

$$\longrightarrow \pi_p(X; X_2, \cdots, X_n) \longrightarrow \pi_p(X; X_1, \cdots, X_n) \longrightarrow \cdots .$$

 $\begin{array}{ll} \mathrm{A} & \mathrm{map} \ f \colon (X; \ X_1, \cdots, X_n) \to (Y; \ Y_1, \cdots, Y_n) \ \text{defines the induced homomorphism} \\ f_* \colon \pi_p(X; \ X_1, \cdots, X_n) \to \pi_p(Y; \ Y_1, \cdots, Y_n). \end{array}$

(6.5) The induced homomorphisms commute with the exact sequences (6.4) of $(X; X_1, \dots, X_n)$ and $(Y; Y_1, \dots, Y_n)$.

Let K be a CW-complex and let K_1, \dots, K_n be subcomplexes such that $K_{1} \cap \dots \cap K_n \ni e_0$ a vertex. Denote by I(n) the set of indices $\{1, \dots, n\}$. For each subset J of I(n), we associate the subcomplex $K_J = K_{j_1} \cap \dots \cap K_{j_r}$ where $\{j_1, \dots, j_r\} = J$. Denote $\partial K_J = \bigcup_{J' \subseteq J} K_J', M = K_{I(n)}$ and $M_i - K_{I(n)-\{i\}}$.

Then the connectedness theorem for (n+1)-ad homotopy groups is stated as follows:

THEOREM (6.6)_n Assume that $K=M_1 \cup \cdots \cup M_n$, $\pi_0(M)=\pi_1(M)=\pi_0(M_i)=\pi_1(M_i)=0$ =0, $\pi_2(M_j, M)=0$ and $H_p(M_i, M) \in \mathcal{O}$ for $p \leq q_i$, $i=1, \cdots, n$. Let $Q=\sum q_i$. Then $\pi_p(K; K_1, \cdots, K_n) \in \mathcal{O}$ for $p \leq Q$ and $\pi_{Q+1}(K; K_1, \cdots, K_n)$ is \mathcal{O} -isomorphic to the direct sum of (n-1)! copies of $H_{q_1+1}(M_1, M) \otimes \cdots \otimes H_{q_n+1}(M, M)$.

Here Q indicates a class of abelian groups which satisfies the conditions (I), (II_B) and (III) of [9]. For a general combinatorial (n+1)-ad, we have the following:

Hirosi TODA

THEOREM (6.7)_n Assume that $\pi_0(K_J) = \pi_1(K_J) = \pi_2(K_J, \partial K_J)$ and $H_p(K_J, \partial K_J) \in \mathcal{O}$ for $p \leq q_J$, $J \subset I(n)$. Let Q be the ninimum of the sums $q_{J_1} + \cdots + q_{J_s}$ such that $J_1 \cap \cdots \cap J_s = \phi$ (empty set). Then $\pi_p(K; K_1, \cdots, K_n) \in \mathcal{O}$ for $p \leq Q$.

First we show that

LEMMA (6.8) (6.6)_n and (6.7)_r for r < n imply (6.7)_n.

Proof. Let {J_k; k=1,...,2ⁿ} be an ordered set of the indices J ⊂ I(n) such that $J_1 = I(n), J_{i+1} = I(n) - \{i\}$ for i = 1, ..., n and that $J_k ⊂ J_k'$ implies k ≥ k'. Set $K(k) = \sum_{j ≤ k} K_{Jj}$, then K(k) is a subcomplex of K and $K(k) - K(k-1) = K_{Jk} - ∂K_{Jk}$. (6.6)_n means that (6.7)_n is true if K = K(n+1), or that (6.7)_n is true for $(K(n+1); K_1 ∩ K(n+1), ..., K_n ∩ K(n+1))$. Now suppose that (6.7)_n is true for an (n+1)-ad $(K(k-1); K_1 ∩ K(k-1), ..., K_n ∩ K(k-1)), k ≥ n+2$. Let $J = \{j_1, ..., j_r\}$ be a subset of I(n) such that $K(k) - K(k-1) = K_J - ∂K_J$. By (6.4) we have the exact sequence: $\pi_p(K(k-1); K_1 ∩ K(k-1), ..., K_n ∩ K(k-1)) \rightarrow \pi_p(K(k); K_1 ∩ K(k), ..., K_n ∩ K(k))$. Since $K(k) ∩ K_i = K(k-1)$ for $i \in I(n) - J$, we have from (6.2) and (6.3) that $\pi_p(K(k); K(k-1), K_1 ∩ K(k), ..., K_n ∩ K(k))$. Since k ≥ n+1, r ≤ n-2 and r+1 < n, we can apply (6.7)_{r+1} to the group $\pi_p(K(k); K(k-1), K_{j_1 ∩}K(k), ..., K_{j_r ∩}K(k))$, and we shall prove that

(6.9)
$$\pi_p(K(k); K(k-1), K_{j_1 \cap}K(k), \cdots, K_{j_r \cap}K(k)) \in \mathcal{Q}$$
 for $p \leq Q$.

Then $\pi_p(K(k-1); K_1 \cap K(k-1), \dots, K_n \cap K(k-1)) \in \mathcal{Q}$ implies $\pi_p(K(k); K_1 \cap K(k), \dots, K_n \cap K(k)) \in \mathcal{Q}$ for $p \leq Q$. By induction on $k \geq n+2$, (6.7)_n is verified and (6.8) is proved.

Proof of (6.9) Set K(k) = L, $K(k-1) = L_1$ and $K_{j_i \cap} K(k) = L_{i+1}$ for $i=1, \dots, r$. The conditions $\pi_0(L_A) = \pi_1(L_A) = \pi_2(L_A, \partial L_A) = 0$, $A \subset I(r+1)$, are easily verified. Let p_A be an integer such that $H_p(L_A, \partial L_A) \in \mathcal{O}$ for $p \leq p_A$. If $A = I(r+1) - \{1\}$, then $L_A - \partial_L_A = K_J - \partial K_J$ and hence $p_A = q_J$. If $A \subseteq I(r+1) - \{1\}$, then $L_A - \partial L_A = \phi$ and $p_A = \infty$. Consider subsets A_1, \dots, A_s of I(r+1) such that $A_1 \cap \dots \cap A_s = \phi$, then there is at least one A_i which does not contain 1. If $A_i \subseteq I(r+1) - \{1\}$, then $p_{A_1} + \dots + p_{A_s} = \infty$. Now we suppose that $A_i \ge 1$ for $1 \leq i \leq t$ and $Ai = I(r+1) - \{1\}$ for $t < i \geq s$, (t < s). Denote by B_i a subset $\{j_b \mid b+1 \in (I(r+1) - A_i)\}$ of $I(n), i \leq t$, then $L_{A_i} - \partial L_{A_i}$ is the union of $K_{J_k} - \partial K_{J_k}$ such that $J_k \cap B_i = \phi$ and r > k. Therefore $p_{A_i} \geq M$ in. $(q_{J_k}: J_k \cap B_i = \phi)$ and $p_{A_1} + \dots + p_{A_s} \geq M$ in. $(q_{j_1'} + \dots + q_{J_t'} + (s-t)q_J: J_i' \cap B_i = \phi)$. Since $A_1 \cap \dots \cap A_t = \{1\}, B_1 \cup \dots \cup B_t = \{j_1, \dots, j_r\} = J$ and $J_1' \cup \dots \cup J_t' \cap J = \phi$ if $J_i' \cap B_i = \phi$. From the hypothesis of $(6.7)_n$, $p_{A_1} + \dots + p_{A_s} \geq Q$, and we have (6.9) from $(6.7)_{r+1}$.

Proof of $(6.6)_n$ By (6.8), it is sufficient to prove that $(6.7)_r$, r < n implies $(6.6)_n$. According to (4.8), we construct CW-complex M', M_1', \dots, M_n' which admit standard paths and maps $f_i: M_i' \to M_i$ such that $M_i' \cap M_j' = M'$ and $f_i | M' = f_j | M'$

for $i \neq j$ and that $f_{i*}: \pi_p(M_i') \approx \pi_p(M_i)$ and $\pi_p(M') \approx \pi_p(M)$. By (2.2) we see that the union $K' = \bigcup M_i'$ admits standard paths. Define a map $f: K' \to K$ by $f|M_i'=f_i$ and set $K_i' = K' - (M_i' - M')$. Since the complexes are simply connected, the isomorphisms of homotopy groups provide isomorphisms of homology groups $f_*: H_*(M')$ $\approx H_*(M)$ and $H_*(M_i') \approx H_*(M_i)$, and hence $f_*: H_*(K_f') \approx H_*(K_f)$. Then f induces isomorphisms $f_*: \pi_p(K'_f) \approx \pi_p(K_f)$. Applying (6.5) and the five lemma, we have that f induces isomorphisms $f_*: \pi_p(K'; K_1', \cdots, K_n') \approx \pi_p(K; K_1, \cdots, K_n)$. Therefore we may assume that K' = K, i.e., K admits standard paths.

 $(4.2), \quad i_* \colon H_*(\omega(K, K_n)) \approx H_*(\mathcal{Q}(K, K_n))$ By and $H_*(\omega(K_i, K_i \cap K_n))$ $\approx H_*(\mathcal{Q}(K_i, K_i \cap K_n))$. As is easily seen that $\mathcal{Q}(K, K_n)$ and $\mathcal{Q}(K_i, K_i \cap K_n)$ are simply connected. Repeating the above discussion on the map $f: K' \to K$ for the injection $i: \omega(K, K_n) \to \mathcal{Q}(K, K_n)$, we have isomorphisms $\pi_p(\omega(K, K_n); \omega(K_1, K_1 \cap K_n, \cdots, K_n))$ $\omega(K_{n-1}, K_{n-1} \cap K_n)) \approx \pi_p(\mathcal{Q}(K, K_n); \mathcal{Q}(K_1, K_1 \cap K_n), \cdots, \mathcal{Q}(K_{n-1}, K_{n-1} \cap K_n)). \quad \text{Com-}$ bining (6.1) to this isomorphisms, we have isomorphisms $\pi_{p+1}(K; K_1, \dots, K_n)$ $\approx \pi_p(\omega(K, K_n); \omega(K_1, K_1 \cap K_n), \cdots, \omega(K_{n-1}, K_{n-1} \cap K_n)). \quad \text{Set} \quad L = \omega(K, K_n) \quad \text{and}$ $L_i = \omega(K_i, K_i \cap K_n)$ for $i = 1, \dots, n-1$. We apply $(6, 7)_{n-1}$ to an *n*-ad $(\partial L; L_1, \dots, L_{n-1})$. The simply connectedness of L_J and L is easily verified. By (5.8), $H_p(L_J, \partial L_J) = 0$ for p < 4 and $\pi_2(L_J, \partial L_J) = 0$, this is a special case of $(6.6)_2$. Applying (5.8) to $L_J = \omega(K_J, K_J \cap K_n)$, we have that $H_p(L_J, \partial L_J) \in \mathcal{O}$ for $p \leq (\sum_{i \in I(n-1)-J} q_i) + q_n - 1$. If $J_{1} \cap \cdots \cap J_{s} = \emptyset(s > 1), \ J_{k} \subset I(n-1), \ k = 1, \cdots, s, \quad \text{then} \quad \sum_{k=1}^{s} ((\sum_{i \in I(n-1)-J_{k}}^{i \in I(n-1)-J} q_{k}) + q_{n} - 1) \\ \geq (\sum_{k=1}^{n-1} q_{k}) + s(q_{n} - 1) \ge Q. \quad \text{Therefore we have from } (6.7)_{n-1} \text{ that } \pi_{p}(\partial L; \ L_{1}, \cdots, L_{n-1})$ $\in \mathcal{Q}$ for p < Q+1. From the exact sequence (6.4) for an (n+1)-ad $(L; \partial L, L_1, \cdots, d_{n-1})$ L_{n-1}), we have that $\pi_p(L; L_1, \cdots, L_{n-1})$ is *Q*-isomorphic to $\pi_p(L; \partial L, L_1 \cdots, L_{n-1})$ L_{n-1} for p < Q+1. Since $L_i \subset \partial L$, $i=1, \dots, n-1$, we have from (6.2) and (6.3) $\pi_p(L; \partial L, L_1, \cdots, L_{n-1}) \approx \pi_p(L; \partial L).$ Consequently $\pi_{p+1}(K; K_1, \cdots, K_n)$ that $\approx \pi_p(L; L_1, \dots, L_{n-1}) \text{ is } \mathcal{Q} \text{-isomorphic to } \pi_p(L; \partial L) = \pi_p(\omega(K, K_n), \bigcup_{i=1}^{n-1} \omega(K_i, K_i \cap K_n))$ for p < Q+1. By (1.9) and (5.8), $\pi_p(L, \partial L)$ is Q-isomorphic to $H_p(L, \partial L)$ for p < Q+1. Then $(6.6)_n$ follows from (5.8).

References

- [1] A. L. Blakers and W. S. Massey, *The homotopy groups of triads* I, Ann. of Math., 53 (1951) 161-205; 55 (1952) 192-201.
- [2] H. Cartan and S. Eilenberg, Homological algebras.
- [3] S. Eilenberg, Singular homology theory, Ann. of Math. 45 (1944) 407-447.
- [4] S. Eilenberg and N. E. Steenrod, Foundation of algebraic topology.
- [5] S. T. Hu, An exposition of the relative homotopy theory, Duke Math. J., 14 (1947), 991-1033.
- [6] I. M. James, Reduced product spaces, Ann. of Math., 62 (1955), 170-197.
- J. C. Moore, Some application of homology theory to homotopy problems, Ann. of Math., 58 (1953) 325-350.
- [8] J-P. Serre, Homology singulière des espaces fibrés, Ann. of Math., 54 (1951) 425-505.

Hirosi Toda

- [9] J-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math., 58 (1953) 258-294.
- [10] H. Toda, Topology of standard path spaces and homotopy theory I. Proc. Jap. Acad., 29 (1953) 299-304.
- [11] G. M. Whitehead, On the Freudenthal theorems, Ann. of Math., 57 (1953) 209-228.
- [12] J. H. C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc., 55 (1947) 213-245.