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Let R be a Dedekind domain and X a central simple K-algebra,
where K is the quotient field of R.

M. Auslander and O. Goldman have considered maximal orders in
3 from point of view of homological method in [1] and introduced the
notion of hereditary orders in =. Recently, A. Brumer, H. Hijikata, S.
Williamson and the author have studies structures and applications of
hereditary orders in [2], [27], [8]1, [9]. [4]1, [5], [6] and [7].

In this paper we shall give some relations between Brumer’s work
[2], [2'] and the author’s [4], [5] and [6] by the method mentioned
in [3].

We shall call briefly a hereditary order an #Z-order.

Let A be a division K-algebra and ==A,, 3'=A,,. Then there exists
a left 3 and right ¥ module V such that Z=Hom%/(V, V) and 3=
Homi(V, V). Let E be a sub R-module of V such that EK=7V, then we
call E an R-lattice (in V). If there exists an R-lattice E which is A-A’
module for orders A, A’ in 3, 3’ respectively, we-call A, A’ are dual with
respect to E.

We shall show that if A-orders A and A’ are dual then there exists
a unique one-to-one correspondence between orders I' and IY containing
A and A’ respectivety, which are dual with respect to special lattice
(Theorem 1). Next, we show a relation between R-lattices E which is
A module and right ideals of A (Theorem 2), which gives a bridge
between [2] and [5], and we give an isomorphism of normal two-sided
ideals® of A to those of A’ through E as a corollary. In Theorem 3,
we shall show that A and A’ are dual if and only if they belong to the
same block®. Finally we give an isomorphism of the groupoid® of two-
sided ideals of A to the groupoid of those of A’ through E (Theorem 4).

Let A, A’ be dual with A-A’ module E which is an R-lattice. If

1) See [61, §1.
2) See [7], $3.
3) See [4], $6.
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A is an k-order, then E is A-projective by [4], Lemma 3.6 and = (E)*=
A’ by [1], Proposition A.3. Furthermore, by [2"], Appendix Theorem
5 or [6], Theorem 1.1 we know that A’ is an A-order in ¥/.

LemMA 1. Let A’ be an order in =/ and E a torsion-free finitely
generated R-module and right A'-module such that «(E)=A'. Let M be
a two-sided ideal in N and T be the right ovder of W in 3. If VM=
I, e (EIM)=1".

Proof. By the assumption and [4], Lemma 1.2 we have an exact
sequence 0 — Hom7/(ER, A) ¥, Hom}(EM, I')=HomMEM, V). Further-
more, from an exact sequence 0—EM —E—-E/EM—0 we obtain the
monomorphism @ : Hom(E, A)—>Hom(EM, A’). Since 7y (E)=A’, 1=
S fde), fi€ HomA\E, ') and ¢;€ E. Hence m=2 f(e;m) for any me M.
Since Yof;€ Homm(EW, I') and Zefilem)=m, vv(EM)DOM. Hence
T EM) DMLY =1". Therefore, m(EM)=1I".

LEmMA 2. Let A, DA, DA be a tower of h-orders in 3. Then Cy(A,)=
Cu(A)CAA,), where Cy(A)={x]| €%, AixTA}.

Proof. Tt is clear that Cy(A;)2C,(A)Cx(A,). We denote C,(A,),
Ca(A), CA(A) by €, €, €, respectiveiy. Let ®=C,€,. Then®=C,C,E,C,=
CLALE =CL =D by [4], Propositions 1.6 and 3.1. It is clear that
Homi(®, D)2Hom(€,, €,)=A,. Furthermore, DA, =C,E A, =C,A,=C,.
Hence A,=Hom,}(€,, €,)2 Hom,(D, D). Therefore, Hom} (D, D)=
Hom’y(€, €), which means ®=€ by [4] Theorem 1.7.

LEmMmA 3. Let A and A be h-orders in 3 and 3 which ave dual with
E. Let N be a right A-ideal in 5. Then N=Hom'y/(E, AE).

Proof. Since 2 is A-projective, Homi/(E, AE) = Hom/(E, ARQE).

A
Since E is A’-projective, Hom/(E, ng\i)E)=%I<§>Hom’;\f(E, E)=%U by setting
(aRf) e=aRf(e¢), aeW and fe€ Homy(E, E).

THEOREM 1. Let A and A’ be h-orvders in 3 and 3/ which are dual
with an R-lattice E. Let ' be an order containing A. Then there exists
a unique ovder 1V containing N such that CSE=EY and I’ and IV are
dual with respect to CE, where €=C\(I') and D=D(I")={x| e, xIVCT
A%},

Proof. Let M be a maximal two-sided ideal in A. Since E is a

4) See [1], Appendix.
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finitely generated A-projective, we have an exact sequence 0—@~(0)—
Homi(E, E)ﬁ Hom} s E/IME, E/ME)—0. Since Hom,y(E/ME, E/IMNE)
is a simple ring, @ *(0) is a maximal two-sided ideal in A’=Homi(E, E)
and Ep~(0)CME. Similarly we obtain Ep~(0)CPBE for some maximal
two-sided ideal Pin A. If M=E=P, A=P+M. Hence E=ME+BE=INE,
which implies M=A by Lemma 3. Hence, ME=E@-0). First we
assume that I' is an order containing A such that there are no orders
between A and T, then A,=T', for any prime ideal ¢ expect one prime
p by [4], 87. Let €=C,(I), then I'€r=T by [4], Proposition 3.1.
Hence 7o(€E)=I' by Lemma 1. Therefore, Homi(CE, €E)=I" and I
are dual with respect to €E. Furthermore, IV is an order containing A’
such that there are no orders between IV and A’ by the above remark.
It is clear that € is a maximal two-sided ideal by [5], Lemma 2.3. Hence,
CE=EY for a maximal two-sided ideal &’ in A’. Since, IV 2Hom’ /Y,
NN/, IV=Hom (Y, ¥). < is uniquely determined by Lemma 3.
We assume the theorem is true for orders contained in I'. There exists
A (DA) contained in I' such that there are no orders between I' and A,
by [4], Theorem 7.2. By the assumption there exists an order such
that A, and A are dual with respect to C,(A)E=EY'\(A/). Hence there
exists an order TV2OA, such that I' and IV are dual with respect to
Cr(INCANA)E=ED"v(A)D /(). Hence CN(IE=ED’v(IV) by Lemma 2,
IV is uniquely determined by Lemma 3.

CoroLLARY 1. Let A, A’ and E be as above. Then every chain of
h-orders containing A corresponds uniquely to the chain of h-orders con-
taining N in 3.

THEOREM 2. Let A and A’ be h-orders in % and 3 which ave dual
with respect to E. Then the set of E of R-lattic in V which is a A’-
module corvesponds to the set R of vight N-ideal in S as follows:1). For
E'eE, We R, E'=UE, A=Hom/\(E, E’). This corvespondence preserves
the inclusion relation. 2) The left order ANN) of A=Hom,/(E’, E’). 3)
The right order A"() of A=A (N is a normal right ideal) if and only
if Ti(E")=N. 4) The number of ideal classes of normal right A-ideals
is equal to the number of A’-isomorphic classes of the R-lattice E’ in E
such that = (E)=N\'.

Proof. 1) Let E’ be in E. Then A =Hom}/E, E’) is a right A-
ideal in =, and %{E=?I§>E=Hom§\/(E, E"®E=Homy(Hom(E, E), E")=
A

E’. Conversely, if A€ R, then AE€ E, and Hom',(E, AE)=2A by Lemma
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3. 2) Let W=Hom}/(E’, E). Then AN =Hom,/(E, E’)%{)Homig(E’, E)=
Hom//(Hom4\(Hom}/(E’, E),E), E’)=HomH/(E’ %Homj\(E, E), E")=Homy
(E’, E’). Therefore, A(Q)SHom}/(E’, E’). However, it is clear that
Hom(E’, ENTA/®N). 3) If A=A"(), then A is inversible by [4], §2.
Hence AEx CAE implies ExC E. Hence Hom(AE, AE)=A’. Therefore,
TvQE)=A’. Conversely, if 7\(E’)=A’, then we can prove similarly as
above that A'A=Hom/(E, E)=A. Hence % is an inversible A-ideal and
A7 )=A. 4) Let %A, A be normal right A-ideals in =. If AA=A" for
some A in 3, then AE~QW'E as a right A’-module. Conversely if UE is
isomorphic by f, then f€ Hom/(UE, WE)=%F, f'€ Hom (A'E, AE)=F ",
and WE=fUE by 1). Since fI'=fF 'Fo ff'F=F> fI', fI'=F, where
I'=Hom}/(NE, AE). Therefore, WE=,AE. Hence W = fA.

CoroLLARY 2. (cf. [3], Theorem 4, [4], Theorem 7.6). Let A and
A’ be h-orders as in Theorem 2. Then the group G of normal two-sided
ideals N of A and the group of G’ of those W of N are isomorphic by
the correspondence WE=EY'. Hence they ave abelian groups.

It is clear that ABE=UYED' =FEA B’ =EB'YW. Hence B =B'Y’.

COROLLARY 3. Let R be local and A and N be as above. A is
principal® if and only if any two R-lattice E, E' in V which are A-A’
module with Ty(E)=7y(E'"Y=NA\" are isomorphic as a AN-module.

It is clear from the theorem and [4], Corollary 4.5.

Let R be local and %, N the radicals of A and A’. We assume that
A/N=A7, DA, D+ DA;, and R is a right ideal with 7,(R)=A in A
which contains . Let A and A’ be dual with E. Then 7, (RE)=A’/
and REDEYW. Let F=RE. Since E is A’-projective, 0—R=Hom’}(FE,
F)—>A=Hom(E, E)—Hom/(E, E/F)=Hom)y/,,(E/EN, E/F)—0 is exact.
Similarly we know A/R~Hom/,yw(E/EW, E/EN). Hence E/EW ~ti™
Pr"P---Pr.”r, where the ti’s are the set of simple components of A’/I.
On the other hand E/EW =E/FPF/EN and we assume E/F~tiiPrid
< Prir. Then R/N=rmuaP-.- D1t where the 1r;/s are the set of
simple right ideals of A/M. Especially, if we take R/N=A], DDA, |
DriiDAL,, DDA, , then E/RE is a direct sum of one simple com-
ponent of A/,

Thus, we have from [5], Theorem 5. 3 the following corollary, which
is a generalization of [2].

CoROLLARY 4. Let R be local and h-orders A, A’ be dual with E.

5) See [5], §2.
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7,50
Then every h-order contained in A is uniquely written as [\ A;;, where

Ay, N are dual with F;; which satisfies the conditions for all i: 1) F
=EDF; D DFiyiy DEW and 2) E|F;y;, is a divect sum of one simple
component of AN

Furthermore, from [6], Theorem 2.5 we have

CorROLLARY 5. Let R, A and A be as above and E’ be a sub R-lattice
in E such that vy(E)=A’. Then there exists a sub R-lattice E* between
E and E’ such that E*~E’ as a right AN -module and there exists a com-
position series EDOE, DE, >+ DE,=E* and ~/(E;)=A\' for all i.

REMARK. Brumer considers in [2] the (A, A{)-chain where A{ is a
maximal order in A=Y and A is an f-order in A,. From the above
observation we know that it is nothing but studying the inclusion relations
of distance ideals® between maximal orders containing A. Since Aj is
maximal, #=1 in Corollary 4, and {F};};2} is the set of distance ideals
of Hom) /(E, E)=Q to a maximal order containing A. Hence the set of
R-lattice in V which is A-A{ module is linearly ordered with period s(1),
(cf. [2D).

Thus, we shall insert here one proposition related to distance ideals.

LEMMA 4. Let R be local and QDA be h-orders of rank r, and r,”.
Let Q,=0, Q,, -, Q;, Q,,,=Q, be a sequence of h-orders containing A
such that Q;.,=A(C)), €;=C\Q;). Then C,---C,=N* for k>t—r,, where
N is the radical of Q. Furthermore, k=v,—r, if and only if t=v,.

Proof. Let {IM, M, -, M, } be the normal sequence® of A and
A/, =A7,,. Then we obtain €, ,=NEN"' by [5], Theorem 5.1. We
shall use the same notations as in [5], §2. S;={M,;, M,,.,, -, M;,1p,-1}
and #,=1, ¢;+p;+1=¢t;,, and ¢, +p, +1=¢. We shall assume €, =I(S,,
S, -+, S,). Then we know the composition length /(Q,/€,) of Q,/€, is

ry Pi—1
equal to D)D) my . p=n—
i=1 =0

argument as the remark before Corollary 4, where n=2\m;. Since €=
NE,;_ N, we obtain similarly 2(/ (&,-)=n—§_]lm,j+,,j_i+l. Therefore, /(Q/€,

e € >(E—r)n. Since €C, .- €, is a normal two-sided ideal in Q, by
[4], §6, €,.--€,=N* Furthermore, since /(Q,/N)=#» by [6], Proposition

:1 My 1p; Dy [5], Theorem 2.3 and the same

i

6) See [6], §2.
7) See [4], $3.
8) See [5], §2.
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2.6, nk>(t—r,)n. Hence k>t—r,. It is clear that é ;V‘:m,ﬁ,,j_,.,d:r,n

i=1 j=1

if and only if f=v,.

ProposITION 1. Let R be local and A an h-order of vank v. We
assume that Q is either a maximal order or a minimal order containing
A. Then the sequence in Lemma 4 gives the complete set of maximal or
minimal orders containing A. Q DOWE,.-€C,_, DOWC, - €,_, D
DONRC,C,DEC, is the set of distance ideals of Q to Q; if Q is maximal,
and QOC, DECE, > - DECE,--C,_, is the set of distance ideals of £ to
Q, if Q is mimimal over A, where N is the radical of Q.

Proof. The first part is clear from [5], Theorem 5.1 and [4],
Theorem 1.7. If Q is minimal, then €,---€, =M by Lemma 4. €,--C,_,
is a normal Q-Q, ideal which is not contained in . Hence €,.--€,_,
is the distance ideal of @ to Q,. If Q is maximal then /(Q,;/€,))=n—

M,_-». Hence I(Q/@l—u(E,)=tn—;tlm,~(,~_2)=(t—1)n+ rgl) m;. Let €,_,
be the distance ideal of Q to Q;_,. Then €, ..-€,=NC,_, and /(Q/N°E,_))

— (-

=ns+ac=(t—1)n+r21)m,. where a=[/(Q—%,.,). Hence, |n{t—1—s)|=

i=

r—(-1) .
| Y m;—ca|<n, because a< n since £,,,2N. Therefore, s=¢f—1 and

L =N"¢1C,...€,. We have proved the proposition from Remark.

COROLLARY 6. Let R be local and A, A’ be h-orders in = and /.
We asssume that the rvank v of A is larger than that of A’ by one, then
the set of R-lattices E in V such that E is a A-N' module with =(E)=
A’ is linearly ordered with period r.

LEMMA 5. Let A and A be h-ovders in = and 3/ which are dual with
E. Orders T' and YV are dual then T, and T, are of the same rank for
all p. Conversely, if furthermore, the rank of T’ , and T, is equal to or
less than rank of A » and A}, for all p, then T and TV are dual.

Proof. If T" and IV are dual with respect to E, then so are I' , and
Iy, with E, for any p. Hence I', and I', are of the same rank by [1],
Theorem A.5. Conversely, we assume that I' , and I, are of the same
rank. We obtain an order I/ containing A’ such that I" and I are
dual with E’ by Theorem 1. Hence I'y and I', are of the same rank
for any p. Therefore, there exists by [5], Theorem 6.1 a normal -1’
ideal €. It is clear that I' and IV are dual with E’G".

9) This proposition was pointed out to the author by Mr. Takeuchi.
10) See [4], §3.
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THEOREM 3. Let 3 and 3/ be the cemtral simple K-algebras and let
A and N be h-orders in % and 3. A and N are dual if and only if A,
and A, are of the same rank for all p.

Proof. We assume Z=A, and ¥'=A,, n_>m. Let A’ be an /Z-order
in 3’ which belongs to ®={p,, -, p,}-block. Then there exists an /-
order Aj in A such that the Aj,, is a minimal A-order over R, in A for
p:€®, and A is a maximal order over R, for ¢ ¢ ® by [5], Theorem 1.2.
Furthermore, we can find the two-sided ideal 2 in A§ such that Aj,; is
the radical of Agy, for p,€ ® and Ao, =AMy, for ¢ ¢ P, cf. [5], Lemma 1.3.
Let

A AL A e e '
Ay Ay A A -+ A

A¥ = | AL AL AL eeeee e m.
Al

Then A§ is an Z-order in 3/, such that A§, is a minimal order for p;e @
and A¥ is maximal for ¢¢ ® by [5], Lemma 1.2. Let E=I,pl,---Pl,,

where
% }i— 1
A
I i = %Ia n.
Ag

We can define naturally the operation of elements of A from the right
side, namely first we consider the I; as a right Aj-module and (x;;)e,, =
(x;,)€l, if i=1 and =0 if i==1, where the e;;’s are matrix units in /.
Let

i

U : Qi
Qi ais‘—1§ 0
fl ay; |=|0 a; 0 | eA¥ for ( b” ) el;,
by 11 b *
bin © b

where a;; € Ug b;;€ Ag. Then it is clear that fe Hom(E, A¥) and f(E)
=Af. Therefore =, x(E)=Af. Since E is an R-lattice in V, Hom\x(E,
E)=A(C3) and A§ are dual. Hence Aj, and A, are of the same rank
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for all p. Let I, IV be k-orders in = and X’ such that I', and I', are of
the same rank for all p. We assume I' and IV belong to ®={p,, -, p,}.
Since Af,, is minimal, the rank of I',; is equal to or larger than that of
A¥, for all . Hence, T’ and IV are dual by Lemma 5.

CorOLLARY 7. Let Z=A, and Z'=A,,. If n>m, for every h-ovder
IV in 3/ there exists an h-ovder T in 3 such that T' and IV are dual.

CorOLLARY 8. The relation of duality is an equivalent relation.
We shall generalize Corollary 2 by using the method of [1], Theorem
A.5.

THEOREM 4. Let A and A’ be h-orders in 3 and I which are dual
with respect to E. Then the groupoid G of two-sided A-ideals is isomorphic
to the groupoid G’ of two-sided N'-ideals and the units T of G correspond
to the units Hom!(DE, DE) of G, where I =D,(T).

Proof. Let A be a two-sided ideal of A’. Then
FQ)=FE @ A (? Homi(E, A)
is a two-sided ideal of A since 7A'TA’ for »€ R and 0->1’F(2[’)—>E§)A’
? Hom}(E, A) =E§) Hom!(E, A)~7,(E)=A. FQU)F(¥®) =F(91’)6§)F(§8') =
E% A @ Hom (E, A)Q? E%} R4 %) Hom}(E, A) =E§ A <§> %';@ Hom!(E, A)=
FU%") by [1], Proposition A.1. Let 2 be a two-sided ideal of A. Then
G) = Hom}(E, A ? E)
is a two-sided ideal of A’ since if 7ATA, GFrA)THoml(E, E)=A’.
Furthermore, FG(2)= E%) Hom (E, A <§) E)%{) Hom(E, Ay=Hom (Hom}/(E,
E), A (%) E)%) Homi(E, A)=%U (? E(? Hom}(E, A)=A. GF')=Homi(E, E
X ?I’)(%) Hom,(E, A)(?E Y=Hom(E, E ®91’§)Hom AE, E))=Hom\(E, E %)%I’)

=Hom(E, E)QU' =W’ by Lemma 3. Finally, let I' be an order contain-
ing A, and D=9,(I"). Then I'=Hom|(D, D). G(I')=Hom(E, I‘(?E)=

Hom(E, Hom(D, @)? E)=Hom,(E, Hom}(D, ® %)E ) =Hom}(D @A) E, DR
N
E)=T".
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