Non-existence of mappings of S^{31} into S^{16} with Hopf invariant 1

By Hirosi Toda

(Received Oct. 10, 1956)

1. Statement of results

It was proved in [1] that if there exists an element of $\pi_{2n-1}(S^n)$ with Hopf invariant 1, then *n* has to be a power of 2. The existence of an element of $\pi_{2n-1}(S^n)$ with Hopf invariant 1 is established for the case n = 2, 4 or 8 by the Hopf fibre mapping. [3].

The purpose of this paper is to give a proof of the following theorem.

THEOREM (1.1) There exist no elements of $\pi_{31}(S^{16})$ with Hopf invariant 1.

This theorem is equivalent to one of the following statements:

(1.2) the Whitehead product $[\iota_{15}, \iota_{15}]$ of the class $\iota_{15} \in \pi_{15}$ (S¹⁵) of the identity of S¹⁵ is not zero;

- (1.3) there are no mappings $S^{15} \times S^{15} \rightarrow S^{15}$ of type (ι_{15}, ι_{15}) ;
- (1.4) for a complex $S^n \cup e^{n+16}$ the squaring operation Sq^i is trivial for all i>0. For the proof, see (3.49) and (3.72) of [9] and [5].

2. Auxiliary results

To prove the theorem we apply the following results without proofs.

(2.1) $\pi_i(S^n) = 0$ for i < n. $\pi_n(S^n) = Z$ which is generated by the class ι_n of the identity of S^n .

(2.2) $\pi_3(S^2) = Z$ with *is generated by the class* η_2 of the Hopf fibre mapping. $H(\eta_2) = \iota_3$. $\pi_{n+1}(S^n) = Z_2$ for n > 2, the generator of which is $\eta_n = E^{n-2}\eta_2$. (cf. [2]).

(2·3) $\pi_{n+2}(S^n) = Z_2 \text{ for } n \ge 2.$ Generator: $\eta_n \circ \eta_{n+1} \cdot (\text{cf. [10]}).$

(2.4) $\pi_{n+3}(S^n) = Z_{24}$ for $n \ge 5$. We denote by ν_n a generator of $\pi_{n+3}(S^n)$ such that $E\nu_n = \nu_{n+1}$. $12\nu_n = \eta_n \circ \eta_{n+1} \circ \eta_{n+2}$. (cf. [7]).

(2.5) $\pi_{n+4}(S^n) = 0$ for $n \ge 6$ and $\pi_{n+5}(S^n) = 0$ for $n \ge 7$. (cf. [7]).

(2.6) $\pi_{n+6}(S^n) = Z_2 \text{ for } n \ge 5. \text{ Generator: } \nu_n \circ \nu_{n+3}. \text{ (cf. [4]).}$

(2.7) $\pi_{12}(S^5) = Z_{60}$, $\pi_{14}(S^7) = Z_{120}$ and $\pi_{n+7}(S^n) = Z_{240}$ for $n \ge 9$. (cf. [4]).

(2.8) $\sigma_n \circ \eta_{n+7} \neq 0$ in $\pi_{n+8}(S^n)$ for a generator σ_n of 2-component of $\pi_{n+7}(S^n)$, $n \geq 9$. (cf. [1]).

(2.9) The following sequence of homotopy groups is exact for i < 3n-1 [11] and exact mod. 2 for i < 4n-3 (cf. [12]);

$$\cdots \xrightarrow{\mathbf{\Delta}} \pi_i(S^n) \xrightarrow{E} \pi_{i+1}(S^{n+1}) \xrightarrow{H} \pi_{i+1}(S^{2n+1}) \xrightarrow{\mathbf{\Delta}} \pi_{i-1}(S^n) \xrightarrow{E} \cdots,$$

where E is the Freudenthal suspension homomorphism, H is the generalized Hopf homomorphism [9] [12] and Δ is defined by

 $\Delta(E^2\alpha) = [\iota_n, \iota_n] \circ \alpha .$

We shall use the following properties of the homomorphism H from [9] (2.10). $H(\alpha \circ E\beta) = H\alpha \circ E\beta$, $H((E\alpha) \circ \beta) = (\alpha * \alpha) \circ H\beta$,

 $H([\iota_n, \iota_n]) = 2\iota_{2n-1}$ if *n* is even.

Let σ_8 be the class of the Hopf fibre mapping of S^{15} onto S^8 , then it is well known that

(2.11) the correspondence $(\alpha, \beta) \longrightarrow E\alpha + \sigma_8 \circ \beta$ induces an isomorphism of $\pi_i(S^7) + \pi_{i+1}(S^{15})$ onto $\pi_{i+1}(S^8)$.

For the non-zero element of $\pi_{14}(S^7)$, which is given in §8 of [9] and here denoted by τ , we have from [6]

 $(2\cdot 12) \quad [\iota_8, \iota_8] = 2\sigma_8 - E\tau.$

We denote that $\sigma_{n+8} = E^n \sigma_8$, then $E^2 \tau = 2\sigma_9$ since $E[\iota_8, \iota_8] = 0$. Since $H(\tau) = \eta_{13} \neq 0$ [9], the homomorphism H: $\pi_{14}(S^7) = Z_{120} \longrightarrow \pi_{14}(S^{13}) = Z_2$ is onto. From the exactness (2.9) of the sequence

$$\pi_{13}(S^6) = Z_{60} \xrightarrow{E} \pi_{14}(S^7) = Z_{120} \xrightarrow{H} \pi_{14}(S^{13}) = Z_2$$

we have that E is an isomorphism into and there exists an element τ' of $\pi_{13}(S^6)$ such that $E\tau' = 2\tau$. Also from the exactness (2.9) of the sequence

$$\pi_{12}(S^5) = Z_{30} \xrightarrow{E} \pi_{13}(S^6) = Z_{60} \xrightarrow{H} \pi_{13}(S^{11}) = Z_2,$$

we have that $H(\tau') = \eta_{11} \circ \eta_{12}$.

Consequently,

(2.13) there are elements $\tau' \in \pi_{13}(S^6)$ and $\tau \in \pi_{14}(S^7)$ such that

$$\begin{aligned} H\tau &= \eta_{13} , & E^{n+2}\tau = 2\sigma_{n+9} , \\ H\tau' &= \eta_{11} \circ \eta_{12} , & E^{n+3}\tau = 4\sigma_{n+9} , \end{aligned}$$

and the order of $\sigma_{n+9} \ge 0$, is 16k for an odd integer k.

Consider the element $\eta_7 \circ \sigma_8 + \tau \circ \eta_{14}$. By (2.10), $H(\eta_7 \circ \sigma_8 + \tau \circ \eta_{14}) = \eta_{13} \circ \eta_{14} + \eta_{13} \circ \eta_{14} = 0$. From the exactness (2.9) of the sequence

$$\pi_{14}(S^6) \xrightarrow{E} \pi_{15}(S^7) \xrightarrow{H} \pi_{15}(S^{13}),$$

we have that $\eta_7 \circ \sigma_8 + \tau \circ \eta_{14} \in E\pi_{14}(S^6)$. Since $E^2(\tau \circ \eta_{14}) = 2\sigma_9 \circ \eta_{16} = \sigma_9 \circ (2\eta_{16}) = 0$, $E^2(\eta_7 \circ \sigma_8 + \tau \circ \eta_{14}) = \eta_9 \circ \sigma_{10}$. Therefore $(2 \cdot 14)$ $\eta_n \circ \sigma_{n+1} \in E^{n-6} \pi_{14}(S^6)$ for $n \ge 9$.

3. Proof of the Theorem

Applying theorem (4.6) of the previous paper [8] to the pairs (σ_8, η_2) , (τ, τ') , (σ_8, τ') , (σ_8, τ) , and (σ_8, σ_8) , we have that

32

Hopf invariant

- (3.1). i) $[\iota_9, \iota_9] = \sigma_9 \circ \eta_{16} + \eta_9 \circ \sigma_{10},$
 - ii) $[\iota_{12}. \iota_{12}] \circ \eta_{23} \circ \eta_{24} \circ \eta_{25} = 16 \sigma_{12} \circ \sigma_{19} = 4E^6(\tau' \circ \sigma_{13}) \in E^6\pi_{20}(S^6),$
 - iii) $[\iota_{13}, \iota_{13}] \circ \eta_{25} \circ \eta_{26} = 8\sigma_{13} \circ \sigma_{20} = 2E^7(\tau' \circ \sigma_{13}) \in E^7\pi_{20}(S^6),$
 - iv) $[\iota_{14}, \iota_{14}] \circ \eta_{27} = 4\sigma_{14} \circ \sigma_{21} = E^8(\tau' \circ \sigma_{13}) \in E^8 \pi_{20}(S^6),$
 - $\mathbf{v}) \qquad \begin{bmatrix} \iota_{15}, \iota_{15} \end{bmatrix} \qquad = 2\sigma_{15} \circ \sigma_{22}.$

Now consider the element $\tau \circ \sigma_{14}$. Since $H(\tau \circ \sigma_{14}) = \eta_{13} \circ \sigma_{14} = \sigma_{13} \circ \eta_{20}$ is an element of order 2 by (2.8), we have from the exactness (2.9) of the sequence

$$\pi_{20}(S^6) \xrightarrow{E} \pi_{21}(S^7) \xrightarrow{H} \pi_{21}(S^{13})$$

that

(3.2) $\tau \circ \sigma_{14}$ has order 2 mod. $E\pi_{20}(S^6)$.

By (2·11), $\pi_{22}(S^8) = \sigma_8 \circ \pi_{22}(S^{15}) + E\pi_{21}(S^7)$. By (2·9) the kernel of $E: \pi_{22}(S^8) \longrightarrow \pi_{23}(S^9)$ is $\Delta(\pi_{24}(S^{17})) = \Delta(E^3\pi_{21}(S^{14}))$. Since $H(\tau \circ 2\alpha) = 2(\eta_{13} \circ \eta_{14}) \circ \alpha = 0$ for $\alpha \in \pi_{21}(S^{14})$, we have $\tau \circ 2\alpha \in E\pi_{20}(S^6)$ by (2·9). Then $2\Delta(\pi_{24}(S^{17})) \subset 4\sigma_8 \circ \pi_{22}(S^{15}) + E^2\pi_{20}(S^6)$. Since $\Delta(\sigma_{17}) = 2\sigma_8 \circ \sigma_{15} - E\tau \circ \sigma_{15}$ and since σ_{15} generates $\pi_{22}(S^{15}) / 2\pi_{22}(S^{15})$, we have from (2·9) that

(3.3) $E^{2}\tau \circ \sigma_{16} = 2\sigma_{9} \circ \sigma_{16}$ has order 2 mod. $E^{3}\pi_{20}(S^{6})$.

By (2.5), $\eta_n \circ \nu_{n+1} = 0$ for $n \ge 6$. By (3.1), i), $\mathcal{A}(\nu_{19} \circ \nu_{22}) = [\iota_9, \iota_9] \circ \nu_{17} \circ \nu_{20} = \eta_9 \circ \sigma_{10} \circ \nu_{17} \circ \nu_{20} = \eta_9 \circ \sigma_{10} \circ \nu_{17} \circ \nu_{20} = \eta_9 \circ \sigma_{10} \circ \nu_{17} \circ \nu_{20}$. Then by (2.14) and (2.9), the kernel of $E: \pi_{23}(S^9) \longrightarrow \pi_{24}(S^{10})$ is in $E^3 \pi_{14}(S^6) \circ \nu_{17} \circ \nu_{20} \subset E^3 \pi_{20}(S^6)$.

By $(2 \cdot 5)$, $\mathcal{A}(\pi_{26}(S^{21})) = \mathcal{A}(\pi_{27}(S^{23})) = 0$. Then the suspension homomorphisms $E: \pi_{24}(S^{10}) \longrightarrow \pi_{25}(S^{11})$ and $E: \pi_{25}(S^{11}) \longrightarrow \pi_{26}(S^{12})$ are isomorphisms into. Therefore

(3.5) $2\sigma_{12} \circ \sigma_{19}$ has order 2 mod. $E^6 \pi_{20}(S^6)$.

By $(2 \cdot 10)$, $H(\Delta(\nu_{25})) = H[\iota_{12}, \iota_{12}] \circ \nu_{23} = 2\nu_{23}$. If $\Delta \alpha$ is an image of E for $\alpha \in \pi_{28}$ (S²⁵), then $2\alpha = 0$ since $H \circ E = 0$. Then $E\pi_{25}(S^{11}) \cap \Delta(\pi_{28}(S^{25}))$ is generated by $\Delta \eta_{25} \circ \eta_{26} \circ \eta_{27}) = 4E^6(\tau' \circ \sigma_{13})$ since (3.1), ii). Therefore

(3.6) $2\sigma_{13} \circ \sigma_{20}$ has order 2 mod. $E^7 \pi_{20}(S^6)$.

By (2.9) and by (3.1), iii), the kernel of $E: \pi_{27}(S^{13}) \longrightarrow \pi_{28}(S^{14})$ is in $E^7 \pi_{20}(S^6)$. Then

(3.7) $2\sigma_{14} \circ \sigma_{21}$ has order 2 mod. $E^8 \pi_{20}(S^6)$.

Similarly, from $(2\cdot 9)$ and $(3\cdot 1)$, iv), we have that

(3.8) $2\sigma_{15} \circ \sigma_{22}$ has order 2 mod. $E^{9}\pi_{20}(S^{6})$.

Since $4\sigma_{15} \circ \sigma_{22} = E(4\sigma_{14} \circ \sigma_{21}) = E([\iota_{14}, \iota_{14}] \circ \eta_{27}) = 0$, we have from (3.1), v) that (3.9) $[\iota_{15}, \iota_{15}] = 2\sigma_{15} \circ \sigma_{22}$ has order 2.

Consequently, $[\iota_{15}, \iota_{15}] \neq 0$ and $(2 \cdot 2)$ is proved. By $(3 \cdot 49)$ of [9] we have Theorem (1.1).

Hirosi Toda

References

- [1] J. Adem, The iteration of the Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U.S.A., 38, (1952), 720-726.
- [2] H. Freudenthal, Über die Klassen der Sphärenabbildungen, Comp. Math., 5 (1937), 229-314.
- [3] H. Hopf, Über die Abbildnng von Sphären auf Sphären niedrigerer Dimension, Fund. Math., 25 (1935), 427-440.
- [4] J-P. Serre, Quelques calculs des groupes d'homotopie, Comptes rendus (Paris), 236 (1953), 2475-2477.
- N. E. Steenrod, Cohomology invariants of continuous mappings, Ann. of Math., 50 (1949), 954-988.
- [6] H. Toda, Some ralations in homotopy groups of spheres, this Journal 2-2 (1952), 71-80.
- [7] H. Toda, Generalized Whitehead products and homotopy groups of spheres, this Journal, 3 (1952), 43-82.
- [8] H. Toda, Reduced join and Whitehead product, this Journal, 8-1 (1956), 15-30.
- [9] G. W. Whitehead, A Generalization of the Hopf invarianat. Ann. of Math., 51 (1951), 192-237.
- [10] G. W. Whitehead, The $(n+2)^{nd}$ homotopy groups of the n-sphere, Ann. of Math., 52 (1950), 245-247.
- [11] G. W. Whitehead, On the Freudenthal theorems, Ann. of Math., 57 (1953) 209-228.
- [12] I. M. James, On the suspension triad of a sphere, Ann. of Math., 63 (1956), 407-429.