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Let R be a Dedekind domain and K the gnotient field of R. Let =
be a central simple K-algebra of finite dimension over K. By an order
over Rin = we mean a subring A in 2 such that A is a finitely generated
R-module which spans 3 over K. We shall call A a hereditary order
(briefly %-order) if A is a hereditary ring.

The author has recently studied the structure theory in %-orders in
[4] and [5]. In this note we shall determine h-orders in D.; D,
=K+Ki+Kj+Kij, i*=—1, j*==, and ij=—ji, K the field of rationals.

We shall give, in 8§81 and 2, a criterion for hereditarity of inter-
section of two maximal orders by means of the norm in D,, and we
obtain the complete type of /-orders in D,. By using this criterion, in
§3, we shall consider isomorphisms between #/-orders in D,, and show
that they are isomorphic if and only if they are locally isomorphic in
D,,, however this fact is not true in D_,, (see the difinition in § 3).

In this note we shall denote the ring of rational integers by Z and
the field of rational numbers by K. Let D. be a generalized quaternion.
By [3], p. 185 we may assume that v=p,p, - p;, p;=4a;+3, p;==p; if
i==j.

Let A’=Z+Zi+Zj+Zij and Ay=Z,+Zji+Z,j+Z,4j. Then it is
clear that the radical N of A, contains pA,, and N/pA , is nilpotent.

Some parts of the following lemmas are already known (cf. [3],
p. 160, Satz 1).

Lemma 1.1, If p==2, and p N}, then AY/pAS is a simple ring which
is not a field. Hence A is a maximal order.

Proof. Let x=a,+aji+a,j+aij; a;€Z be in N. If a,==0 (mod pZ,),

Almost results of this note were proved first by direct computations and
presented to the Amer. Math. Soc. in August in 1962. However, recently the
author has found structure theorems of %-order in [5], and the note is rewritten
along this line,



72 M. HARADA

then we may assume @,=1. Since xi+ix=2(—a,+7)€N, (—a,+i)(—a,—1)
=ag}+1€ NnZ. Hence, 1+ai)=—(—a,+i)i(€ N) is idempotent modulo
pA,, which is a contradiction. By using of the similar method, we obtain
;=0 (mod pZ,)) for i=2,3,4 since p v and hence N=pA;. Since
AY/pAS is not commutative and [Ay/pAS: Z/pl=4, Ad/pA; is a simple
ring which is not a field. Since N=pA; is A)-projective, A, is hereditary
by [4], Lemma 3.6. Therefore, A) is maximal by [4], Corollary 3.5.

LemMA 1.2. If pl«, then AY/pA)Y is a field, and hence, AS is a unique
maximal order in D,.

Proof. Since j'=ve€pZ,, N=pZ +Z,j+Zij<N. By assumption
on v, —1 is not a quadratic residue modulo p. Hence, AJ/N’ is a field,
and N'=N. Itis clear that N=jA). Therefore, A is a unique maximal
order in D. by [1], Theorem 3. 11.

Put A'=Z+Zi+Zj+27Zt; t=%(1+i+j+ij) for r=—1 (mod 4), and
AV =Z+Zi+Zh+Z1; h=%G+j), I=%1+ij) for v=+1 (mod 4) (cf. [3],
p. 159).

LevMa 1.3. A} is a unique maximal order over Z, in D, and A} |2AY
is a simple ring which is not a field. Hence, AY is also a maximal order
in D..

Proof. 1) r=—1 (mod 4). It is clear that (147)A} is contained in
N. Let e,=t, e,=1+t (mod N), respectively. Then we have ei=e¢,,
es=¢,, and ee¢,=e¢e,=1. Therefore, (1+i)A}=N and A}/N is a division
ring. Hence, A} is a unique maximal order over Z,.

2) 7=1 (mod 4). Let x=a,+aji+ah+al be in N/2AY; a;€Z.
Then xi+ix=2(a,—a)+a,+aieN. If a,=3=0 (mod N), A1+ (a,/a)i)’
=1-(a,/a,’=0 (mod N). Hence /[(1+i)— (1 +¢)h=1€ N, which is a con-
tradition. Similarly, we obtain ;=0 (mod N) for all i. Therefore,
N=2AY and AY/N is a simple ring which is not a field.

THEOREM 1.1. Every nonmaximal h-ovder over Z » in D, is a minimal
and hence principal® h-order, and is written as an intersection of two
maximal orvders, and they are isomorphic. The number of nonmaximal
h-orders in a maximal order is equal to (1+p) or O.

Proof. 1If there exist non-maximal %-orders in D,, then p==2 for
7=—1 (mod 4) and p ¥+ for any case. In this case we have by the
above lemmas that B/N=A, for any maximal order B and its radical N,

1) See the definition in [5], §81 and 4.
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where A is a division ring. Therefore, nonmaximal #%-order is minimal
by [5], Theorem 3.2, and is written as an intersection of two maximal
orders by [4], Theorem 3.3. The rest of the theorem is true by [5],
Theorems 4.2 and 6. 1.

Let Z , be the completion of Z, with respect to pZ , and K the
oiuotient field of Z b Let B be a maximal order over Z » in D,, then
B=B®Z, is a maximal order in D. by [1], Proposition 2.5, and which
is isomorphic to a matrix ring over a unique maximal order in a division
ring by [2], p. 100, Satz 12.

LemvA 1.4. If p=2, r=—1 (mod 4) or p|r, then D.=D.QK is a
division ring. In other cases, D, is a matrix ring over K of degree two.

Proof. If p and = satisfy the first condition of the lemma then
there exists a unique maximal order B over Z » in D, such that B/N is
a division ring by Lemmas 1.2 and 1.3. Hence B/NzB/N is also a
division ring. Since B is a maximal order in DT, IA)T is a division ring.
In other cases D, contains at least two maximal orders by Leammas 1.1
and 1.3 and [4], Theorem 3.2. Hence, D. is not a division ring.

Since every maximal order B over Z , is isomorphic by an inner-
automorphism, every #-order A is written as A=Bna'Ba, and A is
isomorphic to an A-order contained in a maximal order which contains
A}. Hence, we may assume B AJ. \

Let &’'=ai+atu+aw+aw; {1, u, v, w} is a base of D. over K. Then
we can write & =qq, where a € K, a=a, +au+ap+aw, and (a,, a,, a,, a,)
=1. We shall call such an element “normalized”. Since A=Bna'~'Ba’
=Bna™'Ba, we may assume that « is normalized if we consider a form
A=Bna'Ba, If o’ =aa; a€Z, o normalized, we always assume a >0.

We define

N@) = @+ b —(c*+d?)

for a=a+bi+cj+dij in D,.
We note that if p==2, then Al=AY=AJ.
Now, we can prove the following theorem :

THEOREM 1.2. Let A be an h-order over Z,in D. and a=a+bi+cj
+dt, (' =a' +Vi+ch+d'l) such that N(@)=pq, (p, 9)=1 (N)=pq,
(6, @)=1). Then A is isomorphic to one of the following forms:

Case 1. p=2, r=—1 (mod 4) A=Z,+Zji+7Z,j+Zt=A} (unique maxi-
mal), o
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Case 2. p=2, v==1 (mod 4) a) A=Z,+Zji+Z,h+Z,]l=A} (maximal)
b) A=A na'*Afe,

Case 3. p|v A=Zp+Zpi+ij+sz'j=Ag (unique maxi-
mal)
Case 4. p==2, p N7 a) A=A, (mazximal)

b) A=AnaAla=(A)na/~* Aja’ ),
and those types are h-orders. In cases 2) and 4) we assume that B, 8 are
normalized with respect to basis 1,1, 7,1 and 1,1, h, I, respectively. Then
F=ANB"AB (=AY nBAYB) is a nonmaximal h-order if and only if
NB)=pq', (p,d)=1, (N(B)=29", (2,¢")=1), where t=3%(1+i+j+ij),
h=3%(G+7) and I=%14+17).

Proof. Let A be an h-order. In cases 1) and 3) there exists a
unique maximal order in D, by Lemmas 1.2 and 1.3. Hence A is the
maximal order, we have already shown that types 2,a) and 4,a) are
maximal. Thus, we may assume that A is not maximal. Then
A~ Bnagr'Ba, by [5], Proposition 6.3, where af=pu; B is one of 1,a)
and 4,a), and # is unit in B. Hence N(«a,)*=N(a?) =p°N(u). Since
N(v)e Z, for all y€ B, N(«) is a unit in Z,. Therefore, N(a,)=pq. Next,
we assume F=AJNB'AJBis an k-order. Then AjnB'A;B=A)nart A,
from the above argument. By [4], Theorem 3.3 we obtain B8'A}8
=ar*Ale,. Hence, @B A (or Bar' A% is a two-sided ideal in Aj.
Therefore, a,87*A)=p*AS, >0 by Lemma 1. 1, which implies @,8~'=p'u’; u’
aunitin A . Since «, is normalized, #=0. Therefore, N(B)=N(a)Nw")
=pq’, (p, ¢)=1. We have the case 2 by the similar argument. In order
to complete the proof of the theorem, it is sufficient to prove the “if
part”. We know by Lemma 1.4 that D,=(K),. Since the norm of
regular representation of 8 is equal to N(B) N(B) is equal to the deter-
minant of @ as an element in (K),. It is clear that F‘———ZAB/\,G"‘EB, and
B=(T),, where B is equal to A} or AY, and T~ VA ,- We can find unit

elements u,, u, in B such that uﬁu;(% 2) =@, since B€ B=(T),. Hence
2

uz Fu,= (Z , VZ 1:>’ which is an %-order with radical <pZ » PZ p). There-
z, Z, Z, vz,

fore, F is an h-order by [5], Lemma 1.1.

We are only interested in the cases 2,b) and 4,b) in Theorem 1. 2.
In those cases we shall consider a condition under which the intersection
of two maximal orders is an /-order.

Let B=A} or A.. Then every maximal order is written as a-'Ba.
A=a7'Ba,naz'Ba, is an h-order i.e. (@) 'Baa,nB is an A-order if
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and only if aa,=(a(a,—d,)/N,)=(a/N(,)B; a€Z, 8 normalized in
B, and N(B)=pq, (p, q)=1, where the (a;, b;, ¢;, d;)’s are coefficients of «;.
N(a,a;Y)=N(a,))N(a,) ' =N(&,)*a*N(B), and hence a’N(B)=p‘1**q,q,, where
N(a,)=p%q;. If Ais an k-order, then N(8)=pq. Hence, ¢,+¢,=1 (mod 2).
We assume e, >e,. Since a,=(a/N(@,))v, v€B, if «, is normalized,
e,=1+e¢,. Conversely, if ¢,=¢,+1 and a,(@,—d,)=0 (mod p*B) then A
is a nonmaximal #-order. Thus we have,

PROPOSITION 1.2. Let p be as in 2) and 4) in Theorem 1.2. B=AY
if p=2 and B=A) if p==2, and &; be normalized elements in B with
coefficients (a;, b;, ¢;, d;) such that N(ct;)=piq;, (p, q;)=1. Then o7'Ba,
Nnaz'Ba, is a nonmaximal h-order if and only if e,~e,>=1 and either
a(@,—d,)=0 (mod p*:B) if e,_>e, or a(a,—d,) (mod p"'B) if e,<e,.

2. H-orders over Z in D,.

In this section we shall consider %-orders over Z in D.. By the
obervations in [4], Section 7 there exists a finite set P of prime numbers
p; for any h-order A over Z such that A, is a nonmaximal %-order for
p€P and A, is a maximal order for ¢ ¢ P. If an k-order A satisfies the
above conditions for a given P we shall call that A belongs to P-block.

We note that P consists of prime integers which appear in 2) and
4) in Theorem 1.2.

Let A be an #A-order which belongs to P-block. Then A , 1s an
intersection of two maximal orders in D, for pe€ P by Theorem 1.1.
Hence we have by [4], Theorem 7.2

THEOREM 2.1. Let P={p,,-,p.} and A an h-order belonging to
P-block. Then there exist precisely 2" maximal orders B; containing A
and 2n minimal h-orders F; containing A in D.. For any h-order H con-
taining A H is written uniquely as H=\J;B;; when H== A, and H has 2"
representations as H=B; N B;, when H belongs to P'={p;,ps,,p;,} and
m==0. Furthermore, there exist 3" h-orders containing A in D..

From [5], Theorems 1.2 and 6.3 we have

THEOREM 2.2. Let B be a maximal order in D. and P be a set of
prime integers which arve weither divisors of « nor evem for v=1 (mod 4).
For any given nonmaximal h-orders A(p) in B,, p€ P, there exists a unique

2) ey;~e; means the difference of larger one and smaller one.
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h-orders A in B . such that ApzA( p) for peP and A, is maximal for
q& P, and hence A belongs to P-block. Therefore, there exist precisely
»_(p;+1) h-orders in B which belong to P.

If we assume that B is principal, then any two maximal orders are
isomorphic under some inner-automorphism. Hence, if we want to find
a condition under which an intersection of two maximal order is an
h-order, we may restrict that one of those is equal to A' or AY. Let
B=A' or AY. It is clear that A=Bna~'Ba is an k-order if and only
if A,=B,na”'B,ais an h-order for all p by [1], p. 8, Corollary. Thus,
we have from Theorem 1.2.

PrOPOSITION 2.1. Let Q be the set of prime factors of = and & a
normalized element in A* or A" such that N(@)=p 1p,Se-p,n. For v=—1
(mod 4) A'na*A'a is a nonmaximal h-order if and only if ¢;=1 for p; ¢ Q
and there exists at least ome odd prime p¢Q. For t=1 (mod 4)
AV na*A'a is a nonmaximal h-order if and only if e;=1 for p,¢Q and
there exists at least one prime p; ¢ Q.

3. Isomorphisms of h-orders.

In this section we shall study isomorphisms of /-orders in D,,.
Let A, A’ be h-ordersin D.. If A ~A; for all p, we call “A and A’
are locally isomorphic”’. Then we have from Theorem 1.1 for any =

THEOREM 3.1. Let A, A" be h-orders in D.. A and A are locally
isomorphic if and only if A and A belong to the same block.

Now we shall consider isomorphisms of %-orders in {p}-block in D_,.

Since two maximal orders in D_, are isomorphic, we may consider
h-orders in the maximal order A'=Z+7% +le +Zt. We note that every
isomorphism is given by an inner-automorphism in D_,, and every /%-order
in {p}-block which is contained in A" is written as A'na~'A'a, N(a)=p,
and a € A’. Furthermore, we note the following facts: Let v be a nor-
malized element in A° such that N(v)=2"g, (2, q)‘=1, then #n<(2, [6] p. 113,
Satz 172.

We shall decide all %-orders in {p}-block in D_, which are contained
in A' and which are conjugate to a fixed A-order F in A', which means
that we shall decide an isomorphic class in A'. It is clear that those
isomorphisms are induced by normalized element v, and hence N(v)
=2"q, n<2.

We shall denote A' by A and A'na~'A'a by F.
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If vy (Ana'Ax)y=AnB'AB, then & 'A;y=A, for ¢==p, and
vlAyn(ay) A (ay)=A,nB'A,B where B€ A" and N(8)=p. Hence by
[4], Theorem 3.3 we have two cases:

(1) A = (ay)y Ay, y Ay = BAB,
(2) A =q7Ay, B'AB = (ay) 'Aay.

Let v be a normalized element in A° which satisfies (1). Since N(B)=p,
N(v)=2"p by Proposition 1. 2. Let ay=2%y where ¢€ Z such that (e, 2)=1
and 7 is a normalized element in A°. Since A=(ay)A(ay), N(3)=2Y,
and hence we know e=p and 2¢{+# =n. Furthermore, since y=2%an?® is
normalized, £=0. Therefore, y=a% and N(n)=2". Conversely if y=az,
then v *FyA. Therefore v 'Fy is an A-order in A.

Next let 7/ be a normalized element in A° as in (2). Since A=v~'Ay/,
N(v)=2". Conversely if N(y)=2", then A=«'"'Ay. Therefore, v 'Fy
is also an %-order in A.

By ®(a) we denote the set of normalized elements in A° which induce
conjugate h-orders to F in A. Then &) consists of all normalized
elements in A° which are either of

(3) N(y) =2" for n<(2
or expressed as

(4) vy=asy where 7 is a normalized element in A such that N(»)=2" for
w < 2.

Let ¥(a)={y| e ®(@), y ' Fy=F}. If o 'Fy=¢""Fy for v, v € ®),
then oy ~'=¢/N(y)& where £€ ®{«) and e€ Z such that e£E=9y~'. Con-
versely if y=&y for £ed{«), then y ‘Fy=v""'Fy. Therefore, the
number of conjugate A-orders to F in A is equal to #(P(«))/#(¥{«)), where
#( ) means the number of elements in ( ).

" Now, we shall decide #(®(«)). In order to that we shall divide
elements of ®(«) into two parts according to (3), and (4).

Let » be a normalized element in A° such that N(%)=2" for n<2.
There exist 48 elements 5 by [6], p. 113, Satz 172.

Let 5 be as above. We denote the coefficients of «, 5, and @y by
(@, b, ¢,d), (x,, x,, x,, x,) and (X,, X,, X,, X,), respectively. Then we
have

3) @ means the conjugate element of a.
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a b ¢ d)(=x X,
5 ~b a d-—c||x| |X
®) —c—d a b||=x X

—d ¢ —=b a)lux X,

-

©

@

Since the determinant of the matrix of (5) is equal to p* and # is nor-
malized, 2 V' X; for all i. Therefore, &y is normalized, since N(az)=2"p,
n<2. Thus we have

LEmmA 3.1. #(P(@))=98 for any normalized element in A°.

Now, we shall consider #(W¥(«)). We denote the sets of elements of
®(cr) which satisfy (3) and (4) by ®(a@) and P, «), respectively. It is
clear that ®{a)=o,(a)ud,(a) and ()N DP(a)=6¢.

Let ye ¥ (a) =D (a)n¥(a) and y=an with N(y)=2" n<2. Let apa!
=(e/p)¢, where e€Z, is normalized. Since ¢ 'Fy=F, (@y) *Aay=A.
Therefore, N(¢{)=2” by Theorem 1.2, and hence e¢=2"-"p, Thus
p=2"""q"'ta, Since 7 is normalized and N(&)=p, g=a 'ta, and n=m.
Conversely, if n=a '¢«, then (an)'Fan=F. Thus we obtain that #(®,(«))
is equal to the number of normalized elements ¢ in A° such that a-‘¢«
is normalized and N({)=2" for n<(2. Let @ ‘¢a=(1/p)ata=(e/p)¢, where
e, £ are as above. Let (x,, x,, %,, 1,), (X, X,, X;, X,) be the coefficients
of ¢ and afa. Then

a—b—c*—d® —2ab —2ac —2ad X, X,
(6 2ab a—b i +d? —2bc —2bd %, _|x
2ac —2bc a+b—c*+d* —2cd X, X,

2ad —2bd —2cd &+ b+cf—d? %, ) X, ).

Since the determinant of matrix in (6) is equal to p* and ¢ is normalized,
2/ X; for all i. Hence a*¢a is normalized if and only if afa=0
(mod pA°), which is equivalent to ax,— bx,—cx,—dx,=0 (mod p) since N(«)
=p. On the other hand, since ¢ is normalized and N({)=2" for <2,
|x;]<1 for all . Furthermore, |ax,—bx,—cx,—dx,|<|a|+ |b|+ |c| + |d|
L&+ +d*=p if p=F3. Therefore,

(7 ax,—bx,—cx,—dx, = 0.

If |x;/=1 for all 4, then O=(ax,—bx,—cx,—dx,)=p+2¢, where e¢€Z,
which is a contradiction. Hence N({)=1 or 2 if p==3. Therefore, either
three or two of the ;s are equal to zero. Thus we obtain
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LEMMA 3.2. #(¥, (@) is equal to the number of occasins for & that
a coefficient of & is zero or the absolute values of two coefficients of o
are the same, except p=3 and two of coefficients are zero. Hence H(¥(t))
=0,2,4 or 6 except the following special cases. If p=3, H(¥(@))=12 and
if two of coefficients are zero, then #(¥(«))=8.

Finally, we shall consider #(®,(«)), where ¥, (a)=®,(a)n¥(a). Let
ve®,(a) and aya~'=(e/p)f where aya=ef. Then N(§)=2" since a'Ax
=(ay)*Aary. Hence p|e. Conversely, if ye ®,(a) and p|e, then v e ¥ ().
Hence for ye ®,(a), ye V() if and only if

(8) aya =0 (mod pA°).
Let y=x,4+x,0+x,7+x,4j, then (8) is equal to

a+b ad+bc bd—ac) (x,
(9) bc—ad a*+c* ab+-cd )| |x, |=0 (mod p)
ac+bd cd+ab o +d?) | x,

Since N(a)=p, we may assume a&’+5°==0 (mod p). Then x,=Ax,+ Bx,
(mod p) is solutions of (9) where x,, x,=0, +1 and A= —(ad +bc)/(a*+b%),
B=—(bd—ac)/(a’+b*) (mod p). We may assume that A, B are integers
whose absolute values are equal to or less than (p—1)/2. We first note
that the following cases do not appear:

a) A=B=0,
b) A=0, |Bl=1 or |A|=1, B=0.

Noting the above remark and N(y)=2" for #<(2, we can check
easily that

LEmma 3.3. #(¥,(Q)) is equal to the following :

I) 2if |Al, |B|==0,1 and |A|~|B|>2,

I1) 4 if |A|=|Bl, |Al, |B|%=0,1 and |A|+|B|==p—1,
or if |Al=1, or |B|=1 and |A|~|B|>2,

II) 6if |A|~|B|=1,

IV) 8 if p==3, |A|=|B|=1
or if |A|=|B|=1 and |A|+|B|=p—1
or if |A||B|=0 and |A|~|B|>2,

V) 12 if p=3,

where A= —(ad +bc)/(a*+ %), B=—(bd—ac)/(a*+b?) if a*+b*3=0 (mod p),
and A=—(ab+cd)/(a’+c¢*), B=—(bc—ad)/(a*+c?) if a*+c*==0 (mod p),



80 M. HARADA

and A=—(ac+bd)/(@®+d?) B=—(cd—ab)/(&®+d*) if &®+d’==0 (mod p),
and d=a-+bi+cj+dij with N(&)=p.

Since #(P(«))=98 and #¥(a))=#V(a))+#¥(a)) we have from
Lemmas 3.1, 3.2, and 3.3

THEOREM 3.2. Let F be an h-order in D_, which belongs to {p}-block,
and A a maximal order containing F. Then the number of conjugate
h-orders to F in A is equal to 6, 8, 12, 16, 24, or 48 if p==3. If p=3
it is equal to 4. \

TuroreM 3.3. Any pair of two h-orders in D_, belonging to {p}-
block is isomorphic if and anly if p=3, 5, 7, 11 or 23.

Proof. Since any pair of two maximal order is isomorphic, we may
consider s-orders in a maximal order A in D_,. The number of %-orders
of {p}-block in A is equal to p+1 by Theorem 2.1. If p=3, then the
theorem is true by Theorem 3.2. We put a=1-+7+2j+6ij for p=47,
then the number of conjugate %-orders to Ana ‘A« in A is less than
48 by Lemmas 3.1, 3.2 and 3.3. Similarly, let @=1+2¢, 1+i+j+ 247,
1+4i+3ij and 3+3i4+-2j+4j for p=5, 7, 11 and 23, respectively. Then
the number of conjugate k-orders to Ana *Aa in A is equal to p+1.

Using the same argument as above we have

THEOREM 3.3 If {p., Dy s Put are lavge emough, then there exist
always h-orders in {p,,++,p.}-block in D_, which are not ismorphic.

ReEMARK 1. Let «a=1-+3i+5j+6ij, then the number of conjugate
h-orders to Ana*Aa in A is equal to 48.

REMARK 2. F=Ana'Aa has exactly 16 k-orders in A which are
conjugate to F if only if abcd==0 and two of |a|, |b|, |c| and |d| are
not the same, and III) is satisfied, when @=a+bi+ij +dij with N(a)=p.

Finally, we shall consider the same problem in D, =(K),. Let A=(Z),,
then F =<Z lZ) is an h-order in A which belongs to {p., p,,**,p.} -block,

VAA

where /= Tip,, and r,=(Z PZ))ip=te- Lete=(1i) i=0-p=1,and
i Z,Z, 01

acﬁ:(? (1)) Then {a7'F,a;}%., consists of all non-maximal /-orders in

A,. Furthermore, we note that for unit elements 8,, 8, in 4, B7'F 5,

=B;'F 8, if and only if 8,8;" is a unit in F , by [51, Lemma 6.1. Hence

if 8B:t= (a ‘117), then 87'F 8,=8;'F B, if and only if =0 (mod pZ,).
c ,
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Let F’ be an h-order in A belonging to (p,, -, p,)-block such that
F,’,,.=<1 j,.>‘1F,,,. 1 ji> for 1<i<s, and 0<j;<p;,—1, and F;,j=<0 1)‘1
03 01 10
ij<0 1) for s+1<j<m Let a',=<a b\ in B such that a= II p, and
10 cd jme
ad—bc=1. Then we obtain from the above remark that o 'F,

=<(1) %)>_1ij<(1) (1)) since =0 (mod p;) for s+1<j<<m, and «a'Fa

=(1 j,~>“A1,,.<1 j,-> if and only if b=aj; (mod p;) for 1<i<s. We can
01 01

find a solution b, of x==aj; (mod p;) (2=1,---,s) such that (a, b,)=1 since
if b, is a solution of x==j; (mod p;) (i =1,---,s), then b,=ab, + I_I p;:. Hence

there exist integers b,, d, such that ad,—cb,=1. Therefore, if we take

a,= <a bo>, then a~'Fa=F’. Thus we obtain
CO dO

THEOREM 3.4.° Amy pair of two h-orders in a maximal ovder A in
D, which belong to the same block is isomorphic under some innerautomor-
phism in A and hence, any pair of two h-ovders of the same type is
isomorphic.
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4) Added in proof. This theorem is generalized easily by Corollary to
Theorem 4.7 of A. Brumer; The structure of hereditary orders, Doctoral
dissertation Princeton Univ., 1963.

(Let R be a principal Dedekind domain and ¥=K,. Then for two k-oders
A4, I in ¥ A and I" are isomorphic if and only if A, and I', are isomorphic,
where p runs through all prime ideals in R).



