On the groups with the same table of characters as symmetric groups.

By Hirosi NAGAO.

(Received Nov. 9, 1956)

The finite groups G and G' are said to have the same table of characters when there exist one to one correspondences $\chi_{\mu} \leftrightarrow \chi_{\mu}'$ between their (ordinary) irreducible characters and $C_{\alpha} \leftarrow C_{\alpha}'$ between their conjugate classes, and $\chi_{\mu}(C_{\alpha}) = \chi_{\mu}'(C_{\alpha}')$ for all μ and α . Even if G and G' have the same table of characters, they are not necessarily isomorphic to each other, for instance the two types of non-abelian group of order p^3 (p; a prime number) have the same table of characters.

In this paper, we shall prove the following theorem.

THEOREM. If a finite group G has the same table of characters as a symmetric group S_{n} , then G is isomorphic to S_{n} .

To prove the theorem, we shall prove some propositions and lemmas.

PROPOSITION 1. The symmetric group of degree n is isomorphic to a group generated by the generators a_1, \ldots, a_{n-1} with the defining relations

(1)
$$a_1^2 = a_2^2 = \cdots = a_{n-1}^2 = 1,$$

(2)
$$(a_i \ a_j)^2 = 1 \quad if \ 1 < j - i,$$

(3) $(a_i a_{i+1})^3 = 1.$

For the proof, see Dickson; Linear Groups p. 287.

PROPOSITION 2. If G and G' have the same table of characters, then the orders of them coincide with each other, and the degree of any irreducible character of G and the number of elements of any conjugate class of G are equal to the degree of the corresponding character of G' and the number of elements of the corresponding conjugate class of G' respectively.

Proof. Let χ_i and C_i $(i=1, 2, \dots, k)$ be respectively the irreducible characters and the conjugate classes of G. We denote by χ'_i and C'_i the character and conjugate class of G' corresponding to χ_i and C_i respectively. Especially we shall denote by C_1 and C'_j , the conjugate classes of the unit elements of G and G' respectively.

Since χ_{μ} $(C_1) = \chi_{\mu'}(C_1') = \deg \chi_{\mu}$, we have

$$\sum_{\mu=1}^{k} \chi_{\mu}'(C_{1}') \overline{\chi_{\mu}'(C_{j}')} = \sum_{\mu=1}^{k} \deg \chi_{\mu} \deg \chi_{\mu}' \ge 0$$

Therefore, from the orthogonality relations of characters, it is seen that C'_1 coincides with C'_j , and hence deg $\chi_{\mu} = \text{deg} \chi'_{\mu}$.

Let \mathcal{G} and \mathcal{G}' be the orders of G and G' respectively. Then

$$\mathcal{g} = \sum_{\mu=1}^{k} (\deg \chi_{\mu})^2 = \sum_{\mu=1}^{k} (\deg \chi_{\mu'})^2 = \mathcal{g}'.$$

Further, if we denote by h_i and h'_i the numbers of elements of C_i and C'_i respectively, then from the orthogonality relations of characters, we have

$$\mathcal{G}/h_{\alpha} = \sum_{\mu=1}^{k} \chi_{\mu}(C_{\alpha}) \ \overline{\chi_{\mu}(C_{\alpha})} = \sum_{\mu=1}^{k} \chi_{\mu}'(C_{\alpha}') \ \overline{\chi_{\mu}'(C_{\alpha}')} = \mathcal{G}'/h_{\alpha}'$$

Since, as proved above, $\mathcal{G} = \mathcal{G}'$, we have $h_{\alpha} = h_{\alpha}'$.

PROPOSITION 3. If two finite groups G and G' have the same table of characters, then they have the same multiplication table of the conjugate classes.

Proof. Assume that

$$C_{\alpha} C_{\beta} = \sum_{\gamma} c_{\alpha \beta \gamma} C_{\gamma}.$$

Then

$$\frac{h_{\alpha} \chi_{\mu}(C_{\alpha})}{f_{\mu}} \quad \frac{h_{\beta} \chi_{\mu}(C_{\beta})}{f_{\mu}} = \sum_{o} c_{\alpha \beta \delta} \frac{h_{\delta} \chi_{\mu}(C_{\delta})}{f_{\mu}}$$

where f_{μ} is the degree of χ_{μ} . Hence

$$\sum_{\mu} \frac{\overline{\chi_{\mu}(C_{\gamma})}}{f_{\mu}} (h_{\alpha} \chi_{\mu}(C_{\alpha}) h_{\beta} \chi_{\mu}(C_{\beta}))$$
$$= \sum_{\mu,\beta} c_{\alpha\beta\beta} h_{\beta} \chi_{\mu}(C_{\beta}) \overline{\chi_{\mu}(C_{\gamma})} = c_{\alpha\beta,\tau} \mathcal{G}$$

Consequently

$$c_{\alpha\beta\gamma} = \frac{1}{g} \sum_{\mu} \overline{\frac{\chi_{\mu}(C_{\gamma})}{f_{\mu}}} (h_{\alpha}h_{\beta}\chi_{\mu}(C_{\alpha})\chi_{\mu}(C_{\beta})).$$

If we assume in G' that

$$C_{\alpha'} C_{\beta'} = \sum c'_{\alpha \beta \gamma} C_{\gamma'},$$

then, in the same way as above, we have

$$c'_{\alpha\beta\gamma} = \frac{1}{g'} \sum_{\mu} \overline{\frac{\chi'_{\mu}(C_{\gamma})}{f'_{\mu}}} (h_{\alpha}' h_{\beta}' \chi'_{\mu}(C_{\alpha}') \chi'_{\mu}(C_{\beta}')).$$

Hence, from Proposition 2, we have

$$c_{\alpha\beta\gamma} = c'_{\alpha\beta\gamma}$$

In the following lemmas, we shall always assume that G is a group with the same table of characters as the symmetric group S_n of degree n, where $n \ge 3$ and $n \ne 4$, and $C(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$ denotes the conjugate class of G corresponding to the conjugate class of S_n whose element can be expressed as a product of α_1 cycles of length i_1 , α_2 cycles of length i_2 , \cdots such as each of letters occurs in only one cycle of them, for instance, $C(2^2, 3)$ denotes the conjugate class of G corresponding to the conjugate class of S_n containing (1 2) (3 4) (5 6 7). From Proposition 3, G and

 S_n has the same multiplication table of conjugate classes, therefore we can know completely the multiplication table of conjugate classes of G by investigating that of S_n .

LEMMA 1. The order of an element a of C(2) is 2.

Proof. It is easily seen that if $n \ge 4$, then

$$C(2)^{2} = 3C(3) + 2C(2^{2}) + \frac{n(n-1)}{2}C(1),$$

and if n=3, then

$$C(2)^2 = 3C(3) + 3C(1).$$

Denote by $n(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$ the order of the normalizer of an element of $C(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$. If a^2 is contained in C(3), n(2) divides n(3) because the normalizer of a^2 contains that of a. Since n(2) = 2(n-2)! and n(3) = 3(n-3)!, 2(n-2)! divides 3(n-3)! and hence 3 is a multiple of 2(n-2). This is impossible. Hence a^2 is contained in $C(2^2)$ or C(1). In the former case, n(2) divides $n(2^2)$. Since $n(2^2) = 8(n-4)!$, 2(n-2)! divides 8(n-4)! and hence 4 is a multiple of (n-2) (n-3). But this is impossible unless n=4. Therefor a^2 must be contained in C(1) i.e. $a^2=1$.

LEMMA 2. The order of an element of C(3) is 3.

Proof. From the multiplication table of conjugate classes, we can see that any element of C(3) can be expressed in exactly three ways as a product of two elements of C(2). Let x be an element of C(3) and x = a b with two elements a and b of C(2).

If $x^2=1$, then a b = b a. Since $a \neq b$, x can be expressed in different ways of an even number as a product of two elements of C(2), which is a contradiction. Therefore $x^2 \neq 1$. Now

$$x = a b = b(b a b) = (b a b)(b a b a b)$$

= (b a b a b) (b a b a b a b).

It is easily seen that a, b and bab are all distinct and babab is distinct from band bab. Hence a=babab, i.e. $x^3=(ab)^3=1$.

LEMMA 3. The order of an element of $C(2^2)$ is 2.

Proof. From the multiplication table of conjugate classes, we can see that any element of $C(2^2)$ can be expressed in exactly two ways as a product of two elements of C(2). If an element x is the product of two elements a and b of C(2), then

$$x = a b = b(b a b) = (a b a)a.$$

Clearly $a \neq b$, hence *aba* is equal to *a* or *b*. In the former case, *a* must be equal to *b*, which is a contradiction. Therefore a b a = b, i. e. $x^2 = (a b)^2 = 1$.

LEMMA 4. Let a and b be two distinct element of C(2). If a and b are commutative whith each other then $a b \in C(2^2)$. If a and b are not commutative with each other then $a b \in C(3)$.

Proof. From the multiplication table of conjugate classes, we can see that ab is contained in $C(2^2)$ or C(3). The order of ab is 2 if and only if a b = b a, and

hence $a b \in C(2^2)$ if and only if a b = b a.

LEMMA 5. The order of an element of C(4) is 4.

Proof. From the multiplication table of conjugate classes, we can see that any element of C(4) can be expressed as a product of an element of C(2) and an element of C(3). Let x be an element of C(4) and x=ay with an element a of C(2) and an element y of C(3). If the order of x is 2, $x^2=ay ay=1$ and hence y a y = a. Since $y^3=1$, $y a y^{-1}=ay=x$, which is a contradiction. Hence $x^2 \neq 1$.

From the multiplication table of conjugate classes, it is seen that x can be expressed in exactly two ways as a product of an element b of C(2) and an element z of $C(2^2)$. If $b = x b x^{-1}$, i.e. b = b z b z b, then $b z b z = x^2 = 1$, which is a contradition, hence $b \neq x b x^{-1}$. Since

 $x = b z = (x b x^{-1}) (x z x^{-1}) = (x^2 b x^{-2}) (x^2 z x^{-2})$

 $x^2 b x^{-2}$ is equal to b or x b x^{-1} . In the latter case, $b = x b x^{-1}$, which is a contradiction. Therefore $x^2 b x^{-2}$ must be equal to b, i.e. b = b z b z b z b z b z. Hence $x^4 = (b z)^4 = 1$. Since $x^2 \neq 1$ as proved above, the order of x is 4.

LEMMA 6. Let $k \leq \lfloor \frac{n}{2} \rfloor$. If a_i $(i = 1, 2, \dots, k)$ are elements of C(2) and $a_1a_2 \cdots a_k$ is contained in $C(2^k)$, then a_1, a_2, \cdots, a_k are all distinct and commutative. Further any element of $C(2^k)$ can be uniquely expressed as such a product of k elements of C(2) disregarding their arrangement.

Conversely, if k elements a_1, \dots, a_k of C(2) are all distinct and commutative, then $a_1 \dots a_k$ is contained in $C(2^k)$.

Proof. In the case k=1, our assertion is trivial. To prove the lemma in the case k=2, let a_1 and a_2 be two elements of C(2) and assume that $a_1 a_2$ is contained in $C(2^2)$. Clearly $a_1 \neq a_2$, and, from Lemma 3, $(a_1 a_2)^2 = 1$, i. e. $a_1 a_2 = a_2 a_1$. Since any element of $C(2^2)$ can be expressed in exactly two ways as a product of two elements of C(2), any element of $C(2^2)$ can be expressed uniquely as a product of two elements of C(2) disregarding their arrangement. Conversely, if a_1 and a_2 are two distinct elements of C(2) and they are commutative, then it is immediately seen from Lemma 4 that $a_1 a_2 \in C(2^2)$.

Now, we shall consider the case $k \ge 3$ and prove the lemma for the cases by an induction on k. Any element of $C(2^k)$ can be expressed in exactly k! ways as a product of k elements of C(2) and also can be expressed in exactly k ways as a product of an element of $C(2^{k-1})$ and an element of C(2). If a product of an element x of $C(2)^{k-1}$ and an element a of C(2) is contained in $C(2^k)$, then x must be contained in $C(2^{k-1})$, for otherwise x a can be expressed as a product of k elements of C(2) in more ways than k!. If a_1, \dots, a_k are elements of C(2) and $a_1 \dots$ a_k is contained in $C(2^k)$ then $a_1 \dots a_{k-1}$ is contained in $C(2^{k-1})$, therefore, by the induction hypotheses, a_1, \dots, a_{k-1} are all distinct and commutative. Since $a_2 \dots a_k$ a_1 $= a_1(a_1 \dots a_k)a_1$ is also contained in $C(2^k)$, a_2, \dots, a_k are all distinct and commutative, and since $a_3 \cdots a_k a_1 a_2$ is an element of $C(2^k)$, a_k and a_3 are distinct and commutative to each other. Thus it is proved that a_1, \dots, a_k are all distinct and commutative. All arrangements of a_i in the product $a_1 \cdots a_k$ give k! expressions of the element $a_1 \cdots a_k$ as a product of k elements of C(2), and hence there is not any such expression other than these.

To prove the latter half, we shall consider $C(2^{k-1}) C(2)$. From the multiplication table of conjugate classes, we can easily see that it is made up of elements of $C(2^k)$, $C(2^{k-2}, 3)$, $C(2^{k-2})$ and $C(2^{k-3}, 4)$. Any element of $C(2^{k-2}, 3)$ can be uniquely expressed as a product of an element x of $C(2^{k-2})$ and an element y of C(3). Since $xy = (xy) x (xy)^{-1}(xy) y (xy)^{-1}$, $(xy) y (xy)^{-1} = xyx^{-1} = y$, i. e. x and y are commutative. From the first half of the lemma and Lemma 3, orders of x and y are 2 and 3 respectively, therefore the order of xy is 6. In a similar way, the order of an element of $C(2^{k-3}, 4)$ is 4.

Now assume that k elements a_1, \dots, a_k are all distinct and commutative. Then, by the induction hypothesis $a_1 \dots a_{k-1}$ is contained in $C(2^{k-1})$, therefore $a_1 \dots a_{k-1}$ $a^k \in C(2^{k-1})C(2)$. Since its order is 2, it is contained in $C(2^k)$ or $C(2^{k-2})$. In the latter case, $a_1 \dots a_k = b_1 \dots b_{k-2}$ with $b_i \in C(2)$ and then

$a_1 \cdots a_{k-1} = b_1 \cdots b_{k-2} a_k.$

From the first half of the lemma, a_k is equal to some a_i $(1 \le i \le k-1)$. This is a contradiction. Hence $a_1 \cdots a_k$ must be contained in $C(2^k)$.

LEMMA 7. If a_1 and a_2 are two elements of C(2) such that $a_1 a_2$ is contained in $C(2^2)$, then there exists an element b of C(2) such that $a_1 a_2 b \in C(4)$, and then $a_1 b$ and $a_2 b$ must be contained in C(3).

Proof. Since $C(2^2)C(2)$ contains C(4), there exists an element b of C(2) such that $a_1 a_2 b \in C(4)$. Clearly b is distinct from a_1 and a_2 , and hence $a_i b$ are contained in $C(2^2)$ or C(3). If $a_1 b$ and $a_2 b$ are both contained in $C(2^2)$, then b is commutative with a_1 and a_2 , and hence, from Lemma 6, $a_1 a_2 b \in C(2^3)$, which is a contradiction. If $a_1 b$ is contained in $C(2^2)$ and $a_2 b$ is contained in C(3), then a_1 is commutative with a_2 and b, and hence the order of $a_1 a_2 b$ is 6, which is a contradiction. Thus it is proved that $a_1 b$ and $a_2 b$ are both contained in C(3).

LEMMA 8. Let a_1, a_2 and b be elements of C(2). If $a_1 a_2$ is contained in $C(2^2)$ and if a_1b and a_2b are both contained in C(3), then $x = a_1a_2b$ is an element of C(4).

Proof. Since C(2) C(3) is made up of elements of C(2, 3), C(4) and C(2), x is contained in one of C(2,3), C(4), and C(2).

(1) Assume that x is contained in C(2). Since $a_1a_2=xb$ is an element of $C(2^2)$, it is seen by Lemma 6 that b is equal to a_1 or a_2 , which is a contradiction.

(2) Assume that x is contained in C(2,3). Then x can be expressed uniquely as a product of an element of C(2) and an element of C(3). Since $x = a_1(a_2b) = a_2(a_1b)$, a_1 is equal to a_2 , which is a contradiction.

Thus it is proved that x must be contained in C(4).

Hirosi Nagao

LEMMA 9. Let a_1, a_2 and a_3 be elements of C(2) such that $a_1a_2a_3$ is contained in $C(2^3)$. If an element b of C(2) is not commutative with a_1 and a_2 , then b is commutative with a_3 .

Proof. If b is not commutative with a_3 , then, from Lemma 4, $a_i b(i = 1, 2, 3)$ are all contained in C(3), and hence, from Lemma 8, $a_2 a_3 b$ is contained in C(4). Therefore $x = a_1 a_2 a_3 b$ is contained in $C(2^3) C(2)$ and C(2) C(4). Since $C(2^3) C(2)$ is made up of elements of $C(2^4)$, $C(2^2, 3)$, $C(2^2)$ and C(2, 4), and since C(2) C(4) is made up of elements of C(2, 4), C(5), C(3) and $C(2^2)$, x is contained in $C(2^2)$ or C(2, 4). If x is an element of $C(2^3)$ then $a_1 a_2 a_3 b = a_1' a_2'$ with $a_1', a_2' \in C(2)$. Since $a_1 a_2 a_3 = a_1' a_2' b$ is an element of $C(2^3)$, from Lemma 6, b is equal to some a_i . This is a contradiction. Next assume that x is contained in C(2, 4). x can be uniquely expressed as a product of an element of C(2) and an element of C(4). Since $x = a_1(a_2 a_3 b) = a_2(a_1 a_3 b)$ and $a_2 a_3 b$ and $a_1 a_3 b$ are both contained in C(4), we have $a_1 = a_2$, which is a contradiction.

LEMMA 10. Let a_1 , a_2 and a_3 be elements of C(2). If a_1 is not commutative with a_2 , and a_3 is commutative with a_1 and a_2 , then there exists an element b of C(2) which is commutative with a_1 and not commutative with a_2 and a_3 .

Proof. From Lemma 7, there exists an element b of C(2) such that $a_2ba_3 = a_3^{-1}(a_3a_2b)a_3 \in C(4)$. Then b is not commutative with a_2 and a_3 . If b is commutative with a_1 , then b is an asking element. Now we assume that b is not commutative with a_1 . Since $a_1 a_2 \in C(3)$, $x = a_1a_2b$ is contained in C(3)C(2). C(3)C(2) is made up of elements of C(3,2), C(4) and C(2). Therefore x is contained in one of C(3,2), C(4) and C(2).

(1) Assume that $x \in C(3, 2)$. Any element of C(3, 2) can be expressed uniquely as a product of an element of C(3) and an element of C(2). Since $x = (a_1 a_2)b = x^{-1}(a_1a_2)xx^{-1} bx$ and $a_1a_2 \in C(3)$, we have $a_1a_2 = x^{-1}(a_1a_2)x = b^{-1}(a_1a_2)b$ and hence b is commutative with a_1a_2 . Therefore $x = (a_1a_2)b = (ba_1)a_2$. Since ba_1 is an element of C(3), b is equal to a_2 , which is a contradiction.

(2) Assume that $x = a_1a_2b$ is contained in C(2). $a_1a_2 = xb$ is contained in C(3) and any element of C(3) can be expressed as a product of two elements of C(2) in exactly three ways. Since $xb = a_1a_2 = a_2(a_2^{-1}a_1a_2) = (a_1a_2a_1^{-1})a_1$, b must be equal to one of a_2 , $a_2^{-1}a_1a_2$ and a_1 , and in either case b is commutative with a_3 . This is a contradiction.

Thus x must be contained in C(4). Since C(4) is contained in $C(2^2)C(2)$, there are three elements c_1', c_2', c_3' of C(2) such that $c_1' c_2' \in C(2^2)$ and $c_1' c_2' c_3' \in C(4)$. Then, from Lemma 7, $c_1' c_3'$ and $c_2' c_3'$ are both contained in C(3). Since $c_2' c_3' c_1' = c_1'^{-1}(c_1' c_2' c_3') c_3'$ is also an element of C(4), there are three elements c_1, c_2 and c_3 of C(2) such that $x = c_1 c_2 c_3$ and $c_1 c_3 \in C(2^2)$ and $c_1 c_2$ and $c_2 c_3$ are contained in C(3). Since c_1 is commutative with c_3 and $(c_1 c_2)^3 = 1$,

$$xc_1x^{-1} = c_1^x = c_1c_2c_3c_1c_3c_2c_1 = c_1c_2c_1c_2c_1 = c_2$$

Since $(c_2c_3)^3 = 1$,

$$c_2^x = c_1 c_2 c_3 c_2 c_3 c_2 c_1 = c_1 c_3 c_1 = c_3.$$

Any element of C(4) can be expressed as a product of an element of C(2) and an element of C(3) in exactly 4 ways, and

$$x = c_1(c_1^{x}c_1^{x^2}) = c_1^{x}(c_1^{x^2}c_1^{x^3}) = c_1^{x^2}(c_1^{x^3}c_1) = c^{x^3}(c_1c_1^{x}).$$

It is easily seen that $c_1, c_1^{x}, c_1^{x^2}$ and $c_1^{x^3}$ are all distinct. Therefore a_1 must be equal to some $c_1^{x^i}$, and there are two elements a_2' , b' of C(2) such that $x = a_1 a_2' b'$ and $a_1b' \in C(2^2)$. Then $a_2b = a_2'b' = b(ba_2b) = (a_2ba_2)a_2$ and b' is not equal to either of b and a_2 because a_1 is commutative with neither of b and a_2 . Any element of C(3) can be expressed as a product of two elements of C(2) in exactly three ways. Therefore b' must be equal to ba_2b . Since $(ba_2)^3 = 1, b' = ba_2b = a_2ba_2$ and hence b' is not commutative with either of a_2 and $a_3 = a_2a_3a_2$. Thus b' is an asking element.

Proof of Theorem

(1) The case where *n* is even and $n \neq 4$.

Since the theorem is trivial in the case n=2, we may assume that n=2m>4. Let a_1, \dots, a_m be such elements of C(2) as $a_1a_2 \dots a_m \in C(2^m)$. From Lemma 7, there exists an element b_1 of C(2) such that $a_1a_2b_1 \in C(4)$. Then b_1 is different from a_i $(3 \le i \le m)$ and, from Lemma 9, is commutative with them. Now we assume that $b_1, b_2, \dots, b_k(k < m)$ are elements of C(2) such that $a_i a_{i+1} b_i \in C(4)$ and b_i is commutative with all b_j and a_l except a_i and a_{i+1} . From Lemma 10, there is an element b_{k+1} of C(2) such that $a_{k+1}a_{k+2}b_{k+1}$ is contained in C(4), and b_{k+1} is commutative with b_k , Then, from Lemma 9, b_{k+1} is commutative with all b_j and a_l except a_i and $b_i a_{l+1}$ are both 3 and b_i is commutative with all b_j and a_l except a_i and $b_i a_{l+1}$ are both 3 and b_i is commutative with all b_j and a_l except a_i and a_{i+1} . Set $c_{2k-1}=a_k$ and $c_{2k}=b_k$. Then c_1, \dots, c_{n-1} satisfy the relations;

(1)
$$c_1^2 = \cdots c_{n-1}^2 = 1,$$

(2) $(c_i c_j)^2 = 1 \text{ if } 1 < j - i$

(3) $(c_i c_{i+1})^3 = 1.$

Hence, from Proposition 1, there is a homomorphism from S_n to the subgroup H of G generated by c_1, \dots, c_{n-1} . Since n > 4, H is isomorphic to S_n/A_n (A_n ; the alternative group of degree n) or S_n . Clearly the order of H is greater than 2, therefore H is isomorphic to S_n . Compairing the orders we have H=G. Thus, in this case, G is isomorphic to S_n .

(2) The case n=4.

Let a be an element of C(2). As proved in Lemma 1, a^2 is contained in C(1)

or $C(2^2)$. If $a^2=1$, then it is proved, as in (1), that there are three elements c_1 , c_2, c_3 of C(2) which satisfy the relations

1)
$$c_1^2 = c_2^2 = c_3^2 = 1,$$

2)
$$(c_1 c_3)^2 = 1,$$

3) $(c_1 c_2)^3 = (c_2 c_3)^3 = 1.$

Now, we assume that $x=a^2$ is contained in $C(2^2)$. The normalizer N(x) of x is a subgroup of order 8. Since N(x) contains an elements of C(2) and the order of normalizer of an element of C(2) is 4, N(x) is not abelian.

The normal subgroup N of order 4 which consists of elements of $C(2^2)$ and 1 is contained in N(x) and an abelian group of the type (2, 2). Let $N=(x)\times(y)$. Then aya^{-1} must be equal to xy, and hence $(ay)^2=1$. Then ay is contained in C(4) and the order of an element of C(4) is 2.

Now the multiplication table of conjugate classes of S_4 is left unchanged by exchanging C(2) and C(4). Using C(4) instead of C(2), we can prove in a similar way as above that there are three elements c_1,c_2,c_3 of C(4) which satisfy the above relations 1), 2), 3)

Thus, in either case, there are three elements c_1, c_2, c_3 , in G which satisfy the above relations 1), 2), 3).

Let *H* be the subgroup of *G* generated by c_1, c_2 and c_3 . Then *H* is homomorphic to S_4 , and hence *H* is isomorphic to one of $S_4, S_4/A_4$ and S_4/M , where A_4 is the alternative group of degree 4 and *M* is the normal subgroup of order 4. Since the order of *H* is greater than 4, *H* is not isomorphic to S_4/A_4 . If *H* is isomorphic to S_4/M then $c_1 c_3$ must be equal to 1. But $c_1 c_3$ is contained in $C(2^2)$, and hence *H* must be isomorphic to S_4 . Compairing the orders, we can see that *G* is isomorphic to S_4 .

(3) The case where n is odd.

Since the theorem is trivial in the case n=1, we may assume that n=2m+1>1. Then, as proved above, there are n-2 elements c_1, \dots, c_{n-2} which satisfy the relations 1), 2), 3) in (1), and these generates a subgroup G_1 of G which is isomorphic to S_{n-1} . The index of G_1 is n. Since G contains only one proper normal subgroup and its index is 2, $\bigcap_{x \in G} G_1^x = 1$. Therefore G is isomorphic to some subgroup of S_n . Since the order of G is n!, G is isomorphic to S_n .