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The finite groups G and G’ are said to have the same table of characters
when there exist one to one correspondences X,-»X,’ between their (ordinary)
irreducible characters and C,-C, between their conjugate classes, and X,(C,) =
X,/ (Cy) for all # and . Even if G and G’ have the same table of characters,
they are not necessarily isomorphic to each other, for instance the two types of
non-abelian group of order p* (p;a prime number) have the same table of char-
acters.

In this paper, we shall prove the following theorem.

THEOREM. If a finite group G has the same table of chavacters as a symmetvic
group S, then G is isomorphic to S,,

To prove the theorem, we shall prove some propositions and lemmas.

ProprosiTioON 1. The symmetric group of degree n is isomorphic to a group

generated by the generators ay, ..., a,—4 with the defining relations
S ai=a3= - =aj1=1,

@ (@ ap?=1  if 1<j—i,

©) (@:a;41)%=1.

For the proof, see Dickson; Linear Groups p. 287.

ProrosiTiON 2. If G and G’ have the same table of characters, then the orders
of them coincide with each other, and the degree of any ivveducible character of G
and the number of elements of any conjugate class of G are equal to the degree of
the corresponding character of G’ and the number of elements of the corresponding
conjugate class of G’ respectively.

Proof. Let X, and C; (i=1, 2, ---, k) be respectively the irreducible characters
and the conjugate classes of G. We denote by X,/ and C;/ the character and con-
jugate class of G’ corresponding to X; and C; respectively. Especially we shall denote
by C; and C/, the conjugate classes of the unit elements of G and G’ respectively.

Since X, (Cy) =%,/ (C{)=deg X,, we have

k — k
EXM’ CHxX,/(CH = 21 deg X, deg X, 5 0
- = ,

Therefore, from the orthogonality relations of characters, it is seen that Cy coin-
cides with C;, and hence deg X,=degX,/ .



2 Hirosi Nagao

Let ¢ and ¢’ be the orders of G and G’ respectively.
Then

E k
g= 2 (deg X,)*= 2. (deg X,/)*=¢".
e

nw=1

Further, if we denote by %; and %/ the numbers of elements of C; and C/ re-
spectively, then from the orthogonality relations of characters, we have

3 -k o
g/hw= ;Xp, (Cw> X;/. (Co&> = §1XM/ (Cw/> X,/./ (Co/> = ?’/hw,-

Since, as proved above, g=¢’, we have h,=h, .

ProrosiTioN 3. If two finite groups G and G’ have the same table of charac-
ters, then they have the same multiplication table of the conjugate classes.

Proof. Assume that

CoCo=2kuy C;.

Then
hw Xﬂ.(coo) hﬁ; X,,.(Cf,) _ h8 XM (@4
f/k fu ;Cwﬁs fu
where f, is the degree of X, Hence
(o
s X CD) g X,.(Ca) g X, (Ce))
I "
=Z§:cwﬁ3 hSXu((:s) X—,:(—C_;) =wa;q_g
5
Consequently
()
Cubr™ “;‘ va—“}-’l%hﬁxn (€)X, (Cp)).

If we assume in G’ that
Cw, Cﬁl = Z Clwﬁ.y Cy,»
then, in the same way as above, we have

1« X,/
c’wﬁ'y:?% uf<, Y ) (hw’hp.’X,,,' (Co/)X,L, <Cﬁ‘,>>

Hence, from Proposition 2, we have
Capy=C"upy

In the following lemmas, we shall always assume that G is a group with the
same table of characters as the symmetric group S, of degree »n, where #=3 and
n=4, and C({1, i3z, ---) denotes the conjugate class of G corresponding to the con-
jugate class of S, whose element can be expressed as a product of «; cycles of
length ¢y, a, cycles of length 4, ---such as each of letters occurs in only one cycle
of them, for instance, C(2% 3) denotes the conjugate class of G corresponding to
the conjugate class of S, containing (12) (34) (566 7). From Proposition 3, G and
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S has the same multiplication table of conjugate classes, therefore we can know com-
pletely the multiplication table of conjugate classes of G by investigating that of S,.
LeMMA 1. The order of an element a of C(2) is 2.
Proof. Tt is easily seen that if n=4, then

C(2)2=3C(3)+2C(2) +—”—<"2—_D—C(1),

and if #=3, then
C(2)2=3C(3)+3C(1).

Denote by #(#1%1,4,*2, ---) the order of the normalizer of an element of C(#;1%1, 5%z,
---). If a? is contained in C(3), #(2) divides #(3) because the normalizer of a2
contains that of a. Since #(2)=2(n-2)! and #(3)=3(n—3)!, 2(n—2)! divides
3(n—3)! and hence 3 is a multiple of 2(z—2). This is impossible. Hence a2 is con-
tained in C(22) or C(1). In the fommer case, #{2) divides #(22). Since (22
=8(m—4)!, 2(n—2)! divides 8(n—4)! and hence 4 is a multiple of (n—2) (n—3). But
this is impossible unless #=4. Therefor a2 must be contained in C(1) i.e. a®2=1.

LemMmA 2. The order of an element of C(3) is 3.

Proof. From the multiplication table of conjugate classes, we can see that any
element of C(3) can be expressed in exactly three ways as a product of two ele-
ments of C(2). Let x be an element of C(3) and x=a b with two elements ¢ and
b of C(2).

If x2=1, then ab=>ba. Since a=b, x can be expressed in different ways of
an even number as a product of two elements of C(2), which is a contradiction.
Therefore x21. Now

x=ab=b(bab)=Mbab)(babab)
=(babab) (bababab).
It is easily seen that a, b and bab are all distinct and babab is distinct from &
and bab. Hence a=babab, i.e. x3=(ab)3=1.

LemMma 3. The order of an element of C(22) is 2.

Proof. From the multiplication table of conjugate élasses, we can see that any
element of C(2?) can be expressed in exactly two ways as a product of two
elements of C(2). If an element x is the product of two elements a and & of
C(2), then

x=ab=bbab)=(aba)a.
Clearly a=:b, hence aba is equal to @ or b. In the former case, a must be equal
to b, which is a contradiction. Therefore aba=», i.e. x2=(ab)2=1.

LEmMMA 4. Let a and b be two distinct element of C(2). If a and b are com-
mutative whith each other then ab€ C(2%). If a and b are not commutative with
each other then abc C(3).

Proof. From the multiplication table of conjugate classes, we can see that ab
is contained in C(22) or C(3). The order of ab is 2 if and only if ab=>ba, and
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hence ab€ C(2%) if and only if ab=ba.

LemMmA 5. The order of an element of C(4) is 4.

Proof. From the multiplication table of conjugate classes, we can see that any
element of C(4) can be expressed as a product of an element of C(2) and an ele-
ment of C(3). Let x be an element of C(4) and x=ay with an element a of C(2)
and an element y of C(3). If the order of x is 2, x2=ay ay=1 and hence yay =
a. Since y*=1, yayt=ay=x, which is a contradiction. Hence x2=¢1.

From the multiplication table of conjugate classes, it is seen that x can be
expressed in exactly two ways as a product of an element b of C(2) and an ele-
ment z of C(22). If b=xbx1,i.e. b=bzbzb, then bzbz = x2=1, which is a
contradition, hence b=xbx1. Since

x=bz=(xbx1) (xzxV)=0x2bx"2) (222272
x2bx72 is equal to b or xb x71. In the latter case, b=x b 271, which is a contradic-
tion. Therefore ¥2bx72 must be equal to b, i.e. b=bzbzbzbzb. Hence x*=(b
z)*=1. Since x2=1 as proved above, the order of x is 4.

Lemma 6. Let ké[%]. If af (i=1, 2,---,k) are elements of C(2) and

aas - ay is contained in C(2%), then ay, as, -+ i ave all distinct and commutative.
Further any element of C(2%) can be uniquely expressed as such a product of k ele-
ments of C(2) disrvegarding their arrangement.

Conversely, if k elements ay, -+ ,a, of C(2) ave all distinct and commutative, then
ay - ay is contained in C(2%).

Proof. In the case k=1, our assertion is trivial. To prove the lemma in the
case k=2, let a; and a, be two elements of C(2) and assume that a; @, is contain-
ed in C(2?). Clearly a;=Fa, and, from Lemma 3, (@ a2)2=1,i.e.a;a:=aza;. Since
any element of C(22) can be expressed in exactly two ways as a product of two
elements of C(2), any element of C{2%) can be expressed uniquely as a product of
two elements of C(2) disregarding their arrangement. Conversely, if @y and as
are two distinct elements of C(2) and they are commutative, then it is imme-
diately seen from Lemma 4 that a; a,€ C(22).

Now, we shall consider the case k=3 and prove the lemma for the cases by
an induction on k. Any element of C(2¥) can be expressed in exactly 2! ways as
a product of % elements of C(2) and also can be expressed in exactly 2 ways as
a product of an element of C(2*1) and an element of C(2). If a product of an
element x of C(2)*! and an element @ of C(2) is contained in C(2*), then x must
be contained in C(2*71), for otherwise x a can be expressed as a product of % ele-
ments of C(2) in more ways than k!. If a4, ,a; are elements of C(2) and gy -
a; is contained in C(2%) then @ -+ ay_, is contained in C(2* 1), therefore, by the
induction hypotheses, a4, -, a;_1 are all distinct and commutative. Since a» - a» a1
=ay(ay --ap)ay is also contained in C(2%), as, *--, a, are all distinct and commuta-
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tive, and since as -+ a; a1az is an element of C(2%), @, and g; are distinct and com-
mutative to each other. Thus it is proved that a4, ---,a; are all distinct and com-
mutative. All arrangements of a; in the product g, - a, give k! expressions of
the element a; -+ a; as a product of % elements of C(2), and hence there is not
any such expression other than these.

To prove the latter half, we shall consider C(2*1)C(2). From the multipli-
cation table of conjugate classes, we can easily see that it is made up of elements
of C(2%, C(2¥23), C(2¥2) and C(2*3 4). Any element of C(2/72 3) can be
uniquely expressed as a product of an element x of C(2¥2) and an element y of
C(8). Since xy=(xv) x (xy)1(xy) y (x3) 7%, (xy) y (xy) t=xyx 1=y, i.e. x and y are
commutative. From the first half of the lemma and Lemma 3, orders of x and y
are 2 and 3 respectively, therefore the order of xy is 6. In a similar way, the
order of an element of C(2*734) is 4.

Now assume that 2 elements ay, --- ,a, are all distinct and commutative. Then,
by the induction hypothesis ay - @,_y is contained in C(2%¥71), therefore @i @1
a* € C(2"1)C(2). Since its order is 2, it is contained in C(2*) or C(2*72). In the
latter case, ay -+ ar=>by ---by_p with b, € C(2) and then

Ay Qp1=0by - b_s ap,

From the first half of the lemma, a; is equal to some a; (1 =7 =< k—1). This
is a contradiction. Hence gy --- @, must be contained in C(2%).

LemMmA 7. If a1 and as ave two elements of C(2) such that ayas is contained
in C(22), then theve exists an element b of C(2) such that aia:b€ C(4), and then
a1 b and ay b must be contained in C(3).

Proof. Since C(22)C(2) contains C(4), there exists an element b of C(2) such
that a;a. b€ C(4). Clearly b is distinct from @, and a,, and hence a; b are contain-
ed in C(2»or C(3). If a4b and axb are both contained in C(22), then b is com-
mutative with @ and a,, and hence, from Lemma 6, a4, b€ C(2%), which is a
contradiction. If @6 is contained in C(22) and @b is contained in C(3), then
ay is commutative with @, and b, and hence the order of aia-b is 6, which is a
contradition. Thus it is proved that a;b and a.b are both contained in C(3).

LemMA 8. Let ay,az and b be elements of C(2). If ayas is contained in C(2%)
and if a1b and asb are both contained in C(3), then x=aia:b is an element of C(4).

Proof. Since C(2) C(3) is made up of elements of C(2,3), C(4) and C(2), %
is contained in one of C(2,3), C(4), and C(2).

(1) Assume that x is contained in C(2). Since aya;=xb is an element of
C(2?), it is seen by Lemma 6 that b is equal to a; or a,, which is a contradiction.

(2) Assume that x is contained in C(2,3). Then ¥ can be expressed uniquely
as a product of an element of C(2) and an element of C(3). Since x=ay(a:b)=a:
(a1b), a1 is equal to ap, which is a contradiction.

Thus it is proved that ¥ must be contained in C(4).
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LemmA 9. Let ay,as and as be elements of C(2) such that aia.as is contained
in C2%. If an element b of C(2) is not commutative with a; and as, then b is
commutative with as.

Proof. If b is not commutative with a,, then, from Lemma 4, a;0( = 1,2,3)
are all contained in C(3), and hence, from Lemma 8, a» a3 b is contained in C(4).
Therefore x=aiasash is contained in C(2%) C(2) and C(2) C(4). Since C(2%)
C(2) is made up of elements of C(2%), C(2%3), C(22) and C(2,4), and since
C(2) C(4) is made up of elements of C(2,4), C(5), C(3) and C(2?), x is contained
in C(22) or C(2,4). If x is an element of C(22) then ayasasb=ai as with a{,as €
C(2). Since ayasas=a{as bis an element of C(28), from Lemma 6, b is equal to
some «,, This is a contradiction. Next assume that x is contained in C(2,4). «
can be uniquely expressed as a product of an element of C(2) and an element of
C4). Since x=ay(asasb) =as(a1asb) and aeash and ayasb are both contained in C(4),
we have ay=a,, which is a contradiction.

Lemma 10. Let ai, ax and as be elements of C(2). If ay is not commutative
with a,, and as is commutative with a, and as, then there exists an element b of C(2)
which is commutative with a, and not commutative with a. and as.

Proof. From Lemma 7, there exists an element & of C(2) such that asbas=
as 1 (asa:b)as€ C(4). Then b is not commutative with @, and a5, If b is commuta-
tive with @y, then b is an asking element. Now we assume that & is not com-
mutative with a;., Since @y a, € C(3), x=aa:b is contained in C(3)C(2). C(3)C(2)
is made up of elements of C(3,2), C(4) and C(2). Therefore x is contained in
one of C(3,2),C(4) and C(2).

(1) Assume that x€C(3,2). Any element of C(3,2) can be expressed uni-
quely as a product of an element of C(3) and an element of C(2). Since x= (a4
a)b=x"aa)xx™ bx and aya.€ C(3), we have @y a.=x"1(a1a:)x=b"(aya,)b and
hence b is commutative with @y @;, Therefore x=(aya:)b= (b ay) a.. Since b a, is
an element of C(3), b is equal to as, which is a contradiction.

(2) Assume that x=aa,b is contained in C(2). aia.=xb is contained in C(3)
and any element of C(3) can be expressed as a product of two elements of C(2)
in exactly three ways. Since xb=a1a:=a:(a:'maz) = (maxa: D ay, b must be equal
to one of as, a;'@a, and ay, and in either case b is commutative with @s. This

is a contradiction.

Thus x must be contained in C(4). Since C(4) is contained in C(22)C(2),
there are three elements ¢y, ¢y, cs of C(2) such that ¢f ¢ € C(22) and ¢ ¢s ¢5 €
C(4). Then, from Lemma 7, ¢/ ¢5 and ¢ ¢; are both contained in C(3). Since
¢ cscf =cif Yefcs e )es is also an element of C(4), there are three elements €1,C2
and ¢; of C(2) such that x=cycscs and cyc5€ C(22) and cyc; and cycs are contained

in C(3). Since ¢; is commutative with ¢; and (cic2)3=1,
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XC18 71 =] = €1€2€5C1€5CoC1 = C1C2C1C2C1=Ca.

Since (cyc3)3=1,
€5 = C1C2C3CoC5CoC1 = C1C3C1=C3,

Any element of C(4) can be expressed as a product of an element of C(2) and an
element of C(3) in exactly 4 ways, and

x=c1(er’er™) = e (1" °er™”) =" (1" cr) = ¢*’ (c164%).

It is easily seen that cy, ¢, ¢i*" and ¢*° are all distinct. Therefore ay must be
equal to some ¢:®, and there are two elements as/, & of C(2) such that x=aas b’
and a0’ € C(22). Then ab=as b’ =b(basd) = (abas)a, and b’ is not equal to either
of b and a, because a; is commutative with neither of b and @, Any element of
C(3) can be expressed as a product of two elements of C(2) in exactly three ways.
Therefore " must be equal to bash. Since (bas)3=1, b’ =basb=asba, and hence &’
is not commutative with either of a, and as=a.asa,, Thus b’ is an asking element.

Proof of Theorem

(1) The case where 7 is even and n=:4.

Since the theorem is trivial in the case #=2, we may assume that n=2m>4.
Let a4, ,a, be such elements of C(2) as ayas -+ a,,€ C(2"). From Lemma 7, there
exists an element b; of C(2) such that aia.b;€ C(4). Then b, is different from a;
(8=i=m) and, from Lemma 9, is commutative with them. Now we assume that
by, bs, -+, by (E<m) are elements of C(2) such that a;a;.; ;€ C(4) and b; is com-
mutative with all ; and g, except ¢; and a;.;. From Lemma 10, there is an ele-
ment b,y of C(2) such that ap.1 Gree bp1 is contained in C(4), and b4 is com-
mutative with &;,, Then, from Lemma 9, &, is commutative with all 5; and 4
except ap.1 and ap... Thus it is proved that there are m—1 elements &, = ,bp-1
of C(2) such that the orders of @; b, and b; a;,1 are both 3 and b; is commutative
with all b; and a; except @, and a;.4. Set cap-1=ar and cs=b;. Then ¢y, =+, €
satisfy the relatians ;

€)) f=-ci4=1,
2 (cicpE=1 if 1<j—1
@ (¢ ciy)3=1.

Hence, from Proposition 1, there is a homomorphism from S, to the subgroup H
of G generated by ¢y, -+ ,c,_1. Since >4, H is isomorphic to S,/A, (A,; the alter-
native group of degree n) or S,. Clearly the order of H is greater than 2, there-
fore H is isomorphic to S,. Compairing the orders we have H=G.
Thus, in this case, G is isomorphic to S,.

(2) The case n=4.

Let a be an element of C(2). As proved in Lemma 1, ¢2 is contained in C(1)



8 Hirosi Nacao

or C(22). If a@2=1, then it is proved, as in (1), that there are three elements ¢y,
s, ¢3 of C(2) which satisfy the relations

D cf=c3=c3=1,
2) (C]_ 63)2=1,
3) (c1e2)3=(c265)%=1.

Now, we assume that x=a? is contained in C(22). The normalizer N(x) of x is a
subgroup of order 8. Since N(x) contains an elements of C(2) and the order of
normalizer of an element of C(2) is 4, N(x) is not abelian.

The normal subgroup N of order 4 which consists of elements of C(22) and 1
is contained in N(x) and an abelian group of the type (2,2). Let N=(x)x(»).
Then aya™ must be equal to xy, and hence (ay)2=1. Then ay is contained in
C(4) and the order of an element of C(4) is 2.

Now the multiplication table of conjugate classes of S, is left unchanged by
exchanging C(2) and C(4). Using C(4) instead of C(2), we can prove in a similar
way as above that there are three elements ¢i,c5,cs of C(4) which satisfy the above
relations 1), 2), 3)

Thus, in either case, there are three elements ¢y, cs, 3, in G which satisfy the
above relations 1), 2), 3).

Let H be the subgroup of G generated by ¢i, ¢, and ¢;. Then H is homomorphic
to S;, and hence H is isomorphic to one of S, S,/A, and S,/M, where A, is the
alternative group of degree 4 and M is the normal subgroup of order 4. Since
the order of H is greater than 4, H is not isomorphic to S;/A. If H is isomorphic
to Si/M then ¢; c; must be equal to 1. But ¢yc; is contained in C(22), and hence
H must be isomorphic to S,. Compairing the orders, we can see that G is isomo-
rphic to S,.

(3) The case.where # is odd.

Since the theorem is trivial in the case n=1, we may assume that #=2m
+1>1. Then, as proved above, there are n—2 elements ¢y, -+, ¢,—» Which satisfy
the relations 1), 2), 3) in (1), and these generates a subgroup G; of G which is
isomorphic to S,-;. The index of G; is #n. Since G contains only one proper

normal subgroup and its index is 2, N Gy"=1. Therefore G is isomorphic to
xeG

some subgroup of S,. Since the order of G is #!, G is isomorphic to S,.



