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Introduction 

In a previous note [10] the author has defined a class of CW-complexes such 

that if K is such a complex, then there is a CW-complex w(K) which is a subspace 

of the loops SJ(K) in K, and such that the injection map induces an isomorphism of 

the homotopy groups of w(K) and SJ(K). 

In this paper, we consider firstly CW-complexes which have free monoid struc­

ture. Secondly if L is such a complex we construct from L a new CW-complex K 

such that L= w(K), and such that K is obtained by an identification d: LX I -0 K. 

Each point x of w(K) defines a standard loop d: (x) xI -0 K, and w(K) is regarded 

as the subset of SJ(K). As a standard path in K, we mean a linear part of a 

standard loop in K. We define a complex w(K, K0) of standard paths which start in 

a subcomplex K 0 of K and end at the base point e0 • 

Our fundamental theorem is stated as follows (§ 4) : 

THEOREM. rr;(w(K, K0)) """'7r;+1 (K, K0) for all i. 

The application of our theory to the homotopy theory is based on the fact that 

for any simply connected space X there exists a complex K on which we may define 

(K) and there exists a map f: K --3> X such that f induces isomorphisms of homo­

JPY groups. 

One purpose of the paper is tu j)rove the following connectedness theorem for 

(n+1)-ad homotopy groups (§6). Let X be a CW-complex and let Y, Y1 , ... , Yn 

be subcomplexes of X such that Y;nYj=Y for i'*j and Y1 u ... uyn=X. Set 

X;= X- ( Y;- Y). Let <9 be a class of abelian groups which satisfies the condition 

(I), (liB) and (III) of [9]. 

THEOREM. If y is simPly connected, ( Y;' Y) are 2-connected and Hp( Y;' Y) E e 
for P<q;+l. Then np(X; X 1 , .. ·,Xn) E <9 for p<Q='L:,q; andnQ+I(X; Xl, .. ·,Xn) is 

<9-isomorphic to the direct sum of (n-1)! copies of Hq1+1C Y1 , Y)Q9 ... Q9Hqn+ 1 ( Yn, Y). 

1. Preliminaries. 

Denote by P the unit n-cube and by jn its boundary : 

According to J. H. C. Whitehead [12] K is a CW-complex; if K is a closure 

finite cell complex, i. e., K is a Hausdorff space which is the union of disjoint open 
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cells e~ with characteristic maps c/Jre: P->e~ such that ¢"'1 (P-jn) is a homeomor­

phism onto e~ and ae~= cJ;,.(jn) is contained in the union of a finite number of cells 

whose dimensionalities do not exceed n -1 ; and if K has the weak topology, i. e., a 

subset XCK is closed provided Xne is closed for each cell eCK. A subcomplex of 

a CW-complex is also a CW-complex. We list here some properties of CW-complex 

from [12]: 

(1.1) A map f: K---"> X is continuous provided fl KrJ! is continuous for each cell 

eCK. 

(1. 2) If XCK is compact, then X meets only a finite number of cells. 

(1. 3) Let f: K---">L be a map of a CW-complex K onto a closure finite complex L 

which has the identification topology determined by f and if /(e) meets only a finite 

number of cells of L for each eCK, then L is a CW-complex. 

(1. 4) If K is a CW-complex and L is a locally finite complex, then the topological 

product Kx L is a CW-complex by the natural cell-decomposition. 

(1. 5) Let K and L be CW-complexes. Then a map f: K---">L is a homotopy equiv­

alence if and only if f induces isomorphisms of the homotopy groups. 

Hereafter we consider that to each CW-complex characteristic maps of the cells 

are given and fixed. 

Let K and L be CW-complexes. Consider the topological product Kx L which 

is a closure finite complex, a cell of Kx L is the product e~ X e'g of cells e~CK and 

e'gCL and the characteristic map of e~xe'g is given by cJ;"',p,(x,y)=(cJ;,.(x), c/Jp,(y)) 

for the characteristic maps ¢"' and c/;p, of e;:; and e{l. We do not know whether the com­

plex Kx L has the weak topology or not. Hence we change the topology of Kx L 

to the weak topology and let Kx wL be the resulting CW-complex. The natural 

map KxwL---">KXL is a homeomorphism on finite subcomplexes. 

Let K and K0 be a CW-complex and a subcomplex. Let H*(K, K0 ) = 2J Hp(K, K0 ) 

be the (cubical) singular homology groups, then HnCKn, Kn- 1) is a free module 

generated by the classes of the characteristic maps ¢,.: (In, jn)---"> (e~' ae;:;) 

C (Kn, Kn- 1). We denote by the same symbol e~ the class of¢"'. Set HnCKn, Kn- 1) 

= CnCK) and 2J CnCK) = C(K), then C(K) is a chain group with the boundary 

homomorphisms On: Cn(K)---"> Cn_1(K) defined by the composition j*of): HnCKn, Kn- 1 ) 

->H.,-1(Kn- 1) ---">Hn_ 1(Kn- 1, Kn- 2 ). As is well known 

A cellular map f: (K, K0 ) -> (L, L0 ) induces chain homomorphisms fl!i : C(K, K 0 ) 

= C(K)- (.:(K0)---"> C(L, L 0 ) = C(L)- C(L0) and I# induces the homomorphism 

f*: H*(K, K0 ) --?H*(L, L0 ). 

Consider the natural map f: KxwL->KxL. Since a singular chain covers only 
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a finite number of cells in KxL (KxwL), f induces isomorphisms/*: H*(KxwL) 

""=' H*(Kx L) and ft"<: C(Kx wL) = C(Kx L). The generators of C(Kx wL) are chains 

e~ x efj, the classes of rf; "'' 13 , and the correspondence e~ Q9 efj -o> e~ x efj induces an isomor. 

phism: C(K) Q9 C(L) -o> C(Kx wL). We haye that a(e~x efj) =ae~x efi+ ( -1)n e~x ae'g. 

The chain group C(K) Q9 C(L) is refered to as the tensor product of C(K) and C(L). 

Then we have the formula of Ktinneth [ 4], [2]: Hp( C(K) &;; C(L)) ""=' 2.:; H;( C(K)) 
i+j~p 

@Hj(C(L))+ 2.:; H;(C(K))*Hj(C(L)). 
i+j~p-1 

Let (9 be a class of abelian group which satisfies the axioms (I) and (liB) of 

[9], then we have that 

(1.6) Let Ccl),···,Ccn bechaingroupssuchthatHp(Ccil)E(9 for P<q;, i=1,···,r, 

and let Q=2.:;q;. Then Hp(Ccl)@···@Ccn) E (9 for P<Q and HQ(CClJ@···®Ccn) 

is (9-isomorphic to llq1 (Ccl))@ ··· @Hqr(Ccn). 

Let E~ be disjoint n-cubes, let 2.:;n be the union of E~ and let ~n be its bound­

ary. Then the cross-products induces isomorphisms Hp(X)Q9HnC2Jn, f~t)=HP+nCX 
x2.:;n, Xx2Jn) and the diagram 

Hp(X) @Hn(2Jn, 2Jn) =HP+n(Xx2.:;n, Xx2Jn) 

l f*~i* • l (!xi)*. 
Hp( Y) @HnC2Jn, 2.jn) = HP+nC Yx2.jn, Yx LJn) 

(1. 7) 

is commutative, where f: X -o> Y is a map and i is the identity on Ljn. This is a 

special case of the Ki.inneth's formula and a simple proof was given in a remark of 

[11, p. 213]. 

Next we recall the following Hurewicz theorem : 

(1. 8) Let X and Y be a space and a subspace. If Hp(X, Y) =0 for P<n and if 

(X, Y) is n-simple, then rcn(X, Y)=Hn(X, Y). 

For the proof see [5]. If X is arcwise connected, then rc1 (X)-> H 1 (X) is onto. 

Therefore we have that 

(1. 8)' if TCp(X) =0 for o<p<n, then Hp(X) =0 for O<P<n. 

Let (9 be a class of abelian groups which satisfies (I), (liB) and tnl), then from [9], 

(1. 9) If X and Y are simply connected, (X, Y) is 2-connec1ed and if Hp(X, Y) E (9 

for P<n, then rcp(X, Y) E (9 for P<n and rrn(X, Y) is ('?-isomorphic to Hn(X, Y). 

Suppose 1hat in the following homomorphisms between two exact sequences {Gnl 

and {H,.}: 

G,~-2 - G,+1 - Gn- Gn-1 - Gn-2 l fn+z l fn+l l fn l fn-1 l fn-2 

Hn+z- Hn+>- Hn- H,-1- Hn- a 

the commutativity holds. Then we have that (cf. [4]) 
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(1.10) a) if 1n+1 and ln- 1 are onto and if 1;;!_2(0) =0, then fn is onto; b) if fn+z 

is onto and if ln+l, fn- 1 and ln-z are isomorphisms, then /, is an isomorphism. 

2. FM -complexes and complexes of standard paths. 

i) FM-comPlexes: An FM-complex is a CW-complex L having a free monoid 

structure. More precisely, an FM-complex L has a multiplication (product) (x, y) 

--+X•y which satisfies the following conditions (2.1),-(2.1) 5 • 

(2. 1) 1 l(x, y) = x· y defines a continuous map I: L x wL -> L. 

(2. 1) 2 The 0-section V constitutes of a single point e0 which acts as the unit 

element: X·e0 =e0 •X=X for all xE L. 

(2.1) 3 (x·y)·z=x· (y·z) (denoted by x·y·z). 

We denote A·B={a·bJaEA, bEE} for two subsets A and B of L. 

(2.1) 4 The product en-em of 2-cells en and em is also a cell whose characteristic map 

¢ 3 : r+m_,en·em is given by cp3(t, U)=cp1(t)•¢z(U), where c/J1 and c/Jz are characteristic 

maps of en and em. 

(2.1) 5 There are no relations but (2. 1)2 and (2. 1) 3 in the product. 

By a Primitive point x we mean a point which is not decomposable, i. e., X= y· z 

implies X= y or x=z. If x= y·z for x E en, y E em and z E er, then from (2. 1) 4 we have 

that er=en·em, r=m+n and that fJenxem is a homeomorphism onth en-em. Therefore 

if a point of a cell tJ is primitive, then the other points of r1 are also primitive, and 

the cell a is said to be primitive. Then any cell en of a positive dimention n > 0 is 

the product of a finite number of primitive cells tJ; of prositive dimention n, such 

that n=2Jn,. By (2.1) 5 the expression en=tJ1 ···tJr has to be unique. 

Therefore L is a free monoid whose generators are the primitive points. 

Let L0 be an FM-complex. Consider maps 1,: jn"'--+Lo"- 1 and a CW-complex 

L'=L0 + 2Jen"' which is obtained from L0 attaching the cells en"' by the maps 1,. 

(2. 2) There exists an FM-complex L which contains L0 as a submonoid and L' as 
• 

a subcomplex such that the primitive cells of L are the those of L 0 and en"'. 

In fact, we consider a free monoid L generated by the primitive points of L 0 and 

the points of en"'. Then the products of the primitive cells of L 0 and en"' form a 

decomposition of L, and L becomes FM-complex if we give the topology on each 

closure of a cell by (2. 1) 4 and next take the weak topology on the whole of L. This 

process is possible since L is a closure finite complex. 

The product 1: LX wL ~ L induces the chain homomorphism I#: C(L) (i) C(L) 

->C(L). We write as c·c'EI#(c(i;;c') for c, c' E C(L). By a primitive chain a we 

mean the class of the characteristic map of a primitive cell a. 
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Proposition (2. 3) The chain group C(L) of a FM-complex L is a graded free 

ring (Pontrjagin ring) generated by the primitive chains. The boundary operator is 

an anti-derivation, i.e. a(cn·cm)=(acn)·cm+(-1)ncn·(8cm) for c"ECnCL) and 

cmE Cm(L). 

The proof is immediate. 

ii) Complexes of standard loops. Here we shall construct a CW-complex K 

such that a subspace of its loops space is an FM-complex L. We shall refer to L 

as the complex of the standard loops in K, and K as a complex which admits standard 

paths. 

LEMMA (2. 4). Let L be an FM-complex, then there exists a real valued func­

tion p of L such that p(x·y)=p(x)+p(y),x,y?JL and such that p(x)>O for x=\=e0 • 

We define p presisely as follows: Let L(n) be a subcomplex whose cells are the 

products of primitive cells of dimension <n. Since L(O)=e0 , we set p(e0)=0 and p 

is defined on L(O). Suppose that p is defined on L(n-1). Let a~» be a primitive 

n-cell and let 1/Ja: r~if'l» be its characteristic map, then p is defined on oaf» since 

Ln- 1CL(n-1). For a point x of jn, we denote by [x, t] the point which divides 

x and the center (!, ···, t) of r in the ratio t; 1-t. We set p(I/J~»[x, t])=(1-t) 

p(¢~»(x)) +tn for each a, then p is extended over L(n) by the linearity p(x·y) 

= p(x) + p(y). From (2.1)c(2.1) 5 and (1.1) p is single valued and continuous. 

Then p is defined by induction on n. 

This function p is defined uniquely since we fixed the characteristic maps for 

each CW-complex. 

Let K=B(L) be a space which is defined from the product complex LXI by an 

identification d: LX I~ B(L) = K such that 

d(e0 , t) =d(e0 , 0) =eo E K, 

l d(x, n' 
d(x·y, t)= t-). 

d(y, 1-).) 
(2. 5) 

where x, y E L, X· y=\= e0 and ). C(x\ p X•y 
We see that d(Lxi)=e0 and d(e·e'xl)=d(exl)ud(e'xi). Therefore B(L) is 

the union of the disjoint sets d(ax (l-i)) for the primitive cells a. Since there is 

no relation on anx (I-i) if dimension n>O, dlanx (I-i) is a homeomorphism. 

Denote the image d(anx (l-i)) by Ean and define a characteristic map ¢': r+ 1 

~Ean by ¢'(x1 , ···, Xn+ 1) =d(¢(x1 , ···, Xn), Xn+l) where 1/J is the characteristic map of 

an. Then B(L) =e0 + 2J Ea becomes a closure finite cell complex. Since d(a1 ···a,.) 

CUEa;, the identification d: Lxi~B(L) satisfies the condition of (1.3), and hence 

K=B(L) is a CW-complex. 

We write l,.=w(K); this means that L is an FM-complex such that K=B(L). 
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We say that a CW-complex K admits standard paths if there exists an F'M-complex 

L such that K=B(L). 

For each point x of w(K), we define a standard loop lx: (I, j)--;. (K, e0 ) by the 

formula lx(t)=d(x, t), tEl. Then the correspondence x~lx defines a 1-1 continuous 

map i: w(K) ~ J2(K), where JJ(K) denotes the space of loops in K based at e0 • 

Hence w(K) is regarded as the subset of J2(K) changing its topology from weak 

topology, and it is called the complex of standard loops in K. 

Define a suspension homomorphism E: C., ( w(K)) ~> Cn+I (K) by setting E( c) 

=d->t(c(Z)i,), where i, is the class of the identity of (I, j) on itself. Then we have 

that 

(2.6) Eisa chain homomorphism. E maps C(w(K))--{e0 } onto C(K)~{e0 } and 

its kernel is generated by the decomposable elements. 

In the case that the union of the primitive cells forms a subcomplex L 0 of 

L, K = B(L) is a suspension of L0 and d shrinks L0 X Iu e0 X j to a single point e0 • 

Then L becomes the reduced product space of L 0 in the sense of [6]. 

iii) Complexes of standard paths. Let L=w(K) be an FM-complex. Define a 

space w(K, K) from w(K) xI be the identification d: w(K) X I~ w(K, K) such that 

(2. 7) 
d~e0 , t) =d(e0 , 0) =e0 E w(K, K) , 

a~x·y,t)=a(y, i=n if J.<t<l, 

p(x) 
where x, y ~- w(K), x·y=j=e0 and A= p(x·y) . __ 

Since d has no relations on w(K) x (0), dl w(K) x (0) is a homeomorphism onto 

a subset of w(K, K). We imbed w(K) into w(K, K) by identifying each x E w(K) 

to d(x, 0) E w(K, K). The product in w(K) is extended to the product 

(2.8) w(K, K) x ww(K) --* w(K, K) 

by setting d(x,t)·y=d(x·y, .:C~~})). Denote A·B={x·ylxEA,yEB} for 

ACw(K, K) and BCw(K), then A·e0 =A, e0 ·B=B and A·(B·B') = (A-B)·B'. 

Define a projection 

(2.9) p: w(K, K) _, K 

by the formula p(d(x, t))=d(x, t), then p(z·x)=P(z) for zEw(K, K) and xEw(K). 

Hence if y=d(x, t) for a primitive point x E w(K) then p-'(y) = d(x, t) ·w(K). Let 

tJ be a primitive cell and denote by Da the image d(tJX (l~j)). Since the identifi­

cation d has no retation on tJX (I~j), d maps tJX (I~j) homeomorphically onto DtJ. 
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(2. 10) The product defines a homeomorphism of D11 X w(K) onto a subset D11· w(K) 

of w(K, K). w(K, K) is the union of the disjoint subset D11· w(K) over all primitive 

cells 11. (Deo=eo). 

Proof. First we prove that the product in w(K) defines a homeomorphism of 

ax w(K) onto 11· w(K). Since w(K) is free this correspondence is one to one. Then 

it is sufficient to prove that 11 X e and 11·e are homeomorphic, and this follows from 

(2. 1) 4 since 11X e and a•e both have the identification topology given by their charac­

teristic maps. Let 11=Fe0 and let f: (d·w(K))x(l-i)-o.d·w(K)x!Cw(K)xl be a 

map defined by f(x·y, t)= (x·y, t(p(x))), then f is a homeomorphism onto a subset 
p X•y 

M of w(K) xi. The map d is a homeomorphism of M onto D11·w(K) since 

a: is one to one and has no relation on M. Since J"! d X (/- i) is a homeomor­

phism onto D11,D11Xw(K) is homeomorphic to (d·w(K))x(l-i), toM and to 

D11·w(K), and this homeomorphism is given by the product (2. 8). The second part 

of (2. 10) is easily verified. 

By (2. 10), w(K, K) is a closure finite cell complex consisting of the cells D11·e, e 
-- - k -

Cw(K); 11 primitive. Since d(a,· .... 11kXl)C U D11;-11i+ 1 • ... ·11k, d satisfies the con-
t=l 

dition of (1. 3). Therefore we have that 

(2. 11) w(K, K) is a CW-complex. 

Let K' be a subcomplex of K. Then p-'(K') is a subcomplex of w(K, K) 

which consists of cells, D11· e where eCw(K) and d is a primitive cell such that 

E11CK'. We denote this complex by w(K, K'). Obviously w(K, K')·w(K)Cw(K, K'). 

To each point d(x, t) of w(K, K'), x E (K), t E I, we associate a standard path 

lxctJ: I-->K which is defined by lxuJ(u)=d(x,t+u-tu), Let/: w(K,K')xl~K be 

the map given by f(ri(x, t), u)=d(x, t+u-tu), then f is continuous. Therefore the 

correspondence d(x, t) __,. lxetJ defines a continuous map 

i: w(K, K') --* Q(K, K') , 

where Q(K, K') denotes the space of paths in K which start in K' and end at the 

point e0 • The map i maps w(K, K') one to one continuously onto a subset of 

JJ(K, K'). We remark that the map i is homeomorphism on compact subsets of 

w(K, K') but not always homeomorphic on the whole of w(K, K'). 

The product of (2. 8) defines a chain homomorphism: C(w(K, K'))@ C(w(K)) 

~ C(w(K, K')), and we denote the image of c@ c' by c· c'. Next we define a 

homomorphism 

D: C,(w(K)) -----* Cn+ 1(w(K, K)) 

by D(cn)=d~(cn@i1), then P!r!fD(c)=E(c) for the projection P of (2. 9). Immediate 

calculation shows that 
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(2.12) a) 8(cn-cm)=(8cn)·cm+(-l)ncn·(8cm), 

b) 8(Dcn)=D(8cn) + ( -l)n+lcn. 

Define homotopy rt: w(K,K)~w(K,K) by (rtf)(u)=f(t+u(l-t)), then we 

have that 

(2. 13) w(K, K) is contractible to e0 • 

3. Some lemmas 

In this §, K and K0 means always a CW-complex which admits standard paths 

and a subcomplex. We shall use the notations of th~ previous §. 

Since w(K) and SJ(K) are both H-spaces [8], w(K) and SJ(K) are simple for 

all dimensions. 

Let V: SJ(K, K0) X SJ(K) ~ SJ(K, K0) be a map which is given by 

v t - { f(2t) 
(f g)()- g(2t-1) 

o<t<i, 
!<t<l, 

where f: (I, (0), (1)) ~ (K, K0 , eo), g: (I, i) ~ (K, e0) and t E I. Define a path 

P(f,g,s): I~KforfEw(K,K0),gEw(K) and sElby 

f(L) 
P(f, g, s)(t)= l 

( t-As) 
g l-As 

where As= (2-s~:(c;.~;sp(g) Then we have a continuous map 

(3. 1) P: w(K, K0 ) x ww(K) xI ~ SJ(K, K0 ) 

such that P(f, g, O)=f·g, P(f, g, l)=fV g and P(e0 , e0 , s)=e0 • 

LEMMA (3. 2) Let i: w(K, K0) ~ SJ(K, K0) be the natural map, then the follow­

ing two conditions are equivalent: 

a) i*: Hn(w(K, K0 )) ~Hn(SJ(K, Ko)) 

b) i*: 7rn(w(K, K0))~n:n(SJ(K, K0)) 

for all n, 

for all n. 

Proof. Let SJ' be the mapping cylinder of i. We represent the points of SJ' by 

(x, t), x E w(K, K0), t E I and by y E SJ(K, K0) with the relation x= (x, 1) and i(x) 

= (x, 0). Since K1=K~=e0 , n:1(K, K0) =n:0(SJ(K, K0)) =0, i.e. SJ(K, K0) is arcwise­

connected. Since w(K, K0) has only a vertex e0 , w(K, K0) is arcwise connected. 

Then the conditions a) and b) are equivalent to the following conditions a') and b') 

respectively: 

a') Hn(SJ', w(K, K0))=0 

b') 1Cn(SJ', w(K, K0)) = 0 

for all n>O, 
for all n>O. 

Now we shall prove the following two assertions : 
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(3. 3) rr:1 (.fJ', w(K, K 0 )) = 0, 

(3. 4) 1!1 (w(K, K 0)) operates trivially on TCn(t2', w(K, K0)) • 

Then Lemma (3. 2) is proved immediately from (1. 8). 

109 

Proof of (3. 3) Since K1=K~=e0 , rc1 (K0) =0 and rc2 (K) ->rr:2 (K, K0) is onto. 

Then rc 2 (K, K0 ) is generated by the classes of characteristic maps of 2-cells in K-K0 • 

which are the suspension of the classes of characteristic maps of 1-cells in w(K). 

Therefore rc1 (w(K)) --"'TC1 (t2(K, K0)) =rc2 (K, K0 ) is onto, and rc1 (w(K, K0)) 

-->-TC1 (t2(K, K 0)) is onto, that is, rc1(t2', w(K, K0 ))=0. 

Proof of (3. 4) Since w(K, K0)-w(K) has at least 2-dimension, 7r1 (w(K)) 

-->-rr:1 (w(K, K 0)) is onto. Therefore it is saficient to prove that 

(3. 4)' 

Let a: (I, j)--"' (w(K), e0) and b: (P; P- 1, Jn- 1)--"' (t2', w(K, K0), e0) be repre­

sentatives of a and fi respectively, where P-1=In- 1 x (O)Cln and Jn-1 =jn_Int. 

P-1• Denote by [x, t] a point of P which divides a point x of jn and the center 

(!, ···, D of P in the ratio t: 1-t. Define a homotopy bs: (P, In-', ]n- 1) 

(t2', w(K, K 0 ), e0) by 

l r3t(b([x, 0])) 

bs([x, t]) = rs ( b([ X, ~-=-: ]) ) 
O<t< ~, 

~ < t<1' 

r3t(b([x, 0])) 

b, • ([x, I])~ { P,V, (b([x, O])), 2 - 31) 

P0 (r1 ( b([ x, ~-=-ss ]) ) , 2- s) 

1 O<t< 3 , 

}_<t<_!_ 
3--3' 

for 1 < s < 2, where r 1 ; t2'--"' t2' is a retraction of t2' onto t2 (K, K 0) given by r1 (x, u) 

= (x, (1-t) u), and P0(f, u): 1-->-K(fE Q(K, K 0)) is a path defined by 

PoCf, u) (t) = { f( 1 ~u) 
eo 

O<t< 1+u 
-- 2 ' 

1+u <t<1. 
2 --

Then b = b0 and b2 represent the same element {3. Next define a homotopy 

hs: (P, P- 1 , Jn- 1) -> (.!2', w(K, K0), a(s)), S E I, by 

r31 (b([x, 0]) ·a(s)) 

h,([x, I]) · \ P(b([x, OJ), a(,), 31-1) 

b([x, 3i~:J) v a(s) 
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Then we have that h0 =h1=b2 • In the other words, the homotopy hs shows that the 

class of h0 is {3"'. Therefore (3. 3)' is proved. Consequently Lemma (3. 2) is 

established. 

Let ¢"': P~u;J, be the characteristic map of a primitive n-cell d;], of w(K0). Let 

vn={[x,t]\~<t<1}, and denote by E'~+l the subset d(¢"'(Vn)xV 1) of Dd;],, and 

let Ljn+l be the union of E~+l for all d;],Cw(K0 ). E~+l are (n+ 1)-cubes disjoint 

from each other. Denote by ~nH the boundary of 2.jn+l. 

Define a homotopy rs of Dd;], on itself by 

rs(d(cp"'([x, t]), u))= 

t 1-s u< 2 , O<u<~4-, 

1-s t 2-t 
O<t< ~2-' 2<u<~2-' 

d ( ¢"'([ x, t=~:J) ' 0) 
d ( ¢"'([x, 0]) , ~ze__-;~) 

a- ( ¢"'([ x, 2ts:s1-1 ]) , 4u+s-1) 1-s <t< 1 
2s+2 2 - - ' 

- ( ([ 2u+t-2] ) d ¢"' x, 2u " 1 ' 1 
2-t < 
~2-_u, 

1-s <u<3+s 
4 -- 4 ' 

3+s <u<1 
4 -- ' 

x, t, s E /, x E P. Then r 1 is the identity and r0 maps the interior of E>;;,+l onto Dd'/1. 

rs fixes the points of od;J,. 

Define homotopies 

Ps: 2Jn+1 Xw(K) --'>- w(K, Kg+l), 

ifJs' : Ljn+l x Q(K) --'>- Q(K, Kg+ I) , 

by ifJs(x,y)=(rsx)·y and ifJs'(x,y')=(r5 x)Yy' for yEw(K), y'EJJ(K) and xELjnH. 

Denote p=p0 and ¢'=¢0', then ¢('i.:,n+1 xw(K))Cw(K, KB) and p'('2:.,n-'-1 XJJ(K)) 

CJJ(K,Kg). 

PROPOSITION (3. 5) The maps ifJ and ¢' induce isomorphisms of relative homology 

groups and the diagram 

• q,* 
H*(Ljn+1 X w(K) , Ljn+l x w(K)) = H*( w(K, Kg+ 1) , w(K, KB)) 

1. .P/ 1 
H*(Ljn+~xQ(K), 2Jn+1 xJJ(K))=H*(Q(K, Kg+1), Q(K, K 0)) 

is commutative, where the vertical homomorphisms are induced by the natural maps. 

Proof. The commutativity follows from the homotopy (3. 1). By (2. 10), 

¢maps (2Jn.-l_~n+1)Xw(K) homeomorphically onto w(K, KB+l)-w(K, K 0). Hence 

¢* is an isomorphism. 

Let P: Q(K, K 0 ) -> K 0 be the projection, then Q(K, K 0H) = p- 1(K0.,.1) and Q(K, KB) 

=P- 1(Kg). p maps Ljn+l homeomorphically onto a subset of K 0+ 1-K0 and we 

denote this subset by 2.j0+l and its bundary by '2Jo+l· Let X be the closure of 

K 0+1- Lj0+1. Consider the diagram 
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p-l(K~)) 

p-l(X)) 

where j and j' are injections. From the homotopy ¢s', we have that the diagram is 

commutative. Now we shall prove that the homomorphisms j*, j/ and ¢1*' are 

isomorphisms, then ¢/ is an isomorphism. 

As is easily seen K~ is a deformation retract of X, therefore p-l(K~) is a defor­

mation retract of p- 1(X) by the covering homotopy theorem. Then H*(p-1(X), 

p- 1 (K~))=O and this implies that j*' is the isomorphism. Let wn+1 =P(¢~'(Ljn+l)) 

and W~+l= wn+l_ (::Lj~+l- Ljg+1). Then j* is the composition of two injection homo­

morphisms j 1*: H*(p-l(Lj[i+l), p-1(2Jfi+l)) --;..H*(p-'(Wn+'), p-l(W0+1)) and 

j 2*: H*(p-'( Wn-r'), p-1( W 0+1)) -> H*(p-'(K0+1), p-'(X) ). The two pairs (Lj~+l, 

~8+1) and ( wn+r, W~+l) have the same homotopy type, then (p-'(Ljg+1), p-'(~~+1)) 
and (p-1( wn+'), p-'C Wg+l)) have the same homotopy type by the covering homotopy. 

Thus j,* is the isomorphism. Since Int. p-'(X) U Int. p-'( Wn+') = p-1(K0+1), j2* is 

the excision isomorphism. Therefore j* is an isomorphism. 

The map ¢,' is a homotopy equivalence. In fact, define a map rf: (p-'(Lj0+1), 

p(!_j(i+l))--;.. (Ljn-r1 x.Q(K), 2Jn+IxfJ(K)) and homotopies Qs: (Ljn+IxfJ(K), 

:8n+IxfJ(K))--;..(::Ljn+IxfJ(K), 2Jn+IxfJ(K)) and Rs: (p- 1 (2::.:~+1), p-'(~8+1)) 

-> cp-'C::L:fi+l), p-1c2Jg+l)) by 

{ l(l-2t)' 
¢Cf)=(P(f),¢(f)), ¢Cf)(t)= f(2t-l), 

\ 

l'(l-2t)' 

Qs(X, g)=(x, Qs'(g)), Qs'(g)(t)= l'(4t-3s+l), 

(4t-3s\ 
g 4-3s}' 

O<t<t, 
~<t<l' 

o<t<~, 

_§__<t<3s 
2--4' 

~<t<l· 4-- ' 

ll(l-2t), 

RsCf)(t)= l(4t-3s+l), 

O<t< ~, 

_§__<t< 3s 
2--4' 

/(4t-3s) 
4-3s ' 

3s<t<l· 
4-- ' 

where l and l' are standard paths in Ljn+1 such that p(l) = P(f) and p(l') =x. 

Then Q, = ¢o¢0', R, = (/)0' o¢ and Q1 and R1 are identities. Therefore ¢ 0' is a homotopy 

equivalence and ¢ 0/ is an isomorphism. Conseuuently Proposition (3. 5) is proved. 

From (1. 7) and Proposition (3. 5), we have the following lemma : 

LEMMA (3.6) If i*: Hp(w(K)):=::::;Hp(fJ(K)) for p<N, then i*: Hp(w(K,K'{f), 

w(K, K(f-1)):::::::; Hp(f2(K, K'{f), fJ(K, K'{f-1)) for p<N+m. 
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4. The fundamental theorem. 

Let K be a complex which admits standard paths, and let Ko be a subcomplex 

of K. Then the fundamental theorem of our theory is stated as follows : 

THEOREM ( 4. 1) The natural map i*: w(K, K 0)- JJ(K, K 0) induces isomorPhisms 

P>O. 

To a map f: (JP, jP)- (JJ(K, K 0 ), e0 ), we associate a map f: (JP+r, JP, ]P) 

-(K,K0 ,e0 ) given by f(x~,···,xp+ 1)=(f(x1 ,···,xp))(xp+ 1 ). Then we have the 

isomorphism JJ': rcp(w(K, K 0)) ~ rcp+ 1 (K, K 0 ) which is induced by the correspondence 

f<->JJf. In the same way we have homomorphism S2: rcp(w(K, K 0)) -rcp+1(K, K 0 ), 

then combining the isomorphisms JJ' and i* we have that 

THEOREM ( 4. 1)' 

By (3. 2) the theorem ( 4. 1) is equivalent to the following proposition: 

PROPOSITION (4.2) i*: Hp(w(K,K0))~Hp(S2(K,K0)), p>O. 

First we shall prove ( 4. 2) in the case K 0 = e0 , that is, 

(4.3) p>o. 
Proof. Denote Hp(w(K, Km))=H'f}', Hp(w(K, Km), w(K, Km- 1))=HF"m-I, Hp 

(Q(K, Km))='H';:, and Hp(JJ(K, Km), JJ(K, Km- 1))='Hr;:·m-1• Since w(K) and 

JJ(K) are both arcwise connected, (4. 3) is true if P=O. Now suppose that (4. 3) is 

true for P<n. Then from (3.6), i*: H;;·m-1 ~'Hy:·m-1 for P<n+m. Applying 

(1. 10), a) and b) to the following diagram 

we have that 

(4. 4)m if i*: H~1 -H'?;+l is onto and if i*: H'?;->H'?; is an isomorphism, that 

i*: H'?;+l:-'H:;>::;:l: is onto form> 3 and i*: H'?;-1 -'H'?;-1 is an isomorphism for m~2. 

If m > p, then TCp+ 1(K, Km) =rcp(JJ(K, Km)) = 0, and by (1. 8)' Hp(JJ(K, Km)) 

o=O for m>P>O. By (2. 13), Hp(w(K, K))=O for P>O. Since the dimension of 

the cells of w(K, K)-w(K, Km) are at least m+1, Hp(w(K, K), w(K, Km))=O for 

m>p. Hence Hp(w(K,Km))=O for m>P>O. Then the hypothesis of (4.4)m is 

true for m>n+l. Applying (4.4)m for m=n+2, n+1, ... ,3, 2, we have that 

i*: H~-'H~ is an isomorphism. Since K 1 =e0 , this means that (4.3) is true for 

P = n. Therefore ( 4. 3) is proved by the induction on p. 

Proof of (4. 2) Denote Hp(w(K, Kf}))=G:;!, Hp(w(K, K'({), w(K, Krr;-1))=0(;·m-I, 
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Hp(Q(K, Km))='G'!J', and Hp(!J(K, K'{/), Q(K, K7r1))='GW·m-l. We shall prove that 

(4.5)m for all p. 

By (4. 3), (4. 5) 0 is true. Then, by (3. 6), i*: GW·m-l.;:::::;'G't·m-l for all p and m. 

Now suppose that (4. 5)m-1 is true. Applying the five lemma (1.10), b) to the 

diagram 

we have that ( 4. 5)m is true. Therefore ( 4. 5)m is true for all m. 

We may consider that Hp(w(K, K0)) and Hp(!J(K, K0)) are limit groups of {G.;'} 

and { 'GW} respectively since any compact subsets of Q(K, K0) = p-'(K0) and w(K, K0 ) 

are in Q(K, K'{/) = p-'(K'r/) and w(K, K'{/) respectively for sufficiently large m. Then 

( 4. 5) implies ( 4. 2). 

For the application of our theory to homotopy problems the following theorem is 

useful. 

THEOREM (4. 6) Let X be a simply connected space. Then there is a CW­

complex K which admits standard paths, and there is a map f: K ->X such that 

{*: rcp(K)=rcp(X), p>O. 

Proof. We shall construct a CW-complex K(n) which admits standard paths 

and a map fn: K(n)-X such that K(n)-:JK(n-1), fniK(n-1)=/n-I and that 

fn*: rcp(K(n))-rcp(X) is onto for r=n and isomorphic for P<n. Set K(O)=e0 and 

take fo arbitary. Now suppose that K(n) and fn are constructed for n<m. Consider 

the generators ((1, of the kernel of fm*: TCm(K(m))->rcmCX). By (4.1)' there exist 

maps g(l,: jm-w(K(m)) which represent Q-'e;:(l,. Let ~!3 be the generators of TCm+ 1(X). 

Attaching cells e"(} by the maps g(l, and e(3 by the trivial maps jm-c.e0 , we have a 

CW-complex w(K(m)) + Lj e"(}+ 2J eji. According to (2. 2) we construct an FM­

complex L whose primitive cells are those of w(K(m)), e"(} and e{I. Define K(m+1) 

=B(L), then K(m+1)=K(m)+lJEe';:+2JEe';l, and Ee';: and Ee{I are attached by 

representatives of ((I, and the trivial maps respectively. Since j m*Ce;:(l,) = 0, the 

map fmlfJEe';: is extendable over Ee':l. Next extend fm over Eefi, which is (m+1)­

sphere, such that Eefi'->X represents ~B· Then we obtain an extension fm+I: 

K(m+1)->X of fm· As is easily seen that np(K(m))=rcp(K(m+1)) for P<m, hence 

fm+'*: rcp(K(m+1))=rcp(X) for P<m. The injection homomorphism TCm(K(m)) 

-c. rcm(K(m+ 1)) is onto and its kernel is generated by (.,. Therefore f m+I*: 

TCm(K(m+ 1)) -c. TCm(X) is an, isomorphism. Since f m+II2J e~ represent the generators 

of TCm_,.,(X), fm+I*: TCm+ICK(m+1)) -c.nm+1(X) is onto. By the induction on n, K(n) 

and In are constructed. We set K = u K(n) and define f: K- X by !I K(n) = fn. 

Then f satisfies the condition of ( 4. 6). 
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CoROLLARY (4. 7) Any simply connected CW-complex is homotopy equivalent to 

a CW-complex which admits standard paths. (by (1. 5)) 

THEOREM (4. 8) Let X~Xo be simply connected spaces. Then there exist a 

CW-complex K which admits standard paths, its subcomplex K 0 and a map f: (K, K 0 ) 

-(X, X 0) such that f*: rcp(K) =rcp(X), rcp(K0 ) =rcp(X0 ) and rcp(K, K 0 ) =rcp(X, X 0). 

Proof. First construct K 0 and / 0( = fl K 0 ) : K 0 - X 0 as ( 4. 6). Next set K(O) = K0 

in the proof of (4. 6), then we obtain K and f: (K, K 0)- (X, X0) such that 

/*: rcp(K)=rcp(X). Then the proof of rcp(K, K 0 )=rcp(X, X0) is a simple application 

of the five lemma. 

5. A filtration. 

The notations in ~ 2 will be used in this B· 
Denote by Ccn(w(K, K 0)) the subgroup of C(w(K, K 0 )) which is generated by 

the products tJ1 • ••• •tJr and DtJ·tJ1 • ••• ·tlr- 1 for primitive elements tJ1 , ···, tlr E C(w(K)) 

and tJ E C(w(K0)) of positive dimensions. Note that Ccn (w(K)) = Ccn (w(K, e0)) and 

CcoJ(w(K, K 0)) = {e0}. Next define ccrJ(w(K, K 0 )) by CCrJ(w(K, K 0)) = 2j Cc 0 (w(K, K 0 )), 
~~r 

then ccr) gives a filtration of C( w(K, K 0 )) : 

(5. 1) 

and 

ccrJ(w(K, K0))~ccr+1J(w(K, K 0 )), 

ccrJ(w(K, K0))·CCsJ(w(K, K0)=Ccr+sJ(w(K, K 0)), 

accrJ(w(K, K0))CCcrJ(w(K, K 0 )). 

Proof. The first two formulas are obvious. Since each 1-cell tJ of w(K, K 0 ) is 

primitive and forms a circle S1 with the vertex e0 , OtJ=O. Hence 8C0 l(w(K, K 0 )) 

CC(w(K, K 0))-{e0}=C0 l(w(K, K 0 )). Now suppose that accr- 1)Cccr- 1l, then accrJ 

= 8( C0 J. ccr- 1J) = (8C0 l) • ccr- 1) + C0 J. (occr- 1J) C C0 l • ccr- 1) = ccrJ. Therefore the last 

formula is proved by the induction on r. 

Define the boundary operator on Ccn as that of the difference chain group 

ccr)_ccr- 1). Then from (2. 3) and (2.12) we have a chain isomorphism Cr>O): 

(r-1)-fold -----(5. 2) Ccl)(w(K, Ko)) Q9Ccl)(w(K)) Q9 ··· Q9 Ccl)(w(K)) = Ccn(w(K, K 0 )) 

given by cQ9c1 @···®cr- 1 ->c·c1 ·····cr-1 • By (2.6) we have a chain isomorphism 

(suspension) E: Cc1J(w(K))=C(K)-{e0}, and we have that 

(5.3) p>O. 

We see that Ccl)(w(K, K0))=Cc1J(w(K0 , K0))+(CCD(w(K))-Ccl)(w(K0)) and 

Ccl)(w(K0 , K0)) is closed under the boundary operator of Ccl)(w(K, K0)). The formula 

b) of (2. 12) shows that Ccl) ( w(K0 , K 0 )) is chain equivalent to 0. Then we have 

easily that 

(5.4) the injection Ccp(w(K))-Cc!l(w(K9))--c>Cc!l(K,K0)) is chain equivalence 
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and the inverse is given by the projection of Ccll(w(K, K 0 )) onto its direct factor 

Ccll(w(K))- Ccll(w(Ko) ). 

As a corollary we have that 

(5. 4)' for P>O. 

Let M, M1 , · • · , Mn be subcomplexes of K such that M; 10 Mj = M for i + j and 

K=M1 u ... uMn. Let K 1 , ••• ,Kn be subcomplexes of K given by K;=K-(M;-M), 

i = 1, · · · , n. Let (9 be a class of abelian groups which satisfies the conditions (I) 

and (IIB) of [9]. 

LEMMA (5. 6) If Hp(K, K;) E (9 for P<q;+1 and if flq;+I(K, K;) is (9-isoinor-
n-1 

Phic to a group G;. Then Hp(CcrJCw(K, Kn)), Lj Ccrlw(K,, K;,.Kn)))=O for r<n, 
i"=l 

and E (9 for r>n and P<Q+r-n, where Q=2.jq;. The group HQ(Ccnl(w(K, Kn)), 
n-1 

2..j Ccnlw(K;,K;,.Kn))) is @-isomorphic to the direct sum of (n-1)! copies of 
i=l 

n-1 
Proof. By (5.2), Ccr)(w(K,Kn))-2.j Ccn(w(K;,K;,.Kn)) is chain isomorphic 

i=l 
r/.-1 

to Ccll(w(K, Kn)) Q<)[Ccll(w(K))Y- 1 - 2.j (Cell (w(K;, K; n Kn)) Q9 [Cell (w(K;))]r- 1), 
i=l 

where [A]t indicates the t-fold tensor product AQ<J .. ·Q<JA. Since Mn-M=K; 

-(K; 10 Kn)=K-Kn, i=1, ··· ,n-1, the injections Cu/Mn)-Ccll(M)--Ccll(w(K;, K; 

,.Kn)) and CcllCMn)-Ccll(M)--Ccll(w(K,Kn)) are chain equivalences by (5.4), 

and their inverse are the projections to the factor CcllCMn)- Ccll(M). Then we have 
n-1 

that the injection of (CcllCMn)-Ccll(M))Q<)([Ccll(w(K))Y- 1 - 2..j [Ccu(w(K;))]r- 1) 
t=l 

is a chain equivalence. 

For the simplicity we denote that Ccll(w(M))=B0 , Ccu(w(M;))-Ccu(w(M))=B; 

for i=1, ... , n, then Ccl)(w(K))=2..j B;, Ccll(w(K;))=).j Bj, aB0CBo and 8B;CB0 +B;. 
120 i*J 

Then the assertion of (5. 6) is reworded to that 

(5. 6)' 

satisfies the assertion of (5. 6). 

Applying the Ktinnth's formula (1. 6), (5. 6)' is rewritten as 

n n-1 

isomorphic to a group G;. Then Hp(([2..j BjY- 1 - 2..j [Lj Bj]r- 1)=0 for r<n, and 
j=O t=l j::f::z 

E (9 for r>n and P<Q'+r-m, where Q'=Q-qn. The group HQ'(}.j [Bj]n- 1 

n-1 j=O 

- 2j [2j Bj]n- 1) is @-isomorphic to the sum of (n-1)! copies of G1 Q9 .. ·®Gn- 1 • 
z~l J*'' 
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if and only if the set {i1, · · · , ir-1} of indices is contained in one of { 0, 1, .. · , n -1, n} 

- {i} for i = 1, ... , n-1. Hence a factor B;1 (2) .. · (2) Bir-1 is in 
n-1 

- LJ [LJ BiY- 1 if and only if {i1, ... , ir-1} contains {1, ... , n-1}. 
i=1 J=\:i n n-1 

In the case r<n, we have obviously [LJ BiY-1- LJ [LJ Bi]r-1=0. 
j=1 •=1 J=\:i 

Therefore 

(5. 6)" is proved for r<n. 

Let r>n. Since Hp(B;) E (9 for P<1, i=O, 1, ... , n-1, we have easily from 

(1. 6) that 

(5. 7) a) if {i1, ... , ir-1} contains {1, ... , n-1}, then Hp(B;1 (2) ... (2) Bir-1) E (9 for 

P<Q'+r-n; b) if {i1, .. ·,in-1}={1, .. ·,n-1}, then Hp(B;1Q9 .. ·Q9B;r-1) is (9-

isomorphic to G1 (2) .. · (2) Gn-1· 

Now we can arrange the factors B;1 (2) · .. ()() Bir-1 in an order such that if 

{Dk; k= 1, 2, ... } is such an ordered set of {B;1 (2) ... Ql)Bir-1} then fJDkC LJ D1 • 
n-1 i~Jc 

Denote Ek= LJ D;, then Ek are chain subgroups, and Ek= [ Ljn Bi]r-1- LJ [ LJ Bi]r-1 
t:o;~ J=1 •=1 J=\:i 

for sufficiently large k. Consider an exact sequence Hp(Ek)-- Hp(Ek-H)-- Hp(Ek-H. Ek) 

=Hp(Dk). By (5. 7), a) Hp(Dk) E (9 for P<Q'+r-n. Hence Hp(Ek) E (9 implies 

Hp(Ek+1) E (9 for P<Q'+r-n. By induction on k, we have that Hp(Ek) E (9 for 

p < Q' + r- n and for all k, and (5. 6)" is proved for the case r > n and p < Q' + r- n. 

In the case r=n, Dk=B;1(2) .. ·(2)Bin-1 for s9me {i1, .. ·,in-1}={1, .. ·,n-1}. Then 

fJDkCDk. Therefore HQ'(Een-o! )=LJ HQ'(Dk) and it is (9-isomorphic to the sum of 
k 

(n-1)! copies of G1Q9 .. ·@Gn-1, by (5. 7), b). 

Consequently (5. 6)" and hence (5. 6) is proved. 

LEMMA (5. 8) From the hypothesis of (5. 6) we have that Hp(w(K, Kn), 
n-1 n-1 
U w(K;, K;nKn)) E (9 for P<Q and HQ(w(K, Kn), U w(K;, K;nKn)) is (9-

J=1 n=1 

isomorphic to the direct sum of (n-1)! copies of G1 (2) ... (2) Gn. 

have at least dimension 

=Hp(CCo)) ~Hp(Ceo), cep+2)). Consider the exact sequence: Hp(Cen) ~Hp(Cer), cer+l)) 

--Hp( ceo), cer+l)).-Hp( ceo). cen).-Hp-1( cen, cer+1)) ~ Hp-1 ( Cer)). If r< n, Hp( Cen) 

=0 by (5. 6) and then Hp(ceo), cer+1)) ~Hp(ceo), cen). Hence Hp(Ce0 \ cen)) 

~Hp(ceo), ceo))=O. Therefore Hp(Cen))~Hp(ceo), cen+1)). If r>n, by (5. 6) 

Hp(Cen) E (9 for P<Q+1, then Hp(ceo), cer+1)) and Hp(ceo), cer)) are (9-isomorphic 

for p<Q. Hence Hp(ceo))~Hp(ceo), cep+2 )) is (9-isomorphic to Hp(ceo), cen+1)) 

~Hp(Cen)) for p<Q. Then (5. 8) follows from (5. 6). 



Complex of the standard paths and n-ad homotopy groups 117 

6. Connectedness theorem for (n+ 1)-ad homotopy groups. 

Let ex; X,' ... 'Xn' Xo) be (n-1-1)-ad and let rrp(X; X,' ... 'Xn) be the homotopy 

group of the (n-1-1)-ad [1]. 

We consider the group rr p (X; X,, · · · , Xn) as the set of the homotopy classes of 

maps f: (I; r;-1 ' ... '~~-l' J~-1 )--+ (X; X,, ... ' Xn, Xo), where r;-1 = {(x,, ... 'Xp) E lp\X; 

=0} and j~-1 =jP-Int. ( U T'J-1). 
i=l 

For a map g: (li'; If-I, ... ,J;;=Ll~=D->(SJ(X, Xn); .Q(X,, X,nXn), .. ·,SJ(Xn-1, 

Xn-lnXn), fo), define a map .Qg: (IP+l; lf' ... 'I~, n;) ->(X; X,' ... 'Xn, Xo) by 

!2g(x,,···,Xp+l)=g(x,,···,Xn- 1 ,Xn+l,···,xp_1_1)(xn), where fo(l)=Xo· Then the cor­

respondance g ,_, !2g defined the isomorphism 

(6. 1) !2: rrp(SJ(X, Xn); .Q(X,, X,nXn), ···, .fJCXn-1• Xn-lnXn)) 

""='ITP+l(X; X, ···, Xn) • 

We introduce here some elementary properties of the homotopy groups of 

(n-1-1)-ad (cf. [1, I]). 

(6.2) rrp(X; X,, .. ·,Xn)""='rrp(X; XtJcl), ... ,XtJcnJ) for a permutation 11 of {1,···,n}. 

(6.3) rrp(X; X,,···, Xn) =rrp(X; X,,···, Xn-1) 

(6. 4) The following sequence of homomorphisms is exact: 

---+ rrp+,(X; X,,···,Xn)---+ rrp(X,; X,nXz,···,X,,Xn) 

-'> rrp(X; X 2 ,···,Xn)---+ rrp(X; X,,···,Xn)---+ ···. 

A map f: (X; X,, · · · , Xn)--+ ( Y; Y,, · · · , Yn) defines the induced homomorphism 

f*: rrp(X; X,,··· ,Xn)->rrp(Y; Y,, ···, Yn). 

(6. 5) The induced homomorphisms commute with the exact sequences (6. 4) of 

(X; X,,··· ,Xn) and (Y; Y,, ···, Y,). 

Let K be a CW-complex and let K 1 , ·•• , Kn be subcomplexes such that K,, ··· nKn 

3e0 a vertex. Denote by l(n) the set of indices {1,. ··· ,n}. For each subset] of 

I(n), we associate the snbcomplex KJ=Khn"·nKjr where {j,, ··· ,jr}=]. Denote 

aKJ= U KJ', M=KJcnJ and M;- Kicn)-{i} . 
• T'';.i.·T 

Then the connectedness theorem for (n-1- 1)-ad homotopy groups is stated as 

follows: 

THEOREM (6. 6)n Assume that K=M1 u ... u Mn, rroCM) =rr,(M) =rr0 (M;) =rr1(M;) 

=0, rrz(Mj, M)=O and Hp(M;, M) E (9 for p<q;, i=1, ... , n. Let Q=~q;. Then 

rrp(K; K,, .. ·,Kn)E(9 for p<Q and ITQ,(K; K,, .. ·,Kn) is (9-isomorphic to the 

direct sum of (n-1)! copies of Hq1+1(M,,M)<';9 .. ·(;9Hqn+l(M,M). 

Here (9 indicates a class of abelian groups which satisfies the conditions (I), 

(liB) and (III) of [9]. For a general combinatorial (n-1-1)-ad, we have the following: 
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THEOREM (6. 7)n Assume that 1ro(K;)=n/KJ)=n2(KJ, oKJ) and Hp(KJ, 8K;) 

E (g for p<q1 , 1Cl(n). Let Q be the ninimum of the sums q11 + ··· +q1s such that 

11n ··· n1s= rjJ (empty set). Then np(K; K1, ··· , Kn) E @ for P < Q. 

First we show that 

LEMMA (6. 8) (6. 6)n and (6. 7)r for r<n imply (6. 7)n. 

Proof. Let {]k; k=1,···,2n} beanorderedset of the indices 1Cl(n) such that 

] 1=l(n), 1i+1=l(n)-{i} for i=1, ··· ,n and that 1kC]k' implies k>k'. Set K(k) 

=LJK]j, then K(k) is a subcomplex of K and K(k)-K(k-1)=KJk-8KJk· (6.6)" 
Jsi' 

means that (6. 7)n is true if K=K(n+1), or that (6. 7)" is true for (K(n+1); 

K1 nKCn+1),···,KnnKCn+1)). Now suppose that (6.7)n is true for an (n+1)-ad 

(K(k-1); K1 nKCk-1), ··· ,KnnK(k-1)), k>n+2. Let 1={j1 , ••• ,jr} be a subset 

of l(n) such that K(k)-K(k-1)=KJ-eKJ. By (6. 4) we have the exact sequence: 

rrp(K(k-1); K 1 n K(k-1), ···, K., n K(k-1)) .-np(K(k); K 1 n K(k), ···, KnnK(k)) 

->np(K(k); K(k-1), K 1 nK(k),···,KnnK(k)). Since K(k)nK;=K(k-1) for 

i E /(n)-1. we have from (6. 2) and (6. 3) that np(K(k); K(k-1), K 1nK(k), ···, 

KnnK(k))=np(K(k); K(k-1), KhnK(k), ··· ,KhnK(k)). Since k>n+1, r<n-2 

and r+1<n, we can apply (6. 7)r+l to the group np(K(k); K(k-1), KhnK(k), ···, 

KirnK(k)), and we shall prove that 

(6.9) np(K(k); K(k-1), KitnK(k), ···, KirnK(k)) E@ for p<Q. 

Then np(K(k-1) ; K1 n K(k-1), ··· , Kn n K(k-1)) E @ implies np(K(k) ; 

K1 nK(k), ···, KnnK(k)) E@ for p<Q. By induction on k>n+2, (6.7)n is verified 

and (6. 8) is proved. 

Proof of (6.9) Set K(k)=L, K(k-1)=L1 and Ki;nK(k)=L;+1 for i=1,···,r. 

The conditions n0(LA)=n1 (LA)=n2(LA, oLA)=O, ACI(r+l), are easily verified. Let 

PA be an integer such that Hp(LA, oLA) E (g for P<PA· If A=l(r+1)-{1}, then 

LA-a,LA=KJ-oK; and hence PA=qr If ACJ(r+1)-{1}, then LA-aLA=r/J and 

PA=oo. Consider subsets A1 , ···,As of /(r+1) such that A 1 n···nAs=r/J, then there 

is at least one A; which does not contain 1. If A;CJ(r+ 1)- {1}, then PA1 +···+PAs= oo. 

Now we suppose that A;31 for 1<i<t and Ai=l(r+1)-{1} for t<i>s, Ct<s). 

Denote by B; a subset {iblb+1E (l(r+1)-A;)} of l(n), i<t, then LA;-OLA; is the 

union of KJk-OKJk such that 1knB;=rp and r>k. Therefore PA;>Min. 

(qfk:1knB;=rp) andPA1+···+PAs>Min. (q1/+ .. ·+q1(+(s-t)q1 : 1/nB;=rp). Since 

Aln""·nAt={1}, Blu ... uBt={jl,·"",jr}=1 and 1/u ... uJt'n1=r/J if 1/nB;=rp. 

From the hypothesis of (6.7)n, PA1+ .. ·+PAs>Q, and we have (6.9) from (6.7)r+l· 

Proof of (6. 6)n By (6. 8), it is sufficient to prove that (6. 7) 0 r<n implies 

(6. 6)n. According to (4. 8), we construct CW-complex M', M/, ... , Mn' which admit 

standard paths and maps f;: M;'->M; such that M/nM/=M' and fdM'=fiJM 
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for i=l= j and that/;*: rrp(M/) =rrp(M;) and rrp(M') =rrp(M). By (2. 2) we see that 

the union K' = u M/ admits standard paths. Define a map. f: K'----,-. K by fl M/ = f; 

and set K/=K'-(M;'-M'). Since the complexes are simply connected, the isomor­

phisms of homotopy groups provide isomorphisms of homology groups h: H*(M') 

=H*(M) and H*(M/)=H*(M;), and hence h: H*(K!)=H*(KJ). Then f induces 

isomorphisms f*: rrp(K'J) =rrp(KJ). Applying (6. 5) and the five lemma, we have 

that f induces isomorphisms f*: rrp(K'; K/, ···, Kn') =rrp(K; K1 , ••• , Kn). Therefore 

we may assume that K'=K, i.e., K admits standard paths. 

By (4.2), i*: H*(w(K,Kn))=H*(SJ(K,Kn)) and H*(w(K;,K;r-,Kn)) 

=H*(SJ(K;, K;nKn)). As is easily seen that SJ(K, Kn) and SJ(K;, K;nKn) are simply 

connected. Repeating the above discussion on the map f: K' ~ K for the injection 

i: w(K,Kn)-?SJ(K,Kn), we have isomorphisms rrp(w(K,Kn); w(K1,K1nKn,···, 

w(Kn-1,Kn-1nKn))=rrp(SJ(K, Kn); SJ(K1, K1nKn), ··· ,SJ(Kn-1• Kn-1nKn)). Com­

bining (6. 1) to this isomorphisms, we have isomorphisms rrp+t (K; K1 , ••• , Kn) 

=rrp(w(K, Kn); w(K1 , K1 n Kn), ···, w(Kn-1, Kn- 1 n Kn)). Set L=w(K, Kn) and 

L;=w(K;, K;nKn) for i=1, ···, n-1. We apply (6. 7)n-1 to ann-ad (fJL; L1 , ···, Ln-1). 

The simply connectedness of LJ and Lis easily verified. By (5.8), Hp(LJ, fJLJ)=O 

for P < 4 and rr 2 (LJ, fJLJ) = 0, this is a special case of (6. 6) 2 • Applying (5. 8) to 

LJ=w(KJ, KJnKn), we have that Hp(LJ, fJLJ) E (9 for p<( 2J q;)+qn-1. If 
8 tEICn-1)-J 

] 1n···nls=¢(s>1),]kCI(n-1), k=1,···,s, then 2J (( 2J qk)+qn-1) 
,_1 !:~1 iEICn-1)-Jk 

> ( 2J qk) + s(qn-1) >Q. Therefore we have from (6. 7)n-1 that rrp(fJL; L1 , ···, Ln-1) 
IG~l 

E (9 for P<Q+l. From the exact sequence (6. 4) for an (n+1)-ad (L; fJL, L1 , ···, 

Ln-1), we have that rrp(L; L1 , ···, Ln-1) is (9-isomorphic to rrp(L; fJL, L1 ···, 

Ln-1) for P<Q+1. Since L 1C8L, i=1, ···, n-1, we have from (6. 2) and (6. 3) 

that rrp(L; 8L,L1 , .. ·,Ln-1)=rrp(L; fJL). Consequently 7rP+1 (K; KI>···,Kn) 
n-1 

=rrp(L; L1 , ···, Ln-1) is (9-isomorphic to rrp(L; fJL) =rrp(w(K, Kn), U w(K;, K;nKn)) 
i~1 

for P<Q+l. By (1.9) and (5.8),rrp(L,fJL) is (9-isomorphic to Hp(L,8L) for 

P<Q+l. Then (6. 6)n follows from (5. 8). 
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