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Since Alexandro:ff and Urysohn's work various theorems concerning metriz­

ability of a toplogical space were g?tten by many mathematicians. Their 

methods of proofs, however, are generally various and rather complicated. The 
purpose of this paper is to give a systematic account of the theory of metriza­

tion. A main theorem on the metrizability of a T 1-space will be proved first, 
and then it will be shown that this theorem contains a large number of metriza­

tion theorems as direct consequences. 
To prove our main theorem we use the following theorem due to E. Michael1 l 

as well as the well-known theorem of P. Alexandro:ff and P. Urysohn. 

Michael's theorem. A regular topological space R is para compact if and only 

if every open covering of R has an open refinement !B= .~ m,, where each m, is a 
•=1 

locally finite collection of open subsets of R. 

T:S:EOREM 1. In order that a Tctopological space R is metrizable it is neces­

sary and sufficient that one can assign a nbd (=neighborhood) basis {Un(x) !n = 1, 
2, .... } for every point x of R such that for every n and each point x of R there 

exist nbds S!(x), S!(x) of X satisfyint, 

i) y $ Un (x) implies S! (y) n S! (x) = cp, 
ii) yES! (x) implies S! (y) <:; Un (x). 2 l 

Proof. Since the necessity is clear, we prove only the sufficiency. To begin 

with, R is regular because the condition i) of this proposition implies S!(x) <:; 

Un(x). Next, to show that R is paracompact, we take an arbitrary open cover­

ing !B={V,.,!oc<T} of R 3 l. If we let 

Vn,o:= u {(S~(x))o!Un(x) <:; V,.,}, 
Vm.n,o:= u {Um(X) lUm(x) <:; Vn,o:}, 

v;,.,n,o: = u {S~(x) !Um(x) <:; Vn,,.,}, 

M (V' u V )o m,n,lt! = m,n,m-(3<1$ n,f3 (m, n = 1, 2, . · · ·. oc<T), 

then W'lm, .. ={Mm,n,o:loc<T} for each m, n is a locally finite open collection. 
To show the local finiteness of W'lm,n we choose, for an arbitrary point p of 

The content of this paper is the datail of our brief note in Proc. of Japan Acad , vol. 33, 
1) See [4]. 2) ii) can't be omitted. Let R={(x, y)\ c;;;~;;;;;I, .:J ~C}, Un(P) ={q\ d(p, q) 

<1/n} for P=(x, y) withy>O, Un(P)={(~', J') jy'<n-.Vn"-(x' -x)2, jx' -x\ <1/r.}U{p} for 
P=(x, 0). Then R with the nbd basis {Un(P)} is a non- metrizable Trspace satisfying i). 

3) In this proof we denote by a, {3, y,.,. ordinal numbers and by A0 the interior of A. 
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R, IX (:;S;r) such that PEVm,n,a• P$Vm,n,~ (P<rx). Then it follows from the condi­

tion i) that S!(P)" v~,,n,~= ¢ (P<rx), which implies S!(P) ,M,,n,(3 = ¢ (P<rx). r+ 
IY.<r, then since PEVm,,.,,.c;Vn,a and V,.,,. is open, we obtain a nbd V,,,. of p 

satisfying Vn,ar.Mm,n,y=cp (y>IY.). Therefore the nbd S!(P) "Vn,a ot p intersects 
at most one of elements of Wlm,n• proving the local finiteness of Wl111,,4 >. 

To assert that ~ IJR"' n = Wl covers R, we consider an arbitrary point p 
m n=l ' 

of R. Let PEV,., p$Vfl (P<IY.), IY.<r, then we can choose n such that U,(p)c;;_V,.. 

Since PE(S!(P)) 0 c;V,,,. for this n, we can choose m satisfying U,(p) c;;_ V,,,. In 
consequence we have S~(p)c;V~,n,,· On the other hand, it follows from P$V13 

(P<IY.) and from i) that S~(p) "V,,fl=¢ (P<IY.). This implies 

S~ (p) "S~ (p) c; V~,n,,.-fl:2, Vn,ll 
an:l consequently PEMm,n,~X• i.e. Wl covers R. 

Since Wl<\B is obvious, we can conclude, from Michael's theorem, the para­
compactness of R. Thus it follows from A. H. Stone's theorem5 > that R is fully 
normal. 

To complete the proof, let us show that {S(p, ISm) lm=l, 2, · · · · }6 > for ISm= 
{( s;,(y) )o I yER} is a nbd basis of each point p of R. Let U(p) be an arbitrary 
nbd of p, and choo3e n satisfying U,(x)c;U(x), then we can find n(~n such that 

U'"'(x) c;S~(x). If ( s;,(y) t3x, then considering S!(y) "S~(x) *cfJ, we have yE Um(x) 

c;S~(x) from i). Hence it follows from ii) that s;,(y)c;;_S~(y) c;;_ U,(x) because we 
can assume, without loss of generality, that m~n implies S!(y)c;;_S~(y) for every 

yER. Therefore we have S(x, ISm)c; Un(.x)c; U(.x), i.e. {S(p, ISm) I m= 1,2, ····}is a 
nbd basis of p. Thus we conclude the metrizability of R by the metrization 

theorem of P. Alexandroff and P. Urysohn. 
Now we turn our attention to the application of this theorem. Some of the 

following theo"ems are well-known, and some of them are probably unknown. 

TUFOREM 2. (Yu. Smirnov and the author) 7 > A regular spaceR is metrizable 

if and only if there exists an open basis \B= ~ m, of R, <iJhere each m, is a locally 
n=I 

finite collection of open sets. 

Prooj. 8 > We define nbds Un,m(x) and S~,m(x) of each point x of R for every 

pair n, m of positive integers as follows : Let V n(.x) = " {V j.xE V E V n}· Then 

i± XE Uc;tJ,;;;Yn(.x) for some UE\Bn" we let U,,,(x)= Vn(x), S~,,(x)=U; otherwise 

we let U,,m(x)=S!.m(x)= R. Moreover we put 

s~,m (x) = v, (x)" [, {(V)clx $ V, v E mm}]. 9 > 

4) If "'=7', s!(P) intersects no set of 'imm,n-
5) Full normality and paracompactness are equivalent in T 2-spaces. See [11]. 
6) S (p, U)= U{UipEUEU}, S(A, U)= U{UJ U n A-4=<P, UEU} for a covering U, a 

point p and a subset A. 
7) See [10] and [7]. 
8) From now forth we prove only the sufficiencies since the necessities are generally 

obvious. 
9) We denote by vc or C(V) the complement set of V. 
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Since mn and mm are locally finite, we have nbds Un,,,(x), S!,m(x), S!,m(x) of X 

satisfying the conditions i) ii) of Theorem 1. For every nbd U(x) of an arbitrary 

point x of R we can choo3e n, m and V El.Bm such that 

U (x) 2 V n (X) 2 V 2 V 3X 

because R is regular and m is an open basis of R. Hence U n,m (x) = V n(x) <;;;;: U(x), 
i.e. {U,,,.(x) ln,m=1,2·. · ·} is a nbd basis of x. Thus we conclude, by Theorem 
1, the metrizability of R. 

TH;EOREM 3. (K. Morita) 10 l A T 1-space R is metrizable if and only if there 
exists a countable collection {irnln = 1,2 · · · ·} oj locally finite closed coverings of R 
such that S(x, iY,)<;;;: U(x) for any nbd U(x) of any point x of R and for some n. 

Proof. Since iY, is locally finite, N,(x)= n{P !xEP, FEiYn} is an open nbo 

of any point x of R. If S(x, irn)<;;;:N,(x), then we let 

U,, m (x) = N, (x), S!,m (x) = Nm (x). 

If S (x, irm) $ N, (x), then we let 

U,, m (x) = S!,m (x) = R. 

Moreover we let generally S~.m(x) = Nm(x). 
Then u,,m(x), S!, ... (x), s;,.,.(x) are nbds of X satisfying the conditions i) ii) 

of Theorem 1. Since iY,. coyers R, N"'(y)<;:S(y, iY,.) for every yER; hence y$ 
U,,,.,(x) implies S!,.,.(Y)=N,.(y)r;;_(S(x, irm))cr;;_(Nm(x))"=(S!,.,.(x))". 
y E S!, m (x) implies 

S!,m (y) = Nm (y) <;;;;: N m (x) <;;;;: Nn (x) = U,,m (x). 

Thus this theorem is a direct consequence of Theorem 1. 
TH:EOREM 4. (A. H. Frink) 11 > A Trspace R is metrizable if and only if one 

can assign a nbd basis {V ,(x) In= 1, 2 · ·. ·} for every point x oj R such that for 
every n and xER there exists m=m(n, x) satisfying the condition: V 111 (X) n V,,(y) 
=f=cp implies Vm(y)r;;_V,(x). 

Proof. Letting l.Bn = {Vn (x) lxER}, Wn = {Vm(n,xl(x) lx E R}, we define nbds 

Un(x), S! (x), S! (x) of any point x of R by 

Un (x) = S (x, m,), S! (x) = S (x, Wn), S! (x) = V"<n,xl (x). 

If S! (y) n S! (x) i= cp, then there exists z such that x E V m(n, 2) (z) $ (Vn.(n. :Y) (y) )c. 

In the case of m(n,z)<m(n.y) we have Vm(n,:Y)(y)<;;;:Vn(z)3x since we can assume, 
without loss of generality, that m~n implies Vm(x)<;:V,(x). Therefore 

S!(y) = v m(n, Y) (y) r;;_ s (x, mn) = u n (x). 

In the case of m(n, z)~m(n,y) we have xEVn,(n,,)(Z)<;;;:V,(y) and consequently 

S!(y) <;;;;: Vn(Y) <;;;;: Un (x). 

For a given nbd U(x) of x we taken with Vn(x)<;:U(x). Then we have 

10) See [5]. 
11) See [3]. 
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s (x, \Bm(n,x)) = um(n.x) (x) <:::::: u (x). 
Hence this theorem is also a direct consequence of Theorem 1. 

TH:EOREM' 5. (the author) 12 l A T 1-space R is metrizable if and only if there 

exists a family {f"'l aEA} of real valued functions of R such that 

i) fJ'clBf13 and , {13 are continuous for every B<;;A, 
/lEB 

ii) for any nbd U(x) of any point x of R there exists aEA and a real number 

E: j"'(x)<E, J"'((U(x))c);;;,c. 13 l 

Proof. WeletA(x)={l)(lf"'(x)< r~r'}foreachpoint x ofR. For every 

pair r<r' of rational numbers we let 

U,,.-(x) = {Yl u /"' (y) < r'} n {Yl n f"' (y) > r}, 
OlEA(x) OlEC(A(x)) 

S!,r' (x) = {yJ OlE'i(x/Ol(y) 

< r+r' + r'-r} {YI n fa (y) > r+r' _ r'-r }· 
2 4 n aEC(A(x)) 2 4 

Let p$Ur,r' (x) (xES<;;R) and let aE'i(x/"'(p) 2::,r' (xES1), n !"' (p) ;'S r (x E 5 2). 
aEC(A(x)) 

r+r' r' r Then we can choose a(XJEA(x) for every XES1 such that /a(x) (P) >~2~ + ---T-
( <r'). Hence we have, by the continuity of , /Ol(xl(P), a nbd U(p) of p satisfy-

xES1 
ing 

r+r' r' r 
n /Ol(x)(U(p))> --2 + -4- . 

XESj 

In the same way we can choose a(x) EC (A (x)) for every xES2 and a nbd V(P) 

of p satisfying 

u r+r' r'-r 
xEsJa(x)(V(p))< ~2-- -4- · 

Thus we get a nbd U(p), V(P) of p with 

U(p),V(P),S~,,.(x)=1> (xES). 

Simihrly we have, by the continuities of u fa and , !"'' a nbd W(P) for any 

point p such that PES~,,.(x) implies W(p)<;;U,,,(p). 

To show that {U,,,•(x)Jr, r' are rational numbers with r<r'} is a nbd basis 

of x, we take, for a given nbd U(x) of x, aEA, E with f"'(x)<E, f"'((U(x))")2::,E. 

Mo~eover we choose rational numbers r,r' with f"'(x)<r<r'<E. Then it follows 

from aEA (x) that 

U,,,. (x) <:::::: {YI roE'i(x)f"' (y)<r'} <:::::: {yJJ"' (y)<r'} <:::::: U (x), 

asse~ting the metrizability oi R by Theorem 1. 

TH:EOREM 6. (A. H. Stone, K. Morita and S. Hanai) 141 Let f be a closed 

continuous mapping of a metric space R1 onto a topological space R 2 • Then R2 
is metrizable if and only if the boundary Bj-1(y) of the inverge image j-1 (y) is 

12) See [8]. 
13) We denote by f"'(A)~E the fact that fa(x)~E (xEA). 
14) See [12] and [6]. With respect to the proof of the necessity, see also, those 

papers. 
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compact for every pointy of R 2 • 

Proof. Let Un,x=S1 n(Bj-1(x))uj-1(xr 5 ', then Un,x is evidentlyanopenset. 

We define nbds Un(x) and S~(x) of each point x of R by 

Un (x) = J (Un,x), S~_t(x) = (f (U~,x))c (c;: Un(x)) 

For a given nbd U(x) of x we can choose n satisfying S 11,(Bj-1(x)) c;:j-1 (U(x)) 

since j-1( U(x)) is an open set containing j-1(x) and Bj-1(x) is compact. Hence 

j(Un.x)=Un(x)c;;U(x), i.e. {U11 (x)[n=l,2 ····}is a nbd basis of X. 

Next P$.Un(x) (xESc;:R2) and PESf,(y) (yET c;: R 2) imply ]-1 (P) n Un,x = cf> 

(xES) andj-1(p) c;: Un+I,Y (yET); hence there exists an open set U(j-1(p)) con­

taining j-1(/J) such that 

u (j-1 (P)) n Un+I, X= cf> (xES), u (j-1 (P)) c;: Un, y (yET). 

Thus we have, by the closedness off, a nbd f(U(f- 1(P))) of p with 

f(U (j-1(p))) nS!.(x) = cf> (xES), f(U (j-1(p\)) c;: Un (y) (yET); 

hence R" is metrizable by Theorem 1. 

The following is a generalization of the theorem in our previous paper16 ' and 

is a slight modification of Theorem 1 too. 
THEOREM 7. A T 1-space R is metrizable if and only if there exists a nbd 

basis { Sn(x) [ n = 1, 2 · · · ·} of every point X of R satisfying 

i) yES11 (X) implies xESn(y), 

ii) for every n and xER one can assign nbds S~(x) S~(x) such that y$Sn(x) 

implies S~(y) n S~(x) =cp and such that y$S:(x) implies S~(y) $x. 

Proof. Put Un(x) = Sn(x), S~(x) = s:(x)nSJx), S!(x) = S~(x), then y$Un(x) 

implies x$.Sn (y) and consequently S~(x) n S~(y) = cf>. Therefore zES~(x) c;: S~(x) 

implies y$.S~(z), i.e. S!(z)c;:S,.(x). Since y$Un(x) implies S!(Y)nS~(x)c;:SJy)n 
S~(x) = cf>, we can conclude the validity of this theorem from Theorem 1. 

THEOREM 8.17l A T 1-space R is metrizable ~f and only ij there exists a non·· 

negative function cp(x, y) of RxR satisfying 

i) cp (x, y) = cp (y, x) 
ii) d (x, A) = inf { cp (x, y) [yEA} is, for every subset A of R, a continuous 

Junction of x, 

iii) {Sn(x)[n=t,z .... }Jor S11 (X)={y[cp(x,y)<l/n} is a nbd basis of any 

point x of R. 

Proof. We let s:(x) = Sn+I(x). Then P$.Un(x) (xEA) and P$.S~(y) (yEB) 

imply d(p,A)?:;;ljn and d(p, B)?:;;lj(n+ 1) and hence there exists a nbd S~(P) of p 

satisfying 

d ( s~ (p), A)> 1 j(n+ I), d ( s~ (p), B) > o. 
In consequence 

15) S11,(A)={YI inf {p(y, x) JxEA}<1/n} 
16) Lemma 2 of [8]. 
17) This theorem is an extension of Corollary 6 of [8]. 
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S~(p),S~(x) =4> (xEA),S~(p)$y 
Therefore R is metrizable by Theorem 7. 

(yEB). 

CoROLLARY. A TcsPace R is metrizable if and only if there exists a non­
negative junction cp(x, y) of RxR satisfying 

i) cp (x, y) = cp (y, x) 
ii) d (x, F)= inj { cp(x, y) JyEF} is, for every closed set F of R, a continuous 

junction of x, 

iii) {Sn(x)Jn=1,2····}for Sn(X)={yJcp(x,y)<lfn} is a nbd basis of any 
point x of R. 

Proof. Since d(x, A) = d (x, A) is obvious for any subset A of R, this pro­

position is a direct consequence of Theorem 8. 

The following two theorems are directly deduced from Theorem 1 and 
from Theorem 7 respectively and can be comidered extensions of Chittenden's 

theorem. 

TH:EOREM 9. A TcsPace R is metrizable if and only if there exists a non­
negative junction cp (x, y) of RXR satisfying 

i) cp (x, y) = cp (y, x) 
ii) for every £>0 and every xER one can assign o(c, x) >0 such that cp(x, z) 

<o(E, x) and cp(y, z)<o(E, y) imply cp(x, y)<E and such that cp(x, z)<o(E, x) and 
cp(z,y)<o(c, z) imply cp(x,y)<E, 

iii) {Sn(x)Jn=l,2····}forSn(x)={yJcp(x,y)<1fn} isanbdbasis ofany 
point x of R. 

Proof. It is obvious. 

TH:EOREM 10. A Tcspace R t"s metrizable if and only if there exists a non­
negative valued junction cp(x, y) of RXR satisfying 

i) cp (x, y) = cp (y, x) 
ii) for every £>0 and xER one can assign o ,(c) >0 and o2 (c, x) >0 such that 

cp(x, z)<o1 (c) and cp(y, z)<o2(c, y) imply cp(x, y)<E, 
iii) {Sn(x)Jn = 1, 2 ····}for Sn(x) = {yJcp(x, y)<1fn} is a nbd basis of any 

point x of R. 
Proof. It is obvious. 

The following is an extension of Alexandroff and Urysohn's theorem. 

TH:EOREM 11. A T 1-space R is metrizable if and only if there exists a coun-
table collection {Un[n = 1, 2 · · · ·} of open coverings such that 

i) for every Un we can choose an open covering mn satisfying S(A, m,)c;;S(A, 
Un) for every closed subset A of R, 

ii) { S (x, Un) J n = 1, 2 · · · ·} is a nbd basis of any point x of R. 
Proof. Letting 

Sn (x) = S (x, Un), S~ (x) = S (x, lnn), 

for PEI=Sn(X) (xEA) we have, by S(A, m,.)c;;S(A, Un), a nbd Wn(P) of p satisfying 

W.,(P),S~(x) =4> (xEAj. Since S~(p) = Wn(P),S(p, mn) evidently satisfies the 
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condition of Theorem 7, we conclude the metrizability of R. 
THEOREM 12. (R. H. Bing) 18 > A regular space R is metrizable if and only 

if there exists a countable collection {Un!n=1,2····} of open collections such that 

i) the sum of the closures of any subcoltection of Un is closed, 

ii) { S(x, U,) l n = 1, 2 · · · ·, S(x, Un) =l=<j>} is a nbd basis of each point x of R. 

Proof. For every triad l, m, n of J=ositivE' integers and every J=oint x of R 

we define nbds S,, m. ,.(x) and s;, m, n(x) by 

51, m, n (x) = S (x, U,), s;, m, n (x) = S (x, U,,) 
if 

X E s (x, llz) ~ s (x, Um) ~ s (x, u:-) ~ s (x, Un), 

and S,, m, n (x) = s;, m, n (x) = R otherwise. 
It follows from the regularity of R that {S1,m.n(x) jl, m, n = 1, 2. · · ·} is a nbd 
basis of x. 

If P$S,, m,n (x) (xEA), then 

p$5 (A, Un) :-2 x~A S (x, Um) = S (A, U",), 

which implies V(P)nS;.m,n(x)=<P (xEA) for some nbd V(p) ofp. If P$S;,m,n(Y) 

(yEB), then 

p$S (B, Um):;; y~Bs (y, u,j = S(B, llz), 
which implies W(p)$y (yEB) for some nbd W(P) of p. Letting s;:m,n(P)= V(P) 

n W(p), we have three nbds satisfying the condition i), ii) of Theorem 7. Thus 
this theorem is also a direct consequence of Theorem 7. 

With respect to a topologically complete space19 >, we have a simpler con­
dition for metrizability than those of Theorem 1 and Theorem 7. 

THEOREM 13. A topologically complete spaceR is completely metrizable if and 

only if one can assign a nbd basis { Un(x) l n= 1, 2. ·. ·} for every point x of R such 

that for every n and each point x of R there exist nbds S!(x), S~(x) of x satisfying 

that y$ U,.(x) implies S~(y) n S!(x) =<j>. 

Proof. If we review the proof of Theorem 1, then we know that the con­
dition ii) was not used to prove the fullnormality of R. Hence R is fully nor­
mal in the present instance. Since R is fully normal and topologically complete, 
there exists, by N. A. Shanin's theorem20 >, a countable collection {\Bn j n= 1, 2· · · ·} 
of open coverings having the following property: If a maximum filter ir'={ir., l 
rlEA} of closed sets is divergent, then we can choose \Bn satisfying S(x, \B,)~F~ 
for every XER and some F.,Eir. 

On the other hand let lSn= { IS~(xW!xER}, then for any x, y with x=l=y we 

18) See [1]. 
19) A T 2-space R is called a topologically complete space if R is homeomorphic 

with a Ga -set of some compact T2-space. 
20) A T 2-space R is topologically complete if and only if there exists a countable 

collection {Un In= 1,2, .... } of open coverings such that if a ma:ximum filter U' of closed 
sets is divergent, then we can choose Un with Un<5!1l={P I FEU'} See [9]. 
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have Um(x),..,Un(Y) =1> for some m,n. Let us assume m~n, then xe(S!(z)) 0 

implies zeUm(x) and consequently z$Un(Y) because we can assume without loss 

of generality, that m~n implies S!(x)~S!(x) (xeR). Hence S!(z),..., S~(y) = fj>, 

which means y$S(x, ®m)· In the same way we can show x$S(y, ®m)· 

Letting ~n = !Bnl\®n we have a countable collection {~nln = 1, 2 · · · ·} of 
open coverings having the property of {!Bn} and that of {®n}· Now we shall 

show that {S(x, Wn1 1\~n2 1\· ···1\~nk)lni=l, 2· · · · (i=l, · · ··k), k=l, 2 · ·· ·} is a 
nbd basis of any point x of R. If we assume the contrary : 

S (x, ~n1) n S (x, ~n2) n · · · · n S (x, ~n4) = S (x, ~n1 1\ · · · · 1\ Wn,) Q; U (x) 

for some open nbd U(x) of x and every n,, k, then {(U(x)Y, S(x, ~n)ln=1,2 ··.} 

=® is a family of closed sets having the finite intersection property. Since all 
the sets of ® have obviously no common point, if we construct a maximum filter 
1Y of closed sets such that ®~~. 1Y is divergent. Hence we can choose Wn 

satisfying S(x, Wn)~F" for some Fe1Y. This contradicts S(x, W,.)e®~1Y since 

1Y is a filter. Thus we have the countable collection {~n1 /\ • • .. f\~nklni=1,2· .. · 

(i=J, .... ,k),k=t,2 .... } of open coverings such that {S(x,Wn1 1\ .... I\Wnk)} is a 
nbd basis of x, which combining with the full normality of R induces, by Alex­
androff and Urysohn's theorem, the metrizability of R and consequently the 
complete metrizability of R by E. Cech's Theorem21 l. 
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