HEREDITARY ORDERS WHICH ARE DUAL

Manabu HARADA

(Received December 10, 1963)

Let *R* be a Dedekind domain and Σ a central simple *K*-algebra, where *K* is the quotient field of *R.*

M. Auslander and O. Goldman have considered maximal orders in Σ from point of view of homological method in [1] and introduced the notion of hereditary orders in Σ . Recently, A. Brumer, H. Hijikata, S. Williamson and the author have studies structures and applications of hereditary orders in [2], [2'], [8], [9], [4], [5], [6] and [7].

In this paper we shall give some relations between Brumer's work $[2]$, $[2']$ and the author's $[4]$, $[5]$ and $[6]$ by the method mentioned in [3].

We shall call briefly a hereditary order an h -order.

Let Δ be a division K-algebra and $\Sigma = \Delta_n$, $\Sigma' = \Delta_m$. Then there exists a left Σ and right Σ' module *V* such that $\Sigma = \text{Hom}_{\Sigma'}(V, V)$ and $\Sigma' =$ $\text{Hom}_{\mathbb{Z}}^{\mathbb{Z}}(V, V)$. Let *E* be a sub *R*-module of *V* such that $EK = V$, then we call E an R-lattice (in V). If there exists an R-lattice E which is Λ - Λ' module for orders Λ , Λ' in Σ , Σ' respectively, we call Λ , Λ' are dual with respect to E .

We shall show that if h-orders Λ and Λ' are dual then there exists a unique one-to-one correspondence between orders Γ and Γ' containing Λ and Λ' respectivety, which are dual with respect to special lattice (Theorem 1). Next, we show a relation between R-lattices *E* which is Λ' -module and right ideals of Λ (Theorem 2), which gives a bridge between [2] and [5], and we give an isomorphism of normal two-sided ideals¹ of Λ to those of Λ' through *E* as a corollary. In Theorem 3, we shall show that Λ and Λ' are dual if and only if they belong to the same block². Finally we give an isomorphism of the groupoid³ of twosided ideals of Λ to the groupoid of those of Λ' through *E* (Theorem 4).

Let Λ , Λ' be dual with Λ - Λ' module E which is an R-lattice. If

¹⁾ See [6], § 1.

²⁾ See [7], § 3.

³⁾ See [4], § 6.

 Λ is an *h*-order, then *E* is Λ -projective by [4], Lemma 3.6 and $\tau_{\Lambda'}(E)^{0}$ Λ' by [1], Proposition A.3. Furthermore, by [2'], Appendix Theorem 5 or [6], Theorem 1.1 we know that Λ' is an h-order in Σ' .

LEMMA 1. Let Λ' be an order in Σ' and E a torsion-free finitely generated R-module and right Λ' -module such that $\tau_{\Lambda'}(E) = \Lambda'$. Let \mathfrak{M} be a two-sided ideal in Λ' and Γ' be the right order of \mathfrak{M} in Σ' . If $\Gamma' \mathfrak{M} =$ $\Gamma', \tau_{\Gamma'}(E \mathfrak{M}) = \Gamma'.$

Proof. By the assumption and [4], Lemma 1.2 we have an exact sequence $0 \to \text{Hom}_{\Lambda'}^r(E\mathfrak{M}, \Lambda') \overset{\psi}{\to} \text{Hom}_{\Lambda'}^r(E\mathfrak{M}, \Gamma') = \text{Hom}_{\Gamma'}^r(E\mathfrak{M}, \Gamma')$. Furthermore, from an exact sequence $0 \rightarrow E \mathfrak{M} \rightarrow E \rightarrow E/E \mathfrak{M} \rightarrow 0$ we obtain the monomorphism φ : Hom_{\wedge}'(E, \wedge') -> Hom \wedge '(E\mu\), \wedge '). Since $\tau_{\wedge'}(E) = \wedge'$, 1 $\Sigma f_i(e_i)$, $f_i \in \text{Hom}_{\Lambda'}(E, \Lambda')$ and $e_i \in E$. Hence $m = \Sigma f_i(e_i m)$ for any $m \in \mathfrak{M}$. Since $\psi \varphi f_i \in \text{Hom}_{\Gamma'}(E \mathfrak{M}, \Gamma')$ and $\Sigma \psi \varphi f_i(e_i m) = m$, $\tau_{\Gamma'}(E \mathfrak{M}) \supset \mathfrak{M}$. Hence $\tau_{\mathbf{r}'}(E \mathfrak{M}) \geq \Gamma' \mathfrak{M} \Gamma' = \Gamma'.$ Therefore, $\tau_{\mathbf{r}'}(E \mathfrak{M}) = \Gamma'.$

LEMMA 2. Let $\Lambda_2 \supset \Lambda_1 \supset \Lambda$ be a tower of h-orders in Σ . Then $C_{\Lambda}(\Lambda_2)$ $C_{\Lambda_i}(\Lambda_2)C_{\Lambda}(\Lambda_1)$, where $C_{\Lambda}(\Lambda_i) = \{x \in \Sigma, \Lambda_i x \leq \Lambda\}.$

Proof. It is clear that $C_{\Lambda}(\Lambda_2) \supseteq C_{\Lambda_1}(\Lambda_2) C_{\Lambda}(\Lambda_1)$. We denote $C_{\Lambda}(\Lambda_2)$, $C_{\Lambda_1}(\Lambda_2)$, $C_{\Lambda}(\Lambda_1)$ by $\mathfrak{C}, \mathfrak{C}_2, \mathfrak{C}_1$, respectively. Let $\mathfrak{D}=\mathfrak{C}_2\mathfrak{C}_1$. Then $\mathfrak{D}^2=\mathfrak{C}_2\mathfrak{C}_1\mathfrak{C}_2\mathfrak{C}_1$ $\mathfrak{C}_2 \mathfrak{C}_1 \Lambda_1 \mathfrak{C}_2 \mathfrak{C}_1 = \mathfrak{C}_2 \mathfrak{C}_1 = \mathfrak{D}$ by [4], Propositions 1.6 and 3.1. It is clear that $\text{Hom}_{\Lambda}^r(\mathfrak{D}, \mathfrak{D}) \supseteq \text{Hom}_{\Lambda}^r(\mathfrak{C}_2, \mathfrak{C}_2) = \Lambda_2$. Furthermore, $\mathfrak{D}\Lambda_1 = \mathfrak{C}_2\mathfrak{C}_1\Lambda_1 = \mathfrak{C}_2\Lambda_1 = \mathfrak{C}_2$. Hence $\Lambda_2 = \text{Hom}_{\Lambda}^r(\mathfrak{C}_2, \mathfrak{C}_2) \supseteq \text{Hom}_{\Lambda}^r(\mathfrak{D}, \mathfrak{D}).$ Therefore, $\text{Hom}_{\Lambda}^r(\mathfrak{D}, \mathfrak{D}) =$ Homⁿ₁(\mathfrak{C} , \mathfrak{C}), which means $\mathfrak{D} = \mathfrak{C}$ by [4] Theorem 1.7.

LEMMA 3. Let Λ and Λ' be h-orders in Σ and Σ' which are dual with E. Let $\mathfrak A$ be a right Λ -ideal in Σ . Then $\mathfrak A = \text{Hom}_{\Lambda}(E, \mathfrak A E)$.

Proof. Since \mathfrak{A} is Λ -projective, $\text{Hom}_{\Lambda'}^r(E, \mathfrak{A} E) = \text{Hom}_{\Lambda'}^r(E, \mathfrak{A} \otimes E)$. Since E is Λ' -projective, $Hom_{\Lambda'}^r(E, \mathfrak{A} \otimes E) = \mathfrak{A} \otimes Hom_{\Lambda'}^r(E, E) = \mathfrak{A}$ by setting $(a \otimes f)$ $e = a \otimes f(e)$, $a \in \mathfrak{A}$ and $f \in \text{Hom}_{\Lambda'}^r(E, E)$.

THEOREM 1. Let Λ and Λ' be h-orders in Σ and Σ' which are dual with an R-lattice E. Let Γ be an order containing Λ . Then there exists a unique order Γ' containing Λ' such that $\mathbb{C}E=E\mathbb{D}'$ and Γ and Γ' are dual with respect to CE, where $\mathfrak{C} = C_{\Lambda}(\Gamma)$ and $\mathfrak{D} = D_{\Lambda'}(\Gamma') = \{x \mid \in \Gamma', x\Gamma' \subseteq \Gamma'\}$ Λ ².

Proof. Let \mathfrak{M} be a maximal two-sided ideal in Λ . Since E is a

108

⁴⁾ See [1], Appendix.

finitely generated Λ -projective, we have an exact sequence $0 \rightarrow \varphi^{-1}(0) \rightarrow$ $\mathrm{Hom}^i_{\Lambda}(E, E) \xrightarrow{\varphi} \mathrm{Hom}^i_{\Lambda/\mathfrak{M}}(E/\mathfrak{M}E, E/\mathfrak{M}E) \rightarrow 0.$ Since $\mathrm{Hom}_{\Lambda/\mathfrak{M}}(E/\mathfrak{M}E, E/\mathfrak{M}E)$ is a simple ring, $\varphi^{-1}(0)$ is a maximal two-sided ideal in $\Lambda' = \text{Hom}_{\Lambda}^1(E, E)$ and $E\varphi^{-1}(0) \subseteq \mathfrak{M}E$. Similarly we obtain $E\varphi^{-1}(0) \subseteq \mathfrak{N}E$ for some maximal two-sided ideal \mathfrak{P} in Λ . If $\mathfrak{M}+\mathfrak{B}$, $\Lambda=\mathfrak{P}+\mathfrak{M}$. Hence $E=\mathfrak{M}E+\mathfrak{P}E=\mathfrak{M}E$, which implies $\mathfrak{M}=\Lambda$ by Lemma 3. Hence, $\mathfrak{M}E=E\varphi^{-1}(0)$. First we assume that Γ is an order containing Λ such that there are no orders between Λ and Γ , then $\Lambda_q = \Gamma_q$ for any prime ideal q expect one prime p by [4], §7. Let $\mathfrak{C} = C_{\Lambda}(\Gamma)$, then $\Gamma \mathfrak{C} \Gamma = \Gamma$ by [4], Proposition 3.1. Hence $\tau_r(\mathfrak{C} E)=\Gamma$ by Lemma 1. Therefore, $\text{Hom}_{\Gamma}^1(\mathfrak{C} E, \mathfrak{C} E)=\Gamma'$ and Γ are dual with respect to E . Furthermore, Γ' is an order containing Λ' such that there are no orders between Γ' and Λ' by the above remark. It is clear that E is a maximal two-sided ideal by [5], Lemma 2.3. Hence, $\mathfrak{C}E=E\mathfrak{D}'$ for a maximal two-sided ideal \mathfrak{D}' in Λ' . Since, $\Gamma'\supseteq \text{Hom}_{\Lambda'}^{\Lambda}(\mathfrak{D}',$ $\mathcal{D}'\rightarrow \mathcal{N}'$, $\Gamma'=\text{Hom}_{\mathcal{N}}^{\mathcal{N}}(\mathcal{D}', \mathcal{D}')$. \mathcal{D}' is uniquely determined by Lemma 3. We assume the theorem is true for orders contained in Γ . There exists $\Lambda_0(\geq \Lambda)$ contained in Γ such that there are no orders between Γ and Λ_0 by [4], Theorem 7.2. By the assumption there exists an order such that Λ_0 and Λ_0' are dual with respect to $\mathfrak{C}_{\Lambda}(\Lambda_0)E=E\mathfrak{D}'_{\Lambda'}(\Lambda_0')$. Hence there exists an order $\Gamma' \geq \Lambda_0'$ such that Γ and Γ' are dual with respect to $C_{r_0}(\Gamma)C_{\Lambda}(\Lambda_0)E=ED'_{\Lambda'}(\Lambda_0)D'_{\Lambda_0'}(\Gamma').$ Hence $C_{\Lambda}(\Gamma)E=ED'_{\Lambda'}(\Gamma')$ by Lemma 2, r' is uniquely determined by Lemma 3.

COROLLARY 1. Let Λ , Λ' and E be as above. Then every chain of *h-orders containing* A *corresponds uniquely to the chain of h-orders containing* Λ' *in* Σ' .

THEOREM 2. Let Λ and Λ' be h-orders in Σ and Σ' which are dual with respect to E. Then the set of E of R-lattic in V which is a Λ' *module corresponds to the set R of right* Λ -ideal in Σ as follows: 1). For $E' \in E$, $\mathfrak{A} \in \mathbb{R}$, $E' = \mathfrak{A}E$, $\mathfrak{A} = \text{Hom}_{\Lambda}(E, E')$. *This correspondence preserves the inclusion relation.* 2) The left order $\Lambda^{l}(\mathfrak{A})$ of $\mathfrak{A} = \text{Hom}_{\Lambda}^{r}(E', E')$. 3) The right order $\Lambda^{r}(\mathfrak{A})$ of $\mathfrak{A}=\Lambda$ (\mathfrak{A} *is a normal right ideal) if and only if* $\tau_{\Lambda}(E') = \Lambda'$. 4) The number of ideal classes of normal right Λ -ideals *is equal to the number of N-isomorphic classes of the R-lattice E' in E such that* $\tau_{\Lambda'}(E') = \Lambda'$.

Proof. 1) Let *E'* be in *E*. Then $\mathfrak{A} = \text{Hom}_{\Lambda'}^r(E, E')$ is a right Λ ideal in Σ , and $\mathfrak{A}E=\mathfrak{A}\otimes E=\mathrm{Hom}_{\Lambda'}^{\sim}(E, E')\otimes E=\mathrm{Hom}_{\Lambda'}^{\sim}(\mathrm{Hom}_{\Gamma}^{\sim}(E, E), E')=$ E'. Conversely, if $\mathfrak{A} \in R$, then $\mathfrak{A} E \in E$, and $\text{Hom}_{\Lambda}(E, \mathfrak{A} E) = \mathfrak{A}$ by Lemma 3. 2) Let $\mathfrak{A}'=\text{Hom}_{\Lambda'}^{\cdot}(E', E)$. Then $\mathfrak{A}\mathfrak{A}'=\text{Hom}_{\Lambda'}^{\cdot}(E, E')\otimes \text{Hom}_{\Lambda'}^{\cdot}(E', E)=$ $\mathrm{Hom}^r_{\Lambda'}(\mathrm{Hom}^l_{\Lambda'}(\mathrm{Hom}^r_{\Lambda'}(E', E), E), E') = \mathrm{Hom}^r_{\Lambda'}(E' \otimes \mathrm{Hom}^l_{\Lambda}(E, E), E') = \mathrm{Hom}^r_{\Lambda'}$ (E', E') . Therefore, $\Lambda^{l}(\mathfrak{A}) \subseteq \text{Hom}_{\Lambda}^{r}(E', E')$. However, it is clear that Hom^{$r(K', E') \leq \Lambda^{1}(\mathfrak{A})$. 3) If $\Lambda = \Lambda^{r}(\mathfrak{A})$, then \mathfrak{A} is inversible by [4], §2.} Hence $\mathfrak{A}Ex \subseteq \mathfrak{A}E$ implies $Ex \subseteq E$. Hence $\text{Hom}_{\Lambda}^i(\mathfrak{A}E, \mathfrak{A}E) = \Lambda'$. Therefore, $\tau_{\Lambda'}(\mathfrak{A} E) = \Lambda'$. Conversely, if $\tau_{\Lambda'}(E') = \Lambda'$, then we can prove similarly as above that $\mathfrak{A}'\mathfrak{A} = \text{Hom}_{\Lambda'}(E, E) = \Lambda$. Hence \mathfrak{A} is an inversible Λ -ideal and $\Lambda'(\mathfrak{A})=\Lambda$. 4) Let $\mathfrak{A}, \mathfrak{A}'$ be normal right Λ -ideals in Σ . If $\lambda \mathfrak{A}=\mathfrak{A}'$ for some λ in Σ , then $\mathfrak{A}E \approx \mathfrak{A}'E$ as a right Λ' -module. Conversely if $\mathfrak{A}E$ is isomorphic by f, then $f \in \text{Hom}_{\Lambda}^r(\mathfrak{A}E, \mathfrak{A}'E)=\mathfrak{F}, f^{-1} \in \text{Hom}_{\Lambda}^r(\mathfrak{A}'E, \mathfrak{A}E)=\mathfrak{F}^{-1},$ and $\mathfrak{A}'E=f\mathfrak{A}E$ by 1). Since $f\Gamma=f\mathfrak{F}^{-1}\mathfrak{F}\geq ff^{-1}\mathfrak{F}=\mathfrak{F}\geq f\Gamma$, $f\Gamma=\mathfrak{F}$, where $\Gamma=\text{Hom}_{\Lambda}^r(\mathfrak{A} E, \mathfrak{A} E)$. Therefore, $\mathfrak{A}^rE=f\mathfrak{A} E$. Hence $\mathfrak{A}^r=f\mathfrak{A}$.

COROLLARY 2. (cf. [3], Theorem 4, [4], Theorem 7.6). Let Λ and A' *be h-orders as in Theorem* 2. *Then the group G of normal two-sided ideals* $\mathfrak A$ *of* Λ *and the group of G' of those* $\mathfrak A'$ *of* Λ' *are isomorphic by* the correspondence $\mathfrak{A}E=E\mathfrak{A}'$. Hence they are abelian groups.

It is clear that $WBE=\mathfrak{A}E\mathfrak{B}'=E\mathfrak{A}'\mathfrak{B}'=E\mathfrak{B}'\mathfrak{A}'$. Hence $\mathfrak{A}'\mathfrak{B}'=\mathfrak{B}'\mathfrak{A}'$.

COROLLARY 3. Let R be local and Λ and Λ' be as above. Λ is *principal*⁵³ *if and only if any two R-lattice E, E' in V which are* Λ *-* Λ' *module with* $\tau_{\Lambda}(E) = \tau_{\Lambda}(E') = \Lambda'$ *are isomorphic as a N-module.*

lt is clear from the theorem and [4], Corollary 4. 5.

Let *R* be local and $\mathfrak{R}, \mathfrak{R}'$ the radicals of Λ and Λ' . We assume that $\Lambda/\mathfrak{N}=\Delta'_{m_1}\oplus \Delta'_{m_2}\oplus\cdots\oplus \Delta'_{m_r}$ and \mathfrak{R} is a right ideal with $\tau_{\Lambda}(\mathfrak{R})=\Lambda$ in Λ which contains \Re . Let Λ and Λ' be dual with E. Then $\tau_{\Lambda'}(\Re E) = \Lambda'$ and $\Re E \supseteq E \Re'$. Let $F=\Re E$. Since E is Λ' -projective, $0 \rightarrow \Re = \text{Hom}_{\Lambda}(E)$, $F\rightarrow\Lambda=\text{Hom}_{\Lambda}(E, E)\rightarrow\text{Hom}_{\Lambda'}(E, E/F)=\text{Hom}_{\Lambda'/\mathfrak{M}'}(E/E\mathfrak{N}, E/F)\rightarrow 0$ is exact. Similarly we know $\Lambda/\Re \approx \text{Hom}_{\Lambda'/\Re'}^r(E/E\Re', E/E\Re').$ Hence $E/E\Re' \approx \mathfrak{r}_1'^{m_1}$ $\bigoplus r_1'^{m_2} \bigoplus \cdots \bigoplus r_r'^{m_r}$, where the r_i' 's are the set of simple components of Λ'/\mathfrak{N}' . On the other hand $E/EW=E/F\oplus F/EW'$ and we assume $E/F\cong \mathfrak{r}_1^t\oplus \mathfrak{r}_2^t\oplus \mathfrak{r}_3^t$ $\cdots \oplus r_r^t$. Then $\Re/\Re \approx r_r^{m_1-t_1} \oplus \cdots \oplus r_r^{m_r-t_r}$, where the r_i 's are the set of simple right ideals of Λ/\mathfrak{N} . Especially, if we take $\mathfrak{N}/\mathfrak{N}=\Delta'_{m_1}\oplus\cdots\oplus\Delta'_{m_{i-1}}$ \bigoplus r^{*}_i</sub> \bigoplus $\Delta'_{m_{i+1}}\bigoplus \cdots \bigoplus \Delta'_{m_r}$, then $E/\Re E$ is a direct sum of one simple component of Λ/\Re .

Thus, we have from [5], Theorem 5. 3 the following corollary, which is a generalization of [2].

CoROLLARY 4. *Let R be local and h-orders* A, A' *be dual with E.*

⁵⁾ See [5], § 2.

Then every h-order contained in Λ is uniquely written as $\bigcap_{i=1}^{r,s(i)} \Lambda_{ij}$, where Λ_{ij} , Λ' are dual with F_{ij} which satisfies the conditions for all i: 1) F_{i0} $=E\sum F_{i1}\sum\cdots\sum F_{is(i)}\sum E\mathfrak{R}'$ and 2) $E/F_{is(i)}$ is a direct sum of one simple component of Λ'/\Re' .

Furthermore, from $\lceil 6 \rceil$, Theorem 2.5 we have

COROLLARY 5. Let R, Λ and Λ' be as above and E' be a sub R-lattice in E such that $\tau_{\Lambda}(E) = \Lambda'$. Then there exists a sub R-lattice E^* between E and E' such that $E^* \approx E'$ as a right Λ' -module and there exists a composition series $E\sum E_i\sum E_j\cdots\sum E_m=E^*$ and $\tau_{\Lambda'}(E_i)=\Lambda'$ for all i.

REMARK. Brumer considers in [2] the (Λ, Λ_0') -chain where Λ_0' is a maximal order in $\Delta = \Sigma'$ and Λ is an *h*-order in Δ_n . From the above observation we know that it is nothing but studying the inclusion relations of distance ideals⁶⁾ between maximal orders containing Λ . Since Λ'_0 is maximal, $r=1$ in Corollary 4, and $\{F_{1i}\}_{i=1}^{s(1)}$ is the set of distance ideals of Hom_{Λ_0} $(E, E) = \Omega$ to a maximal order containing Λ . Hence the set of *R*-lattice in V which is Λ - Λ'_0 module is linearly ordered with period $s(1)$, $(cf. [2]).$

Thus, we shall insert here one proposition related to distance ideals.

LEMMA 4. Let R be local and $\Omega \supset \Lambda$ be h-orders of rank r_1 and r_2 ⁿ. Let $\Omega_1 = \Omega$, Ω_2 , ..., Ω_t , $\Omega_{t+1} = \Omega_1$ be a sequence of h-orders containing Λ such that $\Omega_{i+1} = \Lambda^r(\mathbb{G}_i)$, $\mathbb{G}_i = C_{\Lambda}(\Omega_i)$. Then $\mathbb{G}_1 \cdots \mathbb{G}_t = \mathbb{R}^k$ for $k \geq t - r_1$, where It is the radical of Ω . Furthermore, $k = r_2 - r_1$ if and only if $t = r_2$.

Proof. Let $\{\mathfrak{M}_1, \mathfrak{M}_2, \cdots, \mathfrak{M}_{r_s}\}\)$ be the normal sequence⁸⁾ of Λ and $\Lambda/\mathfrak{M}_i = \Delta'_{m_i}$. Then we obtain $\mathfrak{C}_{i+1} = \mathfrak{NC}_i \mathfrak{N}^{-1}$ by [5], Theorem 5.1. We shall use the same notations as in [5], §2. $S_i = \{\mathfrak{M}_{t_i}, \mathfrak{M}_{t_{i+1}}, \dots, \mathfrak{M}_{t_i+p_i-1}\}\$ and $t_1 = 1$, $t_i + \rho_i + 1 = t_{i+1}$, and $t_{r_1} + \rho_{r_1} + 1 = t_1$. We shall assume $\mathfrak{C}_1 = I(\mathcal{S}_1)$, S_2, \dots, S_{r_1}). Then we know the composition length $l(\Omega_1/\mathfrak{C}_1)$ of Ω_1/\mathfrak{C}_1 is equal to $\sum_{i=1}^{r_1} \sum_{k=0}^{p_i-1} m_{t_i+k} = n - \sum_{i=1}^{r_1} m_{t_i+p_i}$ by [5], Theorem 2.3 and the same argument as the remark before Corollary 4, where $n = \sum m_i$. Since \mathfrak{C}_i $\mathfrak{NS}_{i-1}\mathfrak{N}^{-1}$, we obtain similarly $l(\Omega/\mathfrak{C}_i)=n-\sum_{i=1}^{r_1}m_{t,i+\rho_j-i+1}$. Therefore, $l(\Omega/\mathfrak{C}_i)$ $\cdots \mathfrak{C}_t$ \geqslant $(t-r_1)n$. Since $\mathfrak{C}_1\mathfrak{C}_2\cdots \mathfrak{C}_t$ is a normal two-sided ideal in Ω_1 by [4], §6, $\mathfrak{C}_1 \cdots \mathfrak{C}_t = \mathfrak{N}^k$. Furthermore, since $l(\Omega_1/\mathfrak{N}) = n$ by [6], Proposition

⁶⁾ See [6], §2.

⁷⁾ See $[4]$, § 3.

⁸⁾ See [5], §2.

2.6, $nk \geqslant (t-r_1)n$. Hence $k \geqslant t-r_1$. It is clear that $\sum_{i=1}^{r_1} \sum_{j=1}^{r_1} m_{t_{j}+p_{j}-i+1} = r_1n$ if and only if $t=r_2$.

PROPOSITION 1⁹. Let R be local and Λ an h-order of rank r. We assume that Ω is either a maximal order or a minimal order¹⁰ containing Then the sequence in Lemma 4 gives the complete set of maximal or minimal orders containing Λ , $\Omega \supset \mathbb{R}^{2-r} \mathbb{C}_1 \cdots \mathbb{C}_{r-1} \supset \mathbb{R}^{3-r} \mathbb{C}_1 \cdots \mathbb{C}_{r-2} \supset \cdots$ $\supset \mathfrak{N}^{-1}\mathfrak{C}_1\mathfrak{C}_2 \supset \mathfrak{C}_1$ is the set of distance ideals of Ω to Ω_i if Ω is maximal, and $\Omega \supset \mathfrak{C}_1 \supset \mathfrak{C}_1 \mathfrak{C}_2 \supset \cdots \supset \mathfrak{C}_1 \mathfrak{C}_2 \cdots \mathfrak{C}_{r-1}$ is the set of distance ideals of Ω to Ω_i if Ω is minimal over Λ , where $\mathfrak R$ is the radical of Ω .

Proof. The first part is clear from [5], Theorem 5.1 and [4], Theorem 1.7. If Ω is minimal, then $\mathfrak{C}_{1} \cdots \mathfrak{C}_{r} = \mathfrak{R}$ by Lemma 4. $\mathfrak{C}_{1} \cdots \mathfrak{C}_{t-1}$ is a normal Ω - Ω ideal which is not contained in \mathfrak{R} . Hence $\mathfrak{C}_1 \cdots \mathfrak{C}_{t-1}$ is the distance ideal of Ω to Ω_i . If Ω is maximal then $l(\Omega_i/\mathfrak{C}_i)=n$ $m_{r-(i-2)}$. Hence $l(\Omega/\mathbb{G}_{1}\cdots\mathbb{G}_{t})=tn-\sum_{i=1}^{t}m_{r-(i-2)}=(t-1)n+\sum_{i=2}^{r-(i-1)}m_{i}$. Let \mathcal{R}_{t-1} be the distance ideal of Ω to Ω_{t-1} . Then $\mathfrak{C}_1 \cdots \mathfrak{C}_t = \mathfrak{R}^s \mathfrak{C}_{t-1}$ and $l(\Omega/\mathfrak{R}^s \mathfrak{C}_{t-1})$ $=nS+\alpha=(t-1)n+\sum_{i=2}^{r-(t-1)}m_i$ where $\alpha=l(\Omega-\mathfrak{L}_{t+1})$. Hence, $|n(t-1-s)|=\lfloor \sum_{i=2}^{r-(t-1)}m_i-\alpha\rfloor < n$, because $\alpha < n$ since $\mathfrak{L}_{t+1}\supseteq \mathfrak{R}$. Therefore, $s=t-1$ and $\mathfrak{L}_{t+1} = \mathfrak{N}^{-(t-1)}\mathfrak{C}_1 \cdots \mathfrak{C}_t$. We have proved the proposition from Remark.

COROLLARY 6. Let R be local and Λ , Λ' be h-orders in Σ and Σ' . We asssume that the rank r of Λ is larger than that of Λ' by one, then the set of R-lattices E in V such that E is a Λ - Λ' module with $\tau_{\Lambda'}(E)$ = Λ' is linearly ordered with period r.

LEMMA 5. Let Λ and Λ' be h-orders in Σ and Σ' which are dual with E. Orders Γ and Γ' are dual then Γ_p and Γ_p' are of the same rank for all p. Conversely, if furthermore, the rank of Γ_h and Γ'_h is equal to or less than rank of Λ_p and Λ_p' for all p, then Γ and Γ' are dual.

Proof. If Γ and Γ' are dual with respect to E, then so are Γ , and Γ'_p with E_p for any p. Hence Γ_p and Γ'_p are of the same rank by [1], Theorem A.5. Conversely, we assume that Γ_p and Γ'_p are of the same rank. We obtain an order Γ'' containing Λ' such that Γ and Γ'' are dual with E' by Theorem 1. Hence Γ''_p and Γ'_p are of the same rank for any p. Therefore, there exists by [5], Theorem 6.1 a normal Γ'' - Γ' ideal \mathbb{C}' . It is clear that Γ and Γ' are dual with $E'\mathbb{C}'$.

⁹⁾ This proposition was pointed out to the author by Mr. Takeuchi.

¹⁰⁾ See [4], §3.

THEOREM 3. Let Σ and Σ' be the central simple K-algebras and let Λ and Λ' be h-orders in Σ and Σ' . Λ and Λ' are dual if and only if Λ and Λ'_p are of the same rank for all p.

Proof. We assume $\Sigma = \Delta_n$ and $\Sigma' = \Delta_m$, $n \ge m$. Let Λ' be an *h*-order in Σ' which belongs to $\Phi = {\rho_1, \dots, \rho_r}$ -block. Then there exists an horder Λ'_0 in Δ such that the Λ'_{0p_i} is a minimal h-order over R_{p_i} in Δ for $p_i \in \Phi$, and Λ'_q is a maximal order over R_q for $q \notin \Phi$ by [5], Theorem 1.2. Furthermore, we can find the two-sided ideal \mathfrak{A}'_0 in Λ'_0 such that \mathfrak{A}'_{0,p_i} is the radical of Λ'_{0,p_i} for $p_i \in \Phi$ and $\mathfrak{A}'_{0q} = \Lambda'_{0q}$ for $q \notin \Phi$, cf. [5], Lemma 1.3. Let

$$
\Lambda_0^* = \left(\begin{array}{cccc} \Lambda_0' & \mathfrak{A}_0' & \mathfrak{A}_0' & \cdots & \cdots & \mathfrak{A}_0' \\ \Lambda_0' & \Lambda_0' & \mathfrak{A}_0' & \mathfrak{A}_0' & \cdots & \mathfrak{A}_0' \\ \Lambda_0' & \Lambda_0' & \Lambda_0' & \cdots & \cdots & \vdots \\ \vdots & \cdots & \cdots & \cdots & \cdots & \Lambda_0' \end{array} \right) \mid m.
$$

Then Λ_0^* is an *h*-order in Σ' , such that $\Lambda_{0p_i}^*$ is a minimal order for $p_i \in \Phi$ and Λ_{0q}^* is maximal for $q \notin \Phi$ by [5], Lemma 1.2. Let $E = I_1 \oplus I_2 \cdots \oplus I_m$, where

$$
I_i = \begin{pmatrix} \mathfrak{A}'_0 \\ \mathfrak{A}'_0 \\ \mathfrak{A}'_0 \\ \Lambda'_0 \\ \vdots \end{pmatrix} i - 1 \Bigg\} n.
$$

We can define naturally the operation of elements of Λ_0^* from the right side, namely first we consider the I_j as a right Λ'_0 -module and $(x_{ij})e_{lm}$ = $(x_{ij}) \in I_m$ if $i=1$ and $=0$ if $i=1$, where the e'_{ij} 's are matrix units in Σ' . Let

$$
f\begin{pmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{ii} \\ b_{i} \\ \vdots \\ b_{in} \end{pmatrix} = \begin{pmatrix} \vdots & a_{i1} \\ \vdots & a_{i1} \\ \vdots & a_{i1} \\ 0 & a_{ii} \\ \vdots & b_{i} \\ \vdots & b_{im} \end{pmatrix} \in \Lambda_{0}^{*} \text{ for } \begin{pmatrix} a_{ij} \\ b_{ik} \end{pmatrix} \in I_{i},
$$

where $a_{ij} \in \mathfrak{A}'_0$ $b_{ij} \in \Lambda'_0$. Then it is clear that $f \in \text{Hom}_{\Lambda_0^*}^r(E, \Lambda_0^*)$ and $f(E)$ $=\Lambda_0^*$. Therefore $\tau_{\Lambda_0^*}(E) = \Lambda_0^*$. Since E is an R-lattice in V, Hom_{$\Lambda_0^*(E)$} E)= $\Lambda_0(\subset \Sigma)$ and Λ_0^* are dual. Hence Λ_{0_p} and $\Lambda_{0_p}^*$ are of the same rank for all p. Let Γ , Γ' be h-orders in Σ and Σ' such that Γ_p and Γ_p' are of the same rank for all p. We assume Γ and Γ' belong to $\Phi = \{p_1, \dots, p_r\}.$ Since $\Lambda_{0p_i}^*$ is minimal, the rank of Γ'_{p_i} is equal to or larger than that of Λ_{0p}^* for all *i*. Hence, Γ and Γ' are dual by Lemma 5.

COROLLARY 7. Let $\Sigma = \Delta_n$ and $\Sigma' = \Delta_m$. If $n \ge m$, for every h-order Γ' *in* Σ' *there exists an h-order* Γ *in* Σ *such that* Γ *and* Γ' *are dual.*

CoROLLARY 8. *The relation of duality is an equivalent relation.*

We shall generalize Corollary 2 by using the method of $\lceil 1 \rceil$, Theorem A.5.

THEOREM 4. Let Λ and Λ' be h-orders in Σ and Σ' which are dual *with respect to* E. *Then the groupoid* G *of two-sided A-ideals is isomorphic to the groupoid G' of two-sided* Λ *'-ideals and the units* Γ *of G correspond to the units* $Hom_{\Lambda}^{i}(\mathfrak{D}E, \mathfrak{D}E)$ *of G', where* $\mathfrak{D}'=D_{\Lambda}(\Gamma)$.

Proof. Let \mathfrak{A}' be a two-sided ideal of Λ' . Then

$$
F(\mathfrak{A}')=E\underset{\Lambda'}{\otimes}\mathfrak{A}'\underset{\Lambda'}{\otimes}\mathrm{Hom}_\Lambda^{\imath}(E,\ \Lambda)
$$

is a two-sided ideal of Λ since $r\mathfrak{A}' \subseteq \Lambda'$ for $r \in R$ and $0 \to rF(\mathfrak{A}') \to E \otimes \Lambda'$ $\text{Hom}_{\Lambda}^i(E, \Lambda)=E\underset{\sim}{\otimes} \text{Hom}_{\Lambda}^i(E, \Lambda)\approx \tau_{\Lambda}(E)=\Lambda. \quad F(\mathfrak{A}')F(\mathfrak{B}')=F(\mathfrak{A}')\underset{\sim}{\otimes}F(\mathfrak{B}')=$ $E\mathop{\otimes}\limits^{\infty}_{\mathcal{N}}\mathfrak{A}'\mathop{\otimes}\limits^{\infty}_{\mathcal{N}}\operatorname{Hom}_{\Lambda}(E,~\Lambda)\mathop{\otimes}\limits^{\infty}_{\Lambda}E\mathop{\otimes}\limits^{\infty}_{\mathcal{N}'}\mathop{\otimes}\limits^{\infty}_{\mathcal{N}}\operatorname{Hom}_{\Lambda}^{\iota}(E,~\Lambda)=E\mathop{\otimes}\limits^{\infty}_{\mathcal{N}'}\mathfrak{A}'\mathop{\otimes}\limits^{\infty}_{\mathcal{N}'}\operatorname{Hom}_{\Lambda}^{\iota}(E,~\Lambda)=$ $F(\mathfrak{A}\mathfrak{B}')$ by [1], Proposition A.1. Let $\mathfrak A$ be a two-sided ideal of Λ . Then

$$
G(\mathfrak{A})=\mathrm{Hom}_{\Lambda}^{\imath}(E,\ \mathfrak{A}\underset{\Lambda}{\otimes}E)
$$

is a two-sided ideal of Λ' since if $r \mathfrak{A} \subseteq \Lambda$, $G(r\mathfrak{A}) \subseteq \text{Hom}_{\Lambda}^{\Lambda}(E, E) = \Lambda'$. Furthermore, $FG(\mathfrak{A})=E\underset{\sim}{\otimes} \text{Hom}_{\Lambda}(E, \mathfrak{A} \underset{\sim}{\otimes} E) \underset{\sim}{\otimes} \text{Hom}_{\Lambda}(E, \Lambda)=\text{Hom}_{\Lambda}^{\prime}(\text{Hom}_{\Lambda}^{\prime}(E, \Lambda))$ E), $\mathfrak{A}\otimes_{\Lambda}E\otimes_{\Lambda}Hom_{\Lambda}^{\iota}(E, \Lambda)=\mathfrak{A}\otimes_{\Lambda}E\otimes_{\Lambda}Hom_{\Lambda}^{\iota}(E, \Lambda)=\mathfrak{A}$. $GF(\mathfrak{A}')=\text{Hom}_{\Lambda}^{\iota}(E, E)$ $0\otimes\mathfrak{A}'\otimes_{\mathcal{O}}\mathrm{Hom}_{\Lambda}(E,\Lambda)\otimes_{\Lambda}E)=\mathrm{Hom}_{\Lambda}(E,\,E\otimes\mathfrak{A}'\otimes_{\Lambda}\mathrm{Hom}_{\Lambda}(E,\,E))=\mathrm{Hom}_{\Lambda}(E,\,E\otimes\mathfrak{A}')$ =Hom(E, E) \otimes \leq '=\leq ' by Lemma 3. Finally, let Γ be an order containing Λ , and $\mathfrak{D}=\mathfrak{D}_{\Lambda}(\Gamma)$. Then $\Gamma=\text{Hom}_{\Lambda}^{\Lambda}(\mathfrak{D}, \mathfrak{D})$. $G(\Gamma)=\text{Hom}_{\Lambda}(E, \Gamma \otimes_{\Lambda} E)=$ $\text{Hom}_{\Lambda}(E, \text{Hom}_{\Lambda}^{\prime}(\mathfrak{D}, \mathfrak{D})\otimes_{\Lambda}E)=\text{Hom}_{\Lambda}(E, \text{Hom}_{\Lambda}^{\prime}(\mathfrak{D}, \mathfrak{D}\otimes_{\Lambda}E))=\text{Hom}_{\Lambda}^{\prime}(\mathfrak{D}\otimes_{\Lambda}E, \mathfrak{D}\otimes_{\Lambda}E)$ E)= Γ' .

Bibliography

- 1. M. Auslander and O. Goldman, *Maximal orders,* Trans. Amer. Math. Soc., 97 (1960), 1-24.
- 2. A. Brumer, *Structure of herediatry orders,* Bull. Amer. Math. Soc., 69 (1963),

721-724.

- 2'. -----, *Structure of herediatry orders,* Ph. D. thesis, Princeton Univ. 1963.
- 3. C. Chevalley, Dans Les Algebres de Matrices, Act. Sei. Ind., No. 323, Paris, 1936.
- 4. M. Harada, *Hereditary orders,* Trans. Amer. Math. Soc., **109** (1963) 273-290.
- 5. , *Structure of hereditary orders over local rings,].* Math. Osaka City Univ., **14** (1963), 1-22.
- 6. , *Multiplicative ideal theory on hereditary order,* ibid, **14** (1963), 83-106.
- 7. *Hereditary orders in generalized quaternions, ibid, 14 (1963), 71-81.*
- 8. H. Hijikata, *Maximal compact subgroups in p-adic classical groups,* Sugaku no Ayumi (in Japanese), 10 (1963), 66-67.
- 9. *S.* Williamson, *Crossed products over tamely ramijied extensions,* to appear in Nagoya *].* Math., 1963.