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Let R be a Dedekind domain and K its quotient field, and 3 a central
simple K-algebra with finite rank over K. We have already defined a
hereditary order A over R in % in [5], [6] and [7], namely A is a
hereditary ring in = such that A is a finitely generated R-module and
AK=3. In §§3-6 in [5] and in [6] we have studied properties of
hereditary orders (briefly %-order) over local ring in 3, and in [7] we have
extended those properties to the global case in the generalized quaternions.

In this paper we shall try to extend those results to the global case
in any central simple K-algebra.

In §1 we shall generalize the results in [57], [7] (Theorem 1.5) and
obtain a decomposition theorem of two-sided ideal in an #Z-order A
(Theorem 1.4). Furthemore, we obtain that every left (right) order of
a one-sided ideal of A is an k-order (Theorem 1.1). Hence, if we consider
one-sided ideal A of A, we know that it is a left (right) ideal of the
left (right) order of A which is hereditary.

We shall consider, in § 3, a decomposition of one-sided ideal of %-order
by the characteristic product of normal and maximal one-sided ideals.
In order to cosider it in global case, in §2 we first study it in the local
case.

We obtain that for two orders Af, A/ which are of the same typs
all left Ai- and right A/-ideal A% except finite number is expressed as
above (Theorem 3.2) and those decompositions are unique up to left
(right) quasi-equivalence (Theorem 3.4). If A is not contained in any
regular and maximal one-sided ideals then A# is locally principal and
Ai, A are locally isomorphic (Theorem 3.5).

In §4 we define the ideal class and isomorphic class of #A-orders
and we obtain that those numbers are finite if R is the ring of integers
(Theorem 4.1).

Finally in §5 we consider the different (discriminant) theorem in
h-orders which is a slight generalization of the theorem in maximal orders
(Theorems 5.1 and 5. 2).
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1. Normal ideals and inversible ideals.

Let R be a Dedekind domain and K its quotient field, and = a central
simple K-algebra. By order we mean an order A over R in 2.

DEFINITION 1. Let A be an order in = and A a left A-module in 3.
If AK=3, then we call A is a left ideal of A. Furthermore, if A is
contained in A, then A is called “integral”.

DEFINITION 2. Let A be a finitely generated R-module in = such that
AK=3. Ai={x| €3, xAC A}, M={x| €=, Ax A} are orders and called
the left ovder of A and right ovder of A respectively. We denote Ai, A7
and A by AN(A), A (A) and A,

DEFINITION 3. Let A/ be an ideal of Ai and N. For A=Ail A=
e AxC A} ={x|e3, xACA}={x| €3, AxACA}. If Ai=Ai(A¥)?
and N =(A¥)A7 then we call AV is “inversible”.

If we say that a left ideal A of A is “normal”, then we mean that
A=A!(A).

Let A be a left A-module. By trace ideal of A we mean the two-
sided ideal in A which is generated by f(a), where f runs through all
elements of Homi(A, A) and a€ A. We shall denote it by 4(4).

From the definitions we have

LemMa 1.1. For orders Ai, N and the ideal A, we have AV(A¥) ™=
Tai(A), and (A7) AV =T i(AY).

CorOLLARY 1.1. Anideal A* is inversible if and only if Ti(A%)=A",
A = A

COoROLLARY 1.2. Let A be an h-order and A a left ideal of A. A is
inversible if and only if v (A)=A."

Proof. If A is inversible then vi(A)=AA'=A. Conversely if 7i(A)
=A, ire(A)=A(A) by [3], Theorem A.l1.

It is clear from this Corollary and [3], Theorem A.2 that the
category of inversible ideals in an k-order coincides with that of normal
ideals.

CoroLLARY 1.3. Let A be an order and A an integral inversible left
tdeal in A. Then A is an integral vight A(A)-ideal.

Proof. Since A A, N"(A)=A"ADAA=A.
LemMA 1.2, Let S be a ring and E a finitely generated left projective
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S-module, and T=Homi(E, E). If 7Y(E)=S and E is a finitely generated
T-module, then r.gl.dim S_>r.gl.dim T, (l.gl. dim T> /.gl.dim S).

Proof. Let F be a right T-module and —P,— P, - — P —
FRHom4(E, T)—0 a projective resolution of F @ Hom%(E, T) as a right
T T

S-module by setting (g ® fl(e))s=g Q f(se) for fe Hom(E, T), ¢€ E and
g€ F. Since E is S and T-projective, by [3], Theorem A.2 - P,QE—
S

=P @ E—-FQHom%(E, T)® E— 0 is a projective resolution as a right
4 S N
T-module. However, Hom%(E, T)® E~ T by [3], Theorem A.4. Hence
N

—-P,QFE—~.. >P,QE—-F-—0 is a projective resolution of F, which
proves the lemma. Since 7%(E)=T and S=Hom(E, E), we obtain /.gl.
dim 7>/.gl.dim S by exchanging S and 7.

THEOREM 1.1. Let A be an h-order and A a left ideal of A. Then
A(A) and AN'(A) are h-orders. Hence A is imversible in A(A) (A7(A)).

Proof. Let A’=A*A), then A’ >A. Hence A’is an %-order by [5],
Coro. 1.4. It is clear that Hom%/(A4, A)=A(A). Since A is a projective
A’-module, A=7%(A)A by [3] Proposition A.3. Hence, 7i/(A)=AA"'=
Ti(A)AA =(7/(A))’. However, 7i/(A) is a two-sided ideal in A/, and
hence A=7}(A)A implies A’ 2Hom"/(7%/(A), 7%/(A)). Therefore, 7% /(A)=A’
by [5], Theorem 1.7. Thus A is a projective right A”(A)-module. Hence
A”(A) is hereditary by Lemma 1. 2.

Let ' 2A be h-orders. We recall the definition of left (rlght) con-
ductors. Let C,(IN={x| €3, Ix A}, and D(I)={x| €=, x['A}. We
call C,(I"), D,(I) left and right conductor of I’ with respect to A. It is
clear that C,(I") ((D,)IY) is a unique maximal left A- and right I'- (right
- and left A-) module in A. If A is an k-order, then I'= A’(CA(I‘)) by
[5], Theorem 1.7. Hence, C,(I") is regular ideal of I

CoroLLARY 1.4. Let A be an h-order and T an order. Then ANCA\(I))
is an h-order which contains I' and is contained in h-orders containing A
and I'. Furthermore, C (') is a two-sided A-module, if and only if
ACAIM)2A.

Proof. Since CA(I") is a left [-module, A/(C,(I'))=21". By the theorem
AY(C\(I") is an k-order. We assume that the ring Q generated by A and
I' is an order. Let C=C,(Q), then CEC,(I'). Let x€ A/{(C,(A)), then
2CS 2C\(N S C(IM S A, Since C is idempotent, xC < C, and hence
xeN(C)=0. If A{C,I))2A, then Q=A}C,(I"). Hence, C,(INCCCT
Ca(D).
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For two ’h-orders AT, there exists a finite set ®(A, T') of prime
ideal p in R such that A, T, for p€® and A,=T, for g¢®. If T is
maximal, then ®(A, I') does not depend on I', and we call that A belongs
to ®-block (cf. [ 5], Section 7).

By simple argument (cf. [5], Lemma 7.5), we have

LemmA 1.3. Let A be an order over R and A a one-sided ideal in A .
Then there exists a umique ideal A’ in A such that A,=A, and A=A,
Sfor p=q.

Let A be an k-order, {M;;} be the set of maximal two-sided ideals
in A,,, and N(A,,) the radical of A,,. Then there exist, by Lemma 1.3,
maximal ideals P;; and ideal Q,(p;) in A such that (P;;),;=M;;, Qu(p:)s;
=N(Ap,) and (P;;),=Qu(p:)s=4, for g==p;.

We have obtained in [5], Theorem 7.6

THEOREM 1.2. Let A be an h-order in 3. Then the set of normal two-
sided ideals in A is an abelian group which is generated by {Q.(p), P:}.

Let A be an order and O a maximal order containing A. A unique
maximal two-sided Q-ideal in A is called the fwo-sided conductor (of Q
with respect to A) and we shall denote it by FL(Q).

THEOREM 1.3. Let A be an h-order in ®={p,}7_,-block. Then F (Q)
=ﬁIEI¢QQ( ;). Conversely, we assume that R|/P is finite field, and Q2=(Q,),

where Q, is a maximal order in the associated division ving A of =. If
I'>Q, is an order such that F(Q)= T1Qu(p;) then there exists an h-order
»€0

IV containing T such that NQu(p,))NT=1Qw(p;) and the rank of Iy, is
equal to or larger than the number of two-sided simple compoments of
T, /Qu(5:)s;=Ts;/N(Tp). Furthermore, I' is a minimal one among h-orders
containig T

Proof. Let p be a prime in ®. We assume that A, Q be orders
over R(=R). If A is an /-order, then ADN(A)DN(Q), and hence
F\(2)=N(Q). Thus, we have obtained the first part of the theorem. Next,
we assume that ' DN(Q), ' DQ, and R/p is a finite field. Since N(Q)>D
PO and pQ=N(Q) for some ¢, N(Q)* =pNQ)pr. Hence
NQ)IN(I). We denote N(Q), N(I') by N, N’ and O=Q/N and so on.
We may asume that R is complete by [6], Proposition 1.1. Then by
assumption O, is a field and D=(0,), DA D>0,. Let M be a simple left
ideal in O, then Q=Hom§0(M, M). Let M=M,>M,>-- >M,=(0) be a
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composition series of M as a left Imodule. Since I' >Q,, the M;’s are
Q,modules. Let IV= {x| €Q, xM;,>OM, for all i}. Then I"2ON and

%00
I"/Nz(* * 0). Since N'(M;/M,.,)=0, NN(I"). Now we shall con-

Kk |k
sider a natural ring homomorphism ¢ of I'/N’ to I'V/N(I"). Let ¢~ '(0)=
I'/N’e, ¢ is idempotent in I', then e(M;/M,.,)=0 for all 7. Since M is a
faithful I'mocule, 2=0. Hence, @ is monomorphic. Since M is a faithful
I'>module, all left simple components appear in {M,_,/M;};.,. Hence r
is equal to or larger than the number of simple component in I'/ N’ as two-
sided ideals. By [6], Theorem 6.2, I' is an 7 th %-order in Q. If I' is
an k-order such that IV OI DI, then M, DM, >--+ is also a composition
series as left I'-module. Hence the number of simple components in
I'/N(I"") as a two-sided does not exceed that of IV/N. Therefore IV=I".
From the above proof we have

COrROLLARY 1.5. Let 2=(Q),; Q, is a unique maximal order in a
commutative field over K. If F\(Q)=IQu(p;) for an order A in Q, then
there exists an h-order containing A as in the thovem.

DErFINITION 4. Let P be a two-sided ideal in A. P is called prime if
ABCP for two-sided ideals A, B in A implies AP or BCP.

Lemva 1.4. Let A be an order over R, then every prime ideal is a
maximal two-sided ideal.
We have a special case of [8], Satz 18

PrOPOSITION 1.2. Let A be an h-order which belongs to ®= {p,}-block.
Then for a prime ideal Pin A P is regular if and only if (P, FA(Q))=A.

Proof. 1If (P, F)=A, A,=(P,, F)=(P,, NQ))=(P,, NA,)) for pe ®.
Since P, is maximal, P,=A_. If p¢®, P,is equal to A, or N(A,) which
is regular. Hence P is regular. Conversely if P, is regular then so is

P, for all p. Hence, since P, is maximal, P,=A for p€ ®. Therefore,
(P, FA(Q))=A.

THEOREM 1.4. Let A be an h-order and A a two-sided ideal in A.
Then A=PP, - P,QQ, - Q,A,, where the P’s are normal prime ideals,
the Qs are maximal ones among normal ideals Q in A such that QO F\(Q),
A, is not contained in normal ideals, and A, DO F* for some p. The P’s
commute with P, Q and A, and the Qs commute with Q;. Furthermore,
this expression is unique, where F=F Q) for a maximal order Q containing
A (cf. [8], Satz 19).
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Proof. Let P be a maximal normal ideal containing A. Then
ADP'A. Repeating this argument, we obtain a set of maximal normal
ideals P; such that A=P./P,--- P, A}, and A} is not contained in maximal
normal ideals since A is noetherian. We assume Aj==A. If A;ZDF* for
all p>>0, then there exists, by Theorem 1.3, p such that 4;,&Q =A ,
which contradicts the assumption of Aj. Next if we repeat the above
argument for maximal ideals of normal ideals @, 2 A} such that Q,2F.
We have A;=Q.,Q, - Q,A4, and A, has the property as in the theorem.
Since (P;),=N(Q,)=N(A,) for g £ ® (A belongs to ®-block) and Q;=Q.(2;)
for p;€®, we know P;, @, satisfy the conditions in the theorem. Let
A=PP,..- PQ, - QA,=P{P} - PLQ,---QA,. Since (P;, F)=A, P; con-
tains neither @} nor Aj, and hence {P,, P,,---, P,}={P1, P},---, P{}. Thus
we have obtained Q,Q, - Q. 4,=Q1Q% --- QvA;. We may assume Q,=@Q, -+
=Q:=Q{ = =Q/=Q(p) for pe®, and Q;=~Q(p) Qy=+Q(p) for j>1,
>t If t>t, N(A p)"";(AO) ,» and hence A, is contained in Q,, which
is a contradiction.

We shall recall the definition of characteistic product, see [5], §6.

DEeFINITION 5. Let A B be module in 3. If AB=A'B’ for modules
A 2A and B' 2B implies A'=A, B'=B, then we call the product AB is
characteristic. )

The substasntial parts of the following results are already proved in
the case of maximal orders in [1], [5].

Let Ai, A/ be orders and by a left Ai- and right Ai-ideal A we mean
that Ai=A/(A) and A/=A"(A), and we shall say briefly Af, A/-ideal, and
denote it by A#,

LemMAa 1.5. The product A7 A* is characteristic if and only if N =AF,
(see [1], or [5)).

We have a generalization of [5], Theorem 6. 1.

THEOREM 1.5. The set of h-orders in =, and the set of one-sided ideals
have a structure of a groupoid with respect to characteristic products. The
set of h-orders conmsists of umits in this groupoid. The set of two-sided
ideals of a given h-ovder is an abelian group. Conversely, let G be a set
of R-submodules in = containing elements in K. We assume
1) G is a groupoid. If AB is defined in G for A, BEG then AB is a
product as @ R-module in =.

2) The units in G are all orders.
3) Let A be a unit in G and L, S left ideal and right ideal in A, respec-



MULTIPLICATIVE IDEAL THEORY IN HEREDITARY ORDERS 89

tively. Then L,S€ G and the left unit T of L (the right unit IV of S) is
left A-projective (right A-projectives).

Then the set of units in G consists of h-orders and G consists of groupoid
obtained from one-sided ideals with characteristic product.

Proof. The first part of the theorem is clear from Theorem 1.1
and [5], Theorem 6.1. Let A be a unit in G and L a left ideal in A.
Then LL-*=A', L"'L=A% Let @ be a two-sided ideal in A such that
Q,=N(,) and Q,=A, for p=Fg. Q,Q),=(A"), and (@7),Q,= (A%),.
Hence, @ » is left Aj-projective. Since A} is left Ap-projective, so is @ b
Therefore, A, is an /-order, by [5], Lemma 3.6, which implies that A
is an hk-order. It is clear that A/(L)DA'. Since LL'=A', A(L)A'=
A(L)LL*=A'. Hence A'=A!L). Similarly, we obtain A?=A"(L). It is
clear that G consists of all one-sided ideals of A’s. If AB is defined in
G, then A"(A)=A!B). Hence AB is characteristic.

ReEMARK 1. We have considered this theorem in [5], Theorem 6.1
for two-sided ideals of an k-order A. In this case if we omit the as-
sumption “projective”, then the converse is not true, namely there exists
non /4-order A such that every two-sided ideal A of A is inversible in
AY(A) and A’(A). For example, let A:(R p\. Then we can easily

2 7)
check that evey two-sided ideal A in is isomorphic as a two-sided A-
module to one of the following :

i) (RR\ i) (RR\ (RR\ (pR\ (Rp\ (Rp\ (P p (pR)
(o) * (e2) Gr) (2 2) (e 2) (3) G ) (),

(p p) iii) (RR p P\ iv) (Rp V) (pR vi) (Rp)(pzp)

R p/, .Pi’),(RR), PR), Rﬁ), p p°),\p R/,

(5), (25)

p»*p)s \R p).

The left (right) orders of i) iii) and vi) are maximal and those of ii)

and iv) are k-orders. Hence, those ideals A are inversible in A‘/(A) and

A7(A). Let A={p R\ then A(A)=/R p\=A"(A) and AA'=A(A)=A"(A).

(k ») ()
Hence, A is inversible in A”(A)=A’(A). However A is not an #Z-order.

Let Ai and A7 be h-orders. If there exists Af, A/-ideal A7 we call

Ai and A/ are of the same type. It is clear that we may assume
AT AN,



90 M. HARADA

LEMMA 1.6. Let Ai, A7 be h-orders over R. If Al and A} are of the
same rank® for all p then there exists a finite set ® of prime ideals p;
in R such that Ai=A} for q ¢ ®.

Proof. Let c={x| € R, Aix_A7}. Then ¢ is a non-zero ideal in R and
let @ be the set of prime ideals in R which divides ¢. If g ¢ ®, then
c,=R, and hence A;<A]. However since A! and A] are of the same
rank, we obtain Al=A].

LemMA 1.7. Let Ai, A be h-orders. If A} and A} ave of the same
rank for a prime p in R, then we can find an h-order A° such that AS=A],
Ag=A; for q=p.

Proof. There exists a A}, Al-ideal Ai¥(p) by assumption and [5],
Theorem 4.4. Then we obtain, by Lemm 1.3, a Af, Aj-ideal A such that
Ap=Ai(p), A,=Al for g==p. Hence, A"(A) is a desired order.

THEOREM 1.6. Af and A7 are of the same type if and only if A} and
A} are of the same rank for all p.

Proof. 1If there exists an ideal A#¥, then A}, is a Af, Al-ideal for
any p. Hence A and A} are of the same rank by [5], Propo. 4.4.
Conversely, we assume that A! and A} are of the same rank for all p,
and hence there exists a A}, Al-ideal A#(p) by [6], Theorem 4.4. First
we assume the set of prime ideals as in Lemma 1.6 consists of a single
element, say p. Then A? and A/ are of the same type by the proof of
Lemma 1.7. We assume that the theorem is true for &’ which consists
of n—1 elements and ®={p,, p,, -+, p.}. Then there exists an k-order
A° such that Aj =A; , Aj.=A] for i=2,---,n. Hence A, A° are of the
same type and A° A7 are of the same type by induction hypothesis.
Therfore, Ai, A’ are of the same type.

2. Decomposition of one-sided ideals in a local case.

By virtue of Theorem 1.4 we are interested ourselves to study a
decomposition of A,. Thus we shall study, in this section a decomposi-
tion of a normal one-sided ideal A as a characteristic product of maximal
normal one-sided ideals. If we say “product” then we mean a chara-
cteristic product, and ideals are always normal.

First, we consider /%-orders over R o and all orders and ideas are
considered over R , and we denote them by Q, A and A.

1) See the definition in [6].
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ProrosiTiON 2.1. Let A be an h-order over R ,and A a maximal left
ideal in A. Then A is a maximal right N (A)-ideal.

Proof. Let N be the radical of A and A"(A)=TI. Since A =A/(A),
A/N=A, & - BL;P--DA,,, and I'/N(I') ~Hom},y(A/NA, A/NA) by
[5], Propo. 4.4. We may assume that R , is complete by the standard
argument. Then there exists an idement element ¢ in A such that
A=Ae+N. Furthermore A/NA=(Ae+NA)/NADN/NA, and N/NAis a
simple left A-module, since if N OB DNA for a left A-module B then we
have ADN'BD>A. Itisclear from [6], Lemma 3.2, that ' > A DN(D).
Since (N/NA)A=(0), A/N{T)=~Hom'((Ae+NA)/NA, (Ae+NA)/NA) is a
maximal right ideal in I'/ N(I).

PROPOSITION 2.2. Let Af, A/ be v h-orders over R,. Then Ai, A-
integral ideal is linearly ordered with respect to inclusion.

Proof. (A¥)'Bi/ is a two-sided normal ideal of A/, and hence
(A¥)'Bi = N(Af) for some t. If 1 >0, Bii=A7N(Ai) A, If +<0, then
Aii=PBiiN(AiY C Bid.

By virtue of Proposition 2.2 we have

DEFINITION 6. Let A®, AP be v*™* h-orders. A unique maximal integral
left A%, AP-ideal is called the distance ideal of A® to AP, (notion D).
It is clear that D**CN(A®), N(AP).

PrOPOSITION 2.3. Let Ai, A7 be r** h-orders. Then (A7AH™ is the
distance ideal if and only if there exists an integral ideal A such that
AN (A A is a two-sided regular ideal of Ai (AY). In this case Ai7Ai=Aj,
Aid =(AIAF),

Proof. Let A# be an integral ideal such that A’A#¥ is a regular ideal.
Let B=A’Aé, Itis clear that Bis an ideal. BA¥=A/AiAi/=AJAii, Hence
AYB)=AJ. Therefore, A"(B)=A¢, since A"(B)2DAi. Since B DOA{ Bii=
(B)"*CCAi. We obtain for an integral ideal C# that' C#/B = Ai/ = A/ AJAi T Ai,
Hence C#Bi/ which implies B¥/=Di. Conversely, we assume (A7A#)~?
= Di/, Then Ai=(AAi)'(AJAH)=DiAi. Let Ai/Ai=Ai, A/ = DNt for
some ¢ >0. Hence Ai=AAi=DiN'A!CN*. Therefore A¥=D#,

CorOLLARY 2.1. D#=(AA)' if and only if D¥+ N(Ai)/N(A?) does
contain all left simple components in Ni|N(AF),

PROPOSITION 2.4. Let Ai, A7 be distinct h-orders containing the same
h-order. If Di=(A/Ai)7', then D7i=AIN(Af),
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Proof. Let C=A'N then D¥AIN = Di¥AiN =N, where N = N(Af),
Hence, A"(C)=A¢, and A(C)=A. Since C=A/NTAN(I")AJ, C is inte-
gral, where I' =ANAJ, Since C=D’N*! for {>0, AiS A/Ai = DFiNt-1,
Hence ¢ =0.

DEFINITION 7. Let A", AP be r* h-orders over R,. If there exists a
set of v h-orders Af such that A°=A°, A', ... [ A"=AP, and Ai=AI(Aii).
ATt =A"(Ai i) and APt is a maximal left Ai-ideal, then we call that
there exists a path from A® to AP,

Since A#*' is also a maximal right Ai**-ideal by Proposition 2.1, we
can obtain the same path of A? to A® by making use of right ideals.

ITA? #** is called the ideal of a path of A® to AP,

ProroSITION 2.5. Let A®, AP be r** h-orders. Then the ideals of path
are linearly ovdered by inclusion. Hence the number of v** h-orders which
appears in the shortest path is the same.

Proof. Let I1Aii** be a path ideal. Then ITA i is a A® Af-ideal
by Proposition 2.3. Since A" is a maximal left ideal in A¢, A®>SA"D
AM A DITA is a composition series of A®/ILA##*'., Therefore, the
number of orders in a path is equal to the length of composition series
of A®/T1Ai#*', which proves the proposition.

We shall denote the ideal of a shortest path of A” to Af by P,

We shall prove that there exists a path between non-minimal %-orders.

LEMMA 2.1. There exists a path between two maximal orders.
Proof. Let A D>A DA, > DOA,=D" be a composition series of

A®ID*. Let Ai=A}A;'A;.,) is a maximal left ideal in Af. Therefore,
A®=A° AY, ... ,A"=AP is a path of A” to AP,

LEMMA 2.2. Let A% AP be v** h-orders comtaining an h-order. Then
there exists a path of A® to APP

Proof. Let A, be a minimal /-order contained in A°NAf and
Cn(A)=1I(S,, S,, ), where for the normal sequence® {M;} of maximal
two-sided ideals in A, S{i={M,, M,, - ,M,}, Si={M,, M,,,, -,
Moy -5 Steb$, SINSy=b, =3V m; 5 \JS5={M}; Si=Si—M,ym,s,
(see [6], §2). Let A be an r+1% h-order in A" such that C,(A)=
I(S,—M,, S,, ---). Then A*"=D,(A®) is a maximal left A®ideal, (see the

2) cf. the proof of Theorem 2. 3.
3) See the definition in [6].



MULTIPLICATIVE IDEAL THEORY IN HEREDITARY ORDERS 93

proof [6], Theorem 5. 1), then A=A"NA?, and A" =C, (A" A =I(S,, S, ---)A.
Since AY=A7(A™), D,(A")=A"". We obtain, by [5], Theorems 2.3 and
5.1, that C,(A")=ND(A"YN*'=I(M,, {S,—M}, S,, ---)A, where N=N(A).
Since Ci(AY) =C, (ANA =I{(S, + M}, {S,— M}, S,,--). Thus we have
proved the following facts: A%« {S{, S}, -,S/}; Si={M,, ---,M,}, -
Si=A{M,, -, My}, St={, M,} 5 N> {Si, -+, St + My, St —
M;;im;»Siv2++-, Sy}, then there exists a maximal left ideal A in A such
that A=A*(A), A’=A"(A). Let A’ be an r** h-order containing A,, which
corresponds to S{={M,, -, M, ...}, St={M,_,.,} -~ ,S.={M,}. Then
we can find a path of A’ to any 7* h-order A containing A, by the above
facts, and conversely a path of A to A’. Therefore, there exists a path
between A® and AP,

LEmMA 2.3. Let A and AN be n—1" h-order in a maximal order Q,
then there exists a path of A to A/, where QIN(Q)=A,.

Proof. Let L; be a left ideal in A which contains exactly N=N(Q).
Then from [6], Theorem 5.3 we obtain A=QNA(L)NA"(L)N - N
A"(L,_,), and L; DL, for alli. We shall denote A by A(L,, L,,---, L,_,).
If L,.,/N is minimal, there exists a left ideal L’ such that L, >L'D>L,,,
for some i. Hence A(L,,-,L;, L, L;y,, -, L, ,)=A(L,, -+, L;, L;,, +,
L, )nAL,L,,-,L; L, L,, -, L,;). Therefore we can find a path of
AL, L, to AL, -,L;, L'y Ly, *,L,;). Thus we may assume
L,_,/N is not a simple Q-module and hence L;/L,., is simple for all 4.
Let A=A(L,,++,L,.,) and AN=A(L{,-,L,,). If L==L{, L/L L},
Lj/L,NL; are simple. Let A, =A(L,, L,nL}, Ly, ,L; ,), and A,=
AL, LN Ly, Ly, -, L}.y) and A{=A(L,~ Ly, Ly, -+, L;;). Then A,nA}
=A(L,, LnL{, LY, -+, L),). Therefore, there exists a path of A, to Af.
Similary we have a path of Aj to A,. Hence there exists a path of A,
to A,. Hence by using induction on ¢ such that L;=L; for i< we can
prove the lemma.

THEOREM 2.1. Let A%, AP be non-minimal r** h-order over R,. Then
there exists a path of A® to AP

Proof. First we assume that A® and AP are n—1% h-orders. Let Q
and Q' be a maximal orders containing A® and AP, respectively. There
exists a path Q=0 ..., 0"=0F by Lemma 2.1. Let Ai be a n—1*
h-order in QinQit'; A°=A" ... /A" '=Af, Then we obtain a path of Af
to Ai™' by Lemma 2.3 and hence we have a path of A® to AR, Let A®
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and AP be any 7 h-orders and I'”, I* be n—1* h-orders in A% AP. Let
r*=re ..., I*=I"® be a path of I'* to I'. If we take an 7" h-order A’
containing IV such that A°=A? ... A*=AP then AinAi**>T%. Hence
there exists a path of Ai to Ai** by Lemma 2.2. Therefore, we have a
path of A” to AP,

PROPOSITION 2.6. Let A! be a non-minimal h-order. Then P is equal

to N(A). Hence the length of shortest path of A to itself does not depend
on A,

Proof. Since A is not minimal, we can find a maximal left A-ideal
A" containing N(A). Let B* =(A"%)"'N(A), then B* 2(A%)*N(A) A= N(A?).
If A==AZ? then B* is not a two-sided ideal in A% Hence B™/N(A») =[P ---
®l,; Il;=+A,, for some i. Therefore, there exists a maximal left ideal
A® containing B*. Repeating this process, we have N(A)=A“B®..- K™,
Since A', B® are maximal one-sided ideals, m is equal to the length of
composition series of A/N(A), which does not depend on A by [6], Coro.
to Lemma 2.5.

THEOREM 2.2. Let A%, AP be non-minimal r** h-orber over R,. If
P is not contained in N(A®) (N(AP)), then any A®, AP-ideal is expressed
as a characteristic product of maximal and normal integral ideals. If P
is contained in N(A®) (N(A®)), then any integral ideal except finite number
is expressed as above.

Proof. Let P® be the path ideal of A” to AP, P*=D"N(AP)* for
some # by Proposition 2.2, Therefore any A” AP-integral ideal A except
D*B(AP), i=1,.--,t—1 is written as P*®N(AP):. Since P®?, N(AF) are
expressed as product of maximal normal ideals by Proposition 2. 6, so is A.

PROPOSITION 2.7. Let A*, AP be r** h-orders and (APA®)*=D"F. Then
D™ is equal to the shortest path ideal of A® to AP, and every A®, AP-ideal
is products of maximal and normal left ideals.

Proof. Let D" =(APA®)~* and A®* DA, DA, DA,=D" be a com-
position series of A®/D". Since A;A* D>D®A®=A" «(A;) =A:{ Hence
A(A;)=Ai, Furthermore, sinceA7'A4;,,=Bii"" is a maximal A{,Ai*-ideal
in Ai, Hence D* is an ideal of a path of A® to AR, Therefore, D*® is
equal to the shortest path of A® to A®,

THEOREM 2.3. Let A® AP be r** h-order over R Lo If A% AP contain
the same h-order, then P*®*=D", and hence any A®, AP-integral ideal is
expressed as a chavacteristic product of a maximal one sided ideals.
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Proof. Let A=A"NAP then A is an k-order by assumption. Let
A”=C,(A"). Since A"™A=A" D**=(A*A")"'=A" by Proposition 2. 3, and
hence A** is expressed as a product of maximal left ideals by Proposition
2.7. Furthermore, since D**C A, A*> D®. Let D=(A")"'D, then D
is a A2 AP-integral ideal. A is a two-sided A-module, and nence A’=
A(A*)DA. Therefore, A'=A’NAP DA, Let A®*=C(A?), then DT A®.
Hence D,=(A®)"'D is integral A®APf-ideal and D**=A**A”D,. Repeating
this argument, we have D%f=A"A* ... A** and Aii"" is expressed as a
product of maximal left ideals, which implies D*®=P®", Thus, we have
proved the theorem.

In general there exists an ideal A" which is not expressed as a
charecteristic product of maximal left ideal. Now, we shall consider
those ideals. If ideals A" is contained in a normal and maximal left
ideal, we may divide A by it. Hence we may assume that A" is not
contained in a maximal and normal left A®ideal. Then it is clear that

A+ N is a two-sided A®-module, and A +N**/N**=A,, DDA, D
k s

A )
AD- DA, and A?/N*=A,, O DA, DADA, s>k

THEOREM 2.4. Let R be a local ring and A™® an integral ideal which
is not contained in maximal and normal left-ideals, then A®® is not
contained in maximal and nomal right AP-ideals. In this case A® is
isomor phic to AP. Furthermore those ideals are principal left A®-ideals and

hence they are isomorphic as a left A®-module.
S

Poof. Let A®/N*=A,, ®- DA, DAD--PA, m;>1; A" is an
h-order of 7* (=¢+s)*, and n=zt‘_1,‘ m;+s is an invariant in ¥, by [5], Coro.
to Lemma 2.5. By usual argument (cf [6], Propo. 1.1.) we may assume

that R is complete. Then there exists an idempotent element ¢ in A®?
such that A% +N**/N**=A"®+ N**/N**. By the assumption on A", we
k

obtain A + N*/N* =A,, @ - BA,, PA - BA, k<s. Furthermore,
AN A% =A%+ N"*A"?)IN*® APPAPNANIN**A" and A%+ N** A"
N A"~ A"+ N**|N*® as a left A”-module. Since A?/ N ~Hom}as,yas( A"/
N A%, A"|N**A**) and A*f is an order of r*, A"~ N“*/N**A* contains
at least »—(¢(+k)=s—Fk distinct simple left A®-components which are
different from those in A%e+N*"A%®/N°*A*. However, the number of

simple components in A®N\N**/N**A* is equal to n—( tE m;+k)=s—Fk.
i=1

Hence A"NN**/N**A* is a directsum of all distinct simple components



96 M. HARADA

which are different from those in A%+ N**A*/N**A*. On the other

hand, (A®*AN°**/N**A")A" =(0) and e¢ is the identity mapping on

(A% + N**A**)[N**A™, and hence A" +NPPINPF~ A, @ - DA,, D
k s

A @A~A®L N[N as a ring and AP/NPP =~ A, P - DA,,, DA - DA.
Therefore, A* is not contained in maximal and narmal right AP-ideals.
From the above observation, we know that A" /N** A"~ A,, @ - PA,,,D
AD---PA=~A®/N® as a left A®-module. Therefore, A”® = A%q, which
implies AP=a"'A%.

COROLLARY 2.2. Let A® be an r** h-order such that A®|N**=ZPA,,;,
m >1 for all i. Then every one-sided A®-ideal is expressed as a product
of maximal left (right) ideals. Especially if A, is principal (non-minimal),
then A® satisfies the condition.

Proof. The above arguments are true if we exchange “/eft” to the
“right”.

Remark 2. Even if A" is expressed as a product of maximal left
ideals by taking suitable maximal left ideals, there exist, in general, no
expressions of product of maximal left such that the first factor of
it is an arbitray maximal and normal left ideal containig A*. However,
if A® satisfies the above condition, then A®f is expressed as a product
of maximal left ideals by any choice of maximal left ideals in each step
of expression.

COROLLARY 2.2. Let A be a minimal h-ovder, then every ome-sided
ideal is principal.

Proof. In a minimal %-order every maximal left ideal (as a ring) is
two-sided, and hence it is not regular.

THEOREM 2.5. Any ideal A™ is expressed as a product of two-sided
ideals such that A®=A"A": A™ is expressed as a product of normal
and maximal left ideals and A®® is not contained in normal and maximal
left A*-ideals. If we have two expressions A" =A"A®= A A¥B then
A"~ A™ as a left A*module, and AP~ A® as a right AP-module.

Proof. From Theorem 2.4 we obtain an regular element « such that
A =gA®. Hence A" = A"q'aA®= A"aA"® = A* A”?. Therefore,
A = A™q'A¥. Since A¥ =gA*a!, A™ =A%q".

PROPOSITION 2.8. Let A be an h-order with radical N. For any given
two-sided A-module A in A containing N there exists a left A-ideal A, such
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that A,+ N=A. Hence if one of the simple components of AJ/N is a
division ring, then there exists a left A-ideal which is not expressed as a
product of maximal and normal left ideals.

Proof. We may assume that R is compete and A is written as a
subring of matrix ring over a unique maximal order 0 in a division
ring by [6], Theorem 6.2. Let A/N=A,, ®A,, P DA, and A/N=
A, @D DA,,. Furthermore, we may assume

my my m; M+
o — p—— —— ——
A= ml{ R, T P Teve | wes | enegpeee and A= [, T S Teve | wee oo o
mz{ 7 TETS PO 17133 DR Toee 0
. 0
: mH_l{ Y, 008 IR PO P —_——
m‘{ cerQene|enn 0| |- Q-veleen TLoee
Y, TrPS I I PO Loee
Mi+1
p——
1. 0
Let o= 1.
0 1
1. 0
0 1., 0
0 !
0 0
z 0
mt+1{
0 =
z O
0 =z

Then « is a unit element in ¥ and hence A« is a normal left A-ideal
in A. Itis clear that Ad+N=A. If m,=m,,=--=m,=1 and A/N=A,,
@D PA,,_,, then every maximal left ideal containing A« is a two-sided
A-ideal. Therefore, Aax is not expressed as a product of maximal and
normal left ideals

ReMARK 3. In general AiA7is not a Af,A/-ideal. Hence D7 == (AiA7)!
Furthermore, ever if D#¥=(A7A#)~", but D7i==(AIAF)™,
For example, let

RRp ‘R R R RRR
AN=|RRp|, M=|pRp|. Then AiAi=|RRR
RRR RRR R RR
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RRR

AAi=R R p | is a A/Ai-ideal. Hence D#=(A/A)~Y, but D¥==(AiAS),
RRR _

We note that AinA7 is an k-order.

RemARk 4. The second ideals in Proposition 2.8 are distance ideals
which are not equal to the shortest path ideal.

LEMMA 2.4. Let AiA% Al and A be of the same rank and A9 an
ideal. If (A¥)'D*APDY NV, then there exist integral ideals C*, C'
for any ideal B¥ 2 A such that A =C#*B*CH, [f (A¥)'DikAi DY N,
then there exists an ideal B* 2 A which is not expressed as above.

Proof. Let N=N/. Ail=DiIN4, D*BHDY = DiiN*., Then B* =
(D)=t AN (DF) ' DA Nt D(AY)'D*AiiD¥ =L. Hence if LCN,
t,<t,. Therefore, A¥?=DVNu %N*=D*B¥D/N*~* If LN, then
B¥ =(Di*)*AiIN (DY) ' DA, If Ai/=Ci*B*CY, then Ai'= D#*B¥D*N*
for some ¢>0. Hence, A¥=AYN*", which is a contradiction,

PROPOSITION 2.9. If either D*=(A*Ai)~' or D¥=(AAN, then AT
B¥ if and only if there exists integral ideals Ci*, CY such that A¥/=
Ci*B*CU, Especially if i=k, then A7 =B#CY, [f Di*==(A*A)), then for
any ideal A there exists ideal B¥ 2D A which is not related as above.

Proof. The first part is clear from Lemma 2.4. We assume that
Dit==(A*A#)~' which means that D*Ai{+Ni is a proper two-sided
Ai-module. Hence D#*Ai+ Nit= [\ M,;. Let A¥ be any ideal, then

(A7) DirAi Aid Jr(Ai")‘lN“Aifz1 Q(’;};ilMiAif. Since {(A¥)"'M;A#} is the
normal sequence in A7, there exists a two-sided A/-module C >N’/ such
that (C/Nﬁ)(1 <Qr(Aif')‘]‘M,-A”'/fo)=(0). By Proposition 2.8 we can find
a right A/-ideal D such that D+N/” =C. Let A’=AYD). Then there
exists an ideal B¥ as in the proposition by Lemma 2. 4.

3. Decomposition of one-sided ideals over Dedekind rings.

In this section we shall generalize the results in §2 to the global
case. Let R be a Dedekind domain and K its quotient field. 3, is the
central simple K-algebra.

Let A¢ be order and L¥ an integral ideal. Let C(L¥)={x|€R,
xAiC L7}, It is clear that C(L#¥) is an ideal in R.
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LemMa 3.1. L is maximal if and only if C(Li)=p* and L; is
maximal, where p is prime in R.

Proof. 1t is clear by Lemma 1. 3.

ProposiTioN 3.1. If Li/ is a maximal left Ai-ideal thew LV is a
maximal right AN -ideal.

Proof. Let C(L¥)=p°. Then L} is a maximal right A}-ideal by
Proposition 2.1. Hence L#¥ is maximal in A’

ProrosiTION 3.2. Let Ai, A7 be of the same type. Then there exists
a unique maximal integral ideal D,

Proof. There exists an ideal D¥ in Af sucn that D;'= the distance
ideal of A} to A; for all p by Lemma 1.3. Itis clear that D is a unique
maximal integral ideal in AinAJ.

We shall call D/ the distance ideal of A to AJ.

COROLLARY 3.1. Let Ai, A/ be of the same type. For any integral
ideal A¥, we have AV’ =DiiB/, where BY is a normal two-sided A-ideal.

PROPOSITION 3.3. Di=(AA))" if and only if there exists ideal A7
such that AYA: (AAY) is a normal ideal in Ai (A).
We can define a path similarly to Definition 6.

DEFINITION 7’. Let A® AP be of the same type. The set of h-orders
A®=A" AY, oo A"=AP such that Ai=A L#+Y), Ait'=A"(Li#+Y) is called a
path of A" to AP and YL L#*' is the ideal of this path where L¥" is a

maximal left Ai-ideal.
It is clear that AJnAZ*! is an k-order for some p and Aj=Ag" for

q=F=p.

LEMMA 3.2. Let A% be an integral ideal. A¥ is expressed as a
characteristic product of maximal left ideals if and only if so is A, for
all p.

Proof. “Only if” part is clear from Lemma 3.1. Let {x| € R, Ax <
A} =popse - pge. If =1, “if part” is clear. We shall prove “if part”
by induction on #. Let Bi* be an integral ideal such that Bj'=A4;’ for
D=D1, Doy Doy, and Bit=Al for q==p,, -, p,-, and C¥/ an integral
ideal such that C¥/=A, C¥'=A} for g==p,. It is clear that A*=A*.
By assumption Bi* C* are expressed as a product of maximal ideals
and hence so is Ai/=B*CH,
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THEOREM 3.1. Let Ai, A/ be of the same type which satisfy the con-
dition that if A=A} then they are not minimal. Then there exists paths
of Ai to A4, and the ideals of shortest paths coincide with each other.

Proof. Let P#(p) be the ideal of shortest path of A} to A} and
Pii(py=A! if Al=A]. Then there exists a unique integral ideal P% in
AinA/ such tnat P}'=Pi(p) for all p. Pi/ is the ideal of a path of Af
to A’ by Lemma 3.2. Let A% be the ideal of path of Af to A/, Then
A =P}’BY(p) for all p. Let B/’ be a two-sided ideal in A’/ such that
B})=B’i(p), for all p, then A¥/=Pi/Bii, Hence P# is uniquely determined.

CorOLLARY 3.1. If A¥ is a product of maximal left ideals, then
Aii = PiiBii,

THEOREM 3.2. Let Ai, A7 be asin Theorem 3.1. Then every integral
ideal A¥ except finite number is a (characteristic) product of normal and
maximal left ideals. 7

From Theorem 2.3 and Lemma 3.2 we have

TurEOREM 3.3. Let Ai, A7 be of the same type which contain the same
h-order. Then every integral Ai, Ai-ideal is a product of normal and
maximal left ideals.

PROPOSITION 3.4. I[f D¥=(A/A#)~', then every Ai, Ai-ideal is a product
of normal and maximal left ideals.
It is clear from Poposition 2.7 and Lemma 3. 2.

ProrosITION 3.5. If Al is a non-minimal principal h-order for all p,
then every ome-sided integral ideal in A is a product of novmal and maxemal
one-sided ideals.

It is clear from Corollary 2. 2.

Finally we shall consider the uniqueness of representation as a
product.

DEFINITION 8. Let A, Bi'7 be integral ideals. If there exist integral
ideals L¥, L*" such that L¥|L%A¥ is isomorphic to L |L*'Bii as left
At-modle, then we call that AV is quasi-equivalent to B¥7. We shall denote
this relation by A¥ ,\7,3;’/.

From the definition we have

Lemva 3.3. If A#~Bi7, then A=A} is equivalent to BYY=AY
Sfor any p. l
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PROPOSITION 3.5. Let Ai7, Bi'" be maximal left ideals. Then L' ] L Ai
is isomorphic to L' |L¥' B/ for any integral ideals L, L% if and only
if AL, AL are maximal and A ==A}, BV ==\ for some p.

Proof. We assume A}, AY are maximal, and L¥, L*# are ideals.
Since A}’ is maximal in A}, the annihilator of AL/ A! is equal to N(A}).
It is clear that the annihlator of A;/A¥ is equal to A} for g=Fp.
Hence the annihilator of L#/L*¥A# is equal to Qu#(p), where Q «(p),=
N(A;) and Qn«(p)e=AL for p==q. Similarly we have the annihilator of
LY |L¥'Bi7 is equal to Qu(p). Hence L#/L¥A¥ and L#|L%'B¥# are
A?[Q\t(p)-module. Since those modules are simple and A?/Q +(p) is simple,
they are isomorphic. Conversely, we assume L#/L*#Ai/ and L*'/L! B¥7
are isomorphic. Since A}’ is maximal in A}, the annihilator M of
A;/ A is a maximal two-sided in AS. Furthermore by the assumption we
have Li'M p(L;i)"l-——(Lff’)M N(LEY. If we take L% =L4'Q.(p), then we
obtain Li'M (Li)~" = Ly" My(Ly")™ = L' N(AY) MNAL) (L"), Hence
M, =N YMN(AL)™, which implies Mj=N(A;") by [6], Theorem 2.1.
Therefore, A} is maximal by [5], Theorem 3.3. Hence A} is also maximal.

LEmMa 3.4. Let A¥, Bi'7 be maximal left ideals and Ai, AV be of
the same type. Then Aii ~Bi'7 if and only if AY==A% implies BY7 Ay
1
and converse.

Proof. “only if” part is clear from Lemma 3,3. We assume, A} ==
A}, Let M be a maximal two-sided A}-module contained in A’ and M’
contained in BfY. There exists an integral Af, A-ideal Ci##'. Since
C#M/(Ci")* is a maximal two-sided Ai-module in A}, Ci¥'M(Ci")'=
(NiYM(Ni")~t for some t. Let A=Q(p)'C# |Qi(p)!C#Bi'7 and B=A¢] Ail,
The annihilators of A and B are equal to S, where S,=M, S,=A; for
g==p. Since A and B are simple Ai-modules, they are isomorphic by
the same argument in the proof of Proposition 3.5.

COROLLARY 3.2. The left qusi-equivalent relation for maximal left
ideals is an equivalent relation. Aii~Bi'7 if and only if Aii~Bi'7,
where ~ is defined similarly to ~. '

‘LEmmA 3.5. Let A, B* be maximal. Then there exists maximal
left Ai-ideal B’ and maximal right N*-ideal A’ such that AB=B'A’, and
A~A, B=~PB.

I3 7
Proof. If Aif IzBfk, then we can take B’=A#/, A’=B/* Hence we

assume A"fl BJ*, Then there exist distinct prime ideals p, ¢ in R by
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Lemma 3.4 such that A}==A;, Bi*==A]. Let C be a maximal left AJ-
ideal such that C,=Bj*, C,=A] for p==¢g. Then (4B),=A,NC, for all .
Hence AB=AnCZC. By Proposition 2.9 we obtain A#B%#*=CD for
some integral ideal D. A;'B}*=C,D,=D,==A;. Hence, A¥ ~I~/D and
B*~C.

1

THEOREM 3.4. Let Aii be an integral ideal which is expressed as a
(characteristic) product of normal and maximal left ideals. Then the
number of maximal left ideals which appear in this expression is the same
and those ideals are uniquely detemined and commutative up to left quasi-
equivalent.

Proof. Let A¥=L|L,-- L,; the L’s are maximal. Then Ai=L DL, >
LL,>-->DLL,-- L,=A" is a composition series of Ai{/A¥. Hence ¢ is
uniquely determined and {L.L,---L;/L,L,---L;,,} are unique as a left A‘-
module. Hence the theorem is true by Lemmas 3.3, 3.4 and 3.5.

From Theorem 2.5 we have

TuaeorREM 3.5. Let Aé7 be an integrval ideal. Then Ai/=B*C*, where
Bi* §s expressed as a product of normal and maximal one-sided ideals,
and C} is principal for all p and A*, A are locally isomorphic.

4. Ideal class.

We shall consider the ideal classes in %-orders following [4], p. 88.
We define equivalent relations of left ideals A/, B of A¢i and of A-
orders A7, A% and Al

DEFINITION 9. A/~ Bi* if there exists an elment ¢ in 3 such that
Ail=PBika, Ai~AF {f there exists & in 3 such that A*=alAia~'. A iB"k
if there exists two-sided regular ideal C# of A and an element & such
that A= CiiBi*a,

It is clear that those relations are equivalent ones. We can define
the classes of right ideals. The classes of left ideals correspond to those
for right ideals. By the same argument as in [4], p. 89, we have the
following proposition, however we give the proof for the completeness.

PROPOSITION 4.1. There exists a one-to-ome correspondence of classes
of h-orders which are of the same type as a fixed h-orvder Ai to the classes
@

of left Ai-ideals with respect to relation ~.

Proof. We assume A*=a~'Aia, Since A/, A* are of the same type,
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there exist ideals A, Bi* by Theorem 1.6. Then (B*) 'Bi*=AF=a~'Aa=
a~'(Ai)'Aiie. Hence B#*=Bi*a '(Ai))*Aia. Let C=B#*a '(A#¥)~*, then
CAiia(Bi*)~' = Bita~'Aict(B**)~*=Ai, Hence C is a two-sided regular ideal
of Ai by Corollary 1.2. Conversely, if B#*=CiiA#¥«, then A*=(B*)'Bik=
a~Y(Ai)(Ci-'Cii Al =a N,

THEOREM 4.1. Let R be the ring of integers, and K the field of
rationals. Then one-sided ideal classes of an h-order over R is finite, and
hence the isomorphic classes of h-orders which are of the same type is finite.

Proof. Let A/ be an h-order which belongs to &= {p,}*_,-block, and
@' = {p;} 7., the set of prime factors of the different of a maximal order
O containing A. Let P be a maximal one” among normal two-sided
ideal in A. If P does not divide any p; in ®VY®/, then P,=(Ar), and
P,=(Ar),=A, for g==7 by [4], p. 84, Satz 3. Hence P=Ar. If P divides
either p in ® or p’ in @, then P*#=pA or p’A’ for some p(p) by [6],
Theorem 2.2 and [4], p.89. By the assumption and [6], Theorems 1.2
and 6.3 there exists a finite number of %-orders in a maximal order
whith belongs to ®. Since the class number of maximal order in I is
finite, hence the class number of %-orders in X which are of the same
type is also finite. Therefore, we can find finite representations A% (j=

@

1, ---,t) of ideal class with respect to therelation ~ by Proposition 4. 1.
Let B be any ideal, then there exist a two-sided ideal Cé and a regular
element « in 3 snch that B#=CiiAi/a, We may assume that C# is a
normal ideal in Ai, Then Cii=P{1P} ... Ple:Q{r --- Qs by Theorem 1.4.
Let p=max{p(p)}. On the other hand we know the above argument
that P{® is a principal ideal generated by an element in R. Therefore,
{IP&Q5 A% 0<e;, f;<<p—1} can represnt any class of ideals with
respect to the relation ~, where P; is a maximal ideal dividing a prime
in {®'—-® AP} and Q; is maximal normal ideal in A dividing a prime
in {&—d'~P}. Hence the class number is finite.

REMARK 5. It is clear that if two A-orders are not of the same type,
then they are not isomorphic, and hence the number of isomorphic
classes of Z-orders in general is infinite.

REMARK 6. Let D, be the generalized quaternions. By [3], Theorem
3.2’ the number of isomorphic classes in D_, which are of the same

4) We call those ideals maximal normal ideals,
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type, in general, is larger than that of maximal orders, however the
latter coincides with the former in D.,.

5. Norm and different.

We shall use the same definitions as in [17, [4].
Let M be a finitely generated R-module with generator (u,, u,, -,
u,). Let
R, =au,+ - +a,u,=0@E=12, . ,mn)

be relations in M. We shall denote R(M) the R-module generated by
|a;;] where R; runs through all relations.

Let N be a finitely generated R-torsion module and N=N, DN, D--
SN,=(0) be a composition series of N. Let A(N;/N;,)={x| € R, xN;
N;.}, then A(N;/N;.) is a prime ideal in R. Then II A(N,;/N;,,) in
uniquely determined. By the usual argument (cf. [1] p. 261, [4] P. 79,
§4) we can prove R(N)=IIA(N;/N;,,).

DEFINITION 10. Let Af be an h-order and A a normal two-sided ideal.
We denote R(Ai]A#) by NA#.

LemMma 5.1. Let Q be a maximal normal two-sided ideal then NQ =
q” where q=QnNR.

Proof. If Q is maximal then ¢=QN R is prime and A, is a maximal
order. If @ is not maximal, Q"R=¢*. Since @, is the radical of A,,
t=1 In any case, since A/Q=(R/q)u, B D (R/Qus, NQ=¢q’.

LemMma 5.2. If (A#, Bi)=Ai then NAiBii=NA#NB,

Proof. Since AéiBii=BiiAii, A#Bii=Aiin B, Therefore, AJA#Bii=
AJAHDA B,

PrROPOSITION 5.1. Let A, B be a normal two-sided ideal in A. Then
NAB=NANB.

Proof. By Theorem 1.2. A=TIQ.(p,)% B=TQ.(p,)”:.. It is clear
from the construction of @,(p) that (QA(p), Qa(q))=A if p==q. Therefore,
the proposition is clear from Lemmas 5.1 and 5. 2.

We can naturally extend the definition of norm to the fractional
two-sided ideals and it satisties the relation in the proposition 5. 1.

Let A be an %-order belonging to ®-block and £ a maximal order
containing A. Let @’ be the set of prime ideals in R which divide the
disdriminant of Q. If p¢®VY®, then A,=Q, and p is unramified.
Therefore, A, is the different of Q,. If pe®VYY, there exists a unique
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maximal regular twosided ideal D(p) of A such that S(D(p))CR,, because
S(A,) <R, and regular two-sided ideals over R, are linearly ordered by
Theorem 1.2, where S( ) means the trace of = over K. Then there
exists a unique normal two-sided ideal D in A such that D;*=D(p) for
ped®VYP and D7'=A,=Q, for ¢ DVYP'. It is clear that Dis a unique
maximal normal two-sided ideal in A such that S(D-*)ZR.

THEOREM 5.1. (Different’s theorem). Normal maximal two-sided ideal
Q in A divides D if and only if Q is either ramified® or a second kind
prime ideal.

Proof. Let @ be a normal maximal ideal, and p=QNR. Then p=
Q°T and (@, T)=A by Theorem 2.2. If A,=Ru ® - ®Ru,, then
A, /pA,=R,/pRu, D--DR,/pR,u,. Hence for any element @ in A, the
regular representation over K of @ induces naturally the regular representa-
tion over R/p of @, If, e_>1 and a€QT, then a’€ pA,, and hence a@°=0.
Therefore, S(@) =(0), which implies S(@T)=0 (mod p). S@'~)S(p~'QT)=
PSQTYER. Hence Q*CD*and Q°'2D. If e=1, then p ¢ ® by [6],
Theorem 2.2. Hence A,=Q, and Q is a second kind prime ideal if Q|D,
and the converse is true by §1 and [4], p. 84, Satz 3. Finally we assume
Q|D. If p¢®, then we have proved the thorem. If pe ®, then @ is
ramified by [6], Theorem 2. 2.

DeriNITION 11.  Let 8 be the ideal in R generated by |S(a;a;)| where
a;s run through all n elements in an order A in 3 and [Z:K]l=n. We
call 8 the discriminant of A.

LemmMA 5.3. Let (u,, t,, -, #,) be a minimal basis of A, over R,,
then 6=|S(uu;)|.

By Proposition 5.1 and the proof of [4], p. 81, Satz 4, we have

LEMMA 5.4. Let A be a regular two-sided ideal of an h-order A, over
R,. If we have, for minimal basis (w,), (@;) of A, and A over R, respectively,

(@) = w)M, MeK,

then NA=|M|R,.

THEOREM 5.2. Let A be an h-order over R. A prime ideal p in R

divides 8 if and only if maximal normal two-sided ideal Q in A which
divides p is either ramified or a second kind prime ideal.

5) In k-order 4 we have p=Q%---Qf*t by Theorem 1.4, where the Q;s are
maximal normal two-sided ideals in 4. If ¢;>>2, then we call Q; is ramified.
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Proof. Let (uy, u,, -+, u,) be 2 minimal basis of A over R,. Then
it is well known that

(ﬁu Uys ﬁn) = (uu Uzy o+ ”n)(s(uiuj))_l

is a minimal basis of D={x| €3, S(xA,)ZR,}. Since DD, we obtain
for a minimal basis (w;) of D over R, that (w,, w,, -, w,)=(t, t, -,
@.)a;;), a;; € R,. Hence, (w,, -+, w,)=(u,, u,, -+ , u,)(S(uu;))"*(a;;). There-
fore, from Lemma 5.4 we have N(D;')=98"'|a;;|, and hence N(D,)=
la;;| =8 by the remark after Proposition 5.1. Let p be a factor of 8
and P a prime ideal in A such that PAnR=p. If P is unramified, then
A, is a maximal order by [6], Theorem 2.2. Hence P is second kind
by [4], p. 88, satz 2.
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