Non-existence of mappings of S^{31} *into* S^{16} *with Hopf invariant 1*

By Hirosi TopA

(Received Oct. 10, 1956)

I. Statement of results

It was proved in [1] that if there exists an element of $\pi_{2n-1}(S^n)$ with Hopf invariant 1, then *n* has to be a power of 2. The existence of an element of $\pi_{2n-1}(S^n)$ with Hopf invariant 1 is established for the case $n = 2$, 4 or 8 by the Hopf fibre mapping. $[3]$.

The purpose of this paper is to give a proof of the following theorem.

THEOREM (1.1) *There exist no elements of* $\pi_{31}(S^{16})$ *with Hopf invariant* 1.

This theorem is equivalent to one of the following statements:

 $(1 \cdot 2)$ *the Whitehead product* $\begin{bmatrix} t_{15}, t_{15} \end{bmatrix}$ *of the class* $t_{15} \in \pi_{15}$ (S¹⁵) *of the identity of is not zero***;**

 $(1 \cdot 3)$ *there are no mappings* $S^{15} \times S^{15} \rightarrow S^{15}$ *of type* (ι_{15}, ι_{15}) ;

 $(1\cdot 4)$ *for a complex Sⁿ* $\cup e^{n+16}$ *the squaring operation Sqⁱ is trivial for all i*>0. For the proof, see (3.49) and (3.72) of $\lceil 9 \rceil$ and $\lceil 5 \rceil$.

2. Auxiliary results

To prove the theorem we apply the following results without proofs.

(2.1) $\pi_i(S'')=0$ for $i < n$. $\pi_n(S'')=Z$ which is generated by the class ι_n of the *identity of* $Sⁿ$.

 $(2 \cdot 2)$ $\pi_3(S^2) = Z$ wihch is generated by the class η_2 of the Hopf fibre mapping. $H(\eta_2) = \iota_3$. $\pi_{n+1}(S^n) = Z_2$ *for* $n > 2$ *, the generator of which is* $\eta_n = E^{n-2}\eta_2$. (cf. [2]).

(2.3) $\pi_{n+2}(S^n) = Z_2$ for $n \geq 2$. Generator: $\eta_n \circ \eta_{n+1}$. (cf. [10]).

 $(2 \cdot 4)$ $\pi_{n+3}(S^n) = Z_{24}$ *for* $n \geq 5$. We denote by ν_n a generator of $\pi_{n+3}(S^n)$ *such that* $E\nu_n = \nu_{n+1}$. $12\nu_n = \eta_n \circ \eta_{n+1} \circ \eta_{n+2}$. (cf. [7]).

 $(2 \cdot 5)$ $\pi_{n+4}(S^n) = 0$ for $n \ge 6$ and $\pi_{n+5}(S^n) = 0$ for $n \ge 7$. (cf. [7]).

(2.6) $\pi_{n+6}(S^n) = Z_2$ for $n \ge 5$. Generator: $v_n \circ v_{n+3}$. (cf. [4]).

 $(2 \cdot 7)$ $\pi_{12}(S^5) = Z_{60}$, $\pi_{14}(S^7) = Z_{120}$ *and* $\pi_{n+7}(S^r) = Z_{240}$ for $n \ge 9$. (cf. [4]).

 $(2 \cdot 8)$ $\sigma_n \circ \eta_{n+7} \neq 0$ in $\pi_{n+8}(S^n)$ for a generator σ_n of 2-component of $\pi_{n+7}(S^n)$, $n \geq 9$. **(Cf.** [I]).

(2.9) The following sequence of homotopy groups *is exact for i* $\lt 3n-1$ [11] and *exact* mod. 2 *for* $i < 4n - 3$ (cf. [12]);

$$
\cdots \xrightarrow{d} \pi_i(S^n) \xrightarrow{E} \pi_{i+1}(S^{n+1}) \xrightarrow{H} \pi_{i+1}(S^{2n+1}) \xrightarrow{d} \pi_{i-1}(S^n) \xrightarrow{E} \cdots
$$

where E is the Freudenthal suspension homomorphism, H is the generalized Hopf homomorphism $[9]$ [12] and Δ is defined by

 $\Delta(E^2\alpha) = [\iota_n, \iota_n] \circ \alpha$.

We shall use the following properties of the homomorphism *H* from [9] (2.10). $H(\alpha \circ E\beta) = H\alpha \circ E\beta$, $H((E\alpha) \circ \beta) = (\alpha * \alpha) \circ H\beta$,

 $H([\iota_n, \iota_n]) = 2 \iota_{2n-1}$ if *n* is even.

Let σ_8 be the class of the Hopf fibre mapping of S^{15} onto S^8 , then it is well known that

(2.11) the correspondence $(\alpha, \beta) \rightarrow E\alpha + \sigma_8 \circ \beta$ induces an isomorphism of $\pi_i(S^7)$ $+\pi_{i+1}(S^{15})$ onto $\pi_{i+1}(S^8)$.

For the non-zero element of $\pi_{14}(S^7)$, which is given in §8 of [9] and here denoted by τ , we have from [6]

 $(2 \cdot 12)$ [ι_8 , ι_8] = $2\sigma_8 - E\tau$.

We denote that $\sigma_{n+8} = E^n \sigma_8$, then $E^2 \tau = 2 \sigma_9$ since $E[\epsilon_8, \epsilon_8] = 0$. Since $H(\tau)$ $=\eta_{13} \pm 0$ [9], the homomorphism H: $\pi_{14}(S^7) = Z_{120} \longrightarrow \pi_{14}(S^{13}) = Z_2$ is onto. From the exactness (2.9) of the sequence

$$
\pi_{13}(S^6) = Z_{60} \xrightarrow{E} \pi_{14}(S^7) = Z_{120} \xrightarrow{H} \pi_{14}(S^{13}) = Z_2,
$$

we have that *E* is an isomorphism into and there exists an element τ' of $\pi_{13}(S^6)$ such that $E\tau' = 2\tau$. Also from the exactness (2.9) of the sequence

$$
\pi_{12}(S^5) = Z_{30} \xrightarrow{E} \pi_{13}(S^6) = Z_{60} \xrightarrow{H} \pi_{13}(S^{11}) = Z_2,
$$

we have that $H(\tau') = \eta_{11} \circ \eta_{12}$.

Consequently,

(2.13) *there are elements* $\tau' \in \pi_{13}(S^6)$ *and* $\tau \in \pi_{14}(S^7)$ *such that*

$$
H\tau = \eta_{13}, \qquad E^{n+2}\tau = 2\sigma_{n+9},
$$

$$
H\tau' = \eta_{11} \circ \eta_{12}, \qquad E^{n+3}\tau = 4\sigma_{n+9},
$$

and the order of $\sigma_{n+9} \ge 0$, *is 16k for an odd integer k.*

Consider the element $\eta_7 \circ \sigma_8 + \tau \circ \eta_{14}$. By (2.10), $H(\eta_7 \circ \sigma_8 + \tau \circ \eta_{14}) = \eta_{13} \circ \eta_{14} + \eta_{13}$ $\partial \eta_{14} = 0$. From the exactness (2.9) of the sequence

$$
\pi_{14}(S^6) \xrightarrow{E} \pi_{15}(S^7) \xrightarrow{H} \pi_{15}(S^{13}),
$$

we have that $\eta_7 \circ \sigma_8 + \tau \circ \eta_{14} \in E \pi_{14}(S^6)$. Since $E^2(\tau \circ \eta_{14}) = 2 \sigma_9 \circ \eta_{16} = \sigma_9 \circ (2 \eta_{16}) = 0$, $E^2(\eta_7 \circ \sigma_8 + \tau \circ \eta_{14}) = \eta_9 \circ \sigma_{10}$. Therefore (2.14) $\eta_{n} \circ \sigma_{n+1} \in E^{n-6} \pi_{14}(S^6) \text{ for } n \ge 9.$

3. Proof of the Theorem

Applying theorem (4.6) of the previous paper [8] to the pairs (σ_8, η_2), (τ, τ'), (σ_8, τ') , (σ_8, τ) , and (σ_8, σ_8) , we have that

Hopf invariant

- $(3\cdot 1)$. i) $\lceil \iota_9, \iota_9 \rceil$ $=\sigma_9\circ\eta_{16}+\eta_9\circ\sigma_{10}$,
	- $\lceil \iota_{12} \cdot \iota_{12} \rceil \circ \eta_{23} \circ \eta_{24} \circ \eta_{25} = 16 \sigma_{12} \circ \sigma_{19} = 4E^6(\tau' \circ \sigma_{13}) \in E^6 \pi_{20}(S^6),$ \mathbf{ii}
	- $=8\sigma_{13}\circ\sigma_{20}=2E^7(\tau'\circ\sigma_{13})\in E^7\pi_{20}(S^6),$ $iii)$ $\left[\,\iota_{13},\,\iota_{13}\right]\!\circ\!\eta_{25}\!\circ\!\eta_{26}$
	- $=4\sigma_{14}\circ \sigma_{21} = E^8(\tau'\circ \sigma_{13}) \in E^8 \pi_{20}(S^6),$ $iv)$ $\lbrack \iota_{14}, \iota_{14} \rbrack$ or η_{27}
	- $V)$ $[\iota_{15}, \iota_{15}]$ $=2\sigma_{15}\circ \sigma_{22}$.

Now consider the element $\tau \circ \sigma_{14}$. Since $H(\tau \circ \sigma_{14}) = \eta_{13} \circ \sigma_{14} = \sigma_{13} \circ \eta_{20}$ is an element of order 2 by $(2\cdot8)$, we have from the exactness $(2\cdot9)$ of the sequence

$$
\pi_{20}(S^6) \xrightarrow{E} \pi_{21}(S^7) \xrightarrow{H} \pi_{21}(S^{13})
$$

that

 $(3\cdot 2)$ $\tau \circ \sigma_{14}$ has order 2 mod. $E\pi_{20}(S^6)$.

By $(2\cdot 11)$, $\pi_{22}(S^8) = \sigma_8 \circ \pi_{22}(S^{15}) + E \pi_{21}(S^7)$. By $(2\cdot 9)$ the kernel of $E: \pi_{22}(S^8)$ $\longrightarrow \pi_{23}(S^9)$ is $\Delta(\pi_{24}(S^{17})) = \Delta(E^3 \pi_{21}(S^{14}))$. Since $H(\tau \circ 2\alpha) = 2(\eta_{13} \circ \eta_{14}) \circ \alpha = 0$ for $\alpha \in \pi_{21}(S^{14})$, we have $\tau \circ 2\alpha \in E \pi_{20}(S^6)$ by (2.9). Then $2\alpha \left(\pi_{24}(S^{17})\right) \subset 4\sigma_8 \circ \pi_{22}$ $(S^{15}) + E^2 \pi_{20}(S^6)$. Since $\Delta(\sigma_{17}) = 2\sigma_8 \circ \sigma_{15} - E \tau \circ \sigma_{15}$ and since σ_{15} generates $\pi_{22}(S^{15})$ $\sqrt{2\pi_{22}(S^{15})}$, we have from (2.9) that

 $(3\cdot 3)$ $E^2\tau \circ \sigma_{16} = 2\sigma_9 \circ \sigma_{16}$ has order 2 mod. $E^3\pi_{20}(S^6)$.

By (2.5), $\eta_n \circ \nu_{n+1} = 0$ for $n \ge 6$. By (3.1), i), $\Delta(\nu_{19} \circ \nu_{22}) = [\iota_9, \iota_9] \circ \nu_{17} \circ \nu_{20} = \eta_9$ $\sigma_{10} \circ \nu_{17} \circ \nu_{20} + \sigma_9 \circ \eta_{16} \circ \nu_{17} \circ \nu_{20} = \eta_9 \circ \sigma_{10} \circ \nu_{17} \circ \nu_{20}$. Then by (2.14) and (2.9), the kernel of $E: \pi_{23}(S^9) \longrightarrow \pi_{24}(S^{10})$ is in $E^3 \pi_{14}(S^6) \circ \nu_{17} \circ \nu_{20} \subset E^3 \pi_{20}(S^6)$.

By $(2\cdot 5)$, $\Lambda(\pi_{26}(S^{21})) = \Lambda(\pi_{27}(S^{23})) = 0$. Then the suspension homomorphisms $E: \pi_{24}(S^{10}) \longrightarrow \pi_{25}(S^{11})$ and $E: \pi_{25}(S^{11}) \longrightarrow \pi_{26}(S^{12})$ are isomorphisms into. Therefore

 $(3\cdot 5)$ $2\sigma_{12}\circ \sigma_{19}$ has order 2 mod. $E^6 \pi_{20}(S^6)$.

By $(2\cdot 10)$, $H(A(v_{25})) = H[v_{12}, v_{12}] \circ \nu_{23} = 2\nu_{23}$. If $\Delta \alpha$ is an image of E for $\alpha \in \pi_{23}$ (S²⁵), then $2\alpha = 0$ since $H \circ E = 0$. Then $E \pi_{25}(S^{11}) \cap \Delta(\pi_{28}(S^{25}))$ is generated by Δ $\eta_{25} \circ \eta_{26} \circ \eta_{27}$ = $4E^6(\tau' \circ \sigma_{13})$ since $(3 \cdot 1)$, ii). Therefore

 (3.6) $2\sigma_{13} \circ \sigma_{20}$ has order 2 mod. $E^7 \pi_{20}(S^6)$.

By (2.9) and by (3.1), iii), the kernel of $E: \pi_{27}(S^{13}) \longrightarrow \pi_{28}(S^{14})$ is in E^7 $\pi_{20}(S^6)$. Then

 $(3\cdot 7)$ $2\sigma_{14}\circ \sigma_{21}$ has order 2 mod. $E^8\pi_{20}(S^6)$.

Similarly, from (2.9) and (3.1) , iv), we have that

 (3.8) $2\sigma_{15} \circ \sigma_{22}$ has order 2 mod. $E^9 \pi_{20}(S^6)$.

Since $4\sigma_{15} \circ \sigma_{22} = E(4\sigma_{14} \circ \sigma_{21}) = E([\iota_{14}, \iota_{14}] \circ \eta_{27}) = 0$, we have from (3.1), v) that (3.9) $\lbrack \iota_{15}, \iota_{15} \rbrack = 2\sigma_{15} \circ \sigma_{22}$ has order 2.

Consequently, $[\cdot_{15}, \cdot_{15}] \div 0$ and $(2 \cdot 2)$ is proved. By $(3 \cdot 49)$ of [9] we have Theorem $(1\cdot 1)$.

34 Hirosi TODA

References

- [1] J. Adem, *The iteration of the Steenrod squares in algebraic topology*, Proc. Nat. Acad. Sci. U.S.A., 38, (1952), 720-726.
- [2] H. Freudenthal, *Uber die Klassen der Spharenahbildungen,* Comp. Math., 5 (1937), 229-314.
- [3] H. Hopf, *Uber die Abbildnng von Sphären auf Sphären niedrigerer Dimension*, Fund. Math., 25 (1935), 427-440.
- [4] J-P. Serre, *Quelques calculs des groupes d'homotopie, Comptes xenons* (Paris), 236 (1953), 2475-2477.
- [5] N.E. Steenrod, *Cohomology invariants of continuous mappings*, Ann. of Math., 50 (1949), 954-988.
- [6] H. Toda, *Some ralations in homotopy groups of spheres*, this Journal 2-2 (1952), 71-80.
- [7] H. Toda, *Generalized Whitehead products and homotopy groups of spheres*, this Jouinal, 3 (1952), 43-82.
- [8 j H. Toda, *Reduced join and Whitehead product,* this Journal, 8-1 (1956), 15-30.
- [9] G. W. Whitehead, *A Generalization of the Hopf invarianat*. Ann. of Math., 51 (1951), 192-237.
- [10] G. W. Whitehead, *The* $(n+2)^{nd}$ *homotopy groups of the n-sphere*, Ann. of Math., 52 (1950), 245-247.
- [11] G. W. Whitehead, *On the Freudenthal theorems,* Ann. of Math., 57 (1953) 209-228.
- [12] I. M. James, *On the suspension triad of a sphere*, Ann. of Math., 63 (1956), 407-429.