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We characterized the uniform topology of a complete uniform space by the lattice
of uniform coverings satisfying some conditions in previous papers.” But then we
assumed that the uniform space had no isolated point. While the purpose of this
paper is to take away this restriction, it is an attempt to establish a unity between
the theory of characterization by uniform coverings and that by real valued functions.
Now we concern ourselves only with metric spaces.

In §1 we shall characterize a complete metric space by the lattice of “uniform
nbds (in the extended meaning) ”. In §2 we shall give corollaries derived from the
result in §1 and especially the theory of characterization by uniform coverings.

1. From now forth we denote by K a complete metric space.

DEerFINITION. We mean by @ uniform nbd (in the extended meaning) a real valued

function f(x) of R satisfying
I) f(x)=e for some &>0,

I fo< 2ln’ dlx, )< 217 imply f( y)_g_;ll— for every natural number #.

We consider a directed set D(R) of uniform nbds satisfying
1) there exist ¢, € D(R)(n=1, 2,---) such that

a) y=e,.,

b) {e,lm=1,2 -} is cofinal in D(R),

c) 3122 e,(%) =0 (x€R),

d) for every ¢ >0, x€ R there exists f€D(R): f(x)<e, f(y)ﬁe,,(y)(d(x, y)
1
=1,
2) f,g€D(R) implies fV g€ D(R)®.

DeFINITION. We call a sequence {F,|n=1,2, -} of subsets
F,={flfVf.Zb,, fEDR)} of D(R) a cauchy sequence by {f,,b,} when it

1) On uniform homeomorphism between two uniform spaces, this journal Vol. 3, No. 1-2, 1952.
On relations between lattices of finite uniform coverings of a metric space and the uniform
topology, this journal Vol. 4, No. 1, 1953.

2) The relation f=g for two elements f, g of D(R) means f(x)==g(x) for every If for x€R
every fe€ D(R) there exists e, such that e,<f, then we call {e,} cofinal in D(R). For

example, en=—,lz (n=1, 2,---) satisfy the conditions a), b), c¢) of 1). d(x, y) denotes the

distance between x and y.
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satisfies the following conditions,
1) fn: bnED(R)(n:]-; 2) >>
ii) {b,|m=1,2, -} is cofinal in D(R), b,=b,+1,

iii) F,=F¢,

iv) for every h€D(R) there exists #, such that f€ F,,, g€ F, and m, n="1,

imply FVgzh.

LeEmMA 1. Lete,(n=1, 2,---) be a sequence of elehents of satisfying the condition 1)
and let f, be an element satisfying the condition of f for ¢ =e,(%,) in d), then F,
={flfVfuke(n=1,2 ) is a cauchy sequence by {f,, e,}.

Proof. The conditions i)- iii) are obviously satisfied.

Let % be an arbitrary element of D(R), then i(x,) >l for some natural number
p. From c), d) of 1) there exists #, such that #>>#n, implies en(x0)< ip Fa()
;Zen(y)(d(%,y)?;—p). If fVfmen, gVf.2Ee, for some m, n2n,, then it must

1
be f (y)<am(y) g(z)<a,(z) for some y, z such that d(xo,y)<L d(xo,z><@
Since @, (x,) <-— 4 5 and an(xo)a i from II) we get am( nN< 3 p,an(z)< ,and hence
f(y)<2p g(a) <= 217 Therefore f(x,) < <5 ,g(xo) = and f(x,) vV g(x) _<,:p < h(xy).
Thus we get fVgz£h.

LEmMMA 2, If{F,\n=1,2, -} isa cauchy sequence by {f,, b,}, then A, ={x|x€R,
fm(%) < bwm(x) for some m=n}(n=1,2,---) is a cauchy filter of R.

Proof. Let p be an arbitrary natural number, then using iv) for Z=¢,, we get
n, such that f€F,,, g€ F, and m, n=>n, imply fV gzke,. Now we shall show that

x, ¥ € An, implies d(x, y)<%. To show this, we assume the contrary, i.e. f,(x)
Lbm(%), fu(y)<b,(y), m n=mn, and d(x, )>%. Then there exist f, g€ D(R)
such that £(x) <bn(1), () = ep<z>(d<x D=5 )5 £0)<bu(9), £ Zep@)(d0s,

p) from d) of 1). Since d(x, y)_>_—p there hold fVg=ep, fV fm=bmn and gVf,
Zb,, simultaneously, but this is impossible. Hence d(x, y)<%, and hence {4,} is
a cauchy filter.

DEeFINITION. We denote by {F,}~{G,} the relation between two cauchy sequences
{F,} and {G,} by {f,.b,,} and {g,, c,} respectively such that

for every A< D(R) there exists n, such that n=>n,, f€¢F, and g€G, imply
fVeEh

LemMA 3. In order that {F,}~{G,} it is necessary and sufficient that cauchy
Silters A, = {x| frn(2) <bm(x) for somem=n} (n=1, 2, ) and B, = {x|gm(x)< cm(x)
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for some m=n}(n=1,2, ) converge to a point x,.

Proof. If {A,} and {B,} converge to a point x, € R, then for an arbitrary element
h of D(R) we can take a natural number p such that h(xo)>%. Since {b,}, {c.}

are cofinal in D(R), there exists #, such that ¥ € Any and 2z € Bn, imply d(x,, ») <Zlﬁ
and d(x,, 2) <4— respectively, and b (x0)< ip c,,(xo)< (n/"o) Hence f€F,,
g€G, and n>>n, imply f(y)<b (y/, g(z)< c,,(z) for some y, z such that d(xo,y)<‘—}j—)

d(x,, 2) <41§ and hence b (y)é ()<= de f(¥) sz, g(z)<211j Therefore

we get f(x) < ) = \E and fvgih
Conversely, if {A,} and {B,} converge to distinct points x and y respectively,

then there exists some natural number p such that d(x, y)>~2—. For every n, there

b4

exists #2>#n, such that ' € 4, and ' € B, imply d(«’, ¥") ZE Hence there exist 1/, 5

such that £,,(x") < b,(x"), g,(3") <, (¥); d(x, y’)z%. Now we get f, g € D(R) satis-
fying f€ F,,, g€ G, and VY g=>e¢, simultaneously as in the proof of Lemma 2. Namely,
there holds the negation of {F,}~{G,}.

From Lemma 3 we can classify all the cauchy sequences of D(R) by the relation
~. We denote by D(R) the set of all such classes. From this lemma and the com-
pleteness of R we get a one-to-one correspondence between R and D(R) ; hence we
denote by ®(A) the image of a subset A of R in D(R) by this correspondence.

DerFINITION. We call D(A) and D(B) wu-disjoint sets of D(R) when for some
he D(R) and every {F,} € D(x) € D(A),{G,} € D(») € D(B) there exist f€ F,, g€G,

satisfying 7V g=#h for an infinite number of .

LemMA 4. D(A) and D(B) are u-disjoint if and only if A and B are u-disjoint
sets of R3.

Proof. 1If A and B are u-disjoint, then d(A, B)B » for some natural number p.
For every {F,}€D(x) €D(A), {G,} €D(y) €D(B) and #u, there exists n=n, such

that x€ A, and € B, imply d(x, y)___i for {A,}—x€A, {B,}—y€B and

d(x, y)>’}). Since we get f, g€ D(R) satisfying f€F,, g€G, and fVg=e, as in
the proof of Lemma 2, ®(A) and D(B) are u-disjoint according to the definition.

If A and B are not u-disjoint, then for an arbitrary element % of D(R) we can
take x€ A, y€ B: d(x, y)<£1175 for a natural number p such that %<egh(x)(x€R).
Let {F,} €®(x) and {G,} €D(y), then {A,}—x and {B,}—y; hence for some #,,

3) We say A and B are u-disjoint when d(A B)=inf{d(x, y)|x€ A, ye B} >0
4) In this proof we denote by {Ay}, {By} the same caucy filters as in Lemma 3.
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@ 20, D=5, g @Ze @0, z>z )5 0D < () < gy (nzm).
Therefore f€F,, gEG imply f(z) <b, (z)g 7 g(z/)<cn(z/)§— for some z, 2
such that d(x, 2) < =1 d(y, )< __;4 Since d(x, 2) <§Z” there holds g(x) é? from

II), and this comblnmg with f(x) <~ leads to fVgz£h Namely D(A) and D(B)

P
are not u-disjoint.

Since we showed previously that the uniform topology of a metric space is defined
by u-disjointness®, from this lemma we can define in D(R) the uniform topology

uniformly homeomorphic with that of R. Hence we get the following

THEOREM 1. In order that two complete metric spaces R, and R, are uniformly
homeomorphic it is necessary and sufficient that DR,) and D{R,) are isomorphic, where
D(R,) and D(R,)are directed sets of uniform nbds satisfying 1), 2).

2. CoroLLARY 1. The uniform topology of a metric space R is characterized by the
lattice Lo,(R) of all uniform nbds (in the extended meaning), i.e. of all real valued
Sfunctions satisfying ), II).

Proof. Let e, :%7 and define f(x) = +d(x0, x) for each x,€ R and ¢ >0, then
conditions 1), 2) are clearly satisfied. Since f(x) :i+d(x0, x) éi and d(x, y) g—
imply f(¥) :% +d(xy, M +d(x0, D+dx, NS < , [ satisfies II)

CoroLLARY 2. The uniform topology of a metric space R is characterized by
the lattice LaR) of all real valued functions satisfying I) and |f(x)—f(y)|<d(x, y)
(%, y€R).

Proof. Tt is obvious.

CorOLLARY 3. The uniform topology of a metric space R is characterized by the
lattice L'(R) of all mappings of R into N:{l , %, %—, } satisfying 1), IT),

Proof. Since ¢, :_;11_ € L’(R), if we define f(x) such that f(x) = %(% g% +d(x,,

1 . . N .
x) Qn——l) for each x,€ K and ¢ >0, we can see easily that all conditions are satisfied.

We show only that f satisfies II). If f(x) ggl--, d(x,y) §_ 1 , then — + d(x,, x)<

e 1 1 1
and hence §+d(x0, y><2n—1+%<m' Therefore f(y) < — +d(x0 y)< and

namely f(») < #n.
Next, we investigate relations between uniform nbds (in the extended meaning)

and uniform coverings. We consider a uniform covering U consisting of spheres

5) See “On relations --- "
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1

(%) € N} (x€R). For Ul we define a function f(II, x) such that

St (8 ={ 31 d(x, 1) <
L, x) :Max{—}l—lSﬂ(x) CS for some SEII}. Then f(U, x) satisfies clearly I).

Lemma 1. f(W, x) satisfies IT) for every W.

Proof. If we assume f(y)>%, d(x, y):;glﬁ, then S,_1(») S for some Scll.
. 1 . . 1 1 1
Since d(x, Z)<§;T_—2 lmphes d(y, Z)<%+m<ﬂ, S2n—2(\x);5- Namely, we
get f(1, x>g#——2>2‘1n and condition II).

Hence f(1, x) € L’(R) for every L.
LemMma 2. f(U, x) = (B, x)(x€R), if and only if 1 >B.®

Proof. If W>%WB, then S,(x)=SeB implies S, (x) =S’ €U, and hence f(%, x)
<f, x). If WD, then there exists S,(x) €V such that S,(x) ES for every S€,
and hence £(B, %) g—}z—, F, ) < e, (B, 2) % O, 2),

Lemma 3. fF(AUVD, x) =51, x)V £(B, x).”
Proof. Let f(LVSB, x) = ;1; then S,(x) CS €LV, Since Sell and S€B imply

%,S_ f1, %) and % < (B, x) respectively, we obtain % <SfB, x)VFAU, x). On the
other hand f(B, x) V f(U, x) <fUV Y, x) is an immediate consequence of Lemma 2,

and hence this lemma is proved.

LEMMA 4. f(MADB, x) =fUW, 2) A (B, x), where U 5B ={S,(x)|S,(x) &S, for
some S€W and S’ € B}.

Proof. f(AU AR, ) Z (W, ) A f(B, 2) is an immediate consequence of Lemma 1.
Conversely, let % = Min{ f(I1, x), 7(B, 1)}, then S, () =SS’ for some S €1l and S’ € B

Hence according to the definition of 11 A B, we obtain %_ﬁ_ FALAD, x).

Combining Lemma 1-Lemma 4, we get

THEOREM 2. The totality L,(R) of uniform coverings consisting of spheres is
isomorphic to a sublattice of L'(R).

We denote by L(R) a subset of L,(R) satisfying the following conditions,

1)’ L(R) is cofinal in L,(R),

2) if N, BeL(R), then UV B L(R),

3)" for every 1€ L(R) and an open set S, there exist B € L(R) such that S,(x) €D
implies S, (%) S, and S,(x) €U and S,(x) ~S=¢ imply S,(x) € V.

Then we obtain

6) We denote by B< |1 the relation that for every S¢ B there exists some S ¢€]]: SZS.
7) UWVB={S|Sell or Se V}.
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LevMa 5. {f(Lx)|N€L(R)} satisfies 1), 2) for every melric space R without
isolated point.

Proof. 2) is immediately deduced from 2)’ and Lemma 3. If we take UI,,€ L(R)
such that I, < {S,,(x)|x€ R}, U,,, <1, then ¢, = f(11,,, x) (n=1, 2, ---) satisfy clearly
a), b) of 1). Next, since an arbitrary point %, of R is no isolated point, for every
n there exist x€S,(x,) —%, and m such that x & S(x,, 1,,).® Since S,(x,)ES for
every S€lly, en(a) =f(ly, %)< . This implies lim ¢,(x,) =0,

Lastly, to see the validity of d), for ¢, and ¢ >0 we denote by B an element
of L(R) satisfying the condition of %B in 3)’ for U, and Sa(xo):{yld(xo,y)<e

= Min (e’,gln )} Then we can easily show that f(%, x) satisfies the condition of f

in d). f(%B, x,) <e is obvious from the property of B and S.(x,). If d(x,, %) 2711
and A1, %) = n11 then S,,(x,CS,( ) for certain S,(») € . To show S.(%,) ~Ss(3) =9,
we assume the contrary. Since U, <{S,,(*¥)}, the assumption that S,(%,) ~Sp(¥)=F¢
leads to the existence of y € R such that d (x,, y) <e,d(y, x) <3%¢ and to d(x,, x) <%,
but this is a contradiction. Hence it must be S.(%,) ~Ss(¥) =9, and hence S,,(x)S,(y)
€% from the property of 8B, which implies ——;_ﬁ_ f(B,x). Thus d) of 1) is valid for L(R).

From Theorem 1, Theorem 2 and this lemma we get the following proposition
previously obtained by the author,®

THEOREM 3. In order that two complete metvic spaces R, and R, withoui isolaied
point are uniformly homeomorvphic it is necessary and sufficient that L(R,) and L(R,)
are isomorphic, where L(R,) and L(R,) are lattices of uniform coverings satisfying
1), 2), 3)".

From now forth we denote by R a metric space and by R* the completion of R.
Let f be a uniform nbd of R, i.e. a real valued function satisfying I), II), then defin-
ing f*: f*(x) =f(x) (x€R), f*(2) =lim sup{f(x)—d(x, 2)|d(x, 2) <% , XERY, we
see easily that f* satisfies I) and II)’ fF*(x) 241;1’ d(x, y)gfh imply f*(») é%
(%, y € R¥).

Furthermore we obtain easily the following lemmas.

LeMMA 6. f¥>=g% if and only if f=g.

LEMMA 7. fFVg¥=(fVg)*

Lemma 8. If {e,(x)} is cofinal in D(R), then {e,*(x)} is cofinal in D*(R) =
{f¥ feDRY.

LemMma 9. If }liir;en(xo) =0 (% €R), then }Ligien*(xo) =0(x, € R®).

8)  S(xy, Um)="—{Slxo€ S€ ln}
9) See “On uniform homeomorphism-:-”. In this paper we proved the theorem generally

in a complete uniform space without isolated point.
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LemMma 10. If {e,} satisfies d) of 1), then for every ¢>0 and x€ R* there
exists F¥€DH(R) such that Fx)<e, FH0) =40 (dx, = 1)

We omit the preofs of these lemmas.

Therefore, if D(R) is a directed set of uniform nbds satisfying 1), 2), tnen
D*(R) = {f*| feD(R)} is a directed set satisfying 1), 2) for R¥, which elements
satisfy I), II)’. Let R, and R, be metric spaces, then an isomorphism between D(R,)
and D(R,) implies an isomorphism between D*(R,) and D*(R,) from Lemma 6, and

hence we obtain the following

THEOREM 4. If R, and R, are metric spaces and if D(R,) and D(R,) are iso-
morphic, then R* and R,* are uniformly homeomorphic, where D(R,) and D(R,) are
divected sets of uniform nbds of R satisfying 1), II).

CoROLLARY 4. L,(R), Ls(R) and L'(R) of a metric space R chamcterzze the
uniform topology of the completion R* respectively.



