A contribution to the theory of metrization

By Jun-iti NAGATA (Received March 18, 1957)

Since Alexandroff and Urysohn's work various theorems concerning metrizability of a toplogical space were gotten by many mathematicians. Their methods of proofs, however, are generally various and rather complicated. The purpose of this paper is to give a systematic account of the theory of metrization. A main theorem on the metrizability of a T_1 -space will be proved first, and then it will be shown that this theorem contains a large number of metrization theorems as direct consequences.

To prove our main theorem we use the following theorem due to E. Michael¹⁾ as well as the well-known theorem of P. Alexandroff and P. Urysohn.

Michael's theorem. A regular topological space R is paracompact if and only if every open covering of R has an open refinement $\mathfrak{B} = \bigcup_{i=1}^{\infty} \mathfrak{B}_i$, where each \mathfrak{B}_i is a locally finite collection of open subsets of R.

THEOREM 1. In order that a T_1 -topological space R is metrizable it is necessary and sufficient that one can assign a nbd (=neighborhood) basis $\{U_n(x)|n=1, 2, \dots\}$ for every point x of R such that for every n and each point x of R there exist nbds $S_n^1(x)$, $S_n^2(x)$ of x satisfying

i)
$$y \notin U_n(x)$$
 implies $S_n^2(y) \cap S_n^1(x) = \phi$,
ii) $y \in S_n^1(x)$ implies $S_n^2(y) \subseteq U_n(x)$.

Proof. Since the necessity is clear, we prove only the sufficiency. To begin with, R is regular because the condition i) of this proposition implies $\overline{S_n^1(x)} \subseteq U_n(x)$. Next, to show that R is paracompact, we take an arbitrary open covering $\mathfrak{B}=\{V_x|\alpha<\tau\}$ of R^3 . If we let

$$\begin{split} &V_{n,\alpha} = {}^{\cup} \left\{ \left(S_n^1(x) \right)^{\circ} | U_n(x) \subseteq V_{\alpha} \right\}, \\ &V_{m,n,\alpha} = {}^{\cup} \left\{ U_m(x) \mid U_m(x) \subseteq V_{n,\alpha} \right\}, \\ &V_{m,n,\alpha}' = {}^{\cup} \left\{ S_m^1(x) \mid U_m(x) \subseteq V_{n,\alpha} \right\}, \\ &M_{m,n,\alpha} = \left(V_{m,n,\alpha}' - \underset{\beta < \alpha}{\cup} V_{n,\beta} \right)^{\circ} \qquad (m,n=1,2,\cdots,\alpha < \tau), \end{split}$$

then $\mathfrak{M}_{m,n}=\{M_{m,n,\alpha}|\alpha<\tau\}$ for each m,n is a locally finite open collection.

To show the local finiteness of $\mathfrak{M}_{m,n}$ we choose, for an arbitrary point p of

The content of this paper is the datail of our brief note in Proc. of Japan Acad, vol. 33,

¹⁾ See [4]. 2) ii) can't be omitted. Let $R = \{(x, y) | C \le x \le 1, y \ge C\}$, $U_n(p) = \{q | d(p, q) < 1/n\}$ for p = (x, y) with y > 0, $U_n(p) = \{(x', y') | y' < n - \sqrt{n^2 - (x' - x)^2}, | x' - x| < 1/n\} \cup \{p\}$ for p = (x, 0). Then R with the nbd basis $\{U_n(p)\}$ is a non-metrizable T_1 space satisfying i).

³⁾ In this proof we denote by α , β , γ , τ ordinal numbers and by A° the interior of A.

R, α (\leq_{τ}) such that $p \in V_{m,n,\alpha}$, $p \notin V_{m,n,\beta}$ ($\beta < \alpha$). Then it follows from the condition i) that $S_m^2(p) \cap V_{m,n,\beta}' = \phi$ ($\beta < \alpha$), which implies $S_m^2(p) \cap M_{m,n,\beta} = \phi$ ($\beta < \alpha$). If $\alpha <_{\tau}$, then since $p \in V_{m,n,\alpha} \subseteq V_{n,\alpha}$ and $V_{n,\alpha}$ is open, we obtain a nbd $V_{n,\alpha}$ of p satisfying $V_{n,\alpha} \cap M_{m,n,\gamma} = \phi$ ($\gamma > \alpha$). Therefore the nbd $S_m^2(p) \cap V_{n,\alpha}$ of p intersects at most one of elements of $\mathfrak{M}_{m,n}$, proving the local finiteness of $\mathfrak{M}_{m,n}^{4}$.

To assert that $\bigcup_{m,n=1}^{\infty} \mathfrak{M}_{m,n} = \mathfrak{M}$ covers R, we consider an arbitrary point p of R. Let $p \in V_{\alpha}$, $p \notin V_{\beta}$ $(\beta < \alpha)$, $\alpha < \tau$, then we can choose n such that $U_n(p) \subseteq V_{\alpha}$. Since $p \in (S_n^1(p))^{\circ} \subseteq V_{n,\alpha}$ for this n, we can choose m satisfying $U_m(p) \subseteq V_{n,\alpha}$. In consequence we have $S_m^1(p) \subseteq V'_{m,n,\alpha}$. On the other hand, it follows from $p \notin V_{\beta}$ $(\beta < \alpha)$ and from i) that $S_n^2(p) \cap V_{n,\beta} = \phi$ $(\beta < \alpha)$. This implies

$$S_{m}^{1}(p) \cap S_{n}^{2}(p) \subseteq V_{m,n,\alpha}^{\prime} - \underset{\beta \leq \alpha}{\cup} V_{n,\beta}$$

and consequently $p \in M_{m,n,a}$, i.e. \mathfrak{M} covers R.

Since $\mathfrak{M} < \mathfrak{V}$ is obvious, we can conclude, from Michael's theorem, the paracompactness of R. Thus it follows from A. H. Stone's theorem⁵ that R is fully normal.

To complete the proof, let us show that $\{S(p,\mathfrak{S}_m)|m=1,2,\cdots\}^{6}$ for $\mathfrak{S}_m=\{(S_m^2(y))^\circ|y\in R\}$ is a nbd basis of each point p of R. Let U(p) be an arbitrary nbd of p, and choose n satisfying $U_n(x)\subseteq U(x)$, then we can find $m\geq n$ such that $U_m(x)\subseteq S_n^1(x)$. If $(S_m^2(y))^\circ\ni x$, then considering $S_m^2(y)\cap S_m^1(x)\models \phi$, we have $y\in U_m(x)\subseteq S_n^1(x)$ from i). Hence it follows from ii) that $S_m^2(y)\subseteq S_n^2(y)\subseteq U_n(x)$ because we can assume, without loss of generality, that $m\geq n$ implies $S_m^2(y)\subseteq S_n^2(y)$ for every $y\in R$. Therefore we have $S(x,\mathfrak{S}_m)\subseteq U_n(x)\subseteq U(x)$, i.e. $\{S(p,\mathfrak{S}_m)|m=1,2,\cdots\}$ is a nbd basis of p. Thus we conclude the metrizability of R by the metrization theorem of P. Alexandroff and P. Urysohn.

Now we turn our attention to the application of this theorem. Some of the following theorems are well-known, and some of them are probably unknown.

THFOREM 2. (Yu. Smirnov and the author)⁷⁾ A regular space R is metrizable if and only if there exists an open basis $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$ of R, where each \mathfrak{B}_n is a locally finite collection of open sets.

*Proof.*⁸⁾ We define nbds $U_{n,m}(x)$ and $S_{n,m}^1(x)$ of each point x of R for every pair n,m of positive integers as follows: Let $V_n(x) = \bigcap \{V | x \in V \in V_n\}$. Then if $x \in U \subseteq \overline{U} \subseteq V_n(x)$ for some $U \in \mathfrak{V}_m$, we let $U_{n,m}(x) = V_n(x)$, $S_{n,m}^1(x) = U$; otherwise we let $U_{n,m}(x) = S_{n,m}^1(x) = R$. Moreover we put

$$S_{n,m}^{2}(x) = V_{n}(x) \cap \left[\bigcap \left\{ (\overline{V})^{c} | x \in \overline{V}, V \in \mathfrak{B}_{m} \right\} \right]^{9}$$

⁴⁾ If $\alpha = \tau$, $S_m^2(p)$ intersects no set of $\mathfrak{M}_{m,n}$.

⁵⁾ Full normality and paracompactness are equivalent in T_2 -spaces. See [11].

⁶⁾ $S(p, \mathfrak{U}) = \bigcup \{U \mid p \in U \in \mathfrak{U}\}, S(A, \mathfrak{U}) = \bigcup \{U \mid U \cap A \neq \emptyset, U \in \mathfrak{U}\} \text{ for a covering } \mathfrak{U}, \text{ a point } p \text{ and a subset } A.$

⁷⁾ See [10] and [7].

 $^{8) \ \ \,}$ From now forth we prove only the sufficiencies since the necessities are generally obvious.

⁹⁾ We denote by V^c or C(V) the complement set of V.

Since \mathfrak{V}_n and \mathfrak{V}_m are locally finite, we have nbds $U_{n,m}(x)$, $S_{n,m}^1(x)$, $S_{n,m}^2(x)$ of xsatisfying the conditions i) ii) of Theorem 1. For every nbd U(x) of an arbitrary point x of R we can choose n, m and $V \in \mathfrak{V}_m$ such that

$$U(x) \supseteq V_n(x) \supseteq \overline{V} \supseteq V \ni x$$

because R is regular and \mathfrak{B} is an open basis of R. Hence $U_{n,n}(x) = V_n(x) \subseteq U(x)$, i.e. $\{U_{n,m}(x)|n,m=1,2\cdots\}$ is a nbd basis of x. Thus we conclude, by Theorem 1, the metrizability of R.

Theorem 3. (K. Morita)¹⁰⁾ A T_1 -space R is metrizable if and only if there exists a countable collection $\{\mathfrak{F}_n|n=1,2\cdots\}$ of locally finite closed coverings of R such that $S(x, \mathfrak{F}_n) \subseteq U(x)$ for any nbd U(x) of any point x of R and for some n.

Proof. Since \mathfrak{F}_n is locally finite, $N_n(x) = \{F^c | x \in F^c, F \in \mathfrak{F}_n\}$ is an open nbd of any point x of R. If $S(x, \mathfrak{F}_n) \subseteq N_n(x)$, then we let

$$U_{n,m}(x) = N_n(x), \qquad S_{n,m}^1(x) = N_m(x).$$

If $S(x, \mathfrak{F}_m) \not\equiv N_n(x)$, then we let

$$U_{n, m}(x) = S_{n, m}^{1}(x) = R.$$

Moreover we let generally $S_{n,m}^2(x) = N_m(x)$.

Then $U_{n,m}(x)$, $S^1_{n,m}(x)$, $S^2_{n,m}(x)$ are nbds of x satisfying the conditions i) ii) of Theorem 1. Since \mathfrak{F}_m covers R, $N_m(y)\subseteq S(y,\mathfrak{F}_m)$ for every $y\in R$; hence $y\in R$ $U_{n,m}(x)$ implies $S_{n,m}^2(y) = N_m(y) \subseteq (S(x, \mathfrak{F}_m))^c \subseteq (N_m(x))^c = (S_{n,m}^1(x))^c$. $y \in S_{n,m}^{1}(x)$ implies

$$S_{n,m}^{2}(y) = N_{m}(y) \subseteq N_{m}(x) \subseteq N_{n}(x) = U_{n,m}(x).$$

Thus this theorem is a direct consequence of Theorem 1.

THEOREM 4. $(A. H. Frink)^{11}$ A T_1 -space R is metrizable if and only if one can assign a nbd basis $\{V_n(x) | n=1, 2 \cdots \}$ for every point x of R such that for every n and $x \in R$ there exists m = m(n, x) satisfying the condition: $V_m(x) \cap V_m(y)$ $\neq \phi$ implies $V_m(y) \subseteq V_n(x)$.

Proof. Letting $\mathfrak{V}_n = \{V_n(x) | x \in R\}, \mathfrak{W}_n = \{V_{m(n,x)}(x) | x \in R\}, \text{ we define nbds}$ $U_n(x)$, $S_n^1(x)$, $S_n^2(x)$ of any point x of R by

$$U_n(x) = S(x, \mathfrak{B}_n), S_n^1(x) = S(x, \mathfrak{W}_n), S_n^2(x) = V_{m(n, x)}(x).$$

If $S_n^2(y) \cap S_n^1(x) \neq \phi$, then there exists z such that $x \in V_{m(n,z)}(z) \not\equiv (V_{m(n,y)}(y))^c$. In the case of $m(n,z) \leq m(n,y)$ we have $V_{m(n,y)}(y) \subseteq V_n(z) \ni x$ since we can assume, without loss of generality, that $m \ge n$ implies $V_n(x) \subseteq V_n(x)$. Therefore

$$S_n^2(y) = V_{m(n, y)}(y) \subseteq S(x, \mathfrak{V}_n) = U_n(x).$$

In the case of $m(n, z) \ge m(n, y)$ we have $x \in V_{m(n,z)}(z) \subseteq V_n(y)$ and consequently

$$S_n^2(y) \subseteq V_n(y) \subseteq U_n(x)$$
.

For a given nbd U(x) of x we take n with $V_n(x) \subseteq U(x)$. Then we have

¹⁰⁾ See [5].

¹¹⁾ See [3].

$$S\left(x,\mathfrak{D}_{m(n,x)}\right)=U_{m(n,x)}\left(x\right)\subseteq U\left(x\right).$$

Hence this theorem is also a direct consequence of Theorem 1.

THEOREM 5. (the author)¹²⁾ A T_1 -space R is metrizable if and only if there exists a family $\{f_{\alpha} | \alpha \in A\}$ of real valued functions of R such that

- i) $\beta \in B f_{\beta}$ and $\beta \in B f_{\beta}$ are continuous for every $B \subseteq A$,
- ii) for any nbd U(x) of any point x of R there exists $\alpha \in A$ and a real number $\varepsilon: f_{\alpha}(x) < \varepsilon, f_{\alpha}((U(x))^{\varepsilon}) \ge \varepsilon.$ ¹³⁾

Proof. We let $A(x) = \left\{ \alpha \mid f_{\alpha}(x) < \frac{r+r'}{2} \right\}$ for each point x of R. For every pair r < r' of rational numbers we let

$$U_{r,r'}(x) = \left\{ y \middle| \underset{\alpha \in A(x)}{\cup} f_{\alpha}(y) < r' \right\} \cap \left\{ y \middle| \underset{\alpha \in C(A(x))}{\int} f_{\alpha}(y) > r \right\},$$

$$S_{r,r'}^{1}(x) = \left\{ y \middle| \underset{\alpha \in A(x)}{\cup} f_{\alpha}(y) < \frac{r+r'}{4} \right\} \cap \left\{ y \middle| \underset{\alpha \in C(A(x))}{\cap} f_{\alpha}(y) > \frac{r+r'}{2} - \frac{r'-r}{4} \right\}.$$

Let $p \in U_{r,r'}(x)$ $(x \in S \subseteq R)$ and let $\underset{\alpha \in A(x)}{\cup} f_{\alpha}(p) \geq r'$ $(x \in S_1), \underset{\alpha \in C(A(x))}{\cup} f_{\alpha}(p) \leq r$ $(x \in S_2).$

Then we can choose $\alpha(x) \in A(x)$ for every $x \in S_1$ such that $f_{\alpha(x)}(p) > \frac{r+r'}{2} + \frac{r'-r}{3}$ (< r'). Hence we have, by the continuity of $\int_{x \in S_1} f_{\alpha(x)}(p)$, a nbd U(p) of p satisfying

$$\sum_{x \in S_1} f_{\alpha(x)}(U(p)) > \frac{r+r'}{2} + \frac{r'-r}{4}$$
.

In the same way we can choose $\alpha(x) \in C(A(x))$ for every $x \in S_2$ and a nbd V(p) of p satisfying

$$\underset{x \in S_2}{\cup} f_{\alpha(x)}\big(V(p)\big) < \frac{r+r'}{2} - \frac{r'-r}{4} \; .$$

Thus we get a nbd $U(\phi) \cap V(\phi)$ of ϕ with

$$U(p) \cap V(p) \cap S^1_{r,r'}(x) = \phi \quad (x \in S).$$

Similarly we have, by the continuities of f_{α} and f_{α} a nbd W(p) for any point p such that $p \in S^1_{r,r'}(x)$ implies $W(p) \subseteq U_{r,r'}(p)$.

To show that $\{U_{r,\,r'}(x)|r,\,r'\text{ are rational numbers with }r< r'\}$ is a nbd basis of x, we take, for a given nbd U(x) of x, $\alpha \in A$, ε with $f_{\alpha}(x)< \varepsilon$, $f_{\alpha}((U(x))^{c}) \geq \varepsilon$. Moreover we choose rational numbers $r,\,r'$ with $f_{\alpha}(x)< r< r'< \varepsilon$. Then it follows from $\alpha \in A(x)$ that

$$U_{r,r'}(x) \subseteq \{y \mid \underset{\alpha \in A(x)}{\cup} f_{\alpha}(y) < r'\} \subseteq \{y \mid f_{\alpha}(y) < r'\} \subseteq U(x),$$

asserting the metrizability of R by Theorem 1.

THEOREM 6. (A. H. Stone, K. Morita and S. Hanai)¹⁴⁾ Let f be a closed continuous mapping of a metric space R_1 onto a topological space R_2 . Then R_2 is metrizable if and only if the boundary $Bf^{-1}(y)$ of the inverge image $f^{-1}(y)$ is

¹²⁾ See [8]

¹³⁾ We denote by $f_{\alpha}(A) \geq \varepsilon$ the fact that $f_{\alpha}(x) \geq \varepsilon$ $(x \in A)$.

¹⁴⁾ See [12] and [6]. With respect to the proof of the necessity, see also, those papers.

compact for every point y of R_2 .

Proof. Let $U_{n,x}=S_{1,n}(Bf^{-1}(x)) \cup f^{-1}(x)^{15}$, then $U_{n,x}$ is evidently an open set. We define nbds $U_n(x)$ and $S_n^1(x)$ of each point x of R by

$$U_n(x) = f(U_{n,x}), S_{n-1}^1(x) = (f(U_{n,x}^c))^c \qquad (\subseteq U_n(x))$$

For a given nbd U(x) of x we can choose n satisfying $S_{1/n}(Bf^{-1}(x)) \subseteq f^{-1}(U(x))$ since $f^{-1}(U(x))$ is an open set containing $f^{-1}(x)$ and $Bf^{-1}(x)$ is compact. Hence $f(U_{n\cdot x})=U_n(x)\subseteq U(x)$, i.e. $\{U_n(x)\mid n=1,2\cdots\}$ is a nbd basis of x.

Next $p \notin U_n(x)$ $(x \in S \subseteq R_2)$ and $p \in S_n^1(y)$ $(y \in T \subseteq R_2)$ imply $f^{-1}(p) \cap U_{n,x} = \phi$ $(x \in S)$ and $f^{-1}(p) \subseteq U_{n+1,y}$ $(y \in T)$; hence there exists an open set $U(f^{-1}(p))$ containing $f^{-1}(p)$ such that

$$U(f^{-1}(p)) \cap U_{n+1,x} = \phi \quad (x \in S), \ U(f^{-1}(p)) \subseteq U_{n,y} \ (y \in T).$$

Thus we have, by the closedness of f, a nbd $f(U(f^{-1}(p)))$ of p with

$$f\left(U\left(f^{-1}(p)\right)\right) \cap S_n^1(x) = \phi \quad (x \in S), \ f\left(U\left(f^{-1}(p)\right)\right) \subseteq U_n\left(y\right) \quad (y \in T);$$

hence R_2 is metrizable by Theorem 1.

The following is a generalization of the theorem in our previous paper¹⁶⁾ and is a slight modification of Theorem 1 too.

Theorem 7. A T_1 -space R is metrizable if and only if there exists a nbd basis $\{S_n(x) | n = 1, 2 \cdots \}$ of every point x of R satisfying

- i) $y \in S_n(x)$ implies $x \in S_n(y)$,
- ii) for every n and $x \in R$ one can assign nbds $S'_n(x)$ $S''_n(x)$ such that $y \notin S_n(x)$ implies $S'_n(y) \cap S'_n(x) = \phi$ and such that $y \notin S'_n(x)$ implies $S''_n(y) \ni x$.

Proof. Put $U_n(x) = S_n(x)$, $S_n^1(x) = S_n^{'}(x) \cap S_n^{'}(x)$, $S_n^2(x) = S_n^{''}(x)$, then $y \notin U_n(x)$ implies $x \notin S_n(y)$ and consequently $S_n^{''}(x) \cap S_n^{'}(y) = \phi$. Therefore $z \in S_n^1(x) \subseteq S_n^{''}(x)$ implies $y \notin S_n^{''}(z)$, i.e. $S_n^2(z) \subseteq S_n(x)$. Since $y \notin U_n(x)$ implies $S_n^2(y) \cap S_n^1(x) \subseteq S_n^{''}(y) \cap S_n^{'}(x) = \phi$, we can conclude the validity of this theorem from Theorem 1.

THEOREM 8.¹⁷⁾ A T_1 -space R is metrizable if and only if there exists a non-negative function $\varphi(x, y)$ of $R \times R$ satisfying

- i) $\varphi(x, y) = \varphi(y, x)$
- ii) $d(x, A) = \inf \{ \varphi(x, y) | y \in A \}$ is, for every subset A of R, a continuous function of x,
- iii) $\{S_n(x) | n = 1, 2 \cdots \}$ for $S_n(x) = \{y | \varphi(x, y) < 1/n \}$ is a nbd basis of any point x of R.

Proof. We let $S_n'(x) = S_{n+1}(x)$. Then $p \in U_n(x)$ $(x \in A)$ and $p \in S_n'(y)$ $(y \in B)$ imply $d(p,A) \ge 1/n$ and $d(p,B) \ge 1/(n+1)$ and hence there exists a nbd $S_n''(p)$ of p satisfying

$$d(S_{n}^{"}(p), A) > 1/(n+1), d(S_{n}^{"}(p), B) > 0.$$

In consequence

- 16) Lemma 2 of [8].
- 17) This theorem is an extension of Corollary 6 of [8].

¹⁵⁾ $S_{1/n}(A) = \{ y \mid \inf \{ \rho(y, x) \mid x \in A \} < 1/n \}.$

$$S_n''(\phi) \cap S_n'(x) = \phi \quad (x \in A), S_n''(\phi) \oplus y \quad (y \in B).$$

Therefore R is metrizable by Theorem 7.

COROLLARY. A T_1 -space R is metrizable if and only if there exists a non-negative function $\varphi(x, y)$ of $R \times R$ satisfying

- i) $\varphi(x, y) = \varphi(y, x)$
- ii) $d(x, F) = \inf \{ \varphi(x, y) | y \in F \}$ is, for every closed set F of R, a continuous function of x,
- iii) $\{S_n(x)|n=1, 2\cdots\}$ for $S_n(x)=\{y|\varphi(x,y)<1/n\}$ is a nbd basis of any point x of R.

Proof. Since $d(x, A) = d(x, \overline{A})$ is obvious for any subset A of R, this proposition is a direct consequence of Theorem 8.

The following two theorems are directly deduced from Theorem 1 and from Theorem 7 respectively and can be considered extensions of Chittenden's theorem.

THEOREM 9. A T_1 -space R is metrizable if and only if there exists a non-negative function $\varphi(x, y)$ of $R \times R$ satisfying

- i) $\varphi(x, y) = \varphi(y, x)$
- ii) for every $\varepsilon > 0$ and every $x \in R$ one can assign $\delta(\varepsilon, x) > 0$ such that $\varphi(x, z) < \delta(\varepsilon, x)$ and $\varphi(y, z) < \delta(\varepsilon, y)$ imply $\varphi(x, y) < \varepsilon$ and such that $\varphi(x, z) < \delta(\varepsilon, x)$ and $\varphi(z, y) < \delta(\varepsilon, z)$ imply $\varphi(x, y) < \varepsilon$,
- iii) $\{S_n(x) | n = 1, 2 \cdots \}$ for $S_n(x) = \{y | \varphi(x, y) < 1/n \}$ is a nbd basis of any point x of R.

Proof. It is obvious.

THEOREM 10. A T_1 -space R is metrizable if and only if there exists a non-negative valued function $\varphi(x, y)$ of $R \times R$ satisfying

- i) $\varphi(x, y) = \varphi(y, x)$
- ii) for every $\varepsilon > 0$ and $x \in R$ one can assign $\delta_1(\varepsilon) > 0$ and $\delta_2(\varepsilon, x) > 0$ such that $\varphi(x, z) < \delta_1(\varepsilon)$ and $\varphi(y, z) < \delta_2(\varepsilon, y)$ imply $\varphi(x, y) < \varepsilon$,
- iii) $\{S_n(x)|n=1, 2\cdots\}$ for $S_n(x)=\{y|\varphi(x,y)<1/n\}$ is a nbd basis of any point x of R.

Proof. It is obvious.

The following is an extension of Alexandroff and Urysohn's theorem.

Theorem 11. A T_1 -space R is metrizable if and only if there exists a countable collection $\{\mathfrak{U}_n|n=1,2\cdots\}$ of open coverings such that

- i) for every \mathfrak{U}_n we can choose an open covering \mathfrak{V}_n satisfying $\overline{S(A,\mathfrak{V}_n)}\subseteq S(A,\mathfrak{U}_n)$ for every closed subset A of R,
 - ii) $\{S(x, \mathfrak{U}_n) | n = 1, 2 \cdots \}$ is a nbd basis of any point x of R.

Proof. Letting

$$S_n(x) = S(x, \mathfrak{U}_n), S'_n(x) = S(x, \mathfrak{V}_n),$$

for $p \notin S_n(x)$ $(x \in A)$ we have, by $\overline{S(A, \mathfrak{V}_n)} \subseteq S(A, \mathfrak{U}_n)$, a nbd $W_n(p)$ of p satisfying $W_n(p) \cap S'_n(x) = \phi$ $(x \in A)$. Since $S''_n(p) = W_n(p) \cap S(p, \mathfrak{V}_n)$ evidently satisfies the

condition of Theorem 7, we conclude the metrizability of R.

THEOREM 12. $(R. H. Bing)^{18}$ A regular space R is metrizable if and only if there exists a countable collection $\{\mathfrak{U}_n|n=1,2\cdots\}$ of open collections such that

- i) the sum of the closures of any subcollection of \mathfrak{U}_n is closed,
- ii) $\{S(x, \mathfrak{U}_n) | n = 1, 2, \dots, S(x, \mathfrak{U}_n) \neq \emptyset \}$ is a nbd basis of each point x of R.

Proof. For every triad l, m, n of positive integers and every point x of Rwe define nbds $S_{i, m, n}(x)$ and $S'_{i, m, n}(x)$ by

$$S_{l, m, n}(x) = S(x, \mathfrak{U}_n), S'_{l, m, n}(x) = S(x, \mathfrak{U}_n)$$

if

$$x \in \overline{S(x, \mathfrak{U}_l)} \subseteq S(x, \mathfrak{U}_m) \subseteq \overline{S(x, \mathfrak{U}_m)} \subseteq S(x, \mathfrak{U}_n),$$

and $S_{l,m,n}(x) = S'_{l,m,n}(x) = R$ otherwise.

It follows from the regularity of R that $\{S_{l,m,n}(x)|l, m, n=1, 2, \dots\}$ is a nbd basis of x.

If
$$p \notin S_{l, m, n}(x)$$
 $(x \in A)$, then $p \notin S(A, \mathfrak{U}_n) \supseteq \bigcup_{x \in A} \overline{S(x, \mathfrak{U}_m)} = \overline{S(A, \mathfrak{U}_m)}$,

which implies
$$V(p) \cap S'_{l,m,n}(x) = \phi$$
 $(x \in A)$ for some nbd $V(p)$ of p . If $p \notin S'_{l,m,n}(y)$

 $(y \in B)$, then

$$p \notin S(B, \mathfrak{U}_m) \supseteq_{y \in B} \overline{S(y, \mathfrak{U}_l)} = \overline{S(B, \mathfrak{U}_l)},$$

which implies $W(p) \ni y \ (y \in B)$ for some nbd W(p) of p. Letting $S''_{l,m,n}(p) = V(p)$ W(p), we have three nbds satisfying the condition i), ii) of Theorem 7. Thus this theorem is also a direct consequence of Theorem 7.

With respect to a topologically complete space¹⁹), we have a simpler condition for metrizability than those of Theorem 1 and Theorem 7.

THEOREM 13. A topologically complete space R is completely metrizable if and only if one can assign a nbd basis $\{U_n(x) | n=1, 2 \cdots \}$ for every point x of R such that for every n and each point x of R there exist nods $S_n^1(x)$, $S_n^2(x)$ of x satisfying that $y \notin U_n(x)$ implies $S_n^2(y) \cap S_n^1(x) = \phi$.

Proof. If we review the proof of Theorem 1, then we know that the condition ii) was not used to prove the full normality of R. Hence R is fully normal in the present instance. Since R is fully normal and topologically complete, there exists, by N. A. Shanin's theorem²⁰, a countable collection $\{\mathfrak{V}_n | n=1, 2\cdots\}$ of open coverings having the following property: If a maximum filter $\mathfrak{F}=\{\mathfrak{F}_a|$ $\alpha \in A$ of closed sets is divergent, then we can choose \mathfrak{V}_n satisfying $\overline{S(x,\mathfrak{V}_n)} \subseteq F_{\alpha}^c$ for every $x \in R$ and some $F_{\alpha} \in \mathfrak{F}$.

On the other hand let $\mathfrak{S}_n = \{(S_n^2(x))^{\circ} | x \in R\}$, then for any x, y with $x \neq y$ we

¹⁸⁾ See [1].

¹⁹⁾ A T₂-space R is called a topologically complete space if R is homeomorphic with a G_{δ} -set of some compact T_2 -space.

²⁰⁾ A T_2 -space R is topologically complete if and only if there exists a countable collection $\{\mathfrak{U}_n|n=1,2,\cdots\}$ of open coverings such that if a maximum filter \mathfrak{F} of closed sets is divergent, then we can choose \mathfrak{U}_n with $\mathfrak{U}_n < \mathfrak{W} = \{F^c | F \in \mathfrak{F}\}$. See [9].

have $U_m(x) \cap U_n(y) = \phi$ for some m, n. Let us assume $m \geq n$, then $x \in (S_m^2(z))^\circ$ implies $z \in U_m(x)$ and consequently $z \notin U_n(y)$ because we can assume without loss of generality, that $m \geq n$ implies $S_m^2(x) \subseteq S_n^2(x)$ ($x \in R$). Hence $S_m^2(x) \cap S_n^1(y) = \phi$, which means $y \notin \overline{S(x, \mathfrak{S}_m)}$. In the same way we can show $x \notin \overline{S(y, \mathfrak{S}_m)}$.

Letting $\mathfrak{B}_n = \mathfrak{B}_n \wedge \mathfrak{S}_n$ we have a countable collection $\{\mathfrak{B}_n | n = 1, 2 \cdots \}$ of open coverings having the property of $\{\mathfrak{B}_n\}$ and that of $\{\mathfrak{S}_n\}$. Now we shall show that $\{S(x, \mathfrak{B}_{n_1} \wedge \mathfrak{B}_{n_2} \wedge \cdots \wedge \mathfrak{B}_{n_k}) | n_i = 1, 2 \cdots (i = 1, \dots k), k = 1, 2 \cdots \}$ is a nbd basis of any point x of R. If we assume the contrary:

 $S(x,\mathfrak{W}_{n_1})\cap S(x,\mathfrak{W}_{n_2})\cap\cdots\cap S(x,\mathfrak{W}_{n_k})=S(x,\mathfrak{W}_{n_1}\wedge\cdots\wedge\mathfrak{W}_{n_k}) \oplus U(x)$ for some open nbd U(x) of x and every n_i , k, then $\{(U(x))^c, \overline{S(x,\mathfrak{W}_n)} \mid n=1,2\cdots\}$ = \mathfrak{G} is a family of closed sets having the finite intersection property. Since all the sets of \mathfrak{G} have obviously no common point, if we construct a maximum filter \mathfrak{F} of closed sets such that $\mathfrak{G}\subseteq\mathfrak{F}$, \mathfrak{F} is divergent. Hence we can choose \mathfrak{W}_n satisfying $\overline{S(x,\mathfrak{W}_n)}\subseteq F^c$ for some $F\in\mathfrak{F}$. This contradicts $\overline{S(x,\mathfrak{W}_n)}\in\mathfrak{G}\subseteq\mathfrak{F}$ since \mathfrak{F} is a filter. Thus we have the countable collection $\{\mathfrak{W}_{n_1}\wedge\cdots\wedge\mathfrak{W}_{n_k}|n_i=1,2\cdots(i=1,\cdots,k),k=1,2\cdots\}$ of open coverings such that $\{S(x,\mathfrak{W}_{n_1}\wedge\cdots\wedge\mathfrak{W}_{n_k})\}$ is a nbd basis of x, which combining with the full normality of x induces, by Alexandroff and Urysohn's theorem, the metrizability of x and consequently the complete metrizability of x by x by x is Theoremx.

Bibliography

- R H. Bing, Metrization of topological spaces, Canadian Journ. of Math, vol. 3 (1951).
- [2] E. Cech, On bicompact spaces, Ann. of Math. 38 (1939).
- [3] A. H. Frink, Distance function and the metrization problem, Bull. Amer. Math. Soc. vol. 43 (1937).
- [4] E. Michael, A note on paracompact spaces, Proc. of Amer. Math. Soc., vol. 4, No. 3 (1953).
- [5] K. Morita, A condition for the metrizability of topological spaces and for n-dimensionality, Science Reports of the Tokyo Kyoiku Daigaku Sec. A, vol. 5, No. 114 (1955).
- [6] K. Morita and S. Hanai, Closed mappings and metric spaces, Proc. Japan Acad. vol. 32. No. 1 (1956).
- [7] J. Nagata, On a necessary and sufficient condition of metrizability Journ. of Inst. of Polytech. Osaka City Univ., Ser. A, vol. 1, No. 2 (1950).
- [8] J. Nagata, On coverings and continuous functions, Journ. of Inst. of Polytech. Osaka City Univ., Ser. A, vol. 7. No. 1-2 (1956).
- [9] N. A. Shanin, On the theory of bicompact extension of topological spaces, C. R. USSR, 38, No, 5-6 (1943).
- [10] Yu. Smirnov, A necessary and sufficient condition for metrizability of topological spaces, Doklady Akad. Nauk, SSSR. N. S. vol. 77 (1551).
- [11] A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc., vol. 54, No. 10 (1948).
- [12] A. H. Stone, Metrizability of decomposition spaces, Proc. of Amer. Math. Soc., vol. 7, No. 4 (1956).

²¹⁾ A topological space R is completely metrizable if and only if R is metrizable and topologically complete. See [2].