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By Atuo KoMATU 

§ 1. Introduction 
After the publication of my last paper, "Relations between homo

topy and homology I" [1], I had an opportunity of reading H. Hopf's 
papers [2), (3]. In those papers I found that both his method and 
results were somewhat similar to mine. Let us compare the geometri
cal part, the grouptheoretical part being excluded. Hop£ only thought 
of "Homotopie-rander" and dealt with the subgroup II0 defined by the 
notion of free homotopy, while I dealt with three homomorphisms, 
namely, homotopy boundary, homotopy relativisation and covering, as 
a part of the exact homomorphism sequence of homotopy groups. For 
the lack of the idea of free homotopy in my method, I could not deal 
with the low dimensional case. The difference of methods leads to 
different results. Taking Hopf's idea into consideration, we can see 
the difference between Hopf's group ®" and my "simple group" (..,)n, 

and its geometrical nature; moreover the homology theory of a com
plex will be found to be reduced, in a sense, completely into the homo
topy theory. 

§ 2. Hopf's free homotopy group 
Let fad be the generators of the q-dimensional homotopy group 

7fq (R) of a locally contractible topological space R and ~~1 } be the 
generators of the fundamental group 7f1 (R). The Whitehead's product 
~1 • ai is also an element of 7fq (R). We denote by l'q the normal sub
group generated by all the elements f ~ 1 • ail- The free homotopy group 
7tq (R) is defined as the factor group 7fq (R)/I'q (R), i.e. if we add new 

defining relations ~~J • ai=ll to the relations of 7fq, then we get .the 
group 7tq. We denote by u the natural homomorphism from 7fq to 7tq. 

It is easily seen from the definition that for any elements a E 7fq, ~ E 7(1, 

~. a=l in 7tq. If R is q-simple in the sense of Eilenberg [4), then it 
is clearly 7tq=7tq. 

Sometimes we take a relative operator domain 7f1 (L), where Lis a 

closed connected subset of R. Replacing 7f1 (R) with 7f1 (L) we get a 
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normal subgroup l'q' C n:" (R) as before and 'factor group 7t/ (R)=n:q (R)j 

1'/. We say this group 7t/ (R) as L-free homotopy group. We can 
define similarly the free relative homotopy group 'itq (R, L) as the 

factor group 
'Trq (R, L) I I'q (R, L), 

where l'q (R, L) is a normal subgroup of n:q (R, L) which is generated 

by all the elements of the Whitehead's product {~J. a;}, ~J E n:1 (L), 

a; E n:q (R, L). 

Now we can define three homomorphisms, i, 1· and a with respect 
to the free homotopy groups, which correspond respectively to the 
homomorphisms i, 1· and a of the homotopy groups, as follows. 

1) Injection i: Let ~ be an element of 'itq (L), and a be an ele

ment of 'lC1 (a) C n:q (L), then we define i (a) as the element ui (a) E 7t/ 

(R). We can see easily from the operator homomorphisms of the 

homotopy injection that this mapping i is uniquely determined. Wri

ting in operator symbol it is also iu=ui for every element of n:q (L). 

Clearly 7t1 (L) is abelian, but 'if/ (R) is not necessarily abelian, for the 

operator domain is only n:1 (L) and not n:1 (R). If we take n:1 (R) as the 
domain, or the injection i (n:1 (L)) is a mapping onto n:1 (R), then the 
free homotopy group 'if/ (R) is abelian. 

2) Relativisation r: We define a mapping r from 7t/ (R) into 'itq 

.(R, L) such that ru=ur in operator symbol. 

3) Free homotopy boundary 3: Similarly a mapping 3 from 'itq 

(R, L) into 'itq_ 1 (L) is defined such that a u=u a. It is easily verified 

that r and a are uniquely determined. 
We get also the following homomorphism sequence 

7 -, a 
'itq (L) ------? 7t/ (R) --• 'itq (R, L) ---• 7tH (L) -• ....... ' 

which is not necessarily exact. The image groups are included respecti
vely in the kernels of the subsequent homomorphisms. 

Now we shall state some remarks on the free homotopy groups 
which are easily verified from definition. 

1) 'it2 (R, L) is abelian. For, let a, (3 be any two elements of 7t2 

(R, L), and u (a)=a, u (/3)=(3. Clearly the homotopy boundary aa is 

an element of n:r (L). From the J. H. C. Whitehead's relations a(3a- 1= 

13a"', we can conclude that a(3a- 11'2 (R, L)=/3~1'2 (R, L)=(3r2 (R, L), i.e. - - -
a(3a-1=(3 in 7t2 (R, L). 



49 Atuo KOMATU 

2) Let R be: a simply connected two dimensional complex K~ and 

K 1 be the 1-section of K 2 • From the exact homomorphism seqence of 
homotopy groups we see easily that 7l' 2 (K2 , K 1) is decomposed into the 

direct product of 7l'z (K2) and 7l'1 (K1), i. e. 
7l'z (Kz, 1(1) :=:::::- 7l'z (K2) X 7l'l (KI), 

If we denote the commutator subgroup of 7l'~ (K 2, K 1) by c, then 
7l'z (Kz, J(l)jc ;:::= noz (Kz, Kt), 

and no2 (K2 , K1):=::::-7l'2 (K2) x no1 (K1). 

§ 3. Principal Theorems 
Let K be a connected and locally finite polyhedron and K" be its 

n-section. The following Theorem I for the case n >3 is already stated 
in my paper [I], but in this paper I shall prove it with slightly diffe
rent method for any dimension n C>l). 

Theorem I. If K is simply connected, then the free homotopy gr·oup 

no2 (K2 , K 1) is isomor·phic with the 2-dimensional chain gr·oup of K with 

integer· coefficients. 

Similarly we can prove the following 
Theorem l'. If K is simply connected, then the homotopy gr·oup 

7l',. (K", K"- 1) (n>3) is isomO?"phic 'with the n-dimensional chain g1·oup 

of K with integer· coefficients. 

For a general complex K we can prove easily the following The
orem II which is already used in my paper [I] for the case n>2. 

Theorem II. The r·elative fr·ee homotopy group no,. (K", K"- 1 ) is iso

mor·phic with the n-climensional chain gr·oup of K with intege1· coeffi

cients. 

Let K be the universal covering complex of K and u be the cove
ring mapping from K onto K. Then u defines also a mapping from 
the n-dimensional chain group U (K, I) of K onto the n-dimensional 
chain group L" (K, I) of K. This homomorphic mapping is denoted 

also by u as in [I]. Then we get the following relation 
Theorem III. The homomophic mapping u of L" (K, I) onto L" (K, I) 

co1·r·esponcls exactly tr; the fr·ee homotopic mapping of 7l', (K", K"- 1) onto 

no,. (K", K"- 1), that is, ther·e holds the r·elation 

u cp = 1p u, 
u 

7l'n (K", K'~~- 1 ) -~ no, (K", K"- 1) 

t 'f' u t~ 
L" (K, I) --~ L" (K, 1), 
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whe,;·e the mapping cp and g> are those defined in Theorem I and II. 

From these theorems we get an important diagram, which gives 

many interesting results as in (I], 
T 

-
T 

--• 'il',._l (K"-', K"-~) 
t ~ 

I/H (K, I), 

where n:~ (K~, K') has to be replaced by the group n:2 (K2 , K')fc~ iT~ (K:, 

Kt). In any dimension n:,. (K", K"-') can be considered as the direct 
sum of the group 1\ (K", K'H) and the group iT,. (K", K"-1) as in [I]. 

Hopfs "Homotopierander" is the image of the homomorphic map

ping a,q>1 of L" (K, I) in this diagram. We oan see more clearly from 

this figure the difference between the spherical cycles and the Hopf's 

"Henkel" cycles. The details of various kinds of cycles will be seen 

in ~ 5. 

~ 4. Proofs of Theorem I, II and III. 

We prove first some lemmas which state probably somewhat 
elementary properties. 

Let T" be a closed oriented n-simplex, T~, J be the i-th baricentric 
derived of T" and x 0 be a vertex of the boundary of T". We denote by 

rr7 (i=l, ... , (n+l)!) the oriented simplexes of r:~) such that the homo

logical boundary 3! (~rr;) is equal to the subdiv;id~d complex (ol T")c1). 

Let rr7 (i=1,2, ... , n!) be incident with Xn· We denote by ::~: the center 
of T". 

The oriented n-cube E" is represented by n coordinates xi (i=l, 2, 

... , n) with Osx,~l. E" may be divided into two parts E;1', E; such 

that E~ is the part with 0;?"x1 ~Yz and E~ the part with }~ :;:::- x1 ::::1. 
Lemma 1. Let f; (i=l, 2) be the map

pings of E 2 on rr~ (i=l,2) such that f; 

a1·e orientation preserving homeom01'

phisms and f; (0)=x0 , where 0 is the o1·igin 

of E 2 • Let f, (i=3, 4, 5, 6) be the map

pings of E:l on (Xr,X) V rr! (i=3, 4, 5, 6) such 

that f, (E~)=(X0, x), ! 1 (0)=x0, and f, (E:) 

a1·e orientation prer;erving homeom01'-

phigms. Let (31 be the element of n:2 (T~ 1 )1 X" 
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(T;JJ)', X 0) which i.~ g'iven by the mapping fz ('i::.=l, ... , 6). Then the 

element (3d3"' ..• (36(31 is equal to the element (3 of n-~ CT7u, (T~!)) 1 , x 0 ) 

which is given by such a mapping f that f (E2)=T~J) i.<~ an orientation 

p1·ese1·ving homeomorphism and f (0)=x0 • 

Lemma 2,. Let IT~ be an o1·iented .2-simplex of T~t) and ~o1 be a 

suitable a1·c which connects a fixed ve1·tex x 1 of IT~ ~oith x 0• The ele

ments ;31 , (3 a1·e defined simila1·ly as in Lemma 1. Then the1·e holds the 

1·elation 

' (31/ 
/3 = rrJ=J /31 , 

whe1·e the p?'oduct is to be taken th1·ough all the simplexes of T~0 with 

an app1·op1·iate onle1·. 

The p.roof of Lemma 2 can be performed by repeating the, process 

of Lemma 1 i-times. The analogous theorem for the case of dimension 

n>2 can be proved more easily neglecting the consideration of the arc 
(X0X), for (T:'iJ)n-J is Simply COnnected, and hence (n-1)-Simple in the 

sense of S. Eilenberg. 

Lemma 2'. Let (3, (31 be elements of n-,. (T~'t;• (T~;J"- 1 ) Cn>.2) which 

a1·e given by the homeomorphic mappings of E" onto T", a-~ E T~t) ?'espec

tively. Then the?·e holds the 1·elation 

(3= ~f3t. 

Now we proceed to consider the relative homotopy group n-, (K 71
, 

K"- 1 ) of a general complex K. Let Yo be a fixed vertex of K. To any 

?~-simplex a-; of K we correspond a fixed arc u,=y,y1, which connects 

the point Yo with a point Y.i of a-;'. 
Let a; be the element of n-,. (K", K"- 1), which is defined by the map

ping ft of E" onto (YoYt) V a-; such that 

ft (E~) = u;, ft (E;) = a-; , 
where f; (E;') is an orientation preserving homeomorphism. 

Lemma 3. The elements f a;1 \ i=1, ... , p ; j= 1, ... , q 1 a1·e gene

rat01'8 of n-2 (K2 , K 1), where i 1·uns ove1· all the .2 -simplexes and j ove?· 

all the elements of n-1 (K1). 

Proof. Let a be an element of 7l'2 (K2 , K 1) which is given by the 

following mapping f : 
f (E2) C J(:J, f (at E 2) C J(t, f (xo) =Yo· 

We approximate f by a suitable simplicial mapping q; from the k-times 

baricentric subdivided element E~k) into J(:J. If we denote the homotopy 
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between f and ffJ by h, (O<;:J<l) such that h 0=f, h1=rp, we can clearly 
choose such a deformation so that we have ht (a E 2) C 1(1 and ht (x0)= 

Yo· Tb,erefore the element of rrz (K2, K 1), which is defined by rp, is a. 

Notation being as in Lemma 2, the. element {3, of -n:2 (E~,)' (E~,;)) 
goes by .rp onto an element (a;~~ty=t and fJ onto a. From the homo
morphism of the relative homotopy group by simplicial mappings, it 
follows that 

~m(t) ±1 
a= rp (/3) = IlqJ (f3t) =IT (alCtJ ) 

in -n:2 (K2 , K 1); this proves the lemma. 

Lemma 3'. Let fut I i=l; ... ,pj be then-simplexes of K, and EJ 
be the elements of -n:1 (K), then the elements f a;J I constitute the gene

?·atm·s of 7t,. (K", K"-1 ) Cn>2). 

The proof is similar to that of lemma 3. We have only to use 
lemma 2' instead of lemma 2. 

Corollary. f a 1 I i=J, ... , Pl a1·e generato1·s of 7?,. (K", K"-1) Cn>J). 

Proof of Theorem I, l'. 

It is sufficient to show that 7?., (K", K"-1) with generators f a 1 j is 
free abelian, for K being simply connected, 7t,. (K", K"- 1) is isomorphic 
with 7?,. (K", K"- 1) (n>2). 

If any relation ~m~ a,=O exists in 7?2 (K2, K 1), then there exists an 
element c of c C -n:2 (K2 , K 1) such that 

cIT (at)111" = 1 
in 1t2 (K2 , K 1). If a mapping f gives the element c II (a;) 111t, then there 
exists a homotopy ft (O<t<l) such that 

fo f 

ft (E2) C Kt. 

Now we identify the subset K~ -u; of K2 to a point y 0• Then K goes 
to a sphere 8 2• We denote this identification by w. The mapping wf 

of E 2 onto 8 2 gives an element of -n:2 (82), and ft shows that w (cIT (a1) 111t) 

=0 in -n:2 (82). 

Mapping w transforms the element aJ (j=J=i) of -n:2 (K2, K 1) into 0 of 
-n:z (82), and at into ± 1 of 7tj (82). Therefore w transforms the element 

~m~ at into ±mt. But this value of -n:2 (82) must be 0, which shows 
Theorem I. The proof of Theorem l' is similar. 

Let K be the universal covering complex of K, then the n-sim
plexes of K are represented by ! E J• u; /, where E J• u; are those defined 
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in Lemma 3. From Theorem I. 1' and Hurewicz's isomorphism we can 
easily see .that n:, (K", R"- 1 )~n:~~ (K", K"-1) Cn>2) is free abelian. In the 
case of dimension 2 n:2(K~,K,.)/c~7t2 (K~,K1) is also free abelian. 

Proof of Theorem II, II'. If we examine the content of the proof 
of Theorem I, 1', we may obtain the proof of Theorem II, II'. 

Remark: From theorem II we can see immediately that ?rn (K", 

K"- 1) is a subgroup of n:n (K", [("- 1) and that 
n:n (K", K'H) ~ rn (K", K"- 1) + 'it,. (K", K"- 1 ). 

Proof of Theorem III. 
The correspondence between the group 'itn (K", K"- 1) and L" (K, I) 

is given from Theorem II by the following correspondence ip of their 
generators: 

(jJ : a 1 -----). (} ,. 

The isomorphism between n:,. (K", K"- 1) and L" (K, I) is given simi
larly by the correspondence 

al n 
'P: a; ~ l;;u;. 

The homomorphism u from n:,. (K", K"-1) onto 'it, (K", K"- 1) is given, 
as above mentioned, by the correspondence 

and . the covering mapping from R onto K is clearly defined by the 
correspondence 

'll : !; j(}i -···> (}I 

From these correspondences Theorem III is clear. 

In concluding this paragraph we state the main theorem about 

homotopy and homology. 

From theorem II we may consider the group 'it, (K", K"- 1) (n>2) 

as the chain group L" (K, I) itself. Then the homology boundary o1 

defines a homomorphism from 'it, (K", K"-1) into ;;r,_1 (K"-', K"-~). 

'it,. (K", K"-1), considered ·as a subgroup of n:,. (K", K"-1) is transformed 
by the composite operation m· ot into 7t,._1 (K"-1 , K"-~). Then there 
holds the following theorem. 

Theorem 4. In operator symbol o1=u1·t o0 o1· mo1·e p1·ecisely 

o1 = u1·t ot u-1 

The proof is just the same as in [I]. The homomorphisms u and 
ot are defined by homotopy only, and the relativisation 1't is defined by 
homotopy with respect to the dimension. Therefore we may insist that 
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the homology theory is reducible to the homotopy theory. 
Now we can deduce from this theorem various kinds of cycles and 

various aspects of homological properties of a complex. 

~ 5. Applications 

Using the relations 3e u=u o,, t:u=ur, we get the following Corol

lary. In operator symbol oz rat. A chain c", satisfying the relation 

o, u-1 (c")=O, is named "spherical" by Eilenberg. A chain c", satisfying 
the relation rat u- 1 (c")=O, is named by the author "simple". Hopf 

named the cycle c", which satisfies the relation at (c")=O, i.e. u o, u-1 

( c")=O "Henkel". 

The Henkel cycles constitute a subgroup ~~"· of Z" and the factor 

group ~"/B" is denoted by ~". 

The simple cycles constitute a subgroup ®" of Z", and the factor 

group ®"I B" is denoted by Ef"'. 

Then we get following diagram about subgroups of H" : 

~" _ E>" (\ 'l)" <~::> E>" V 'l)"- D"- H" 

where ~" is the spherical group, and ®" V ~" is the subgroup of H" 
which is generated by ®" and 'l)", and C" is defined, in terms of A, f.L, v, 

by 

D" = D"/ B", @" = u o, -1 (A,._1 (K"-1) (\ (v,._1 (K"-1) V r,._1 (K"-1))). 

To see the geometrical properties of ®", ~", 0" and H"/0", it is 

convenient to represent them by the groups A, f.L, v. We can prove the 
following relations : 

i) A,._ 1 (K"- 1) (\ 1',._1 (K"-1)/o, (1'" (K", K"- 1)) ~ s.J-~"/~"', 

ii) A,._ 1 (K"- 1) (\ v,._ 1 (Kr!-l)fot (l"' (K", K"-1)) (\ v,._ 1 (K"-1) •"" E>"/~", 

iii) A,._1 (K"- 1) (\ I'n-~ (K"- 1) (\ v,_1 (K"-1)/o, (I',. (K", K"-1)) 

(\ v,._l (K"-1);::::, 'l)" (\ E>"/~"' 

iv) (A,_ 1 (K"-1 ) (\ v,._ 1 (K"- 1)) V (.\,_ 1 (K"- 1) (\ I\.1 (K"- 1))/o, 
(I'"' (K", K'!-1))""" 'l)"'· V ®"/~", 

v) An-I (K"-1 ) (\ v,_ 1 (K"-1)/1',_ 1 (K"'- 1) (\ v,._ 1 (K"- 1) (\ A,_ 1 (K"-1) 

vi) 

vii) 

viii) 

""" 'l)" v ®"/'l3"' 
A,._l (K"- 1 ) (\ r,.-1 (K"-1)/(.\,._1 (K"-1) (\ r,_l (Kr'- 1)) (\ (v,_l (K"-1) 

V o, (1', (K", K"- 1))) ~ s.J_~" V (><)"/®", 

An- 1 (K"- 1) (\ (v,._ 1 (K"-1) V l ',._ 1 (K"- 1))/o, (I',. (K", K'H));:;:, (h/~ ', 

1· (.A,._ 1 (Jc--1)) (\ L',_ 1 (Kn-l, K"-~)/1" (L ', .. 1 (K"- 1 ) (\ 1" (A.,H (K11 - 1)) 

"""'H"/0". 
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Relation (i) shows that the homotopy boundary of an element of 
~" is included in r,._ 1 (K"'-1), i.e. of the form 

~!;·(3 

where (3 E ?r,._ 1 (K"-1) and !; E 1r1 (K"- 1). We can see easily from this 

fact the elements of ~" are represented by mappings of Hopf's 

"Hen}rel" -manifold. 
Relation (ii) shows that the homotopy boundary of an element of 

®'' is included in lJ,._ 1 (K'H), i.e. the dimension of the image of the 
boundary is at most n-2. 

Now we define a pseudo-sphere as follows: From an m-sphere S"' 

we cut off k elements E~, then the boundary of the rest is composed 
of k (m-1)-spheres s:·. We identify them respectively to k cycles z:(kj 
with dimensions p(k)<m-1. By this construction we get a pseudo
sphere. 

It is easy to prove that any element of ®" is represented by a 

continuous mapping from a suitable pseudo-sphere into K", and conver

sely any such mapping will give an element of ®". For example a 

fibre bundle over the base space sr and with the fibre s• Cr>l, s>l, 
1· +s=n) is a pseudo-sphere and its continuous mapping into K" gives 

an element a of ®". In this case if ?r,._ 1 (87)=0, ?r,._ 1 cs·)=O, then the 
element a gives rise to an element of ~". 

Now it is easy to understand. what mappings represent the ele

ments of D". 
The geometrical aspect of the elements of H"/D" is as follows: 

viii) H" /D" ~ r (:\,,_ 1 (K"- 1)) (\ r,_ 1 (K"-1 , K"-~)/r (1',._ 1 (K"-1)) 

(\ 1" (A-,_1 (K'H)) 

If we neglect the consequences of D", an element of H", i. e. a 
cycle is given by such a mapping that the boundary at (E") is trans

formed into a~a-1 , where a E ?r,_1 (K'H, K"- 2), !; E 1rl (K"- 3). Therefore 

we decompose the boundary S"-1 into 2q pieces of elements E;',~1 , E;,-21 

(i=l, ... , q), and map each E~.~~ and E;,~1 into a non-spherical element 

ai. If this mapping f of 31 (E") can be extended to that of E", then 

the mapping f (E") gives an element of H", which is not an element 

of D". 

From these considerations we can conclude properties of groups 

2]", <'"'f', 1t~". H"/<~)" V 1t~· for special complexes and dimensions. For 
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instances: 

®3/~3=0; if -n:i (K)=O (i=2, ... , n-2), then®"::::::-~" and ®'H:::::-~"; 

if -n:n_ 1 (K)=O, then ~""""~"; and so forth. 
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