On the groups with the same table of characters as symmetric groups.

By Hirosi **Nagao.**

(Received Nov, 9, 1956)

The finite groups *G* and *G'* are said to have the same table of characters when there exist one to one correspondences $\chi_{\mu} \leftrightarrow \chi_{\mu}'$ between their (ordinary) irreducible characters and $C_{\alpha} \leftrightarrow C_{\alpha}$ between their conjugate classes, and $\chi_{\mu}(C_{\alpha}) =$ χ _{μ}'(C_{α} ') for all μ and α . Even if *G* and *G*' have the same table of characters, they are not necessarily isomorphic to each other, for instance the two types of non-abelian group of order p^3 (p; a prime number) have the same table of characters.

In this paper, we shall prove the following theorem.

T h eorem. *I f a finite group G has the same table of characters as a symmetric group Sn, then G is isomorphic to Sn.*

To prove the theorem, we shall prove some propositions and lemmas.

PROPOSITION 1. The symmetric group of degree n is isomorphic to a group *generated by the generators* a_1, \ldots, a_{n-1} with the defining relations

(1)
$$
a_1^2 = a_2^2 = \cdots = a_{n-1}^2 = 1,
$$

(2)
$$
(a_i \ a_j)^2 = 1
$$
 if $1 < j - i$,

 $(a_ia_{i+1})^3=1.$ (3)

For the proof, see Dickson; Linear Groups p. 287.

P roposition 2. *I f G and G' have the same table of characters, then the orders of them coincide with each other, and the degree of any irreducible character of G* and the number of elements of any conjugate class of G are equal to the degree of *the corresponding character of G' and the number of elements of the corresponding conjugate class of G' respectively.*

Proof. Let χ_i and C_i $(i=1, 2, \dots, k)$ be respectively the irreducible characters and the conjugate classes of G. We denote by χ'_{i} and C'_{i} the character and conjugate class of G' corresponding to χ_i and C_i respectively. Especially we shall denote by C_1 and C'_1 , the conjugate classes of the unit elements of G and G' respectively.

Since χ_{μ} $(C_1) = \chi_{\mu}'(C_1') = \text{deg } \chi_{\mu}$, we have

$$
\sum_{\mu=1}^k \chi_{\mu}^{\prime}(C_1^{\prime})\overline{\chi_{\mu}^{\prime}(C_3^{\prime})} = \sum_{\mu=1}^k \deg \chi_{\mu} \deg \chi_{\mu}^{\prime} > 0
$$

Therefore, from the orthogonality relations of characters, it is seen that C_1' coincides with C_j , and hence deg $\chi_\mu = \text{deg}\chi'_\mu$.

Let q and q' be the orders of G and G' respectively. Then

$$
g = \sum_{\mu=1}^k (\deg \chi_\mu)^2 = \sum_{\mu=1}^k (\deg \chi_\mu')^2 = g'.
$$

Further, if we denote by h_i and h'_i the numbers of elements of C_i and C'_i respectively, then from the orthogonality relations of characters, we have

$$
\mathcal{G}/h_{\alpha} = \sum_{\mu=1}^{k} \chi_{\mu}(C_{\alpha}) \overline{\chi_{\mu}(C_{\alpha})} = \sum_{\mu=1}^{k} \chi_{\mu}'(C_{\alpha}') \overline{\chi_{\mu}'(C_{\alpha}')} = \mathcal{G}'/h_{\alpha}'
$$

Since, as proved above, $g = g'$, we have $h_{\alpha} = h_{\alpha}'$.

PROPOSITION 3. If two finite groups G and G ' have the same table of charac*ters, then they have the same multiplication table of the conjugate classes.*

Proof. Assume that

$$
C_{\alpha} C_{\beta} = \sum_{\gamma} c_{\alpha \beta \gamma} C_{\gamma}.
$$

Then

$$
\frac{h_{\alpha} \chi_{\mu}(C_{\alpha})}{f_{\mu}} \quad \frac{h_{\beta} \chi_{\mu}(C_{\beta})}{f_{\mu}} = \sum_{\delta} c_{\alpha \beta \delta} \frac{h_{\delta} \chi_{\mu}(C_{\delta})}{f_{\mu}}
$$

where f^{μ} is the degree of χ^{μ} . Hence

$$
\sum_{\mu} \frac{\overline{\chi_{\mu}(C_{\gamma})}}{f_{\mu}} \left(h_{\alpha} \chi_{\mu}(C_{\alpha}) h_{\beta} \chi_{\mu}(C_{\beta}) \right)
$$

=
$$
\sum_{\mu,5} c_{\alpha \beta \delta} h_{\delta} \chi_{\mu}(C_{\delta}) \overline{\chi_{\mu}(C_{\gamma})} = c_{\alpha \beta \gamma} g
$$

Consequently

$$
c_{\alpha\beta\gamma} = \frac{1}{g} \sum_{\mu} \frac{\overline{\chi_{\mu}(C_{\gamma})}}{f_{\mu}} (h_{\alpha} h_{\beta} \chi_{\mu}(C_{\alpha}) \chi_{\mu}(C_{\beta})).
$$

If we assume in *G'* that

$$
C_{\alpha}^{\prime} C_{\beta}^{\prime} = \sum c^{\prime}{}_{\alpha\beta\gamma} C_{\gamma}^{\prime},
$$

then, in the same way as above, we have

$$
c'_{\alpha\beta\gamma} = \frac{1}{g'} \sum_{\mu} \frac{\overline{\chi_{\mu}}'(C_{\gamma})}{f_{\mu}'} (h_{\alpha'} h_{\beta'} \chi_{\mu'}(C_{\alpha'}) \chi_{\mu'}(C_{\beta'})).
$$

Hence, from Proposition 2, we have

$$
c_{\alpha\beta\gamma}=c'_{\alpha\beta\gamma}.
$$

In the following lemmas, we shall always assume that G is a group with the same table of characters as the symmetric group S_n of degree *n*, where $n \ge 3$ and $n \neq 4$, and $C(i_1^{a_1}, i_2^{a_2}, \cdots)$ denotes the conjugate class of *G* corresponding to the conjugate class of S_n whose element can be expressed as a product of α_1 cycles of length i_1 , α_2 cycles of length i_2 , \cdots such as each of letters occurs in only one cycle of them, for instance, $C(2^2, 3)$ denotes the conjugate class of *G* corresponding to the conjugate class of S_n containing $(1\ 2)\ (3\ 4)\ (5\ 6\ 7)$. From Proposition 3, G and S_n has the same multiplication table of conjugate classes, therefore we can know completely the multiplication table of conjugate classes of G by investigating that of S_n .

LEMMA 1. The order of an element a of $C(2)$ is 2.

Proof. It is easily seen that if $n \geq 4$, then

$$
C(2)^{2}=3C(3)+2C(2^{2})+\frac{n(n-1)}{2}C(1),
$$

and if $n=3$, then

$$
C(2)^2 = 3C(3) + 3C(1).
$$

Denote by $n(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$ the order of the normalizer of an element of $C(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$ $\cdot \cdot \cdot$). If a^2 is contained in C(3), $n(2)$ divides $n(3)$ because the normalizer of a^2 contains that of a. Since $n(2) = 2(n-2)!$ and $n(3) = 3(n-3)!$, $2(n-2)!$ divides $3(n-3)!$ and hence 3 is a multiple of $2(n-2)$. This is impossible. Hence a^2 is contained in $C(2^2)$ or $C(1)$. In the fommer case, $n(2)$ divides $n(2^2)$. Since $n(2^2)$ $= 8(n-4)!$, $2(n-2)!$ divides $8(n-4)!$ and hence 4 is a multiple of $(n-2)$ $(n-3)$. But this is impossible unless $n = 4$. Therefor a^2 must be contained in C(1) i.e. $a^2 = 1$.

LEMMA 2. The order of an element of $C(3)$ is 3.

Proof. From the multiplication table of conjugate classes, we can see that any element of $C(3)$ can be expressed in exactly three ways as a product of two elements of $C(2)$. Let *x* be an element of $C(3)$ and $x = a b$ with two elements *a* and b of $C(2)$.

If $x^2 = 1$, then $a b = b a$. Since $a \neq b$, x can be expressed in different ways of an even number as a product of two elements of $C(2)$, which is a contradiction. Therefore $x^2 \neq 1$. Now

$$
x = a b=b(b a b) = (b a b)(b a b a b)
$$

= (b a b a b) (b a b a b a b).

It is easily seen that *a, b* and *bah* are all distinct and *bah ah* is distinct from *b* and *b a b*. Hence $a = b a b a b$, i.e. $x^3 = (a b)^3 = 1$.

LEMMA 3. The order of an element of $C(2^2)$ is 2.

Proof. From the multiplication table of conjugate classes, we can see that any element of $C(2^2)$ can be expressed in exactly two ways as a product of two elements of $C(2)$. If an element x is the product of two elements a and b of $C(2)$, then

$$
x = a b = b (b a b) = (a b a) a.
$$

Clearly $a \neq b$, hence *aba* is equal to *a* or *b*. In the former case, *a* must be equal to *b*, which is a contradiction. Therefore $a b a = b$, i.e. $x^2 = (a b)^2 = 1$.

LEMMA 4. Let a and b be two distinct element of $C(2)$. If a and b are com*mutative whith each other then a* $b \in C(2^2)$ *. If a and b are not commutative with each other then a b* \in *C(3).*

Proof. From the multiplication table of conjugate classes, we can see that *ah* is contained in $C(2^2)$ or $C(3)$. The order of *ab* is 2 if and only if $a b = b a$, and hence $a b \in C(2^2)$ if and only if $a b = b a$.

LEMMA 5. The order of an element of $C(4)$ is 4.

Proof. From the multiplication table of conjugate classes, we can see that any element of $C(4)$ can be expressed as a product of an element of $C(2)$ and an element of $C(3)$. Let x be an element of $C(4)$ and $x = ay$ with an element a of $C(2)$ and an element *y* of C(3). If the order of x is 2, $x^2 = ay$ $ay = 1$ and hence $yay =$ *a.* Since $y^3 = 1$, $y a y^{-1} = ay = x$, which is a contradiction. Hence $x^2 \neq 1$.

From the multiplication table of conjugate classes, it is seen that x can be expressed in exactly two ways as a product of an element b of $C(2)$ and an element z of $C(2^2)$. If $b = x b x^{-1}$, i.e. $b = b z b z b$, then $b z b z = x^2 = 1$, which is a contradition, hence $b \neq x b x^{-1}$. Since

 $x = b \ z = (x b \ x^{-1}) \ (x \ z \ x^{-1}) = (x^2 b \ x^{-2}) \ (x^2 \ z \ x^{-2})$

 $x^2 b x^{-2}$ is equal to b or x b x^{-1} . In the latter case, $b = x b x^{-1}$, which is a contradiction. Therefore $x^2 b x^{-2}$ must be equal to b, i. e. $b = b z b z b z b z b$. Hence $x^4 = (b$ $z)^4 = 1$. Since $x^2 + 1$ as proved above, the order of x is 4.

LEMMA 6. Let $k \leq \lfloor \frac{n}{2} \rfloor$. If a_i $(i = 1, 2, \cdots, k)$ are elements of C(2) and $a_1 a_2 \cdots a_k$ is contained in $C(2^k)$, then a_1, a_2, \cdots, a_k are all distinct and commutative. *Further any element of* $C(2^k)$ *can be uniquely expressed as such a product of k elements of C(2) disregarding their arrangement.*

Conversely, if k elements a_1, \dots, a_k of $C(2)$ are all distinct and commutative, then $a_1 \cdots a_k$ is contained in $C(2^k)$.

Proof. In the case $k=1$, our assertion is trivial. To prove the lemma in the case $k = 2$, let a_1 and a_2 be two elements of $C(2)$ and assume that $a_1 a_2$ is contained in $C(2^2)$. Clearly $a_1 \neq a_2$, and, from Lemma 3, $(a_1 a_2)^2 = 1$, i.e. $a_1 a_2 = a_2 a_1$. Since any element of $C(2^2)$ can be expressed in exactly two ways as a product of two elements of $C(2)$, any element of $C(2^2)$ can be expressed uniquely as a product of two elements of $C(2)$ disregarding their arrangement. Conversely, if a_1 and a_2 are two distinct elements of $C(2)$ and they are commutative, then it is immediately seen from Lemma 4 that $a_1 a_2 \in C(2^2)$.

Now, we shall consider the case $k \geq 3$ and prove the lemma for the cases by an induction on *k*. Any element of $C(2^k)$ can be expressed in exactly *k*! ways as a product of k elements of $C(2)$ and also can be expressed in exactly k ways as a product of an element of $C(2^{k-1})$ and an element of $C(2)$. If a product of an element x of $C(2)^{k-1}$ and an element a of $C(2)$ is contained in $C(2^k)$, then x must be contained in $C(2^{k-1})$, for otherwise *x a* can be expressed as a product of *k* elements of $C(2)$ in more ways than k!. If a_1, \dots, a_k are elements of $C(2)$ and $a_1 \dots$ a_k is contained in $C(2^k)$ then $a_1 \cdots a_{k-1}$ is contained in $C(2^{k-1})$, therefore, by the induction hypotheses, a_1, \dots, a_{k-1} are all distinct and commutative. Since $a_2 \cdots a_k$ a_1 $= a_1(a_1 \cdots a_k)a_1$ is also contained in $C(2^k)$, a_2, \cdots, a_k are all distinct and commuta-

tive, and since $a_3 \cdots a_k a_1 a_2$ is an element of $C(2^k)$, a_k and a_3 are distinct and commutative to each other. Thus it is proved that a_1, \dots, a_k are all distinct and commutative. All arrangements of a_i in the product $a_1 \cdots a_k$ give $k!$ expressions of the element $a_1 \cdots a_k$ as a product of *k* elements of $C(2)$, and hence there is not any such expression other than these.

To prove the latter half, we shall consider $C(2^{k-1})C(2)$. From the multiplication table of conjugate classes, we can easily see that it is made up of elements of $C(2^k)$, $C(2^{k-2}, 3)$, $C(2^{k-2})$ and $C(2^{k-3}, 4)$. Any element of $C(2^{k-2}, 3)$ can be uniquely expressed as a product of an element x of $C(2^{k-2})$ and an element y of C(3). Since $xy = (xy) x (xy)^{-1}(xy) y (xy)^{-1}$, $(xy) y (xy)^{-1} = xyx^{-1} = y$, i. e. x and y are commutative. From the first half of the lemma and Lemma 3, orders of x and *y* are 2 and 3 respectively, therefore the order of *xy* is 6. In a similar way, the order of an element of $C(2^{k-3}, 4)$ is 4.

Now assume that *k* elements a_1, \dots, a_k are all distinct and commutative. Then, by the induction hypothesis $a_1 \cdots a_{k-1}$ is contained in $C(2^{k-1})$, therefore $a_1 \cdots a_{k-1}$ $a^k \in C(2^{k-1})C(2)$. Since its order is 2, it is contained in $C(2^k)$ or $C(2^{k-2})$. In the latter case, $a_1 \cdots a_k = b_1 \cdots b_{k-2}$ with $b_i \in C(2)$ and then

$a_1 \cdots a_{k-1} = b_1 \cdots b_{k-2} a_k$.

From the first half of the lemma, a_k is equal to some a_i ($1 \le i \le k-1$). This is a contradiction. Hence $a_1 \cdots a_k$ must be contained in $C(2^k)$.

LEMMA 7. If a_1 and a_2 are two elements of $C(2)$ *such that* $a_1 a_2$ is contained *in* $C(2^2)$, *then there exists an element b of* $C(2)$ *such that* $a_1 a_2 b \in C(4)$, and then a_1 b and a_2 b must be contained in $C(3)$.

Proof. Since $C(2^2)C(2)$ contains $C(4)$, there exists an element *b* of $C(2)$ such that $a_1 a_2 b \in C(4)$. Clearly *b* is distinct from a_1 and a_2 , and hence $a_i b$ are contained in $C(2^2)$ or $C(3)$. If a_1b and a_2b are both contained in $C(2^2)$, then *b* is commutative with a_1 and a_2 , and hence, from Lemma 6, $a_1 a_2 b \in C(2^3)$, which is a contradiction. If a_1b is contained in $C(2^2)$ and a_2b is contained in C(3), then a_1 is commutative with a_2 and *b*, and hence the order of $a_1 a_2 b$ is 6, which is a contradition. Thus it is proved that a_1b and a_2b are both contained in C(3).

LEMMA 8. Let a_1, a_2 and b be elements of $C(2)$. If $a_1 a_2$ is contained in $C(2^2)$ *and if a₁b and a₂b are both contained in* $C(3)$, *then* $x = a_1 a_2 b$ *is an element of* $C(4)$.

Proof. Since $C(2)$ $C(3)$ is made up of elements of $C(2, 3)$, $C(4)$ and $C(2)$, *x* is contained in one of $C(2,3)$, $C(4)$, and $C(2)$.

(1) Assume that x is contained in $C(2)$. Since $a_1a_2=xb$ is an element of $C(2^2)$, it is seen by Lemma 6 that *b* is equal to a_1 or a_2 , which is a contradiction.

(2) Assume that x is contained in $C(2,3)$. Then x can be expressed uniquely as a product of an element of $C(2)$ and an element of $C(3)$. Since $x=a_1(a_2b)=a_2$ (a_1b) , a_1 is equal to a_2 , which is a contradiction.

Thus it is proved that x must be contained in $C(4)$.

6 Hirosi **Nagao**

LEMMA 9. Let a_1, a_2 and a_3 be elements of $C(2)$ such that $a_1a_2a_3$ is contained *in* $C(2^3)$. If an element b of $C(2)$ *is not commutative with* a_1 and a_2 , *then* b is *commutative with a^.*

Proof. If *b* is not commutative with a_3 , then, from Lemma 4, $a_i b(i = 1, 2, 3)$ are all contained in $C(3)$, and hence, from Lemma 8, $a_2 a_3 b$ is contained in $C(4)$. Therefore $x=a_1a_2a_3b$ is contained in $C(2^3)$ C(2) and C(2) C(4). Since C(2³) $C(2)$ is made up of elements of $C(2^4)$, $C(2^2, 3)$, $C(2^2)$ and $C (2, 4)$, and since $C(2)$ $C(4)$ is made up of elements of $C(2,4)$, $C(5)$, $C(3)$ and $C(2^2)$, x is contained in $C(2^2)$ or $C(2,4)$. If x is an element of $C(2^2)$ then $a_1a_2a_3b = a'_1a'_2$ with $a'_1, a'_2 \in$ C(2). Since $a_1a_2a_3 = a'_1a'_2$ *b* is an element of C(2³), from Lemma 6, *b* is equal to some a_i . This is a contradiction. Next assume that x is contained in $C(2, 4)$. x can be uniquely expressed as a product of an element of $C(2)$ and an element of C(4). Since $x = a_1(a_2a_3b) = a_2(a_1a_3b)$ and a_2a_3b and a_1a_3b are both contained in C(4), we have $a_1 = a_2$, which is a contradiction.

LEMMA 10. Let a_1 , a_2 and a_3 be elements of $C(2)$. If a_1 is not commutative *with* a_2 *, and* a_3 *is commutative with* a_1 *and* a_2 *, then there exists an element b of* $C(2)$ *which is commutative with* a_1 *and not commutative with* a_2 *and* a_3 *.*

Proof. From Lemma 7, there exists an element *b* of $C(2)$ such that $a_2ba_3 =$ $a_3^{-1}(a_3a_2b)a_3 \in C(4)$. Then *b* is not commutative with a_2 and a_3 . If *b* is commutative with a_1 , then b is an asking element. Now we assume that b is not commutative with a_1 . Since $a_1 a_2 \in C(3)$, $x = a_1 a_2 b$ is contained in $C(3)C(2)$. $C(3)C(2)$ is made up of elements of $C(3,2)$, $C(4)$ and $C(2)$. Therefore x is contained in one of $C(3,2)$, $C(4)$ and $C(2)$.

(1) Assume that $x \in C(3, 2)$. Any element of $C(3, 2)$ can be expressed uniquely as a product of an element of $C(3)$ and an element of $C(2)$. Since $x = (a_1)$ u_2) $b = x^{-1}(a_1a_2)xx^{-1}$ *bx* and $a_1a_2 \in C(3)$, we have $a_1a_2 = x^{-1}(a_1a_2)x = b^{-1}(a_1a_2)b$ and hence *b* is commutative with $a_1 a_2$. Therefore $x = (a_1 a_2)b = (b a_1) a_2$. Since $b a_1$ is an element of $C(3)$, *b* is equal to a_2 , which is a contradiction.

(2) Assume that $x = a_1 a_2 b$ is contained in $C(2)$. $a_1 a_2 = x b$ is contained in $C(3)$ and any element of $C(3)$ can be expressed as a product of two elements of $C(2)$ in exactly three ways. Since $xb = a_1a_2 = a_2(a_2^{-1}a_1a_2) = (a_1a_2a_1^{-1})a_1$, b must be equal to one of $a_2, a_2^{-1}a_1a_2$ and a_1 , and in either case *b* is commutative with a_3 . This is a contradiction.

Thus x must be contained in $C(4)$. Since $C(4)$ is contained in $C(2^2)C(2)$, there are three elements c_1 , c_2 , c_3 of $C(2)$ such that c_1 c_2 $\in C(2^2)$ and c_1 c_2 c_3 \in $C(4)$. Then, from Lemma 7, $c_1 \, c_3 \,$ and $c_2 \, c_3 \,$ are both contained in $C(3)$. Since $c'_2 c'_3 c'_1 = c'_1{}^{-1} (c'_1 c'_2 c'_3) c'_3$ is also an element of $C (4)$, there are three elements c_1, c_2 and c_3 of $C(2)$ such that $x = c_1c_2c_3$ and $c_1c_3 \in C(2^2)$ and c_1c_2 and c_2c_3 are contained in $C(3)$. Since c_1 is commutative with c_3 and $(c_1c_2)^3 = 1$,

$$
x c_1 x^{-1} = c_1^x = c_1 c_2 c_3 c_1 c_3 c_2 c_1 = c_1 c_2 c_1 c_2 c_1 = c_2.
$$

Since $(c_2c_3)^3=1$,

$$
c_2^x = c_1 c_2 c_3 c_2 c_3 c_2 c_1 = c_1 c_3 c_1 = c_3.
$$

Any element of $C(4)$ can be expressed as a product of an element of $C(2)$ and an element of $C(3)$ in exactly 4 ways, and

$$
x = c_1(c_1{}^x c_1{}^{x^2}) = c_1{}^x(c_1{}^{x^2} c_1{}^{x^3}) = c_1{}^{x^2}(c_1{}^{x^3} c_1) = c^x{}^3(c_1 c_1{}^x).
$$

It is easily seen that $c_1, c_1^*, c_1^{*^2}$ and $c_1^{*^3}$ are all distinct. Therefore a_1 must be equal to some $c_1^{x^i}$, and there are two elements a_2 , b' of C(2) such that $x=a_1a_2'b'$ and $a_1b' \in C(2^2)$. Then $a_2b = a_2'b' = b(ba_2b) = (a_2ba_2)a_2$ and b' is not equal to either of *b* and a_2 because a_1 is commutative with neither of *b* and a_2 . Any element of $C(3)$ can be expressed as a product of two elements of $C(2)$ in exactly three ways. Therefore *b'* must be equal to ba_2b . Since $(ba_2)^3 = 1$, $b' = ba_2b = a_2ba_2$ and hence *b'* is not commutative with either of a_2 and $a_3 = a_2 a_3 a_2$. Thus *V* is an asking element.

Proof of Theorem

(1) The case where *n* is even and $n\neq 4$.

Since the theorem is trivial in the case $n=2$, we may assume that $n=2m>4$. Let a_1, \dots, a_m be such elements of $C(2)$ as $a_1 a_2 \cdots a_m \in C(2^m)$. From Lemma 7, there exists an element b_1 of $C(2)$ such that $a_1a_2b_1 \in C(4)$. Then b_1 is different from a_i $(3 \le i \le m)$ and, from Lemma 9, is commutative with them. Now we assume that $b_1, b_2, \dots, b_k(k\leq m)$ are elements of $C(2)$ such that $a_i a_{i+1} b_i \in C(4)$ and b_i is commutative with all b_j and a_l except a_i and a_{i+1} . From Lemma 10, there is an element b_{k+1} of $C(2)$ such that $a_{k+1}a_{k+2}b_{k+1}$ is contained in $C(4)$, and b_{k+1} is commutative with b_k , Then, from Lemma 9, b_{k+1} is commutative with all b_j and a_l except a_{k+1} and a_{k+2} . Thus it is proved that there are $m-1$ elements b_1, \dots, b_{m-1} of $C(2)$ such that the orders of $a_i b_i$ and $b_i a_{i+1}$ are both 3 and b_i is commutative with all b_j and a_l except a_i and a_{i+1} . Set $c_{2k-1} = a_k$ and $c_{2k} = b_k$. Then c_1, \dots, c_{n-1} satisfy the relatians ;

(1)
$$
c_1^2 = \cdots c_{n-1}^2 = 1,
$$

(2) $(c_i c_j)^2 = 1$ if $1 < j - 1$

$$
(3) \qquad (c_i c_{i+1})^3 = 1.
$$

Hence, from Proposition 1, there is a homomorphism from S_n to the subgroup H of G generated by c_1, \dots, c_{n-1} . Since $n>4$, H is isomorphic to S_n/A_n (A_n ; the alternative group of degree *n*) or S_n . Clearly the order of *H* is greater than 2, therefore *H* is isomorphic to S_n . Compairing the orders we have $H = G$. Thus, in this case, G is isomorphic to S_n .

(2) The case $n=4$.

Let *a* be an element of $C(2)$. As proved in Lemma 1, a^2 is contained in $C(1)$

or $C(2^2)$. If $a^2 = 1$, then it is proved, as in (1), that there are three elements c_1 , c_2, c_3 of $C (2)$ which satisfy the relations

$$
c_1^2 = c_2^2 = c_3^2 = 1
$$

$$
(c_1 c_3)^2 = 1,
$$

3) $(c_1 c_2)^3 = (c_2 c_3)^3 = 1$

Now, we assume that $x = a^2$ is contained in $C(2^2)$. The normalizer $N(x)$ of x is a subgroup of order 8. Since $N(x)$ contains an elements of $C(2)$ and the order of normalizer of an element of $C(2)$ is 4, $N(x)$ is not abelian.

The normal subgroup *N* of order 4 which consists of elements of $C(2^2)$ and 1 is contained in $N(x)$ and an abelian group of the type $(2, 2)$. Let $N = (x) \times (y)$. Then aya^{-1} must be equal to xy, and hence $(ay)^2 = 1$. Then *ay* is contained in $C(4)$ and the order of an element of $C(4)$ is 2.

Now the multiplication table of conjugate classes of S_4 is left unchanged by exchanging $C(2)$ and $C(4)$. Using $C(4)$ instead of $C(2)$, we can prove in a similar way as above that there are three elements c_1, c_2, c_3 of $C(4)$ which satisfy the above relations I), 2), 3)

Thus, in either case, there are three elements c_1, c_2, c_3 , in G which satisfy the above relations 1 , 2 , 3).

Let *H* be the subgroup of *G* generated by c_1 , c_2 and c_3 . Then *H* is homomorphic to S_4 , and hence *H* is isomorphic to one of S_4 , S_4/A_4 and S_4/M , where A_4 is the alternative group of degree 4 and *M* is the normal subgroup of order 4. Since the order of *H* is greater than 4, *H* is not isomorphic to S_4/A_4 . If *H* is isomorphic to S_4/M then c_1 c_3 must be equal to 1. But c_1c_3 is contained in $C(2^2)$, and hence *H* must be isomorphic to $S₄$. Compairing the orders, we can see that *G* is isomorphic to S_4 .

(3) The case-where *n* is odd.

Since the theorem is trivial in the case $n = 1$, we may assume that $n = 2m$ +1>1. Then, as proved above, there are $n-2$ elements $c_1, ..., c_{n-2}$ which satisfy the relations 1), 2), 3) in (1), and these generates a subgroup G_1 of G which is isomorphic to S_{n-1} . The index of G_1 is *n*. Since G contains only one proper normal subgroup and its index is 2 , $\bigcap_{x \in G} G_1^x = 1$. Therefore G is isomorphic to some subgroup of S_n . Since the order of G is n!, G is isomorphic to S_n .