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The finite groups G and G' are said to have the same table of characters 

when there exist one to one correspondences between their (ordinary)

irreducible characters and between their conjugate classes, and =

(Ce/) for all /J and a. Even if G and G' have the same table of characters, 

they are not necessarily isomorphic to each other, for instance the two types of 

non-abelian group of order (p ; a prime number) have the same table of char

acters.

In this paper, we shall prove the following theorem.

T h eorem . I f  a finite group G has the same table of characters as a symmetric 

group Sn, then G is isomorphic to Sn.

To prove the theorem, we shall prove some propositions and lemmas.

P roposition  I. The symmetric group o f degree n is isomorphic to a group 

generated by the generators , . . . ,  an-\ with the defining relations

(I) al = al=  -  = a U - l .

C2) ay)2= l  i f  K j - i,

(3)

For the proof, see Dickson; Linear Groups p. 287.

P roposition 2. I f  G and G' have the same table o f characters, then the orders 

o f them coincide with each other, and the degree o f any irreducible character of G 

and the number o f elements o f any conjugate class o f G are equal to the degree of 

the corresponding character o f G' and the number o f elements o f the corresponding 

conjugate class o f G' respectively.

Proof. Let and C/ (/=1, 2, ••• ,k) be respectively the irreducible characters 

and the conjugate classes oi G. We denote by and C- the character and con

jugate class of G' corresponding to Xi and Q  respectively. Especially we shall denote 

by Cl and C / , the conjugate classes of the unit elements of G and G' respectively.

Since (Cl) = (C/) = deg we have

2 %// (Cl )%// (C'j) -  2  deg deg X,[ >  O
/̂  =  1  /X =  I  # -

Therefore, from the orthogonality relations of characters, it is seen that C/ coin

cides with C/, and hence deg %̂  = deg%/.



Let f  and f '  be the orders of G and G' respectively.

Then

S  (deg 2  (deg ^ 9 '.
/ X = I  IM=I

Further, if we denote by hi and h- the numbers of elements of Q  and C- re

spectively, then from the orthogonality relations of characters, we have
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IX=I  / X = I

Since, as proved above, we have .

P ro p o sitio n  3. I f  two finite groups G and G ' have the same table o f charac

ters, then they have the same multiplication table o f the conjugate classes.

Proof Assume that

Ga Ĝ , ÔiS7 Gy.
y

Then

haXix(Goc) h .̂X (̂G .̂) ~'s~'r ^ / X (^s)
------- f---------------- f -------~ Z-Î  P 8------- f

//X //X 7 / x

where f̂  ̂ is the degree of Hence

i K  X ,.(CJ Ap %^(Cp))
//X

Consequently

If we assume in G' that

Ga Gpf — Xl Gy , 

then, in the same way as above, we have

C'. P y = i K'  ĥ : ( C / ) X/ ( C / )).
W Iix

Hence, from Proposition 2, we have

âpy ~ ̂  OJjSy

In the following lemmas, we shall always assume that G is a group with the 

same table of characters as the symmetric group S„ of degree n, where n^ 3  and 

n ^ 4, and G{il^,ip, •••) denotes the conjugate class of G corresponding to the con

jugate class of Sn whose element can be expressed as a product of cycles of 

length it, a2 cycles of length 4, such as each of letters occurs in only one cycle 

of them, for instance, C(2 ,̂ 3) denotes the conjugate class of G corresponding to 

the conjugate class of S„ containing (I 2) (3 4) (5 6 7). From Proposition 3, G and



Sn has the same multipHcation table of conjugate classes, therefore we can know com

pletely the multiplication table of conjugate classes of G by investigating that of

L emma I. The order o f an element a o f  C(2) is 2.

Proof It is easily seen that if n ^ 4, then

C(2)2 = 3C(3) + 2C(2 )̂ +  C d ),

and if w = 3, then

C(2)2 = 3C(3) + 3C(1).

Denote by •••) the order of the normalizer of an element of

•••). If <2̂ is contained in C (3), ^(2) divides ;̂ (3) because the normalizer of 

contains that of (2. Since n(2) = 2{n ~ 2)\ and n(3) =3(n —3)!, 2 (;z — 2)! divides 

3 ( ;z - 3) ! and hence 3 is a multiple of 2(n ~ 2). This is impossible. Hence is con

tained in C(22) or C(I). In the fommer case, n(2) divides n{2 )̂. Since n(2 )̂ 

= 8(;7—4)!, 2(^ —2)! divides 8 ( ^ - 4)! and hence 4 is a multiple of (n—2) ( ^ - 3). But 

this is impossible unless  ̂= 4. Therefor must be contained in C(I) i.e. d^=\.

L emma 2. The order o f an element o f  C(3) is 3.

Proof. From the multiplication table of conjugate classes, we can see that any 

element of C (3) can be expressed in exactly three ways as a product of two ele

ments of C (2). Let X be an element of C (3) and x = ab  with two elements a and 

b of C(2).

If = then ah== ha. Since a^ h, x can be expressed in different ways of 

an even number as a product of two elements of C (2), which is a contradiction. 

Therefore x ^ ^ l.  Now

X== ah = h{h a h) = (b a b')(b a h a h')

= Q) ah ah) (hah a bah) .

It is easily seen that a, b and bah  are all distinct and bah ah is distinct from b 

and bah. Hence a = b a ba b, i.e. x^={aby = l.

L emma 3. The order o f an element o f C(2 )̂ is 2.

Proof. From the multiplication table of conjugate classes, we can see that any 

element of C(2^) can be expressed in exactly two ways as a product of two 

elements of C (2). If an element a: is the product of two elements a and b of 

C(2), then

x = ab = h(Jb ah) = {ah d)a.

Clearly a #6, hence aha is equal to a or b. In the former case, a must be equal 

to by which is a contradiction. Therefore aha = h, i.e. x'^= {a h y = l.

L emma 4. Let a and h be two distinct element o f  C (2). I f  a and h are com

mutative whith each other then a h^ C (2 )̂. I f  a and h are not commutative with 

each other then a h e C ( 3).

Proof. From the multiplication table of conjugate classes, we can see that ah 

is contained in C(2^) or C (3). The order of ah is 2 if and only if ab = ha, and
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hence a b ^ C (2^̂  if and only if ab = ha.

L emma 5. The order of an element o f C(4) is 4.

Proof From the multiplication table of conjugate classes, we can see that any 

element of C (4) can be expressed as a product of an element of C (2) and an ele= 

ment of C (3). Let be an element of C (4) and x = ay with an element a of C (2) 

and an element y of C(3). If the order of is 2, ay ay = I and hence y ay = 

a. Since y^=l, y ay~  ̂= ay ^x, which is a contradiction. Hence

From the multiplication table of conjugate classes, it is seen that x can be 

expressed in exactly two ways as a product of an element b of C(2) and an ele

ment £ of C(2^). If b = xb  i.e. b ^b zb  zb, then b zb  z = x"̂  = \, which is a 

contradition, hence b^xbx"'^. Since

x = b Z= {xb x~̂ ~) (x Z x~̂ ) = (x̂  b {x̂  z x"̂ ') 

x"̂  b x~‘̂  is equal to b ov xb  x~̂ . In the latter case, b = xb  which is a contradic

tion. Therefore x^bx"^ must be equal to Z?, i. e. b = b zb  zb  zb  zb. Hence x^=(b 

zY = l. Since x^^l as proved above, the order of is 4.

L emma 6. Let I f  â  ( / = 1, 2 ,---,^) are elements o f  C(2) and

a i< 2 2 ak is contained in C (2̂ ), then <22, ••• ,ak are all distinct and commutative. 

Further any element o f  C(2 )̂ can be uniquely expressed as such a product o f k ele

ments o f C(2) disregarding their arrangement.

Conversely, i f  k elements at, ••• ,ak of C(2) are all distinct and commutative, then 

ak is contained in C(2^).

Proof. In the case k = our assertion is trivial. To prove the lemma in the 

case k = 2, let <21 and 2̂ be two elements of C(2) and assume that a â2 is contain

ed inC(2^). Clearly a^^a^, and, from Lemma 3, {ata2)^=\yi.e.ata2 = a2.at. Since 

any element of €(2^) can be expressed in exactly two ways as a product of two 

elements of C(2), any element of C(22) can be expressed uniquely as a product of 

two elements of C (2) disregarding their arrangement. Conversely, if a± and â  

are two distinct elements of C(2) and they are commutative, then it is imme

diately seen from Lemma 4 that axa^^Ci^ '̂).

Now, we shall consider the case ^ ^ 3  and prove the lemma for the cases by 

an induction on k. Any element of C(2 )̂ can be expressed in exactly k\ ways as 

a product of k elements of C (2) and also can be expressed in exactly k ways as 

a product of an element of C(2 "̂ )̂ and an element of C(2). If a product of an 

element x of C (2) "̂̂  and an element a of C(2) is contained in C(2^), then must 

be contained in C(2^"i), for otherwise a can be expressed as a product of k ele

ments of C (2) in more ways than k\. \i a^r" ,ak are elements of C (2) and a^'- 

ak is contained in C(2 )̂ then is contained in C(2^”i), therefore, by the

induction hypotheses, are all distinct and commutative. Since a^-'ak a\

= ai{at-'ak)a^ is also contained in C(2^, a^r”  ̂ (̂ k are all distinct and commuta
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tive, and since akaxa2. is an element of C(2^̂ ,ak and are distinct and com

mutative to each other. Thus it is proved that a±, ,ak are all distinct and com

mutative. AU arrangements of ai in the product a^'" ak give k\ expressions of 

the element au as a product of k elements of C (2), and hence there is not 

any such expression other than these.

To prove the latter half, we shall consider C('2^"OC(2). From the multipH- 

cation table of conjugate classes, we can easily see that it is made up of elements 

of C(2^), C (2 -̂2, 3), C(2^-2) andCC2 -̂3 4). Any element of C (2 "̂̂  3) can be 

uniquely expressed as a product of an element x of C (2 '̂̂ ) and an element y of 

C (3). Since xy=  (xjy)  ̂ (xy) y (xy')~̂ , (xy) y (xy')~̂ ===xyx~̂ =y, i. e. a; and 3̂ are

commutative. From the first half of the lemma and Lemma 3, orders of x and y 

are 2 and 3 respectively, therefore the order of xy is 6. In a similar way, the 

order of an element of C (2 “̂  ̂4) is 4.

Now assume that k elements ••• ,Uk are all distinct and commutative. Then, 

by the induction hypothesis a^-'Uk-i is contained in C(2^“ )̂, therefore a±-'-Uk-i

C(2^"^)C(2). Since its order is 2, it is contained in C(2^) or In the

latter case, a f -  ak^bt-'bk-2 with 6 C(2) and then

Cii Uk-I=b± hk-2Ctk.

From the first half of the lemma, Uk is equal to some Ui (I ^  i ^  k — l). This 

is a contradiction. Hence ax au must be contained in C(2*).

Lemma 7. I f  at and â  are two elements o f  C(2) such that â  â  is contained 

in C (2 )̂, then there exists an element b o f C(2) such that ata^b^C^^), and then 

at b and a2 b must be contained in C (3).

Proof Since C(2^)C(2) contains C(4), there exists an element b of C (2) such 

that (̂ 2  ̂€ C(4). Clearly b is distinct from a-t and a2> and hence ai b are contain

ed in C(20or C (3). If ajj and â b are both contained in 0(2^), then b is com

mutative with a± and <22, and hence, from Lemma 6, â â  b^ C (2 )̂, which is a 

contradiction. If atb is contained in C(2 )̂ and a2b is contained in C (3), then 

at is commutative with â  and b, and hence the order of ata^b is 6, which is a 

contradition. Thus it is proved that â ) and â h are both contained in C (3).

Lemma 8. Let at,a^ and b be elements of C (2). I f  at â  is contained in C(2F) 

and i f  atb and aj) are both contained in C(3), then x = ataj) is an element of C(4).

Proof. Since C(2) C(3) is made up of elements of C(2, 3), C(4) and C(2), x 

is contained in one of C(2,3), C(4), and C(2).

(1) Assume that is contained in C(2). Since ata^^xb is an element of 

C (22), it is seen by Lemma 6 that b is equal to at or 2̂, which is a contradiction.

(2) Assume that is contained in C(2,3). Then  ̂ can be expressed uniquely 

as a product of an element of C(2) and an element of C (3). Since x-=at(.a2b') = a2 

(iatb), at is equal to <̂2, which is a contradiction.

Thus it is proved that must be contained in C(4),
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L emma 9. Let at,a  ̂ and be elements o f C(2) such that â â â  is contained 

in C(2^). I f  an element h of C(2) is not commutative with a± and <22, then b is 

commutative with â .

Proof. If b is not commutative with <23, then, from Lemma 4, ai b(i = I, 2, 3) 

are all contained in C (3), and hence, from Lemma 8, a^a^b is contained i nC ( 4). 

Therefore x==â a2fiii) is contained in C(2 )̂ C(2) and C(2) C(4). Since C(2 )̂ 

C(2) is made up of elements of C(2^), 0(2 ,̂ 3), C(2 )̂ and C (2,4), and since 

C(2) C(4) is made up of elements of C(2,4), C(5), C(3) and 0(2^), is contained 

in C(2 )̂ or C (2,4). If x is an element of C{2 )̂ then ata2aj) = a{a{ with a {,a {  € 

C(2). Since a^a^a^^a^ai ^is an element of C (2 )̂, from Lemma 6, b is equal to 

some â , This is a contradiction. Next assume that is contained in C(2, 4). x 

can be uniquely expressed as a product of an element of C(2) and an element of 

C(4). Since x^atQa^aJ)) =a2{atajb') and a2aj) and ataj) are both contained in C(4) , 

we have <21 = ̂ 2, which is a contradiction.

L emma 10. Let at, â  and â  be elements o f  C (2). I f  a± is not commutative 

with a2, and â  is commutative with â  and â , then there exists an element b o f C (2) 

which is commutative with â  and not commutative with â  and â .

Proof. From Lemma 7, there exists an element b of C(2) such that ajba  ̂= 

as'  ̂(̂ 3̂ 2̂ ) as  ̂C (4). Then b is not commutative with 2̂ and â . If b is commuta

tive with at, then b is an asking element. Now we assume that b is not com

mutative with at. Since ata2^C(2), x = ata2h is contained in C(3)C (2). C (3)C (2) 

is made up of elements of C(3,2), C (4) and C(2). Therefore is contained in 

one of C (3,2), C (4) and C (2).

(1) Assume that x^ C(3, 2). Any element of C (3, 2) can be expressed uni

quely as a product of an element of C (3) and an element of C(2). Since {at 

U2) b = x~Kata<  ̂xx~~̂  bx and at a2€C(3), we have at <22 = x~̂  (at «2)  ̂= b~̂  (at a^ b and 

hence b is commutative with at 2̂. Therefore x = (ata2)b= (b at) <22. Since bat is 

an element of C(3), b is equal to <22, which is a contradiction.

(2) Assume that x = ata2b is contained in C (2). ata2 = xb is contained in C (3) 

and any element of C (3) can be expressed as a product of two elements of C (2) 

in exactly three ways. Since xb = ata2^a2(a2'^ata2) = (ata2at^^at, b must be equal 

to one of (22, (22“%i^2 and at, and in either case b is commutative with â . This

is a contradiction.

Thus must be contained in C (4). Since C (4) is contained in C (2^)0 (2), 

there are three elements c{ , C2, ĉ  of C (2) such that c{ c i  ̂C (2 )̂ and c/ C2 ĉ  G 

C(4). Then, from Lemma 7, Ct Cs and C2 c  ̂ are both contained in C (3). Since 

c ic ic t ^c{~^(c{cics^ci is also an element of C (4), there are three elements ĉ ,c2 

and Cs of C (2) such that x-=CtC2Cs and c^Cs^C{2 '̂) and CtC2 and C2C3 are contained 

in C (3). Since Ct is commutative with ĉ  and (̂ 1̂ :2)̂ = I,
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XĈ X"̂  = Cl = CtC2CsCiCsC2Ci = CiC2C:iC2Ct = C2.
Since

C 2 =  C tC 2 C zC 2 C 2 ,C 2 C l  =  CtC2,Cl =  C s.

Any element of C (4) can be expressed as a product of an element of C (2) and an 

element of C (3) in exactly 4 ways, and

X  =  C i  =  C i^  ( C / V / ' )  -  C i^ "  ( c / ' c i )  =  C ^ '  ( C i C i O  .

It is easily seen that Ci, Ci  ̂ and Ci  ̂ are all distinct. Therefore ai must be 

equal to some Ct̂ \ and there are two elements a2, b' of C(2) such that x=aia{h' 

and a-J)'  ̂C (2 )̂. Then a‘i) = aih' =hQ)a^) = {a^a^a2 and h' is not equal to either 

of h and 2̂ because is commutative with neither of b and 2̂. Any element of 

C (3) can be expressed as a product of two elements of C(2) in exactly three ways. 

Therefore ¥  must be equal to ba2h. Since Q)a2)̂  = \,V  = ha^ = aj:)a2 and hence V  

is not commutative with either of 2̂ and a^=a2asa2. Thus ¥  is an asking element. 

Proof o f Theorem 

(I) The case where n is even and

Since the theorem is trivial in the case n = 2, we may assume that n = 2m > i. 

Let a t," ' ,Unt be such elements of C (2) as atU2 ••• From Lemma 7, there

exists an element of C(2) such that <21̂ 2:2̂ 16 C (4). Then is different from ai 

(3 ^  m) and, from Lemma 9, is commutative with them. Now we assume that 

1̂,̂ 2, ••• ,bk{k<m) are elements of C(T) such that aidi+t Z?,-6 C(4) and bi is com

mutative with all bj and ai except a,- and From Lemma 10, there is an ele

ment bk+i of C (2) such that ak+iCLk+2bk+i is contained in C(4), and bk+i is com

mutative with bky Then, from Lemma 9, bk+i is commutative with all bj and ai 

except ak+i and ak+2- Thus it is proved that there are m — 1 elements Z?i, ••• 

of C (2) such that the orders of ai bt and bi aî x are both 3 and bi is commutative 

with all bj and ai except <2, and ai t̂. Set C2k~i = ak and C2k==bk. Then Ciy‘",Cn-i 

satisfy the relatians ;

(1) C l = - C U =  I,
(2) (CiCjY = I if K j - i

(3) Cd C,,1̂ = 1.

Hence, from Proposition I, there is a homomorphism from Sn to the subgroup H  

of G generated by Ci, ••• ,Cn-i. Since n>A, H  is isomorphic to Sn/An (An', the alter

native group of degree n) or Sn. Clearly the order of H  is greater than 2, there

fore H  is isomorphic to Sn. Compairing the orders we have H =G.

Thus, in this case, G is isomorphic to S„.

(2) The case n = 4.

Let a be an element of C(2). As proved in Lemma I, â  is contained in C(I)
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or C(22). If (22 = 1, then it is proved, as in (I), that there are three elements Ci, 

2̂, Cs of C (2) which satisfy the relations

1) =

2) =

3) (CiC2)^=(C2C3)^=L

Now, we assume that x = â  is contained in C(2^). The normalizer Â (:r) of x is a 

subgroup of order 8. Since N(x) contains an elements of C (2) and the order of 

normalizer of an element of C (2) is 4, N(x) is not abelian.

The normal subgroup JV of order 4 which consists of elements of C (2̂ ) and I 

is contained in N(x) and an abelian group of the type (2,2). Let N =  (x) x (y). 

Then aya~̂  must be equal to and hence (ay)  ̂= l. Then ay is contained in 

C (4) and the order of an element of C(4) is 2.

Now the multiplication table of conjugate classes of 5  ̂ is left unchanged by 

exchanging C(2) andC(4). Using C(4) instead of C(2), we can prove in a similar 

way as above that there are three elements Ci,C2,C3 of C(4) which satisfy the above 

relations I), 2), 3)

Thus, in either case, there are three elements Ci,C2,C3, in G which satisfy the 

above relations I), 2), 3).

Let II  be the subgroup of G generated by a, C2 and C3. Then I f  is homomorphic 

to S4, and hence I f  is isomorphic to one of 54, S4/A4 and /M, where is the 

alternative group of degree 4 and M  is the normal subgroup of order 4 . Since 

the order of H  is greater than 4, H  is not isomorphic to SJA^. If H  is isomorphic 

to S J M  then c-s. C3 must be equal to I. But C1C3 is contained in 0(2^), and hence 

H  must be isomorphic to Compairing the orders, we can see that G is isomo

rphic to 54.

(3) The case-where n is odd.

Since the theorem is trivial in the case w = l, we may assume that n^2m  

+  ! > 1. Then, as proved above, there are n — 2 elements Ci, '-,Cn-2 which satisfy 

the relations I), 2), 3) in (I), and these generates a subgroup Gi of G which is 

isomorphic to Sn-i. The index of Gi is n. Since G contains only one proper 

normal subgroup and its index is 2, H Gi  ̂= I. Therefore G is isomorphic to
XeG

some subgroup of Sn. Since the order of G is !, G is isomorphic to
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