HEREDITARY ORDERS WHICH ARE DUAL

Manabu HARADA

(Received December 10, 1963)

Let R be a Dedekind domain and Σ a central simple K-algebra, where K is the quotient field of R.

M. Auslander and O. Goldman have considered maximal orders in Σ from point of view of homological method in [1] and introduced the notion of hereditary orders in Σ . Recently, A. Brumer, H. Hijikata, S. Williamson and the author have studies structures and applications of hereditary orders in [2], [2'], [8], [9], [4], [5], [6] and [7].

In this paper we shall give some relations between Brumer's work [2], [2'] and the author's [4], [5] and [6] by the method mentioned in [3].

We shall call briefly a hereditary order an h-order.

Let Δ be a division K-algebra and $\Sigma = \Delta_n$, $\Sigma' = \Delta_m$. Then there exists a left Σ and right Σ' module V such that $\Sigma = \operatorname{Hom}_{\Sigma'}^r(V, V)$ and $\Sigma' = \operatorname{Hom}_{\Sigma}^r(V, V)$. Let E be a sub R-module of V such that EK = V, then we call E an R-lattice (in V). If there exists an R-lattice E which is $\Lambda - \Lambda'$ module for orders Λ , Λ' in Σ , Σ' respectively, we call Λ , Λ' are dual with respect to E.

We shall show that if *h*-orders Λ and Λ' are dual then there exists a unique one-to-one correspondence between orders Γ and Γ' containing Λ and Λ' respectively, which are dual with respect to special lattice (Theorem 1). Next, we show a relation between *R*-lattices *E* which is Λ' -module and right ideals of Λ (Theorem 2), which gives a bridge between [2] and [5], and we give an isomorphism of normal two-sided ideals¹⁾ of Λ to those of Λ' through *E* as a corollary. In Theorem 3, we shall show that Λ and Λ' are dual if and only if they belong to the same block²⁾. Finally we give an isomorphism of the groupoid³⁾ of twosided ideals of Λ to the groupoid of those of Λ' through *E* (Theorem 4).

Let Λ , Λ' be dual with Λ - Λ' module E which is an R-lattice. If

¹⁾ See [6], §1.

²⁾ See [7], §3.

³⁾ See [4], §6.

Λ is an *h*-order, then *E* is Λ-projective by [4], Lemma 3.6 and $\tau_{\Lambda'}(E)^{4} = \Lambda'$ by [1], Proposition A.3. Furthermore, by [2'], Appendix Theorem 5 or [6], Theorem 1.1 we know that Λ' is an *h*-order in Σ' .

LEMMA 1. Let Λ' be an order in Σ' and E a torsion-free finitely generated R-module and right Λ' -module such that $\tau_{\Lambda'}(E) = \Lambda'$. Let \mathfrak{M} be a two-sided ideal in Λ' and Γ' be the right order of \mathfrak{M} in Σ' . If $\Gamma'\mathfrak{M} =$ $\Gamma', \tau_{\Gamma'}(E\mathfrak{M}) = \Gamma'$.

Proof. By the assumption and [4], Lemma 1.2 we have an exact sequence $0 \to \operatorname{Hom}_{\Lambda'}^{r}(E\mathfrak{M}, \Lambda') \xrightarrow{\psi} \operatorname{Hom}_{\Lambda'}^{r}(E\mathfrak{M}, \Gamma') = \operatorname{Hom}_{\Gamma'}^{r}(E\mathfrak{M}, \Gamma')$. Furthermore, from an exact sequence $0 \to E\mathfrak{M} \to E \to E/E\mathfrak{M} \to 0$ we obtain the monomorphism $\varphi: \operatorname{Hom}_{\Lambda'}(E, \Lambda') \to \operatorname{Hom}_{\Lambda'}(E\mathfrak{M}, \Lambda')$. Since $\tau_{\Lambda'}(E) = \Lambda', 1 = \Sigma f_i(e_i), f_i \in \operatorname{Hom}_{\Lambda'}^{r}(E, \Lambda')$ and $e_i \in E$. Hence $m = \Sigma f_i(e_im)$ for any $m \in \mathfrak{M}$. Since $\psi \varphi f_i \in \operatorname{Hom}_{\Gamma'}^{r}(E\mathfrak{M}, \Gamma')$ and $\Sigma \psi \varphi f_i(e_im) = m, \tau_{\Gamma'}(E\mathfrak{M}) \geq \mathfrak{M}$. Hence $\tau_{\Gamma'}(E\mathfrak{M}) \geq \Gamma'\mathfrak{M}\Gamma' = \Gamma'$.

LEMMA 2. Let $\Lambda_2 \supset \Lambda_1 \supset \Lambda$ be a tower of h-orders in Σ . Then $C_{\Lambda}(\Lambda_2) = C_{\Lambda_1}(\Lambda_2)C_{\Lambda}(\Lambda_1)$, where $C_{\Lambda}(\Lambda_i) = \{x \mid \in \Sigma, \Lambda_i x \leq \Lambda\}$.

Proof. It is clear that $C_{\Lambda}(\Lambda_2) \supseteq C_{\Lambda_1}(\Lambda_2) C_{\Lambda}(\Lambda_1)$. We denote $C_{\Lambda}(\Lambda_2)$, $C_{\Lambda_1}(\Lambda_2)$, $C_{\Lambda}(\Lambda_1)$ by \mathfrak{C} , \mathfrak{C}_2 , \mathfrak{C}_1 , respectively. Let $\mathfrak{D} = \mathfrak{C}_2 \mathfrak{C}_1$. Then $\mathfrak{D}^2 = \mathfrak{C}_2 \mathfrak{C}_1 \mathfrak{C}_2 \mathfrak{C}_1 = \mathfrak{C}_2 \mathfrak{C}_1 \Lambda_1 \mathfrak{C}_2 \mathfrak{C}_1 = \mathfrak{C}_2 \mathfrak{C}_1 \mathfrak{C}_2 \mathfrak{C}_1 = \mathfrak{C}_2 \mathfrak{C}_1 \Lambda_1 \mathfrak{C}_2 \mathfrak{C}_1 = \mathfrak{C}_2 \mathfrak{C}_1 \mathfrak{C}_2 \mathfrak{C}_1 \mathfrak{C}_2 \mathfrak{C}_1 = \mathfrak{C}_2 \mathfrak{C}_1 \mathfrak{C}_2 \mathfrak{C}_1 \mathfrak{C}_2 \mathfrak{C}_1 = \mathfrak{C}_2 \mathfrak{C}_1 \mathfrak{C}_2 \mathfrak{C}_2 \mathfrak{C}_1 \mathfrak{C}_2 \mathfrak{C}_2 \mathfrak{C}_1 \mathfrak{C}_2 \mathfrak{C}_1 \mathfrak{C}_2 \mathfrak{C}_2 \mathfrak{C}_2 \mathfrak{C}_2 \mathfrak{C}_2 \mathfrak{C}_1 \mathfrak{C}_2 \mathfrak{C}$

LEMMA 3. Let Λ and Λ' be h-orders in Σ and Σ' which are dual with E. Let \mathfrak{A} be a right Λ -ideal in Σ . Then $\mathfrak{A} = \operatorname{Hom}_{\Lambda'}^{r}(E, \mathfrak{A}E)$.

Proof. Since \mathfrak{A} is Λ -projective, $\operatorname{Hom}_{\Lambda'}^{r}(E, \mathfrak{A}E) = \operatorname{Hom}_{\Lambda'}^{r}(E, \mathfrak{A} \bigotimes_{\Lambda} E)$. Since E is Λ' -projective, $\operatorname{Hom}_{\Lambda'}^{r}(E, \mathfrak{A} \bigotimes_{\Lambda} E) = \mathfrak{A} \bigotimes_{\Lambda} \operatorname{Hom}_{\Lambda'}^{r}(E, E) = \mathfrak{A}$ by setting $(a \otimes f) \ e = a \otimes f(e), \ a \in \mathfrak{A}$ and $f \in \operatorname{Hom}_{\Lambda'}^{r}(E, E)$.

THEOREM 1. Let Λ and Λ' be h-orders in Σ and Σ' which are dual with an R-lattice E. Let Γ be an order containing Λ . Then there exists a unique order Γ' containing Λ' such that $\mathbb{C}E = E\mathfrak{D}'$ and Γ and Γ' are dual with respect to $\mathbb{C}E$, where $\mathbb{C} = C_{\Lambda}(\Gamma)$ and $\mathfrak{D} = D_{\Lambda'}(\Gamma') = \{x \mid \in \Gamma', x\Gamma' \subseteq \Lambda'\}$.

Proof. Let \mathfrak{M} be a maximal two-sided ideal in Λ . Since E is a

108

⁴⁾ See [1], Appendix.

finitely generated Λ -projective, we have an exact sequence $0 \rightarrow \varphi^{-1}(0) \rightarrow \varphi^{-1}(0)$ $\operatorname{Hom}^{i}_{\Lambda}(E, E) \xrightarrow{\varphi} \operatorname{Hom}^{i}_{\Lambda/\mathfrak{M}}(E/\mathfrak{M} E, E/\mathfrak{M} E) \rightarrow 0. \quad \operatorname{Since} \operatorname{Hom}_{\Lambda/\mathfrak{M}}(E/\mathfrak{M} E, E/\mathfrak{M} E)$ is a simple ring, $\varphi^{-1}(0)$ is a maximal two-sided ideal in $\Lambda' = \operatorname{Hom}_{\Lambda}^{i}(E, E)$ and $E\varphi^{-1}(0) \subseteq \mathfrak{M}E$. Similarly we obtain $E\varphi^{-1}(0) \subseteq \mathfrak{P}E$ for some maximal two-sided ideal \mathfrak{P} in Λ . If $\mathfrak{M} \neq \mathfrak{P}, \Lambda = \mathfrak{P} + \mathfrak{M}$. Hence $E = \mathfrak{M}E + \mathfrak{P}E = \mathfrak{M}E$, which implies $\mathfrak{M} = \Lambda$ by Lemma 3. Hence, $\mathfrak{M} E = E \varphi^{-1}(0)$. First we assume that Γ is an order containing Λ such that there are no orders between Λ and Γ , then $\Lambda_q = \Gamma_q$ for any prime ideal q expect one prime *p* by [4], §7. Let $\mathfrak{C} = C_{\Lambda}(\Gamma)$, then $\Gamma \mathfrak{C} \Gamma = \Gamma$ by [4], Proposition 3.1. Hence $\tau_{\Gamma}(\mathbb{C}E) = \Gamma$ by Lemma 1. Therefore, $\operatorname{Hom}^{l}_{\Gamma}(\mathbb{C}E, \mathbb{C}E) = \Gamma'$ and Γ are dual with respect to $\mathbb{C}E$. Furthermore, Γ' is an order containing Λ' such that there are no orders between Γ' and Λ' by the above remark. It is clear that © is a maximal two-sided ideal by [5], Lemma 2.3. Hence, $\mathfrak{C}E = E\mathfrak{D}'$ for a maximal two-sided ideal \mathfrak{D}' in Λ' . Since, $\Gamma' \supseteq \operatorname{Hom}^*_{\Lambda'}(\mathfrak{D}')$ $\mathfrak{D}' \supseteq \Lambda', \Gamma' = \operatorname{Hom}_{\Lambda'}(\mathfrak{D}', \mathfrak{D}').$ \mathfrak{D}' is uniquely determined by Lemma 3. We assume the theorem is true for orders contained in Γ . There exists $\Lambda_{0}(\supset \Lambda)$ contained in Γ such that there are no orders between Γ and Λ_{0} by [4], Theorem 7.2. By the assumption there exists an order such that Λ_0 and Λ_0' are dual with respect to $\mathfrak{C}_{\Lambda}(\Lambda_0)E = E\mathfrak{D}'_{\Lambda'}(\Lambda_0')$. Hence there exists an order $\Gamma' \ge \Lambda_0'$ such that Γ and Γ' are dual with respect to $C_{\Gamma_0}(\Gamma)C_{\Lambda}(\Lambda_0)E = ED'_{\Lambda'}(\Lambda'_0)D'_{\Lambda_0'}(\Gamma')$. Hence $C_{\Lambda}(\Gamma)E = ED'_{\Lambda'}(\Gamma')$ by Lemma 2, Γ' is uniquely determined by Lemma 3.

COROLLARY 1. Let Λ , Λ' and E be as above. Then every chain of h-orders containing Λ corresponds uniquely to the chain of h-orders containing Λ' in Σ' .

THEOREM 2. Let Λ and Λ' be h-orders in Σ and Σ' which are dual with respect to E. Then the set of E of R-lattic in V which is a Λ' module corresponds to the set R of right Λ -ideal in Σ as follows:1). For $E' \in E$, $\mathfrak{A} \in R$, $E' = \mathfrak{A}E$, $\mathfrak{A} = \operatorname{Hom}_{\Lambda}^{r}(E, E')$. This correspondence preserves the inclusion relation. 2) The left order $\Lambda'(\mathfrak{A})$ of $\mathfrak{A} = \operatorname{Hom}_{\Lambda'}^{r}(E', E')$. 3) The right order $\Lambda^{r}(\mathfrak{A})$ of $\mathfrak{A} = \Lambda$ (\mathfrak{A} is a normal right ideal) if and only if $\tau_{\Lambda'}(E') = \Lambda'$. 4) The number of ideal classes of normal right Λ -ideals is equal to the number of Λ' -isomorphic classes of the R-lattice E' in Esuch that $\tau_{\Lambda'}(E') = \Lambda'$.

Proof. 1) Let E' be in E. Then $\mathfrak{A} = \operatorname{Hom}_{\Lambda'}^{r}(E, E')$ is a right Λ ideal in Σ , and $\mathfrak{A} E = \mathfrak{A} \bigotimes_{\Lambda} E = \operatorname{Hom}_{\Lambda'}^{r}(E, E') \bigotimes_{\Lambda} E = \operatorname{Hom}_{\Lambda'}^{r}(\operatorname{Hom}_{\Gamma}^{r}(E, E), E') = E'$. Conversely, if $\mathfrak{A} \in R$, then $\mathfrak{A} E \in E$, and $\operatorname{Hom}_{\Lambda}^{r}(E, \mathfrak{A} E) = \mathfrak{A}$ by Lemma 3. 2) Let $\mathfrak{A}' = \operatorname{Hom}_{\Lambda'}^{r}(E', E)$. Then $\mathfrak{A}\mathfrak{A}' = \operatorname{Hom}_{\Lambda'}^{r}(E, E') \underset{\Lambda}{\otimes} \operatorname{Hom}_{\Lambda'}^{r}(E', E) = \operatorname{Hom}_{\Lambda'}^{r}(Hom_{\Lambda}^{l}(Hom_{\Lambda'}^{r}(E', E), E), E') = \operatorname{Hom}_{\Lambda'}^{r}(E' \underset{\Lambda'}{\otimes} \operatorname{Hom}_{\Lambda}^{l}(E, E), E') = \operatorname{Hom}_{\Lambda'}^{r}(E', E')$. Therefore, $\Lambda'(\mathfrak{A}) \underset{\Lambda'}{\subseteq} \operatorname{Hom}_{\Lambda'}^{r}(E', E')$. However, it is clear that $\operatorname{Hom}_{\Lambda}^{r}(E', E') \underset{\Lambda'}{\leq} \Lambda'(\mathfrak{A})$. 3) If $\Lambda = \Lambda^{r}(\mathfrak{A})$, then \mathfrak{A} is inversible by [4], §2. Hence $\mathfrak{A}Ex \underset{\Lambda'}{\subseteq} \mathfrak{A}E$ implies $Ex \underset{E}{\subseteq} E$. Hence $\operatorname{Hom}_{\Lambda}^{l}(\mathfrak{A}E, \mathfrak{A}E) = \Lambda'$. Therefore, $\tau_{\Lambda'}(\mathfrak{A}E) = \Lambda'$. Conversely, if $\tau_{\Lambda'}(E') = \Lambda'$, then we can prove similarly as above that $\mathfrak{A}'\mathfrak{A} = \operatorname{Hom}_{\Lambda'}^{r}(E, E) = \Lambda$. Hence \mathfrak{A} is an inversible Λ -ideal and $\Lambda^{r}(\mathfrak{A}) = \Lambda$. 4) Let \mathfrak{A} , \mathfrak{A}' be normal right Λ -ideals in Σ . If $\lambda \mathfrak{A} = \mathfrak{A}'$ for some λ in Σ , then $\mathfrak{A}E \approx \mathfrak{A}'E$ as a right Λ' -module. Conversely if $\mathfrak{A}E$ is isomorphic by f, then $f \in \operatorname{Hom}_{\Lambda'}^{r}(\mathfrak{A}E, \mathfrak{A}'E) = \mathfrak{F}$, $f^{-1} \in \operatorname{Hom}_{\Lambda}^{r}(\mathfrak{A}'E, \mathfrak{A}E) = \mathfrak{F}^{-1}$, and $\mathfrak{A}'E = f\mathfrak{A}E$ by 1). Since $f\Gamma = f\mathfrak{F}^{-1}\mathfrak{F} \cong \mathfrak{F} \mathfrak{A}F$. Hence $\mathfrak{A}' = f\mathfrak{A}$.

COROLLARY 2. (cf. [3], Theorem 4, [4], Theorem 7.6). Let Λ and Λ' be h-orders as in Theorem 2. Then the group G of normal two-sided ideals \mathfrak{A} of Λ and the group of G' of those \mathfrak{A}' of Λ' are isomorphic by the correspondence $\mathfrak{A}E = E\mathfrak{A}'$. Hence they are abelian groups.

It is clear that $\mathfrak{ABE} = \mathfrak{AEB'} = E\mathfrak{A'B'} = E\mathfrak{B'A'}$. Hence $\mathfrak{A'B'} = \mathfrak{B'A'}$.

COROLLARY 3. Let R be local and Λ and Λ' be as above. Λ is principal⁵⁾ if and only if any two R-lattice E, E' in V which are Λ - Λ' module with $\tau_{\Lambda'}(E) = \tau_{\Lambda'}(E') = \Lambda'$ are isomorphic as a Λ' -module.

It is clear from the theorem and [4], Corollary 4.5.

Let R be local and \mathfrak{N} , \mathfrak{N}' the radicals of Λ and Λ' . We assume that $\Lambda/\mathfrak{N} = \Delta'_{m_1} \oplus \Delta'_{m_2} \oplus \cdots \oplus \Delta'_{m_r}$ and \mathfrak{N} is a right ideal with $\tau_{\Lambda}(\mathfrak{N}) = \Lambda$ in Λ which contains \mathfrak{N} . Let Λ and Λ' be dual with E. Then $\tau_{\Lambda'}(\mathfrak{N}E) = \Lambda'$ and $\mathfrak{N}E \supseteq E\mathfrak{N}'$. Let $F = \mathfrak{R}E$. Since E is Λ' -projective, $0 \to \mathfrak{N} = \operatorname{Hom}_{\Lambda}^{r}(E, F) \to \Lambda = \operatorname{Hom}_{\Lambda}^{r}(E, E) \to \operatorname{Hom}_{\Lambda'}^{r}(E, E/F) = \operatorname{Hom}_{\Lambda'/\mathfrak{N}'}^{r}(E/E\mathfrak{N}, E/F) \to 0$ is exact. Similarly we know $\Lambda/\mathfrak{N} \approx \operatorname{Hom}_{\Lambda'/\mathfrak{N}'}^{r}(E/E\mathfrak{N}', E/E\mathfrak{N}')$. Hence $E/E\mathfrak{N}' \approx \mathfrak{r}_{1}^{m_{1}} \oplus \mathfrak{r}_{2}^{\prime m_{2}} \oplus \cdots \oplus \mathfrak{r}_{r}^{\prime m_{r}}$, where the $\mathfrak{r}_{i}^{\prime s}$ are the set of simple components of Λ'/\mathfrak{N}' . On the other hand $E/E\mathfrak{N}' = E/F \oplus F/E\mathfrak{N}'$ and we assume $E/F \approx \mathfrak{r}_{1}^{\epsilon_{1}} \oplus \mathfrak{r}_{2}^{\epsilon_{2}} \oplus \cdots \oplus \mathfrak{r}_{r}^{r_{r}}$. Then $\mathfrak{R}/\mathfrak{N} \approx \mathfrak{r}_{r}^{m_{1}-t_{1}} \oplus \cdots \oplus \mathfrak{r}_{r}^{m_{r}-t_{r}}$, where the $\mathfrak{r}_{i}^{\prime s}$ are the set of simple right ideals of Λ/\mathfrak{N} . Especially, if we take $\mathfrak{R}/\mathfrak{N} = \Delta'_{m_{1}} \oplus \cdots \oplus \Delta'_{m_{i-1}} \oplus \mathfrak{r}_{i}^{\ast i} \oplus \Delta'_{m_{i+1}} \oplus \cdots \oplus \Delta'_{m_{r}}$, then $E/\mathfrak{N}E$ is a direct sum of one simple component of Λ/\mathfrak{N} .

Thus, we have from [5], Theorem 5.3 the following corollary, which is a generalization of [2].

COROLLARY 4. Let R be local and h-orders Λ , Λ' be dual with E.

⁵⁾ See [5], §2.

Then every h-order contained in Λ is uniquely written as $\bigcap_{i,j=1}^{r,s(i)} \Lambda_{ij}$, where Λ_{ij} , Λ' are dual with F_{ij} which satisfies the conditions for all i: 1) $F_{i0} = E \supset F_{i1} \supset \cdots \supset F_{is(i)} \supset E \mathfrak{N}'$ and 2) $E/F_{is(i)}$ is a direct sum of one simple component of Λ'/\mathfrak{N}' .

Furthermore, from [6], Theorem 2.5 we have

COROLLARY 5. Let R, Λ and Λ' be as above and E' be a sub R-lattice in E such that $\tau_{\Lambda'}(E) = \Lambda'$. Then there exists a sub R-lattice E* between E and E' such that $E^* \approx E'$ as a right Λ' -module and there exists a composition series $E \supset E_1 \supset E_2 \supset \cdots \supset E_m = E^*$ and $\tau_{\Lambda'}(E_i) = \Lambda'$ for all i.

REMARK. Brumer considers in [2] the (Λ, Λ'_0) -chain where Λ'_0 is a maximal order in $\Delta = \Sigma'$ and Λ is an *h*-order in Δ_n . From the above observation we know that it is nothing but studying the inclusion relations of distance ideals⁶ between maximal orders containing Λ . Since Λ'_0 is maximal, r=1 in Corollary 4, and $\{F_{1j}\}_{j=1}^{s(1)}$ is the set of distance ideals of $\operatorname{Hom}_{\Lambda_0'}^r(E, E) = \Omega$ to a maximal order containing Λ . Hence the set of *R*-lattice in *V* which is Λ - Λ'_0 module is linearly ordered with period s(1), (cf. [2]).

Thus, we shall insert here one proposition related to distance ideals.

LEMMA 4. Let R be local and $\Omega \supset \Lambda$ be h-orders of rank r_1 and r_2^{γ} . Let $\Omega_1 = \Omega, \Omega_2, \dots, \Omega_t, \Omega_{t+1} = \Omega_1$ be a sequence of h-orders containing Λ such that $\Omega_{i+1} = \Lambda^r(\mathfrak{C}_i), \mathfrak{C}_i = C_{\Lambda}(\Omega_i)$. Then $\mathfrak{C}_1 \cdots \mathfrak{C}_t = \mathfrak{N}^k$ for $k \geqslant t - r_1$, where \mathfrak{R} is the radical of Ω . Furthermore, $k = r_2 - r_1$ if and only if $t = r_2$.

Proof. Let $\{\mathfrak{M}_1, \mathfrak{M}_2, \dots, \mathfrak{M}_{r_2}\}$ be the normal sequence⁸⁾ of Λ and $\Lambda/\mathfrak{M}_i = \Delta'_{m_i}$. Then we obtain $\mathfrak{C}_{i+1} = \mathfrak{N}\mathfrak{C}_i\mathfrak{R}^{-1}$ by [5], Theorem 5.1. We shall use the same notations as in [5], §2. $S_i = \{\mathfrak{M}_{t_i}, \mathfrak{M}_{t_i+1}, \dots, \mathfrak{M}_{t_i+\rho_i-1}\}$ and $t_1 = 1, t_i + \rho_i + 1 = t_{i+1}$, and $t_{r_1} + \rho_{r_1} + 1 = t_1$. We shall assume $\mathfrak{C}_1 = I(S_1, S_2, \dots, S_{r_1})$. Then we know the composition length $l(\Omega_1/\mathfrak{C}_1)$ of Ω_1/\mathfrak{C}_1 is equal to $\sum_{i=1}^{r_1} \sum_{k=0}^{p_i-1} m_{t_i+k} = n - \sum_{i=1}^{r_1} m_{t_i+\rho_i}$ by [5], Theorem 2.3 and the same argument as the remark before Corollary 4, where $n = \sum_i m_i$. Since $\mathfrak{C}_i = \mathfrak{N}\mathfrak{C}_{i-1}\mathfrak{N}^{-1}$, we obtain similarly $l(\Omega/\mathfrak{C}_i) = n - \sum_{j=1}^{r_1} m_{t_j+\rho_j-i+1}$. Therefore, $l(\Omega/\mathfrak{C}_1 - \mathfrak{C}_1) = \mathfrak{N}\mathfrak{C}_1 = \mathfrak{N}\mathfrak{C}_1 = \mathfrak{N}\mathfrak{C}_1 = \mathfrak{N}\mathfrak{C}_2 - \mathfrak{C}_i$ is a normal two-sided ideal in Ω_1 by [4], §6, $\mathfrak{C}_1 - \mathfrak{C}_1 = \mathfrak{N}\mathfrak{k}$. Furthermore, since $l(\Omega_1/\mathfrak{N}) = n$ by [6], Proposition

⁶⁾ See [6], §2.

⁷⁾ See [4], §3.

⁸⁾ See [5], §2.

2.6, $nk \ge (t-r_1)n$. Hence $k \ge t-r_1$. It is clear that $\sum_{i=1}^{t} \sum_{j=1}^{r_1} m_{t_j+\rho_j-i+1} = r_1 n$ if and only if $t=r_2$.

PROPOSITION 1°). Let R be local and Λ an h-order of rank r. We assume that Ω is either a maximal order or a minimal order¹⁰⁾ containing Λ . Then the sequence in Lemma 4 gives the complete set of maximal or minimal orders containing Λ . $\Omega \supset \Re^{2-r}\mathbb{C}_1 \cdots \mathbb{C}_{r-1} \supset \Re^{3-r}\mathbb{C}_1 \cdots \mathbb{C}_{r-2} \supset \cdots$ $\supset \Re^{-1}\mathbb{C}_1\mathbb{C}_2 \supset \mathbb{C}_1$ is the set of distance ideals of Ω to Ω_i if Ω is maximal, and $\Omega \supset \mathbb{C}_1 \supset \mathbb{C}_1\mathbb{C}_2 \supset \cdots \supset \mathbb{C}_1\mathbb{C}_2 \cdots \mathbb{C}_{r-1}$ is the set of distance ideals of Ω to Ω_i if Ω is minimal over Λ , where \Re is the radical of Ω .

Proof. The first part is clear from [5], Theorem 5.1 and [4], Theorem 1.7. If Ω is minimal, then $\mathbb{S}_1 \cdots \mathbb{S}_r = \Re$ by Lemma 4. $\mathbb{S}_1 \cdots \mathbb{S}_{t-1}$ is a normal $\Omega \cdot \Omega_0$ ideal which is not contained in \Re . Hence $\mathbb{S}_1 \cdots \mathbb{S}_{t-1}$ is the distance ideal of Ω to Ω_t . If Ω is maximal then $l(\Omega_i/\mathbb{S}_i) = n - m_{r-(i-2)}$. Hence $l(\Omega/\mathbb{S}_1 \cdots \mathbb{S}_t) = tn - \sum_{i=1}^t m_{r-(i-2)} = (t-1)n + \sum_{i=2}^{r-(t-1)} m_i$. Let \Re_{t-1} be the distance ideal of Ω to Ω_{t-1} . Then $\mathbb{S}_1 \cdots \mathbb{S}_t = \Re^s \Re_{t-1}$ and $l(\Omega/\Re^s \Re_{i-1}) = ns + \alpha = (t-1)n + \sum_{i=2}^{r-(t-1)} m_i$ where $\alpha = l(\Omega - \Re_{t+1})$. Hence, $|n(t-1-s)| = |\sum_{i=2}^{r-(t-1)} m_i - \alpha| < n$, because $\alpha < n$ since $\Re_{t+1} \cong \Re$. Therefore, s = t-1 and $\Re_{t+1} = \Re^{-(t-1)} \mathbb{S}_1 \cdots \mathbb{S}_t$. We have proved the proposition from Remark.

COROLLARY 6. Let R be local and Λ , Λ' be h-orders in Σ and Σ' . We assume that the rank r of Λ is larger than that of Λ' by one, then the set of R-lattices E in V such that E is a Λ - Λ' module with $\tau_{\Lambda'}(E) =$ Λ' is linearly ordered with period r.

LEMMA 5. Let Λ and Λ' be h-orders in Σ and Σ' which are dual with E. Orders Γ and Γ' are dual then Γ_p and Γ'_p are of the same rank for all p. Conversely, if furthermore, the rank of Γ_p and Γ'_p is equal to or less than rank of Λ_p and Λ'_p for all p, then Γ and Γ' are dual.

Proof. If Γ and Γ' are dual with respect to E, then so are Γ_p and Γ'_p with E_p for any p. Hence Γ_p and Γ'_p are of the same rank by [1], Theorem A.5. Conversely, we assume that Γ_p and Γ'_p are of the same rank. We obtain an order Γ'' containing Λ' such that Γ and Γ'' are dual with E' by Theorem 1. Hence Γ''_p and Γ'_p are of the same rank for any p. Therefore, there exists by [5], Theorem 6.1 a normal $\Gamma''-\Gamma'$ ideal \mathfrak{C}' . It is clear that Γ and Γ' are dual with $E'\mathfrak{C}'$.

⁹⁾ This proposition was pointed out to the author by Mr. Takeuchi.

¹⁰⁾ See [4], §3.

THEOREM 3. Let Σ and Σ' be the central simple K-algebras and let Λ and Λ' be h-orders in Σ and Σ' . Λ and Λ' are dual if and only if Λ_p and Λ'_p are of the same rank for all p.

Proof. We assume $\Sigma = \Delta_n$ and $\Sigma' = \Delta_m$, $n \ge m$. Let Λ' be an *h*-order in Σ' which belongs to $\Phi = \{p_1, \dots, p_r\}$ -block. Then there exists an *h*order Λ'_0 in Δ such that the Λ'_{0p_i} is a minimal *h*-order over R_{p_i} in Δ for $p_i \in \Phi$, and Λ'_q is a maximal order over R_q for $q \notin \Phi$ by [5], Theorem 1.2. Furthermore, we can find the two-sided ideal \mathfrak{A}'_0 in Λ'_0 such that \mathfrak{A}'_{0p_i} is the radical of Λ'_{0p_i} for $p_i \in \Phi$ and $\mathfrak{A}'_{0q} = \Lambda'_{0q}$ for $q \notin \Phi$, cf. [5], Lemma 1.3. Let

$$\Lambda_0^* = \begin{pmatrix} \Lambda_0' & \mathfrak{A}_0' & \mathfrak{A}_0' & \cdots & \cdots & \mathfrak{A}_0' \\ \Lambda_0' & \Lambda_0' & \mathfrak{A}_0' & \mathfrak{A}_0' & \cdots & \mathfrak{A}_0' \\ \Lambda_0' & \Lambda_0' & \Lambda_0' & \cdots & \cdots & \vdots \\ \vdots & & & \vdots \\ \vdots & & & & \vdots \\ \cdots & \cdots & \Lambda_0' \end{pmatrix} \end{pmatrix} m.$$

Then Λ_0^* is an *h*-order in Σ' , such that $\Lambda_{0p_i}^*$ is a minimal order for $p_i \in \Phi$ and Λ_{0q}^* is maximal for $q \notin \Phi$ by [5], Lemma 1.2. Let $E = I_1 \oplus I_2 \cdots \oplus I_m$, where

$$I_{i} = egin{pmatrix} \mathfrak{A}'_{o} \ \mathfrak{A}'_{o} \ \mathfrak{A}'_{o} \ dots \end{pmatrix} i - 1 \ \mathfrak{A}'_{o} \ \mathfrak{A}'_{o} \ dots \end{pmatrix} n.$$

We can define naturally the operation of elements of Λ_0^* from the right side, namely first we consider the I_j as a right Λ'_0 -module and $(x_{ij})e_{1m} = (x_{ij}) \in I_m$ if i=1 and =0 if $i \neq 1$, where the e'_{ij} 's are matrix units in Σ' . Let

$$f\begin{pmatrix}a_{i1}\\a_{i2}\\a_{ii}\\b_{i\ i+1}\\b_{in}\end{pmatrix} = \begin{pmatrix}i\\a_{i1}\\\vdots\\a_{i\ i-1}\\\vdots\\0\\a_{ii} \\ 0\\\vdots\\b_{in} \\ \end{pmatrix} \in \Lambda_0^* \text{ for } \begin{pmatrix}a_{ij}\\b_{ik}\end{pmatrix} \in I_i,$$

where $a_{ij} \in \mathfrak{A}'_0$ $b_{ij} \in \Lambda'_0$. Then it is clear that $f \in \operatorname{Hom}_{\Lambda_0^*}^r(E, \Lambda_0^*)$ and $f(E) = \Lambda_0^*$. Therefore $\tau_{\Lambda_0^*}(E) = \Lambda_0^*$. Since E is an R-lattice in V, $\operatorname{Hom}_{\Lambda_0^*}^r(E, E) = \Lambda_0(\subset \Sigma)$ and Λ_0^* are dual. Hence Λ'_{0p} and Λ_{0p}^* are of the same rank

for all p. Let Γ , Γ' be *h*-orders in Σ and Σ' such that Γ_p and Γ'_p are of the same rank for all p. We assume Γ and Γ' belong to $\Phi = \{p_1, \dots, p_r\}$. Since $\Lambda^*_{0p_i}$ is minimal, the rank of Γ'_{p_i} is equal to or larger than that of Λ^*_{0p} for all *i*. Hence, Γ and Γ' are dual by Lemma 5.

COROLLARY 7. Let $\Sigma = \Delta_n$ and $\Sigma' = \Delta_m$. If $n \gg m$, for every h-order Γ' in Σ' there exists an h-order Γ in Σ such that Γ and Γ' are dual.

COROLLARY 8. The relation of duality is an equivalent relation.

We shall generalize Corollary 2 by using the method of [1], Theorem A. 5.

THEOREM 4. Let Λ and Λ' be h-orders in Σ and Σ' which are dual with respect to E. Then the groupoid G of two-sided Λ -ideals is isomorphic to the groupoid G' of two-sided Λ' -ideals and the units Γ of G correspond to the units $\operatorname{Hom}_{\Lambda}^{\prime}(\mathfrak{D} E, \mathfrak{D} E)$ of G', where $\mathfrak{D}' = D_{\Lambda}(\Gamma)$.

Proof. Let \mathfrak{A}' be a two-sided ideal of Λ' . Then

$$F(\mathfrak{A}') = E \bigotimes_{\Lambda'} \mathfrak{A}' \bigotimes_{\Lambda'} \operatorname{Hom}^{i}_{\Lambda}(E, \Lambda)$$

is a two-sided ideal of Λ since $r\mathfrak{A}' \leq \Lambda'$ for $r \in R$ and $0 \to rF(\mathfrak{A}') \to E \bigotimes_{\Lambda'} \Lambda'$ $\bigotimes_{\Lambda'} \operatorname{Hom}_{\Lambda}^{\iota}(E, \Lambda) = E \bigotimes_{\Lambda'} \operatorname{Hom}_{\Lambda}^{\iota}(E, \Lambda) \approx \tau_{\Lambda}(E) = \Lambda$. $F(\mathfrak{A}')F(\mathfrak{B}') = F(\mathfrak{A}') \bigotimes_{\Lambda} F(\mathfrak{B}') = E \bigotimes_{\Lambda'} \mathfrak{A}' \bigotimes_{\Lambda'} \operatorname{Hom}_{\Lambda}(E, \Lambda) \bigotimes_{\Lambda} E \bigotimes_{\Lambda'} \mathfrak{B}' \bigotimes_{\Lambda'} \operatorname{Hom}_{\Lambda}^{\iota}(E, \Lambda) = E \bigotimes_{\Lambda'} \mathfrak{A}' \bigotimes_{\Lambda'} \mathfrak{B}' \bigotimes_{\Lambda'} \operatorname{Hom}_{\Lambda}^{\iota}(E, \Lambda) = F(\mathfrak{A}'\mathfrak{B}')$ by [1], Proposition A. 1. Let \mathfrak{A} be a two-sided ideal of Λ . Then

$$G(\mathfrak{A}) = \operatorname{Hom}^{\iota}_{\Lambda}(E, \mathfrak{A} \otimes E)$$

is a two-sided ideal of Λ' since if $r\mathfrak{A} \leq \Lambda$, $G(r\mathfrak{A}) \leq \operatorname{Hom}_{\Lambda}^{i}(E, E) = \Lambda'$. Furthermore, $FG(\mathfrak{A}) = E \bigotimes_{\Lambda'} \operatorname{Hom}_{\Lambda}(E, \mathfrak{A} \otimes E) \bigotimes_{\Lambda} \operatorname{Hom}_{\Lambda}(E, \Lambda) = \operatorname{Hom}_{\Lambda}^{i}(\operatorname{Hom}_{\Lambda}^{r}(E, E))$, $\mathfrak{A} \otimes E \bigotimes_{\Lambda'} \operatorname{Hom}_{\Lambda}^{i}(E, \Lambda) = \mathfrak{A} \otimes E \bigotimes_{\Lambda} \operatorname{Hom}_{\Lambda}^{i}(E, \Lambda) = \mathfrak{A}$. $GF(\mathfrak{A}') = \operatorname{Hom}_{\Lambda}^{i}(E, E)$ $\otimes \mathfrak{A}') \bigotimes_{\Lambda'} \operatorname{Hom}_{\Lambda}(E, \Lambda) \bigotimes_{\Lambda} E = \operatorname{Hom}_{\Lambda}(E, E \otimes \mathfrak{A}' \bigotimes_{\Lambda'} \operatorname{Hom}_{\Lambda}(E, E)) = \operatorname{Hom}_{\Lambda}(E, E \bigotimes_{\Lambda'} \mathfrak{A}')$ $= \operatorname{Hom}(E, E) \otimes \mathfrak{A}' = \mathfrak{A}'$ by Lemma 3. Finally, let Γ be an order containing Λ , and $\mathfrak{D} = \mathfrak{D}_{\Lambda}(\Gamma)$. Then $\Gamma = \operatorname{Hom}_{\Lambda}^{i}(\mathfrak{D}, \mathfrak{D})$. $G(\Gamma) = \operatorname{Hom}_{\Lambda}(E, \Gamma \bigotimes_{\Lambda} E) =$ $\operatorname{Hom}_{\Lambda}(E, \operatorname{Hom}_{\Lambda}^{i}(\mathfrak{D}, \mathfrak{D}) \bigotimes_{\Lambda} E) = \operatorname{Hom}_{\Lambda}(E, \operatorname{Hom}_{\Lambda}^{i}(\mathfrak{D}, \mathfrak{D} \bigotimes_{\Lambda} E)) = \operatorname{Hom}_{\Lambda}(\mathfrak{D} \bigotimes_{\Lambda} E, \mathfrak{D} \bigotimes_{\Lambda} E)$

Bibliography

- 1. M. Auslander and O. Goldman, *Maximal orders*, Trans. Amer. Math. Soc., 97 (1960), 1-24.
- 2. A. Brumer, Structure of herediatry orders, Bull. Amer. Math. Soc., 69 (1963),

721-724.

- 2'. —, Structure of herediatry orders, Ph. D. thesis, Princeton Univ. 1963.
- 3. C. Chevalley, Dans Les Algebres de Matrices, Act. Sci. Ind., No. 323, Paris, 1936.
- 4. M. Harada, Hereditary orders, Trans. Amer. Math. Soc., 109 (1963) 273-290.
- 5. ——, Structure of hereditary orders over local rings, J. Math. Osaka City Univ., 14 (1963), 1-22.
- 6. , Multiplicative ideal theory on hereditary order, ibid, 14 (1963), 83-106.
- 7. ———, Hereditary orders in generalized quaternions, ibid, 14 (1963), 71-81.
- 8. H. Hijikata, *Maximal compact subgroups in p-adic classical groups*, Sugaku no Ayumi (in Japanese), **10** (1963), 66-67.
- 9. S. Williamson, Crossed products over tamely ramified extensions, to appear in Nagoya J. Math., 1963.