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Let R be a Dedekind domain and K the quotient field of R. Let ~ 
be a central simple K-algebra of finite dimension over K. By an order 
over R in~ we mean a subring A in~ such that A is a finitely generated 
R-module which spans ~ over K. We shall call A a hereditary order 
(briefly h-order) if A is a hereditary ring. 

The author has recently studied the structure theory in h-orders in 
[4] and [5]. In this note we shall determine h-orders in DT; DT 
=K+Ki+Kj+Kij, i2 =-1,j"=<r, and ij=-ji, K the field of rationals. 

We shall give, in §§ 1 and 2, a criterion for hereditarity of inter­
section of two maximal orders by means of the norm in Dn and we 
obtain the complete type of h-orders in DT. By using this criterion, in 
§ 3, we shall consider isomorphisms between h-orders in DT, and show 
that they are isomorphic if and only if they are locally isomorphic in 
Dm however this fact is not true in D_ 11 (see the difinition in § 3). 

In this note we shall denote the ring of rational integers by Z and 
the field of rational numbers by K. Let DT be a generalized quaternion. 

By [3], p. 185 we may assume that <r=P1P2• .. P1 , P;=4a;+3, P;'*Pj if 
i=Fj. 

Let A 0 =Z+Zi+Zj+Zij and A~=Zp+Zpi+Zpj+Zpij. Then it is 
clear that the radical N of AP con tains pAP, and N 1 pAP is nilpotent. 

Sorne parts of the following lemmas are already known (cf. [3], 
p. 160, Satz 1). 

LEMMA 1.1. If P=F2, and P%<r, then A~/ PA~ is a simple ring which 

is not a field. Hence A~ is a maximal order. 

Proaf. Let x=al +a2i+a3 j +ah; a; E Z be inN. If a1$0 (mod pZP), 

Almost results of this note were proved first by direct computations and 
presented to the Amer. Math. Soc. in August in 1962. However, recently the 
author has found structure theorems of h-order in [5], and the note is rewritten 
along this line. 



72 M.HARADA 

then we may assume a1 =1. Since xi+ix=2(-a2 +i)EN, (-a2 +i)(-a2 -i) 
=a~+ 1 E N r1 Z. Renee, (1 + a2i) = - (- a2 + i) i( E N) is idempotent modulo 

pAP, which is a contradiction. By using of the similar method, we obtain 
a1=0 (modpZP) for i=2,3,4 since p)(<r and hence N=pA~. Since 
A~/ PA~ is not commutative and [A~! PA~: Z/P]=4, A~jpA~ is a simple 
ring which is not a field. Since N=pA~ is A~-projective, A~ is hereditary 
by [4], Lemma 3. 6. Therefore, A~ is maximal by [4], Corollary 3. 5. 

LEMMA 1. 2. lf p 1 <r, then A~/ pA~ is a field, and hence, A~ is a unique 
maximal arder in DT. 

Pro of. Since l =<rE pZ P, N'= pZ P + Z Pj + Z Pij CN. By assumption 
on <r, -1 is not a quadratic residue modulo p. Renee, A~/ N' is a field, 
and N'=N. It is clear that N=jA~. Therefore, A~ is a unique maximal 
order in DT by [1], Theorem 3. 11. 

Put A 1 =Z+Zi+Zj+Zt; t=t(1+i+j+ij) for <r=-1 (mod 4), and 
A 1'=Z+Zi+Zh+Zl; h=t(i+j), l=t(1+ij) for <r=+1 (mod 4) (cf. [3], 
p. 159). 

LEMMA 1. 3. A~ is a unique maximal arder over Z 2 in D" and Af j2A~' 
is a simple ring which is not a field. Hence, A~' is also a maximal arder 
in DT. 

Proof. 1) <r=-1 (mod 4). It is clear that (1+i)A~ is contained in 
N. Let e1 =t, e2 =1+t (mod N), respectively. Then we have e~=e2 , 

e~=eu and e1e2-e2el=l. Therefore, (1+i)A~=N and A§/Nis a division 
ring. Renee, A~ is a unique maximal order over Z 2 • 

2) <r=1 (mod 4). Let x=a1 +a~i +a,h+ai be in N/2A~'; a, E Z. 
Then xi+ix=2(a1-a2)+a3 +a.iEN. If a,$0 (mod N), (1+(a4 /a,)i) 2 

=1-(a4 /a,)2 =Ü (modN). Renee /(1+i)-(1+i)h=1EN, whichis a con­
tradition. Similarly, we obtain a1=0 (mod N) for all i. Therefore, 
N =2A~' and A~'/ N is a simple ring which is not a field. 

THEOREM 1. 1. Every nonmaximal h-arder over ZP in D" is a minimal 
and hence principal!) h-arder, and is written as an intersection of two 
maximal orders, and they are isomorphic. The number of nonmaximal 
h-orders in a maximal or der is equal to (1 + p) or O. 

Proof. If there exist non-maximal h-orders in D"' then P=J=o2 for 
<r- -1 (mod 4) and p% 'T for any case. In this case we have by the 
abovelemmasthatB/N=À2 for any maximal order Bandits radical N, 

1) See the definition in [5], §§ 1 and 4. 
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where ~ is a division ring. Therefore, nonmaximal h-order is minimal 
by [5], Theorem 3. 2, and is written as an intersection of two maximal 
orders by [ 4], Theorem 3. 3. The rest of the theorem is true by [5], 
Theorems 4. 2 and 6. 1. 

Let iP be the completion of ZP with respect to pZP and K the 

quotient field of iP. Let B be .a maximal order over ZP in Dn then 
Ê=B&;!ZP is a maximal order in ÎJT by [1], Proposition 2. 5, and which 
is isomorphic to a matrix ring over a unique maximal order in a division 
ring by [2], p. 100, Satz 12. 

LEMMA 1.4. If P=2, <r=-1 (mod4) or .PI<r, then ÎJT=DT@Kis a 
division ring. In other cases, ÎJT is a matrix ring over K of degree two. 

Proof. If p and <r satisfy the first condition of the lemma then 
there exists a unique maximal order B over ZP in DT such that BI N is 
a di vision ring by Lem mas 1. 2 and 1. 3. Renee B 1 N = B 1 N is also a 
division ring. Since B is a maximal order in Dn ÎJT is a division ring. 
In other cases DT contains at least two maximal orders by Leammas 1. 1 
and 1. 3 and [ 4], Theorem 3. 2. Renee, DT is not a division ring. 

Si nee every maximal order B over Z P is isomorphic by an inner­
automorphism, every h-order A is written as A=Brvx-'Ba, and A is 
isomorphic to an h-order contained in a maximal order which contains 
A~. Renee, we may assume B~ A~. 

Let a' =ai +a~u+a~v+a~w; {1, u, v, w} is a base of DT over K. Then 
we can write a'=aa, where aEK, a=a,+a2u+a3v+a.w, and (au a2 , a3 , a.) 
=1. We shall call such an element "normalized". Since A=Bf\a'-'Ba' 
=Bf\a-'Ba, we may assume that a is normalized if we consider a form 
A=Bf\a-'Ba. If a'=aa; aEZ, a normalized, we always assume a>O. 

We define 

for a=a+bi +cj +dij in DT. 
We note that if P='t=2, then AJ,=A~' =A~. 
Now, we can prove the following theorem: 

THEOREM 1. 2. Let A be an h-arder over ZP in DT and a=a+bi+cj 
+dt, (a'=a' +b'i+c'h+d'l) such that N(a)=pq, (p, q)=1 (N(a')=pq', 
(p, q') = 1). Then A is isomorphic to one of the following forms: 

Case 1. P=2, <r=-1 (mod 4) A=Z2+Zi+Z2j+Zi=A~ (unique maxi­
mal), 
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Case 2. P=2, '~"=1 (mod 4) a) A=Z2+Zi+Z2h+Zi=A~' (maximal) 
b) A=A~' f\a'- 1Afa', 

Case 3. Pl'~" A=Zp+Zi+Zpj+Zij=A~ (unique maxi­
mal) 

Case 4. p =f= 2, p% '~'" a) A= A~ (maximal) 
b) A= Ao f\a-lAoa = (Ao f\ a'-lAoa'-1) 

'P p p p ' 

and those types are h-orders. In cases 2) and 4) we assume that (3, (3' are 
normalized with respect to basis 1, i, j, ij and 1, i, h, l, respective/y. Then 
F=A~f\{3- 1A~ (=A~' f\{3'- 1A~'(3') is a nonmaximal h-arder if and only if 
N(f3)=pq', (p, q')=1, (N(f3')=2q", (2, q")=1), where t=t(1+i+j+ij), 

h=t(i+j) and l=t(1+ij). 

Proof. Let A be an h-order. In cases 1) and 3) there exists a 
unique maximal order in DT by Lemmas 1. 2 and 1. 3. Renee A is the 
maximal order, we have already shown that types 2, a) and 4, a) are 
maximal. Thus, we may assume that A is not maximal. Then 
A=Bf\a!1Ba1 by [5], Proposition 6.3, where aî=Pu; Bis one of 1,a) 
and 4, a), and u is unit in B. Renee N(a1)2 =N(aî)=p2N(u). Since 
N(ry)EZPforallryEB,N(u) isaunitin ZP. Therefore, N(a1)=pq. Next, 
we assume F=A~f\{3- 1A~(3 is an h-order. Then A~f\{3- 1A;;f3=A~f\a!1A~a1 

from the above argument. By [4], Theorem 3. 3 we obtain (3- 1A~(3 

=a11 A~a1 . Renee, a 1{3- 1 A~ (or (3a:; 1 A~) is a two-sided ideal in A~. 

Therefore, a1(3- 1A~=ptA~, f>O byLemma 1.1, whichimpliesa1(3- 1 =ptu'; u' 

a unit in AP. Si nee a 1 is normalized, t =O. Therefore, N(f3) = N( al)N(u') 
=Pq', (p, q')=l. We have the case 2 by the similar argument. In order 
to complete the proof of the theorem, it is sufficient to prove the "if 
part". We know by Lemma 1. 4 that bT=(K)2 • Since the norm of 
regular representation of (3 is equal to N((3) 2, N(f3) is equal to the deter­
minant of (3 as an element in (K) 2 • It is clear that F=Bf\(3-1B(3, and 
B=(T)2 , where B is equal to A~ or Af. and T= ZP. We can find unit 

elements U 1 , U2 in B such that U1f3U 2 =(b1 0)' =(3', since f3E B=(T)2 • Renee 
0 b2 

U2 1Fu2 =(ZP pZP)' which is an h-order with radical (PZP pZp)· There-
ZP zp zp pzp 

fore, F is an h-order by [5], Lemma 1.1. 
W e are only interested in the cases 2, b) and 4, b) in Theo rem 1. 2. 

In those cases we shaH consider a condition under which the intersection 
of two maximal orders is an h-order. 

Let B=A~' or A;. Then every maximal order is written as a-1Ba. 
A=a-:;1Ba1f\a2 1Ba2 is an h-order i.e. (a1a 2)-1Ba1a 2 f\B is an h-order if 
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and only if a 1a2=(alii2-d2))/N(a2)=(a/N(a2))(3; aEZ, (3 normalized in 

B, and N(f3)=pq, (p, q)=1, where the (a,, b,, c,, d1)'s are coefficients of a,. 

N(a1a2 1 ) =N(a1)N(a2)- 1 =N(a2)-2a2N(/3), and hence a2N(f3) = Pe1+8 2q1q2, where 

N(a,)=p8 ;q1• If Ais an h-order, then N(f3)=pq. Renee, e1+e2=1 (mod 2). 

W e assume e1 > e2 • Sin ce a 1 = (a/ N( a 2) )ry, 'Y E B, if al is normalized, 
e1 =l+e2 • Conversely, if el =e2+1 and a 1(iX2-d2)=0 (mod pe2B) then A 

is a nonmaximal h-order. Thus we have, 

PROPOSITION 1. 2. Let p be as in 2) and 4) in Theorem 1. 2. B=A~' 

if P=2 and B=A! if P=F2, and a; be normalized elements in B with 
coefficients (a,, b;, c;, d,) such that N(a;)=pe;q,, (p, q,)=l. Then aï 1Ba1 
0a21Ba2 is a nonmaximal h-order if and only if e1-e22)=1 and either 

a 1(iX2-d2)=0 (mod Pe2B) if el>e2 or alril-dl) (mod p•1B) if e1<e2. 

2. H-orders over Z in DT. 

In this section we shall consider h-orders over Z in D, . By the 

obervations in [ 4], Section 7 there exists a fini te set P of prime numbers 

P; for any h-order A over Z such that AP is a nonmaximal h-order for 
pEP and Aq is a maximal order for q ~P. If an h-order A satisfies the 

above conditions for a given P we shall call that A belongs to P-block. 

We note that P consists of prime integers which appear in 2) and 

4) in Theorem 1. 2. 
Let A be an h-order which belongs to P-block. Then AP is an 

intersection of two maximal orders in DT for PEP by Theorem 1. 1. 

Hence we have by [4], Theorem 7. 2 

THEOREM 2.1. Let P= {Pu"·,Pn} and A an h-arder belonging to 
P-block. Then there exist precise/y 2n maximal orders B, containing A 
and 2n minimal h-orders F; containing A in DT. For any h-order H con­
taining AH is written unique/y as H=VjBij when H=t=A, and H has 2"'- 1 

representations as H=B;1(\B;2 when H belongs to P'= {P;1,P;2, .. ·,P;m} and 
m=t=O. Furthermore, there exist 3n h-orders containing A in Dr. 

From [5], Theorems 1. 2 and 6. 3 we have 

THEOREM 2. 2. Let B be a maximal arder zn DT and P be a set of 
prime integers which are neither divisors of rr nor even for rr=1 (mod 4). 
For any given nonmaximal h-orders A(p) in B P, p E P, there exists a unique 

2) e1-e2 means the difference of larger one and smaller one. 
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h-orders A in B. such that AP =A(p) for pEP and Aq is maximal for 
q ~ P, and hence A belongs to P-block. Therefore, there exist precise! y 
Il1~ 1(p, + 1) h-orders in B which belong to P. 

If we assume that B is principal, then any two maximal orders are 
isomorphic under sorne inner-automorphism. Renee, if we want to find 
a condition under which an intersection of two maximal order is an 
h-order, we may restrict that one of those is equal to A1 or A 11 • Let 
B=A1 or A 11 • It is clear that A=Bf\a-1Ba is an h-order if and only 
if AP=Bpf\a- 1Bp is an h-order for all p by [1], p. 8, Corollary. Thus, 
we have from Theorem 1. 2. 

PROPOSITION 2. 1. Let Q be the set of prime factors of 'T and a a 
normalized element in A 1 or A'' such that N(a)=P1e1P/2···Pnen. For 'T=-1 
(mod 4) A'f\a-'A1a is a nonmaximal h-order if and only if e,=1 for Pd Q 
and there exists at !east one odd prime p ~ Q. For 'T=1 (mod 4) 
A1' f\a-'A''a is a nonmaximal h-order if and only if e,=1 for p, ~ Q and 
there exists at !east one prime Pi~ Q. 

3. lsomorphisms of h-orders. 

In this section we shall study isomorphisms of h-orders in D±1 • 

Let A, A' be h-orders in D". If AP=A~ for all p, we call "A and A' 
are locally isomorphic". Then we have from Theorem 1. 1 for any 'T 

THEOREM 3. 1. Let A, A' be h-orders in Dr. A and A' are locally 
isomorphic if and only if A and A' belong to the same block. 

Now we shaH consider isomorphisms of h-orders in {p}-block in D_1 • 

Since two maximal orders in D_ 1 are isomorphic, we may consider 
h-orders in the maximal order A 1 =Z+Zi+Zj+Zt. We note that every 
isomorphism is given by an inner-automorphism in D_1 , and every h-order 
in {P}-blockwhichiscontainedinA1 is written as A 1 f\a- 1A 1a, N(a)=p, 
and .a E A0 • Furthermore, we note the following facts: Let ry be a nor-

. 
malized element in A0 such that N(ry)=2nq, (2, q)=l, then n<:2, [6] p. 113, 
Satz 172. 

We shall decide all h-orders in {p}-block in D_ 1 which are contained 
in A1 and which are conjugate to a fixed h-order F in A', which means 
that we shall decide an isomorphic class in A1 • It is clear that those 
isomorphisms are induced by normalized element ry, and hence N(ry) 
=2nq, n<:2. 

We shall denote A' by A and A1 f\a- 1A 1a by F. 
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If ry- 1(Ai\a- 1Aa)ry=Ai\,8- 1A,8, then ry- 1Aqry=Aq for q=F p, and 

ry- 1Ap'Y 1\ (ary)- 1AP(ary) =Api\,8- 1Atfl where (3 E A 0 and N(,8) =p. Renee by 
[4], Theorem 3. 3 we have two cases: 

( 1) 

( 2) 

A= (ary)- 1Aary, ry- 1Ary = ,e- 1A,8, 

A = ry- 1Ary, ,e- 1A(3 = (ary)- 1Aary. 

Let ry be a normalized element in A0 which satisfies (1). Since N(.S)=p, 
N(ry) =2np by Proposition 1. 2. Let ary=2te"l where e E Z such that (e, 2)=1 

and "7 is a normalized element in A0• Since A=(ary)- 1A(ary), N(7J)=2t', 

and bence we know e = p artd 2t +t'= n. Furthermore, since 'Y= zta"l 3) is 
normalized, t=O. Therefore, ry=a7J and N(7J)=2n. Conversely if ry=a7J, 
then ry- 1FryCA. Therefore ry- 1Fry is an h-order in A. 

Next let ry' be a normalized element in A 0 as in (2). Since A=ry'- 1Ary', 
N(ry')=2n. Conversely if N(ry')=2n, then A=ry'- 1Ary'. Therefore, ry'- 1Fry' 

is also an h-order in A. 
By <P(a) we denote the set of normalized elements in A0 which induce 

conjugate h-orders to F in A. Then <P(a) consists of ali normalized 
elements in A 0 which are either of 

( 3) N(ry) =zn for n<2 

or expressed as 

( 4) ry=a"l where "7 is a normalized element in A such that N(7J)=2n' for 

n'<2. 

Let 'l'(a)={'YI E<P(a), ry- 1Fry=F}. If 'Y- 1Fry=ry'- 1Fry' for ry,ry'E<P(a), 

then ryry'- 1 =e/N(ry')f; where f;E<P(a) and eEZ such that e!;=ryry-'. Con­
versely if ry=f;ry' for !; E <P(a), then ry- 1Fry=ry'- 1Fry'. Therefore, the 
number of conjugate h-orders to Fin A is equal to #(<P(a))/#('l'(a)), where 
#( ) means the number of elements in ( ). 

Now, we shall decide #(<P(a)). In order to that we shall divide 
elements of <P( a) into two parts according to (3), and ( 4). 

Let 'TJ be a normalized element in A0 such that N(7J)=2n for n<2. 
There exist 48 elements "7 by [6], p. 113, Satz 172. 

Let 'TJ be as above. We denote the coefficients of a, 'TJ, and a17 by 
(a, b, c, d), (xu X 2 , X 2 , x.) and (Xu X 2 , X3 , X 4), respectively. Then we 
have 

3) a means the conjugate element of a. 
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a b c d xl xl 
-b a d -c Xz x2 

(5) 
-c-d b x3 x3 a 

-d c -b a x. x. 

Since the determinant of the matrix of (5) is equal to P2 and 7J is nor­
malized, 2% X, for ali i. Therefore, a7J is normalized, since N(a7J)=2np, 

n<:2. Thus we have 

LEMMA 3.1. #(<l>(a))=98 for any normalized element in A 0• 

Now, we shali consider #(W(a)). We denote the sets of elements of 
<l>(a) which satisfy (3) and (4) by <1>1(a) and <I>z(a), respectively. It is 
clear that <l>(a)=<l>,(a)v<l>2(a) and <I>tCa)f\<l>z(a)=</J. 

Let ryEW,(a)=<l>,(a)/\W(a) and ry=a7J with N('IJ)=2n, n<:2. Let a7Ja-' 
=(efp)f;, where eEZ, is normalized. Since ry- 1Fry=F, (a'TJ)-'Aa7J=A. 
Theref ore, N( S) = 2m by Theo rem 1. 2, and he nee e = 2•cn-m) p. Th us 
'IJ=2tcn-m)a-'f;a. Since 'IJ is normalized and N(a)=p, 7J=a-'f;a, and n=m. 

Conversely, if 'IJ=a-'f;a, then (a'IJ)-'Fa'IJ=F. Thus we obtain that #(<l>,(a)) 

is equal to the number of normalized elements s in A 0 such that a-'f;a 
is normalized and N(s)=2n for n<:2. Let a-'f;a=(1jp)af;a=(ejp)f;, where 

e, f; are as above. Let (xu x2, Xao x.), (Xu x2, x3, x.) be the coefficients 
of s and af;a. Then 

az-bz-cz-dz -2ab -2ac -2ad xl x, 
2ab az-bz+cz+dz -2bc -2bd Xz x2 

( 6) 
2ac -2bc az+bz-cz+dz -2cd X a x3 
2ad -2bd -2cd az+bz+cz-dz x. x. 

Since the determinant of matrix in (6) is equal to p• and s is normalized, 
2 X X, for all i. Renee a-'f;a is normalized if and only if af;a=O 

(mod pA0 ), which is equivalent to ax,-bx2-CX3-dx.=O (mod p) since N(a) 

=p. On the other hand, since s is normalized and N(t) =2n for n<:2, 

/X;/<:1 for ali i. Furthermore, /ax1-bx2-CX3-dx.l<:lal +/bi+ le/+ /dl 

< a2 + b2 + c2 + d2 = p if p =F 3. Therefore, 

( 7) 

If /x;/ =1 for all i, then 0=(ax,-bx2-CX3-dx,)"=P+2e, where eEZ, 
which is a contradiction. Renee N(s) = 1 or 2 if p =F 3. Therefore, either 
three or two of the x/s are equal to zero. Thus we obtain 
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LEMMA 3. 2. #('l"1 (a)) is equal to the number of occasins for a that 
a coefficient of a is zero or the absolute values of two coefficients of a 
are the same, except P=3 and two of coefficients are zero. Hence #('l"( a)) 

=0, 2, 4 or 6 except the following special cases. If P=3, #(W(a))=12 and 
if two of coefficients are zero, then #('Vla))=8. 

Finally, we shall consider #(<l>z(a)), where W.(a)=<l>.(a)II'V(a). Let 
ryE <Pz( a) and arya- 1 =(ef p)!; where arya=e!;. Then N(f;) =2n since a- 1Aa 

=(ary)-'Aary. Hence Pie. Conversely, if ryE <Pia) and Pie, then ryE'l"z(a). 
Hence for ryE <l>zC a), ryE 'l'z( a) if and only if 

(8) 

Let ry=x1 +x2i +xd +x4ij, then (8) is equal to 

a2 +b2 ad+bc bd-ac X2 

(9) be-ad a2 +c2 ab+cd X3 = 0 (mod p) 

ac+bd cd+ab a2 +d2 X 4 

Since N(a)=p, we may assume a2 +b2 $0 (mod p). Then X 2 =Ax3 +Bx4 

(mod p) is solutions of (9) where X3 , X4 =0, ±1 and A=-(ad+bc)f(a2 +b2), 

B= -(bd-ac)f(a2 +b2 ) (mod p). We may assume that A, B are integers 
whose absolute values are equal to or less than (p-1)/2. We first note 
that the following cases do not appear: 

a) 

b) 

A= B = 0, 
A = 0, 1 B 1 = 1 or 1 A 1 = 1, B = 0 . 

Noting the above remark and N(ry)=2n for n<:Z, we can check 
easily that 

LEMMA 3. 3. #(Wz(a)) is equal to the following: 

I) 2 if lAI, IBI=!=O, 1 and IAI-IB!:;>2, 

II) 4 if lAI= IBI, lAI, IBI=!=O, 1 and lAI+ IBI=!=P-1, 
or if lAI =1, or IBI =1 and IAI-IBI:;>2, 

III) 6 if IAI-IBI =1, 
IV) 8 if P=!=3, !Al= IBI =1 

or if lAI= !BI =1 and lAI+ !BI =P-1 
or if !AliBI =0 and IAI-IBI:;>2, 

V) 12 if P=3, 

where A= -(ad +bc)f(a2 +b2), B= -(bd-ac)f(a2 +b2) if a2 +b2$0 (mod p), 
and A= -(ab+cd)f(a2 +c2), B= -(bc-ad)f(a2 +c2) if a2 +c2$0 (mod p), 
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and A= -(ac+bd)j(a2 +d2) B= -(cd-ab)/(a2 +d2 ) if a2 +d2$0 (mod p), 
and a=a+bi+cj+dij with N(a)=p. 

Since . #(<P(a))=98 and #('l'(a))=#('l'1(a))+#('l'ia)) we have from 
Lemmas 3. 1, 3. 2, and 3. 3 

THEOREM 3. 2. Let F be an h-arder in D_ 1 which belongs to {P} -black, 
and A a maximal arder containing F. Then the number of conjugale 
h-orders to F in A is equal to 6, 8, 12, 16, 24, or 48 if p =F 3. If p = 3 
it is equal ta 4. 

THEOREM 3. 3. Any pair of two h-orders in D_1 belonging ta {P}­
black is isomorphic if and anly if P=3, 5, 7, 11 or 23. 

Proof. Since any pair of two maximal order is isomorphic, we may 
consider h-orders in a maximal order A in D_l" The number of h-orders 
of {p}-block in A is equal to P+1 by Theorem 2.1. If P=3, then the 
theorem is true by Theorem 3. 2. We put a=1 +i +2j +6ij for P=47, 
then the number of conjugate h-orders to An a- 1Aa in A is less than 
48 by Lemmas 3. 1, 3. 2 and 3. 3. Si milady, let a= 1 + 2i, 1 + i + j + 2ij, 
1+i+3ij and 3+3i+2}+ij for P=5, 7, 11 and 23, respectively. Then 
the number of conjugate h-orders to Ana- 1Aa in A is equal to P+l. 

Using the same argument as above we have 

THEOREM 3. 3' If {Pu P2 ,-··,P,.} are large enough, then there exist 
always h-orders in {Pu···,P,.} -black in D_1 which are not ismorphic. 

REMARK 1. Let a=1+3i+5j+6ij, then the number of conjugate 
h-orders to Ana-lAa in A is equal to 48. 

REMARK 2. F=Ana- 1Aa has exactly 16 h-orders in A which are 
conjugate to F if only if abcd =F 0 and two of la 1, 1 b 1, 1 c 1 and 1 d 1 are 
not the same, and III) is satisfied, when a=a+bi+ij+dij with N(a)=p. 

Finally, we shall consider the same problem in D+l =(K)2 • Let A=(Z)2 , 

then F= (Z lZ) is an h-order in A which belongs to {Pu P2 ,-··,p,.} -block, 
z z/ 

where l= Îip,, and FP=(ZP pZP);P=P,. Let a=(1 i), i=O,. .. ,p-1, and 
i=l z z 0 1 

p p 

ap=(~ Ô} Then {ai 1FPa,H=o consists of all non-maximal h-orders in 

AP. Furthermore, we note that for unit elements flu (32 in AP f3! 1F j11 

=fJ21FPfJ2 if and only if fJ1fJ2 1 is a unit in FP by [5], Lemma 6.1. Renee 

if fJ1fJ2 1 =(~ ~)· then fJ! 1Fp(31 =fJ21F j12 if and only if b=O (mod PZ). 
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Let F' be an h-order in A belonging to (P,···,Pn)-block such that 

F~1 =(1 j,)-'Fp1(1 j 1) for' 1<i<s, and O<j,<p1-1, and F~j=(O 1)-' 
Oi 01 10 

FPj(~ 5) for s+1 <j<n. Let a=(~~) in B such that a=;=~,h and 

ad-bc=l. Then we obtain from the above remark that a-'Fpp 

=(~ 5r' FPj(~ 6) since a=O (mod pj) for s+1<j<n, and a-'Fp1a 

=(5 f) _, Ap•(6 {•) if and only if b=aj1 (mod p1) for 1<i<s. We can 

find a solution b0 of x=aj, (mod p.) (?=1,-··,s) such that (a, b0)=1 since 

if b, is a solution of x=j1 (mod p,) (i=l,-··,s), then b0 =ab, + Îip,. Renee 
i=l 

there exist integers b0 , d0 such that ad0 -C0b0 =1. Therefore, if we take 

ao=(a b0), then a-'Fa=F'. Thus we obtain 
Co do 

THEOREM 3. 4.4) Any pair of two h-orders zn a maximal arder A in 
D, which belong to the same black is isomorphic under some innerautomor­
phism in A and hence, any pair of two h-orders of the same type is 
isomorphic. 
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4) Added in proof. This theorem is generalized easily by Corollary to 
Theorem 4. 7 of A. Brumer ; The structure of hereditary orders, Doctoral 
dissertation Princeton Univ., 1963. 

(Let R be a principal Dedekind domain and l:=Kn. Then for two h-oders 
A, r in 1: A and r are isomorphic if and only if A P and r P are isomorphic, 
where P runs through all prime ideals in R). 


