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Since Alexandroff and Urysohn’s work various theorems concerning metriz-
ability of a toplogical space were gotten by many mathematicians. Their
methods of proofs, however, are generally various and rather complicated. The
purpose of this paper is to give a systematic account of the theory of metriza-
tion. A main theorem on the metrizability of a Ty-space will be proved first,
and then it will be shown that this theorem contains a large number of metriza-
tion theorems as direct consequences.

To prove our main theorem we use the following theorem due to E. Michael®
as well as the well-known theorem of P. Alexandroff and P. Urysohn.

Michael’s theorem. A regular topological space R is paracompact if and only
if every open covering of R has an open refinement B= El%i, where each B, is a
locally finite collection of open subsets of R.

THEOREM 1. In order that a Ty-topological space R is metrizable it is neces-
sary and sufficient that one can assign a nbd (=neighborhood) basis {U,(x)|n =1,
2, .-+ } for every point % of R such that for every n and each point x of R there
exist nbds Sh(%), S3(x) of % satisfyin

i)y & Uy () implies S} () 2 S, (%) = ¢,
ii) vy e SL(%) implies S2(y) < U, (%).2

Proof. Since the necessity is clear, we prove only the sufficiency. To begin
with, R is regular because the condition i) of this proposition implies SI(x) <
U,(x). Next, to show that R is paracompact, we take an arbitrary open cover-
ing B={V,|a<7} of R¥. If we let

Vo= " {(S, 0)°|Us (%) S Val,
Vna= " {Un(®) U, (%) S Vaa},
Vs =" {Sn(®) [Un(®) S Via},
Mm,n,w = (V;n,n,w_ﬁgw Vn, 5)0 (m’ n=12-.--, °"<'T)’
then M, ,={M,, »..|a<7} for each m, n is a locally finite open collection.
To show the local finiteness of M, , we choose, for an arbitrary point p of

,
m,n,

The content of this paper is the datail of our brief note in Proc. of Japan Acad , vol. 33,
1) See [4]. 2) ii)can't be omitted. Let R={(#, )| (<=1, 3=(},U,(p)={4ldip, q)
<1/n}for p=(x,y) withy>0, U,(p)={(s",5") |y’ <n—a/n*— (a7 —2)2 , | =2 <1/n} Y {p} for
p=(#, 0). Then R with the nbd basis {U,(p)} is a non- metrizable T space satisfying i).
3) In this proof we denote by @, 8, 7, T ordinal numbers and by A° the interior of 4.



186 Jun-iti NAaGaTA

R, « (=7) such that p&V,, 4u PEV e (f<a). Then it follows from the condi-
tion i) that SZ(p) A V,, . p=¢ (B<a), which implies S5, (P) A M, = (B<a). If
o<, then since p&V,, ,.EV,, and V,, is open, we obtain a nbd V, , of p
satisfying V, o~ My ny=¢ (p>). Therefore the nbd S%(p) AV, . of p intersects
at most one of elements of M, ,, proving the local finiteness of M, .

To assert that u 'y Wy =M covers R, we consider an arbitrary point
of R. Let j)ve,;b¢Vﬂ (f<a), a<r, then we can choose # such that U,(p)SV,.
Since p(Sh(#))°SV .o for this n, we can choose m satisfying U,.(p) € V,o In
consequence we have S! (p)c Vm wa On the other hand, it follows from pe:V,
(B<a) and from i) that S2(p) AV, s=¢ (f<«). This implies

Su(®) ~ Sp(B) S Vinnw—82a Vae
and consequently peM,, , ., i.e. M covers R.
Since M <V is obvious, we can conclude, from Michael’s theorem, the para-

compactness of R. Thus it follows from A. H. Stone’s theorem?® that R is fully
normal.

To complete the proof, let us show that {S(p, ©,)|m=1,2,...-1% for &, =
{(S%L(y))°|yeR} is a nbd basis of each point p of R. Let U(p) be an arbitrary
nbd of p, and choose » satisfying U,(¥)CSU(x), then we can find m=#» such that
U, (%) =S, (x). If(SZ(y))°>x, then considering S (y) ~S,, (%)%, we have ye U,,(x)
CSk(x) from i). Hence it follows from ii) that SZ(y)SS%(y) € U,(x) because we
can assume, without loss of generality, that m=>n implies SZ(y)SS2(y) for every
yeR. Therefore we have S(x, &,)CU,(*%)CU(x), i.e. {S(p, S,)|m=1,2,....}isa
nbd basis of p. Thus we conclude the metrizability of R by the metrization
theorem of P. Alexandroff and P. Urysohn.

Now we turn our attention to the application of this theorem. Some of the
following theo~ems are well-known, and some of them are probably unknown.

THrFOREM 2. (Yu. Smirnov and the author)” A regular space R is metrizable
if and only if there exists an open basis B= nﬁzl B, of R, where each B, is a locally
finite collection of open sets.

Proof.) We define nbds U, ,(x) and S}, (%) of each point x of R for every
pair #n, m of positive integers as follows: Let V,(x) = 5 {V|yeVeV,}. Then
it xsUCUZV,(%) for some U, welet U, ,.(%)=V,(), S}, ,.(x)=U; otherwise
we let U, .(¥)=S. ,,(*)=R. Moreover we put

Son@=Va@®)n [A{VFIxE V.,V eBu]lo

)y If e=T, an(p) intersects no set of M, -

5) Full normality and paracompactness are equivalent in T,-spaces. See [11].

6) S(p,M=V{UlpeUecll}, S4,W=Y{U|UA~A%¢, Ucll} for a covering U, a
point » and a subset 4.

7) See [10] and [7].

8) From now forth we prove only the sufficiencies since the necessities are generally
obvious.

9) We denote by V¢ or C(V) the complement set of V.
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Since B, and %, are locally finite, we have nbds U,,,(%), Sy ,,(¥), S ,,(¥) of x
satisfying the conditions 1) ii) of Theorem 1. For every nbd U(x) of an arbitrary
point x of R we can choose 7, m and V&%, such that

U#2V, %) 272V s
because R is regular and 9 is an open basis of R. Hence U, . (¥)=V,(x)CU(x),
i.e. {U,,.(%)|n,m=1,2....} is a nbd basis of . Thus we conclude, by Theorem
1, the metrizability of R.

THEOREM 3. (K. Morita)® A Ti-space R is metyizable if and only if there
exists a countable collection {T,|n=12-.--} of locally finite closed coverings of R
such that S(x, T,)SU(x) for any nbd U(x) of any point x of R and for some n.

Proof. Since §,, is locally finite, N, ()= ~{F°|¥€F°, FE%,} is an open nbd
of any point x of R. If S(x, F,)CN,(x), then we let

Un,m (%) =N, (%), S}, (%) =N, (x).
If S(x, ¥,) =N, (¥), then we let
Un,m (%) =S}, ,, (*) = R.
Moreover we let generally S2 (%) = N,,(x).

Then U, (%), S} (%), S2 (%) are nbds of # satisfying the conditions i) ii)

of Theorem 1. Since F, covers R, N,(y)ZS(y, &,) for every yeR; hence ye

U (®) implies Sy (y)=N,, (%) (S, Fn) ) S (Non(#))*=(S}, ()"
ye S, ,, (%) implies

Sam () =N (y) SNy (8) SN, (8) = Uy, ().
Thus this theorem is a direct consequence of Theorem 1.

THEOREM 4. (4. H. Frink)™V A Ty-space R is metrizable if and only if one
can assign a nbd basis {V,(#)|n=1,2....} for every point x of R such that for
every n and xR there exists m=m(n, x) satisfying the condition : V(%) ~V,.(¥)
%=¢ implies V,,(y)CV,(x).

Proof. Letting B, = {V, ()|x€R}, B, = {V,u(, »(*) |# € R}, we define nbds
U,(x), S} (%), S%(x) of any point % of R by

U, (%) =S (x,9,), S, =S (%, B,), S2(%) =V, ») (¥).
If SZ(y) ~Sh (%) = ¢, then there exists z such that x & V4, 1) (2) E (Vimn ()
In the case of m(n,z)<m(n.y) we have Vi, »(y) SV, (2)>% since we can assume,
without loss of generality, that m=» implies V,,(¥)ZV,(x). Therefore
S2®) = Vit () S S (%, B,) = U, ().
In the case of m(n, 2)=m(n, y) we have x€V,,(,o(2) SV ,(y) and consequently
Su(y) S Va(y) S Us (9).
For a given nbd U(x) of x we take #» with V,(x)CU(x). Then we have

10) See [5].
11) See [3].
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S (%, Buin, 1) = Untnn) (%) S U (#).
Hence this theorem is also a direct consequence of Theorem 1.
THEOREM 5. (the author)'® A Ty-space R is metrizable if and only if there
exists a family {f,|ac A} of real valued functions of R such that
i)  pZpfp and o BfB are continuous for every BCA,
ii) for any nbd U(x) of any point x of R there exists ac A and a real number
€1 foul®) <&, fu(U()))zE 1
Proof. We let A(x)= {oc[fw (*) < H;I } for each point x of R. For every
pair <7 of rational numbers we let
e () =] v fu®) <7} nlyl_o fual)>7),

acA(x) Cc(4(2)
St () = {¥] scdin /o)
< IR "Z"} {yl
n

(y) > 7 7' —7

2 aeCla)” 2 4 J
Let pEUsr (¥) (#&€SSR) and let Y, fu(p) =7 (¥€S)), e »f,, (p)=7r(xeS,).
ae X,
r+7’ v —7

Then we can choose «(%)€A4(x) for every xS, such that f,,) (p) > +
(<7’). Hence we have, by the continuity of N San(P), a nbd U(p) of p satisfy-
PSS

ing

o e (UB)> 5+ T

In the same way we can choose a(v)eC (4(x)) for every x&S, and a nbd V(p)
of p satisfying

o, an(V(p))< LEL — T
Thus we get a nbd U(p) A V(p) of p with

U@B)nV (B)n S) v =¢ (s5).
Similarly we have, by the continuities of VY f, and . f,, a nbd W(p) for any
point p such that peS) ,.(¥) implies W(p)ZUs,» ().

To show that {U,,,(x)]7, 7" are rational numbers with <7’} is a nbd basis
of x, we take, for a given nbd U(x) of x, acd, € with f,(x)<¢, fw((U(x))c)ge.
Moreover we choose rational numbers 7, 7" with f,(¥)<r<#7' <€ Then it follows
from a4 (¥) that

Unr (8) © [9] wchinfo 0) <7} S (9] fu (0) <7} S U (5),
assecting the metrizability ot R by Theorem 1.

THEOREM 6. (A. H. Stone, K. Morita and S. Hanai)'* Let f be a closed
continuwous mapping of a metric space R, onto a lopological space R,. Then Ra
is metrizable if and only if the boundary Bf~\(y) of the inverge image f~'(y) is

12) See [8].

13) We denote by fu(A4)=€ the fact that f,(¥)=¢ (v&4).

14) See [12] and [6]. With respect to the proof of the necessity, see also, those
papers.
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compact for every point y of R,.
Proof. Let U, ,=S; (B F(®)) (%)%, then U,,, is evidently an open set.
We define nbds U,(x) and S.(x) of each point x of R by

Un () =f (Unn), Shea 0) = (£ (U3,)) (S Ual®))
For a given nbd U(x) of » we can choose 7 satisfying S,,(Bf~*(¥)) </ (U(x))
since f~Y(U(x)) is an open set containing f'l(x) and Bf~'(x) is compact. Hence
(U, )=U,x)U(x), i.e. {U,*)|n=1,2....} is a nbd basis of x.

Next peU,(x) (#€SCTR,) and peS,, (y) (yeT S R,) imply f~p) A Uy =¢
(x€S) and f~4(p) < Upss,y (yET); hence there exists an open set U (f~(p)) con-
taining f~%(p) such that

( _1(?» Unir,x=¢ (¥€95), U(f_l(]ﬁ) Uny (yeT).
Thus we have, by the closedness of f, a nbd f(U(f %(p))) of p with
FUUHEN)ASHH) =¢  (€S), F(UFP)) S Ua(y) (yeT);
hence R, is metrizable by Theorem 1.

The following is a generalization of the theorem in our previous paper?® and
is a slight modification of Theorem 1 too.

THEOREM 7. A Ty-space R is metrizable if and omly if there exists a nbd
basis {S,(%)|n=1,2....} of every point x of R satisfying

1) yeS.(x) implies x=S,(y),

i) for every n and xR one can assign nbds S, (x) S,(x) such that ye&S,(x)
implies S,(V) n S, (%)= and such that y&S,(x) implies S, (v)Px.

Proof. Put U,(x) = S,(x), SL(x) = S,(%) ~S.(%), S%(x) = S, (), then yeEU (%)
implies xS, (y) and consequently S (%) ~S.(y) = ¢. Therefore z&Si(x) < S, (%)
implies yeS,(z), i.e. S2(2)SS,(x). Since y&U,(x) implies Sfl(y)mSL(x)gSn( ) A
S, (%) = ¢, we can conclude the validity of this theorem from Theorem 1.

THEOREM 8.1 A T,-space R is metrizable if and only if there exists a non-
negative function @(x,y) of RXR satisfying

) ey =@ %)

i) d(x, A) =inf {@ (v, y)|yEA} is, for every subset A of R, a continuous
Junction of =,

ity {S,(x)|n=1,2.--.} for S,(x) = {y|e@x, y)<1/n} is a nbd basis of any
point x of R.

Proof. We let S, (%) = S,+1(x). Then p&U,(x) (¥€4) and p&S,(y) (yeB)
imply d(p, A)=1/n and d(p, B)=1/(n+1) and hence there exists a nbd S,(p) of
satisfying

a(S, (p), A)>1/(n+1),d (S, (p),B) >0

In consequence

15)  Sya(A)={y| int {py, #)| ¥ 4}<1/n}.
16) Lemma 2 of [8].
17) This theorem is an extension of Corollary 6 of [8].
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i) nS,i#) = ¢ wed), S, (p)By  (yEB).
Therefore R is metrizable by Theorem 7.

COROLLARY. A Ti-space R is metrizable if and only if there exists a non-
negative function @(x,y) of RXR satisfying

) o) =@ %)

il) d(x, F)=1inf {@(x, y)|yeF} is, for every closed set F of R, a continuous
Sunction of x,

ity {S,()|n=1,2.-.-} for S, (x) = {yle@ (x, y)<1/n} is a nbd basis of any
point x of R.

Proof. Since d(x, A) = d (x, 4) is obvious for any subset A4 of R, this pro-
position is a direct consequence of Theorem 8.

The following two theorems are directly deduced from Theorem 1 and
from Theorem 7 respectively and can be considered extensions of Chittenden’s
theorem.

THEOREM 9. A Ty-space R s metrizable if and only if there exists a non-
negative function @ (%, y) of RXR satisfying

) @ox9) =@ %)

ii) for every €>0 and every x&R one can assign 8(€, x)>0 such that @(x, z)
<8(&, %) and @(y, 2)<8(E, y) imply @(x, y)<& and such that @(x, 2)<8(E, x) and
P(2 ¥)<8(&, 2) imply p(x, y)<E,

iti) {S,@)|n=1,2..-.} for S,(x) = {ylex, y)<1/n} is a nbd basis of any
point x of R.

Proof. It is obvious.

THEOREM 10. A Ts-space R is metrizable if and only if there exists a non-
negative valued function @(x,y) of RXR satisfying

) ey =9y %)

ii) for every £€>0 and xR one can assign 8,(€)>0 and 8,(¢, x)>0 such that
(5, 2)<8:(8) and p(y, )<3u(e, y) imply plx, y)<e,

i) {Sux)|n=1,2----} for S,(%) = {y|e(x, y)<1/n} is a nbd basis of any
point % of R.

Proof. 1t is obvious.

The following is an extension of Alexandroff and Urysohn’s theorem.

THEOREM 11. A Ty-space R is metrizable if and only if there exists a coun-
table collection {U,|n =1,2....} of open coverings such that

i) for every W, we can choose an open covering B, satisfying S(A4, B,)=S(4,
W,) for every closed subset A of R,

il) {SwW)|n=1,2-...}ds a nbd basis of any point % of R.

Proof. Letting

II

S, (%) =S (%,1,), S, (%) = S (% B,),
for peS,(#) (veA) we have, by S(4, B,)=S(4, 11,), a nbd W,(p) of p satisfying
W (p) ~S,(®) =¢ (¥€4). Since S,(p) = W,(p) ~S(p, B,) evidently satisfies the
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condition of Theorem 7, we conclude the metrizability of R.
THEOREM 12. (R. H. Bing)'® A regular space R is metrizable if and only
if there exists a countable collection {U1,|n=1,2-...} of open collections such that
1) the sum of the closures of amy subcollection of W, is closed,
i) {S(x, W,)|n=1,2----, Slx, W,)*p] is a nbd basis of each point x of R.
Proof. TFor every triad [, m, n of positive integers and every point x of R
we define nbds S.,,,,(¥) and S, ,, ,(¥) by
St myn (%) =S (2, W), S;, m,n () =S (»,U,)
if
x€SHEL)S S U,) =S 1U,)S S (1),
and Si, (%) = S} ,, , (%) = R otherwise.
It follows from the regularity of R that {S;,..(*)|, m, n=1,2....} is a nbd
basis of x.
If peES, 1,0 (%) (x=4), then
PEES (4, W) 2,845 (%, W,) =S (4, W),
which implies V(p) A S, ,(%)=¢ (x¥€A) for some nbd V(p) of p. If peS, . .(¥)
(yeB), then

pES (B, 1) 2,255 (3, ) = S (B, 1),
which implies W(p)®y (yB) for some nbd W(p) of p. Letting S, ,, ,(p)=V(p)
~W(p), we have three nbds satisfying the condition i), ii) of Theorem 7. Thus
this theorem is also a direct consequence of Theorem 7.

With respect to a topologically complete space'®, we have a simpler con-
dition for metrizability than those of Theorem 1 and Theorem 7.

TuEOREM 13. A topologically complete space R is completely metrizable if and
only if ome can assign a nbd basis {U,(x)|n=1,2.---} for every point x of R such
that for every m and each point % of R there exist nbds Sy(x), Si(x) of % satisfying
that y& U, (%) implies S%(y) A SE(x)=6.

Proof. 1f we review the proof of Theorem 1, then we know that the con-
dition ii) was not used to prove the fullnormality of R. Hence R is fully nor-
mal in the present instance. Since R is fully normal and topologically complete,
there exists, by N. A. Shanin’s theorem?"’, a countable collection {8,|#n=1,2..-.}
of open coverings having the following property : If a maximum filter F={%,]
acA) of closed sets is divergent, then we can choose B, satisfying S(¥, 8,)CF¢
for every x&R and some F,&%.

On the other hand let &,= {(S(x))°|x€R}, then for any %, y with x=+y we

18) See [17.

19) A T,-space R is called a topologically complete space if R is homeomorphic
with a Gs -set of some compact T,-space.

20) A T,-space R is topologically complete if and only if there exists a countable
collection {un|n=1,2,.. } of open coverings such that if a maximum filter & of closed
sets is divergent, then we can choose U, with 1, <B={F°|F&g}. See [9].
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have U, (%) ~ U, (y) = ¢ for some m, n. Let us assume m =n, then re(S2(z))°
implies z&U,,(x) and consequently z¢:U,(y) because we can assume without loss
of generality, that m=#» implies SZ(¥)=S2(v) (¥*€R). Hence S%(2) » Si(y) = ¢,
which means y&S(», ©,,). In the same way we can show x&S(y, ©,,).

Letting B, = 8,AS, we have a countable collection {¥8,|n=1,2....} of
open coverings having the property of {8,} and that of {&,}. Now we shall
show that {S(%, By AW, A+ - - AByy) [;=1, 2.+ (i=1, ----k), k=1,2....} is a
nbd basis of any point ¥ of R. If we assume the contrary:

S#H W) NSE W) Nee- NS Way) =S (%, W, A-veor ABy,) =T (%)
for some open nbd U(x) of x and every #,, k, then {(U(x))", S(x, B,)|n=1,2 -.-}
=@ is a family of closed sets having the finite intersection property. Since all
the sets of & have obviously no common point, if we construct a maximum filter
& of closed sets such that G, § is divergent. Hence we can choose 2B,
satisfying S(x, ®,)F¢ for some Fe®. This contradicts S(x, 3,)€GCF since
& is a filter. Thus we have the countable collection {¥8,, A-:-- Ay [7;=1,2- -
(1=1,----,k),k=1,2.--.} of open coverings such that {S(%, Bu A---- AB,,)} is a
nbd basis of x, which combining with the full normality of R induces, by Alex-
androff and Urysohn’s theorem, the metrizability of R and consequently the
complete metrizability of R by E. Cech’s Theorem?2?),
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