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Homotopy Groups of Fibre Bundles.
By Tatsuji Kubo

§ 1. Introduction. To determine the homotopy groups of a fibre
bundle from the knowledge of those of the base space and of the fibre
and the knowledge of the law of connection is an important problem
in topology.

The present paper is devoted to the investigation of this problem.

Let Z be a fibre bundle over X with fiber Y and with a definite
law of connection a. Then, combining the Hurewicz-Steenrod isomor-
phism ¥ : =, (X) ==, (Z, Y) with the well-known homotopy sequence
of the pair (Z, Y), we obtain the following sequence ;

Onst by Da n

A1) -z, ,(X)— =, (Y)—— =, (Z) >z, (X) —> =, (Y) —> ...
which is exact in the sense, that the kernel of each homomorphism is
identical with the image of the preceedingone. We denote the kernel-
images in =, (Y), =,(Z), =,(X) by N, (Y), wu,(Z), v, (X), respectively.

As for the law of connection «, we may assume that it is repre-
sented by a continuous function f of the base space X into the space
P (see, § 2). The law of connection « induces for each = (n}_i) a
homomorphism «, : z,(X) —> =,_, A (Y)), where A (Y) denotes the
group of automorphisms of Y (§ 4). If we let this homomorphism «,
bz followed by the natural homomorphism «,_; : 7,_; (A(Y)) - = =,_, (Y),
we obtain a homomorphism «,_,«,. In §5 it will be shown that this
homomorphism is identical with the boundary homomorphism 9, in
(1.1). This shows that the groups X,, », and hence the group
w.~=,(Y)/\, are calculable from the system of quantities &, ={=, (X),
Ton (X) 3 7, (¥), ot (Y) «,, @,.,]. Thus we have

Theorem 1. 1. =,(Z) is an extension of @ group by another, both

of which are calculable if we Enow the system of quantities S, .

There are many special cases, where we are able to determine
7, (X) without further observations. For example if » >2 and =, (X)
is free abelian, =,(Z)~u,+v,. In §§ 6-7 we shall determine this
extension in the case where Y undergoes some restrictions. In the
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Appendix we shall give a generalization of Hurewicz-Steenrod isomor-
phism and a similar isomorphism, which may be applied to fibre
bundles with a slicing map in the large.

§ 2. Let E~ be the Hilbert fundamental cube and Y a subset of
E~. We define O (Y, E*) (A(Y)) to be the totality of homeomor-
phic mappings of Y into E (onto Y). A(Y) is a subset of ® (Y, E~).

A function g: X« O(Y, E®), where X is an arbitrary space, is
called continuous if the 1-1 correspondence Y xX>(y, a)<« (9 @)y, )
€ E°x X is a hom2omorphism. Further the totality of the subsets of
E~ homeomorphic with Y will be denoted by 9. Every element s of
® determines an element of 9), which is the image of Y under + and
is called the projection of « (notation:| s | =4 (Y)). A function f of
X into 9 is called {rivial if it is representable as a projection of some
continuous function g of X into @, i.e.,, f(x)=|g(x)| for every
xeX. f is called continuous if it is locally trivial, i.e., if there exists
for x € X an neighbourhood of « on which f is trivial. In the sequel
we éhall omit the adjective ‘ continuous” for such functions as f and
g. The space X will always be assumed to be compact metrisable.

Given a function f of X into ) we denote by Z, the graph of f
over X, i.e., the subspace of E*xX consisting of points of the form
(w, ®) with wef(x). It is casy to see that Z, is a fibre bundle over
X with fibre Y. . '

In [1] the following theorems have been proved.

Theorem 2. 1. (The Classification Theorem). The totality of the
fibre bundles over X with fibre Y is in one-to-one correspondence with
the totality of homotopy classes of functions of X into Y.

Theorem 2.2. If X, is o deformation retract of X and f a func-
tion of X into %) which takes on the valve Y in X,, there ewists a
function g of X into ® such that | g | =f and g (&)= 1==the identity
of A, for xe€X,.

§ 3. Let A be a separable metrizable space and «, fixed point of
A. We denote by II,(A) the mapping space (4, a)E"T""), where
E" is the unit cube 0<{«%, <1, i=0, 1,..., n—1, and 7" a subset
of the boundary £ of E” defined by the equality (1—u,_,) 11,7 u, (1—u,)
=10. We introduce in I1,(4) two operations as follows:
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For @, (u"), a(u"), a (W) ell, (A4) -
a0, (1) = o, 2uy, uy) : 0 _é Uy << 1/2),

= @y (2uy—1, uy) 1/2<u, <1);
et (W) =al—wu,, u) 0<% <1).*

Let 115 (4) be the mapping space (4, @,) E* E*), then it is a subset
of 1I, (A) which is closed with respect to the above two operations.
We may define a natural homomorphism p, of I1,,, (4) into II. (4) by
P, 0 (u)=a", 0) for a(@"*)ell,,,(4). Let the image of 1II,,,(4)
under p, be denoted by II¥ (A), then the following propositions may
easily been proved. :

Proposition 3.1. Let a,, a, be two elements of 11 (A). Then a.'a,
115 (A) if and only if there exists o« mapping a(u*') of E™*' into A
such that for each wu, a(u", u,)=a, for every u"€cE, and a(u", 0)
=a, (). o, I)=a,(u") for every u" e E".

Proposition 3. 2. I (A)/ 11 (A) = =, (4) . >

§ 4. Let f be a function of X into 9 such that f(x;) =Y, and
let x (") be an element of Il,(X). Then fx(«*) is a function of E*
into 9 such that faz (@)=Y in T"'. Since T"* is a deformation
retract of E”, applying theorem 2.2 for these fz, E”, T"!, we may
find a function ¢ =0, (") of £ into ® such that | o, ()| =7 ")
for "€ E" and o, (w)=1 for «*e¢T*"', In particular, if = (") ell’,
o, W) e N (Y) for un ' =0, or, to speak in another way, p,., o, (©" )€
Im,_, (A (Y)). In order to define the operations «, announced in § 1.
we need several lemmas. '

Lemma 4. 1. Let o, (u") be any other funclion of E" into ® wilh
the same properties as o, (u"), then p, o, (") =p,_, o, W) mod
T, (A (Y)) .

Proof: (po,) ' (po.)=p (o' 5,'), since p is 2 homomorphism. But,
since |o, (") | = |0,/ (w*)| for «"€E" and o, ®")=yg¢, (¥)=1 for
w' el o', €1, (A(Y)). Hence po,=pos,’ mod II¥_, (A (Y)).

Lemma 4.2. If x, (W) =, (") mod 1L, (x), then

Pu-1 0z (") = paa Oz, (*) mod 115, (A (Y)) .

Proof : By assumption ;' 2.,(u") = pa(«") for some a(u"*' € IL,,,(X).
Since the set M =={u""'|(1--~u,) (1—u, DUt u,l—u)=0}\J fu*"" | u,
=0, u,=1/2} is a deformation retract of E"*' and a (»*) =, (""" € M),
applying theorem 2.2, we may find a function o («*") of E*'' into %)
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With ‘ 0‘(%7”1) l — fx (,unﬂ) fOr un+1 EEH-H and o (un+l)______ 1 for un+l €

7" 1-— n o . ) 14w n
M' Put a.“"l (u ) = pPpo ( 2,“0 » ul) ’ O'wg(u ) = PO ("‘“"‘2‘9‘ s U )
0<%, <1). It is obvious that o, (¥") (¢=1,2) have the property

characteristic for their notations, and that p, o (%" a';xl op, (W) . 1f we

denote by p the operation which restricts the range of u* to {u" | u,.,
=04, from the last equality we have p p, o (u"?) =p(0':]1 Oa, (7))
=(poy)" (pPosy) (" Y). But, since pp,oc@")=p,{p@" ")} and
po(u*, u,)ell, (A(Y)), the assertion of the lemma follows.

Lemma 4.3. Let f' be another f and homotopic to f: for some
function F(x, uw,) of XxEx'into D, f@)=F(, 0), ' () =F(x, I)
(the condition F (x,, u,) =Y is not necessarily satisfied for O < u,<_1.
and let o, be analogously defined for f'. Then p,_ o, U )=p,_, o'
(u*-Y) mod II¥_, (A(Y)).

Proof : Since F (x (u"), u,) is continuous in E"*' and F (x («"), u,)
= const. in T"-! for fixed u,, we may find a function o («""") of E**!
into ® such that |o @) |=F (x («*), u,) for w"**e E”*' and o (¥""")
=const. in 7" 'for fixed u,. Putr @)= @"*)(s (0, u,)] ', where
[c (0, u,)]" denotes the homeomorphic mapping inverse to « (0, =,).
Then for each u,, r(u*1, 0, %,) e II3_, (A (Y)) and ~ (", 0, 0) = o(u"" 1,
0,0=p,,0, @, r@*, 0, 1)=p,, 0, (" "), which, comparing
with proposition 3.1, assures the validity of the assertion.

Let « be a homotopy class of functions of X into ¥, and & an
element of =, (X). Choose representatives f and x arbitrarily from «
and & respectively and define «, (£) as the element of =,_, (3 (Y)) repre-
sented by p,_,o, (@*V)ell,  (A(Y)). Then «a,(£) is uniquely deter-
mined by = and £, and the correspondence «,: =, (X)— =,_, (A (Y)) is
easily seen to be a homomorphism. Thus

Theorem 4. 4. To each fibre bundle correspond a series of invariants.
a,(n=1, 2,...), each being o homomorphism of =, (X) into =,_, ().

§ 5. Proof of the identity 9,=«,.,7,. Let f be as before, and
Z, the caqrresponding fibre bundle. Let o, be chosen for each z ¢ I1, (x)
as in § 4. Let the natural homomorphism «,_,: =, (A (¥Y)) - =,_, (Y)
be the one induced from the correspondence II; , (A (Y))3o (u" ") —
o (u Yy, elll_,(Y). Then, whatever the representative z (u") ¢ II%(X)
of £ex,(X) may be, the element ¥ (" V\)=p, o, @ Yy, cll, , (V)
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represents the element «,_, a, (£). ;

On the other hand, putting o (#") =0, (") y,, we get an element
z2 (") = (o @), @) of 11,(Z,) over x(u*). But, since p,_, z (") =
(Puy o (@Y, p o @ ))=ww" "), x,) determines no other than the
boundary 9, & (by definition!), as desired.

Theorem 5. 1. The n-th boundary operator 9, in the sequence (1.1)
depends only on the n-th invarient «, of the fibre bundle.

Corollary 5. 3. Kernel images \,(Y), v, (X), pu,(Z) in (1.1) are
calculable as soon as we know the quantities &,=}{=,(X), =, X);
7oy (Y)5 m, (V) @, @pif-

6. The function C (¢,, £) and the automorphism D (¢). In the
sequel of this paper, we assume there have been done the following
arbitrary but never reviced choices: for each element of =, , (A(Y)),
the choice of its representative o« («* Ve IT,_, (A (Y)), for each element
y () e I, (Y), the choice of y(u*) € IL,(Y) with p,_, y(u*") =y («"").

For £,€u,(X) let o, (w* Y)elly., (A(Y)) be the representative of
a,(&). Then y, (u* ") y,e 1§, (Y); hence y, (u*)eIL,(Y) with p,_, E’/i
(u*\) =y, (w*~Va is determined. '

Let £&,=¢,€,. Then ¢y;(u* ") =0, 0 (w*") mod 115 ,(A(Y)). But,
since o, 0. (U ) =0, (U Vo, (U ) =0, (®* Vo, () mod H¥_, (A)).
There exists a function \ (u*) € [ (Y)]E" with A (u*~Y, u,_)ell}_, (A (Y))
for each fixed u, ,, Mu* ', 0) =0, (" Vo, (W), M (u*", 1) =0, ("),
Define C (¢,, &) e n,(Y) to be the element represented by

¢ (u') = Yo 0<<u,<1/6),
= (o, (™) 'y, (@), 6 u,—1) 1/6 <u,<2/6),
= (o, (¥)) 'y, (2/6£u0£3/6) N
= (o0 ()" (o () U2 (", 6u,—3) (36 <<y << 4/6),
=\ (up, 6u,—4)) "y, (u, 5/6), (4/6 <u,<<5/6),
= Yo (5/6.{:u0_<_1)-

For n =1, define also D (¢,) ¢ U (=, (Y)) as follows: let y (u*) repre-
sent an element 5 of =, (Y). Then the curve

Y (uy) = Yo 0<<wu, < 1/5),
= 07" ¥, (Bue—1) /5 < u,<< 2/5),
= o7 'y (Su,—2) (2/5<<u,<3/5),
=o'y, (4—5u,) (3/5 <Cu, << 4/5) .
== Yo 4/5<u,<<1),

determines an element of =, (Y). This element does not depend on the
choice of y (u”) but only on . We denote it by D(£)y. The cor-
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respondence » — D) (£) 5 is easily seen to.be an automorphism of =, (Y).
§ 7. Theorem 7.1. If Y satisfies the condition: y (u")= o (u™)y,
for some o (u) € 115 (A (Y)) implies y (w™) € 113 (Y), then =,(Z,) is cal-
culable from the system of quantities &, ={r,(X), =,,, (X); =,_, (Y),
7, (Y); «,, «,,,}: more precisely if we iniroduce in the totality & of
symbols (5 ; &), where y€x,(Y), £€v,(X), a law of multiplication by

(7.2) (n;E) (s E)=(mDE)nC (&1, )3 E &),

& becomes a group isomorphic with =,(Z,).

Proof : We fix arbitrarily a function f: X — 9) with the given in-
variants «,, «,,,. For each £,e,(X) choose a representative =z, (u«")
€I, (X) and an element r,(u*) € IT, (®) with | =, (u®) | = fx(u®), u* € B,
We may hereby arrange that p,_, 7, (u* ") =c, (u* V).

Put z, (w*) = (v; (07, 1—2uy) 9., «, (ur, 1—2u,)) 0<%, <1/2),

= (v, (w", 2u,—1), ) 1/2<u,<1).
Then z, (u*) determines an element £, €=, (Z,) with projection & :p, ()
=§,;.
According to Schreier’s theory of group extensions, what are to be
proved are then the following relations:

(7.3) EE 5 EN=1,(C (&, &) for n > 1,

(7.4 ELE =uDE)n) for n=1.

Lemma 7.5. Let X*(u*")ell,,, (X) and =% (u**') €11,,, (©) salisfy
| ¥ () | =f X* (u*tY), wrtte E»'. Let z (w*) = (Q (w*), p, X* (™))
elly(Z,). Then

z (um) = ((3* (u", 0)' Q (™), x,) mod 11¥(Z,).

Proof : z (u»*%) = (Z* (w™*") (Z* (w?, 0))7'Q (w*), X* (u*'v) satisfies
Zun, )=z, 2@, 1)=(S*@", 0)"Q@), &), 2@ =(y,, )
for 11272 u, (1—u,)=0. Comparing with the proposition 3.1, we obtain
the proof of the lemma.

Now let us prove (7.4). & i, (») & may be represented by (Q (u,),
X (u,)) defined by

X (ug) = 2; (1 —5u,) Q (ug) =7, 1—5u,) ¥, 0<%,<1/5),

= Lo = ?}z (du,—1) 1/5 <, <2/5),
= Ly =y (Su,—2) 2/5<u,<3/5),
= @ =y, (4—5u,) (3/5 < u, < 4/5),
=z, (5u,—4) = 7; Buy—4) ¥, 4/5<<u,<1.

Define = (u*) by
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YSw)=+,A-5u), ¢, o,, a, 7, Buy—4).

It is easily seen that, for suitably chosen X*, £* with p, S* =3,
p X* =X, and for the above , the assumption of the lemma 7.5 is
satisfied.

Thus we have

(Q (o), X (u)) = ((Z ()" 2 (), @) =(Y (up), ¥,) mod II¥(Z),
where Y (u,) is defined in § 6, which proves (7.4).

It remains to prove (7.3). & &, & &' may be represented by Q' (u®),
X' (u™)) defined by

X' w)== (u, 1—6u)) Q' (w") =7 " 1-6u)y, 0<u,<1/6),

=z, =1y, (U, 6u,—1) (1/6 < u, < 2/6),
=&, (u, 3—6u,) =1 (', 3—6u))y, (2/6<uy<<3/6),
=T ‘ =1y, (", 61,—3) (3/6 <u, < 4/6),
=&, =y (u?, 5—6u) (4/6 <u, << 5/6),
=, (u?, 6u,—3) =7; (W, 6u,—5) 1y, (5/6<<wu,<1).

Define 3/ (u”) by

3 (w) =7 (W, 1—6wy), o, (p), =, 3—6w) 0, (u), o= (") o (),
N (up, 6u,—4), s (u?, 6u,—5).

Then (¥ w™)]'Q' w*)=c (") of §6, that is to say, (&' (u")]"
' (w*), x,) belongs to the class 7,C (&, &.).

To see that (Q'w™), X' w")=(="@")]*Q («*), x,) and hence
€i, C(E , &), we have only to remark that, under the assumption of
the theorem, the change of A (u”) does not affect the value mod 1I% (Y)
of [ ("] Q' (u*), and that, choosing X (w”) suitably, we may find
X*, 3% with pX* = X/, p=* =73/, so that the lemma 7.5 is applicable.

8. Remarks on the general cases. Theorem 7.1 contains-an un-
desirable restriction on Y, but, as is seen from the proof of the theorem,
it is of use only in the appropriate determination of X (#*). Conse-
quently, we may do without this restriction as soon as we find the
way of determining A (v?). Indeed we might give a theorem for the
most general cases, but it is far from taking such an elegant from as
theorem 7.1, and it is preferable to follow the arguments of the above
proof in each case, than to give such a theorem.

Appendix

A) A generalization of Hurewicz-Steenrod isomorphism,
Let X, be a subset of X containing x,, and let f be a function of
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X into ). Put f,=1\X,. Then »,(Z,7Z,)~n, (X, X), n=1,2,...
Proof : Let zu*) = (o (w*), & (u™)€1l,(Z,) with p,_,z @ Vellr_,
(z5). Then z(w*)ell,(X) and p,_, & w* )ell)., (X,). Obviously the
correspondence z (u*) — & («*) induces a homomorphism v: »,(Z,, Z,,).
We shall show that v is an isomorphism on. For any x (w*) ell,(X)
with p,,z (@) ell) , (X,), choose a function o (u*)ell,(®) with
lo @) |=7Ffx @), and put o @*) =o @™ y,. Then zw")= (o "),
x (u*) determines an element of =,(Z,, Z,) which is mapped under vy
into the element of =, (X, X, determined by « («*). Thus v is on.

To see that v is an isomorphism, let z(u*) = (o (w®), 2 (™), {z(u*)}
=1. Then there exists a function x (u**\)e XE»*1 with % (u», 0)=
@), T@Y)=ga, in M=f{u*'|Ad—u,.,) QA—u,) N177u, A—u,)= 04,
and Z (u**\) € X, for u,_,=0. Choose o (u*")e®*"" with «@**\)=1
in M, |o@*")|=fr@""), and put o @*'") = o) (o (¥, 0)]' o(u®),
zZ@wY) = (o (w**Y), zZ(u**Y). Then z@* MHeZ, with zu*, 0)=zu"),
zZ(ur) = (y,, ) for wreT', zw"*HeZ, for u,_, =0, z(w**\eY for
u,=1. From this we may easily conclude that v is an isomorphism.

B) Fibre bundles with a slicing map in the large.

Let Y'Y and let ©', ' be defined for Y' in the same way as
®, 9 were defined for Y. Lei f’ be a function of X into %)’ such that
(@) Cf(x) for every x€X. Let Z. be the fibre budle correspodig
to f'. It is obvious that Z, C Z,. Then we have

B, 1) wi(Z;, Z ) ~my(Y, Y, n=1,2,.uc....

Proof : Let z () = (o (w*), x w*) e 11, (Z,) with p,_,z@* VHell,_,
(Z,). We choose r(u®) €11, (®") with |+ @) | = f'z (u*), and put

o) = (w*, 2u,_,—1), z (W) =@, 2u,_,—1), 1/2<wu,_,<1),

=7, 1-2u,_)[r @, 0)]'e (", 0),

x(w) =z @@, 1—2u,_,) 0w, ,<1/2).
z (u*) obviously determines the same element as z (u*) of =, (Z,, Z,);
moreover # (u”) € II5 (X), i.e. z (u*) = a' (u*, 0) for some z/ (u**) e 1l,,,
(X). Let o(Y)ell,,, (® with |o@**)|=fa’(u**"), and define
' (u*tY) by 2'(u"*') = (c(u”*") [c(w”, 0)]'  (w*), z'(u*'Y)). Then z’ (u*, 0)
=(o @), 2@ =2z, 2’ @, )=(c@", 0 e@), z), 2 &, u,
= (y,, @, for uwreT* ', 2’ (", 0, u,)€Z,. From this we may con-
clude that any element ¢ €=, (Z,, Z,) contains a representative of the
form (y (w*), «;) with y («*~*, 0)cY’. Let 8¢ be the element of =, (Y,
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Y") represented by y (u*). The correspondence { — ¢ is easily seen
to be an isomorphism of =, (Z,, Z,) onto »,(Y, Y’). The arguments
in the proof are similar to. those of the above.
- Combining (B. 1) with the homotopy sequence of the pair (Z,, Z,")
we obtain @ new exact sequence : _
B.2) oo 7 ¥, YN wo (Z) > 7,(Z)) > 7, (¥, Y)— .l

In particular, if Y’ reduces to a point, it becomes
(B.3) —my (V)= 7, (X) > 7, (Z)) = w0 (V) = ... | |

(B. 3) is in some sense inverse to the sequence (1.1), and they toge-

ther assure that, if Z, has o slicing map in the large 7o (Z;) is a spalt
extension of u, by v, .
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(¥} Prof. A. Komatu took up this problem in 1945, when the concept of exact homo-
topy sequence was not yet familiar to us, and found the formula: =,(Z)/u,Xv,. This
paper continues and developes his unpublished researches by the aid of the results in
(1). I offer here my sincere thanks to Frof. A. Komatu who gave me many valuable
suggestions during the preparation of this paper.

(1) Hurewicz, W. and Steenrod, N. E.: Homotopy Relations in Fibre Spaces, Proc.
Nat. Acad. Sci. U.S.A., 27 (1941). They proved this isomorphism when Z is a fibre
space, but, since it may be proved by making use of the covering homotopy theorem
only, it holds as well in our case. See also, the appendix of the present paper.

(2) The concept of exact sequence is now familiar to us. It was Kelley and Pitcher
who treated this sequence systematically at the first time (2]). The proof of the exact-
ness of the homotopy sequence was given by G. W. Whitehead (3].

(3) cf. (11.

(4) Following Fox [4) we denote by »% the set of real variable ws, #3.y, ..., .
wb=ul, (0<w=<<1). ELX==(the (k-h)-dimensional element generated by #}].

(5) Although 119 (A), 11* (A) do not form groups, the meaning of the left hand side
is clear.




