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We characterized the uniform topology of a complete uniform space by the lattice 

of uniform coverings satisfying sorne conditions in previous papers.1) But then we 

assumed that the uniform space had no isolated point. While the purpose of this 

paper is to take away this restriction, it is an attempt to establish a unity between 

the theory of characterization by uniform coverings and that by real valued functions. 

Now we concern ourselves only with metric spaces. 

In § 1 we shall characterize a complete metric space by the lattice of "uniform 

nbds (in the extended meaning) ". In § 2 we shall give corollaries derived from the 

result in § 1 and especially the theory of characterization by uniform coverings. 

1. From now forth we denote by R a complete metric space. 

DEFINITION. We mean by a uniform nbd (in the extended meaning) a real valued 

function f(x) of R satisfying 

I) f(x)2.e for sorne e>O, 

II) f(x)~ 2~, d(x,y):==;in imply f(y)<~ for every natural number n. 

We consider a directed set D(R) of uniform nbds satisfying 

1) there exist en E D(R)(n = 1, 2, ···) such that 

a) en2.e.,+1' 

b) {en ln= 1, 2, ... } is cofinal in D(R), 

c) lim en(X) = 0 (xE R), 

d) ~~; every e>O, xER there exists/ED(R): f(x)<e, f(y);;;:,enCY)(d(x, y) 

2. ~)' 
2) /,gE D(R) implies JV gE D(R)2). 

DEFINITION. We call a sequence {Fnln=1,2, .. ·} of subsets 

Fn={fJJVfn~bn, fED(R)} of D(R) a cauchy sequence by Un,bn} when it 

1) On uniform homeomorphism between two uniform spaces, this journal Vol. 3, No. 1-2, 1952. 
On relations between lattices of finite uniform coverings of a metric space and the uniform 
topology, this journal Vol. 4, No. 1, 1953. 

2) The relation f~g for two elements/, g of D(R) means f(x) ~g(x) for every If for xE R 
every /E D(R) there exists e,. such that en-:;;./, then we caU {e"} cofinal in D(R). For 

1 example, e,.=- (n=1, 2, ... ) satisfy the conditions a), b) 1 c) of 1). d(x, 1) denotes the 
n 

distance between x and 1· 
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satisfies the following conditions, 

i) fn,bnED(R)(n=1,2,--·), 

ii) {bnln = 1, 2, ... } is cofinal in D(R), bn?:bn+l• 

iii) Fndrr/J, 
iv) for every hE D(R) there exists n0 su ch that fE Fm, gE F n and m, n ~no 

imply fVg""i}f;,h_ 

LEMMA 1. Let e,(n=1, 2, ... ) be a sequence of elements of satisfying the condition 1) 

and let fn be an element satisfying the condition off for e=enCxo) in d), then Fn 

={flfV fn$;e,}(n=1, 2, ... ) is a cauchy sequence by {fn, en}. 

Proof. The conditions i)- iii) are obviously satisfied. 

Let h be an arbitrary element of D(R), then h(x0 ) >i for sorne natural number 

p. From c), d) of 1) there exists n0 such that n2n0 implies en(Xo)<:p' fn(Y) 

;?;,en(Y)(d(x0 , y) ?:}p). If fY fm$;em, gY fn$;en for sorne m, n?:;,n0 , then it must 

1 1 
be f(y)<am(Y), g(z)<an(z) for sorne y, z such that d(x0 , y)< 4p, d(Xo, z)< 4p. 

Since am(X0)<:p and an(X0)< 4~, from II) we get am(Y)-<::; 2
1p,an(z)::;2

1p, and bence 

f(y)< 2
1P, g(z) <ip· Therefore f(x 0 ) -<::t ,g(x0)~~ and f(x 0 ) V g(xo) ~ t <hCxo), 

Thus we get fY g$;h. 

LEMMA 2. If {Fn 1 n = 1, 2, ... } is a cauchy sequence by {fn, bn}, then An ={xl xE R, 

fm(x)<bm(X) for some m?n}(n =1, 2, ... ) is a cauchy filter of R. 

Proof. Let P be an arbitrary natural number, then using iv) for h = ep, we get 

n0 su ch that fE Fm, gE F n and m, n?;:. n0 imply fY g $; ep. Now we shaH show that 

x, y E An0 implies d(x, y)< ~. To show this, we assume the contrary, i.e. fm(x) 

<bm(x), fnCY) <bn(Y), m, n~n0 and d(x, y)?;~- Then there exist f, gE D(R) 

such that f(x) <bm(x),f(z) ?;ep(z)( d(x, z) ~ t); g(y) <bn(Y), g(z) ?:ep(z)( d(y, z) 

>~)from d) of 1). Since d(x,y)?:1, there hold fVg?:ep, fYfm$;bm and gYfn 

$;bm simultaneously, but this is impossible. Renee d(x, y)<~, and bence {An} is 

a cauchy filter. 

DEFINITION. We denote by {Fn}"-'{Gn} the relation between two cauchy sequences 

{Fn} and {Gn} by {fn, bn,} and {gn, Cn} respectively such that 

for every hE D(R) there exists n0 su ch that n?: n0 , fE F n and gE Gn imply 

fY g$;h. 

LEMMA 3. In arder thal {Fn} -{Gn} it is necessary and sufficient that cauchy 

filters A"= {xlfm(x) <bm(X) for some m?:n} (n = 1, 2, ... ) and B.,= {xlgm(x)< Cm(x) 
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for sorne rn':?n}(n=1, 2, ... ) converge ta a point X0 • 

Proof. If {An} and {En} converge to a point X0 ER, then for an arbitrary element 

h of D(R) we can take a natural number P such that h(x0 ) > ~. Since {bn}, {en} 

are cofinal in D(R), there exists n 0 such that y E An0 and z E Bn0 imply d(x0 , y) <ip 
and d(x0 , z)<4~ respectively, and bn(Xo)< 4~, cnCXo)< 4~ (n?-:_n 0 ). Renee fEFn, 

gE Gn and n~ n 0 imply f(y) <bnCY), g(z) < cnCz) for sorne y, z such that d(xo,Y) <4~, 
d(x0 ,z)<4~· and hence bn(y)< 2~, cnCz)< 2~, i.e. f(y)<fp•g(z)<;p. Therefore 

1 1 
we get f(x0 ) < P' g(x0 ) <-jj and fV g~ h. 

Conversely, if {An} and {Bn} converge to distinct points x and y respectively, 

then there exists sorne natural number p su ch that d(x, y)> ! . For every n0 there 

exists n ::2': n 0 such that x' E An and y' E Bn imply d(x', y') 2 ! . Renee there exist x', y' 

such that fnCx') <bnCx'), gn(y') < cnCY'); d(x', y')"?:;,!. Now we get f, gE D(R) satis­

fying fE F,, gE Gn and fV g;::;ep simultaneously as in the proof of Lemma 2. Namely, 

there holds the negation of {Fn} ~{Gn}. 

From Lemma 3 we can classify all the cauchy sequences of D(R) by the relation 

~. We denote by 'JJ(R) the set of all such classes. From this lemma and the com­

pleteness of R we get a one-to-one correspondence between R and 'JJ(R); hence we 

denote by 'JJ(A) the image of a subset A of R in 'JJ(R) by this correspondence. 

DEFINITION. We call 'JJ(A) and 'JJ(B) u·disjoint sets of 'J:J(R) when for sorne 

hE D(R) and every {F n} E 'JJ(x) E 'JJ(A), {Gn} E '!l(y) E 'JJ(B) there exist fE F n, gE Gn 

satisfying f v g "2 h for an infinite number of n. 

LEMMA 4. 'JJ(A) and 'J:J(B) are u-disjoint if and only if A and B are u-disjoint 

sets of R.3 J. 

Proof. If A and B are u-disjoint, then d(A, B) > ! for sorne natural number p. 

For every {Fn} E 'JJ(x) E 'JJ(A), {Gn} E 'JJ(y) E 'JJ(B) and n0 there exists n~n0 such 

that XE An and y E Bn4 l imply d(x, y):?: ~, for {An}--->- xE A, {Bn} ___,.y E B and 

d(x,y)>-t· Since we get f,gED(R) satisfying fEFn, gEGn and fVg:?:ep as in 

the proof of Lemma 2, 'JJ(A) and 'JJ(B) are u-disjoint according to the definition. 

If A and B are not u-disjoint, then for an arbitrary element h of D(R) we can 

take xE A, y E B: d(x, y)< 4~ for a natural number p such that ~ < e :S:: h(x) (xE R). 

Let {Fn} E'JJ(x) and {Gn}E'rl(y), then {An}->x and {Bn}->y; hence for sorne n0 , 

3) We say A and B are u·disjoint when d(A B)=inf{d(x, y) \XE A, y E BJ>O 
4) In this proof we denote by {A,}, {En} the same caucy filters as in Lemma 3. 
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fn(Z);:;;:. bn(z)( d(x, z) > fp), gn(z)~cn(z)( d(y, z) ~:p); bn(x)<f:p cn(Y) <4~(n"2no)­

Therefore /E Fn, gE Gn imply /(z) <bn(z) < 2~, g(z') < c.,(z') s;,:}p for sorne z, z' 

such that d(x, z) < ,fp' d(y, z') < ip· Since d(x, z') < :}p, there holds g(x) :S ~ from 

II), and this corn bining with f(x) < ~ leads to j V g~ h. Namely SD(A) and SD(B) 

are not u-disjoint. 

Since we showed previously that the uniform topology of a metric space is defined 

by u-disjointness5l, from this lemma we can define in SD(R) the uniform topology 

uniformly homeomorphic with that of R. Renee we get the following 

THEOREM 1. ln arder that two complete metric spaces R1 and R2 are uniformly 

homeomorphic it is necessary and sufjicient that DCR1 ) and DCR2 ) are isomorphic, where 

D(R1 ) and D(R2 )are directed sets of uniform nbds satisfying 1), 2). 

2. CoROLLARY 1. The uniform topo/ogy of a metric space Ris characterized by the 

lattice La(R) of aU uniform nbds (in the extended meaning), i.e. of aU real valued 

functions satisfving I), II). 

1 e 
Proof. Let en = n and define f(x) = 2 + d(xo, x) for each Xo ER and e >o, then 

conditions 1), 2) are clearly satisfied. Since f(x) = ~ +d(x0 , x) < 2~ and d(x, y) ::;in 

imply f(y) = ~ + d(xo, y)< ~ + d(x0 , x)+ d(x, y)~ ! , f satisfies II) 

CoROLLARY 2. The uniform topology of a metric space R is characterized by 

the lattice Ld~R) of aU real valued functions satisfying l) and lf(x) --f(y) 1 <d(x, y) 

(x, y ER). 

Proof. It is obvious. 

CoROLLARY 3. The uniform topology of a metric space R is characterized by the 

lattice L'(R) of al! mappings of R into N={l, }, ~, ···} satisfying l), II). 

Proof. Since en=~- E L'(R), if we define f(x) such that f(x) = ! (! _<;;: ~ + d(x0 , 

x)< n ~ 1) for each Xo ER and e > 0, we can see easily that all conditions are satisfied. 

Weshowonlythatfsatisfiesll). Ifj(x)<,jn,d(x,y)~ 2~, then ~ +d(x0 ,x)<zn~- 1 . 
e 1 1 1 e 1 

and bence z-+ d(xo, y) < 2n_ 1 + 2n <n_ 1. Therefore f(y) <z- + d(x0 y) <n -l' and 

namely f(y).:; n. 

Next, we investigate relations between uniform nbds (in the extended meaning) 

and uniform coverings. We consider a uniform covering U consisting of spheres 

5) See "On relations · · · ". 
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SncxJCx) ={YI d(x, y) <ntx) EN} (xE R). For U we define a function f(U, x) such that 

f(U, x) =Max{! lSn(x)CS for sorne SEU}. Then f(U, x) satisfies clearly 1). 

LEMMA 1. f(U, x) satisfies Il) for every U. 

1 1 
Proof. If we assume f(y)>n,. d(x,y)< 2n' then S,._1(y)CS for sorne SEU. 

Sinee d(x,z)< 2 1 
2 implies d(y,z)< 2

1 +2 
1 2<~1 , S2,._2(x)CS. Namely, we n- n n- n-

get j(U, x):?. 2n~ 2>Jn and condition Il). 

Renee f(U, x) E L'(R) for every U. 

LEMMA 2. f(U, x)> f(m, x)(x ER), if and only if U> m.6) 

Proof. If U> m, then Sn(x) CS E m implies Sn(x) CS' EU, and bence f(m, x) 

~f(U, x). If U)>m, then there exists Sn(X) E m such that Sn( x) %S for every SE U. 

and hence t(m, x)>!, f(U, x)< ! , i.e. f(m, x)$ f(U, x). 

LEMMA 3. f(U V m, x) =f(U, x) V f(m, x)_1) 

Proof. Let f(U v m, x)= ! , then Sn(x) CS EU v m. Since SE U and SEm imply 

! <f(U, x) and ! < f(m, x) respectively, we obtain ! ~f(m, x) v f(U, x). On the 

other hand f(m, x) v f(U, x) ~f(U v m, x) is an immediate consequence of Lemma 2, 

and bence this lemma is proved. 

LEMMA 4. f(U 1\ m, x) = f(U, x) rJ(m, x), where U 1\ m = {Sn(x) 1 Sn(x) CS,S' for 

some SEU and S'Em}. 

Prooj. f(U 1\ m, x)~ f(U, x) Af(m, x) is an immediate consequence of Lemma 1. 
1 . 

Conversely, let n =Min{f(U, x), f(m, x)}, then Sn(x) CSnS' for sorne SE U and S' E m 

Renee according to the definition of U "'m, we obtain ! ~ f(U" m, x). 

Combining Lemma 1-Lemma 4, we get 

THEOREM 2. The totality Lu(R) of uniform coverings consisting of spheres is 

isomorphic to a sublattice of L'(R). 

We denote by L(R) a subset of Lu(R) satisfying the following conditions, 

1)' L(R) is cofinal in Lu(R), 

2)' if U, mE L(R), then Uv mE L(R), 

3)' for every U E L(R) and an open setS, there exist mE L(R) such that Sn(x) E m 

implies Sn(x) ;;j2S, and Sn(x) EU and Sn(x) nS = ifJ imply Sn(x) E m. 

Then we obtain 

6) We denote by m<U the relation that for every SE 5B there exists sorne S' E U: sÇS'. 
7) UVm={SISE U or SE mJ. 
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LEMMA 5. {f(U,x) 1 U E L(R)} satisjies 1), 2) for every metric spa ce R without 

isolated point. 

Proof. 2) is immediately deduced from 2)' and Lemma 3. If we take UmE L(R) 

su ch that Un< { S3n (x) 1 x E R}, Un+l <Un, th en en = JCUn, X) ( n = 1, 2, · · ·) satisfy clearly 

a), b) of 1). Next, since an arbitrary point x0 of R is no isolated point, for every 

n there exist xE Sn(X0 ) -X0 and m such that x$ S(x0 , Um).8l Since Sn(Xo) ~S for 

every SE Um, em(X0 ) =J(Um, X0 ) <). This implies lim en(X0 ) =O. 
n n~= 

Lastly, to see the validity of d), for en and e'>O we denote by sn an element 

of L(R) satisfying the condition of sn in 3)' for Un and S,(Xo)={yld(Xo,Y)<E 

=Min ( e', in)}. Then we can easily show that j(sn, x) satisfies the condition of f 

in d). tcsn, Xo)<e is obvious from the property of sn and S,(xo). If d(Xo, x):?:-~ 
and f,U, x) =-~,thenSm(X~~Sp(y) forcertainSp(y)EU. ToshowS,(x0)nSp(y)=ifJ, m -
weassumethe contrary. Since Un<{S3n(x)}, the assumption that S,(X0 )nSp(Y)=f=ifJ 

leads to the existence of y ER such that d (x0 , y) <e ,d(y, x) < 3
2 and to d(x0 , x)< _l, n n 

but this is a contradiction. Hence it must be S,(x0 )nSp(y)=ifJ, and hence Sm(x)CSp(y) 

EIBfrom the property of SB, which implies_l:S::f(IB,x). Thus d) of 1) is valid for L(R). rn-
From Theorem 1, Theorem 2 and this lemma we get the following proposition 

previously obtained by the author,"l 

THEOREM 3. In arder that two complete m,etric spaces R 1 and R 2 without isolated 

point are uniformly homeomorphic it is necessary and sufficient that L(R1) and L(R2 ) 

are isomorphic, where L(R1 ) and L(R2 ) are lattices of uniform coverings satisjying 

1)', 2)', 3)'. 

From now forth we denote by R a metric space and by R* the completion of R. 

Let f be a uniform nbd of R, i.e. a real valued function satisfying I), II), then defin­

ing f*: f*(x)=f(x).(xER),f*(z)=lim sup{f(x)-d(x, z)ld(x, z)<__!_, xER}, we 
n~= n 

see easily that f* satisfies I) and II)' f*(x)~ 4~, d(x, y):;;,fn imply f*(y) <1z 
(x, y ER*). 

Furthermore we obtain easily the following lemmas. 

LEMMA 6. j*> g*, if and only if f~g. 

LEMMA 7. J* v g* =Cf v g)*. 

LEMMA 8. If {en(x)} is cojinal in D(R), then {en*(x)} is cojinal in D*(R) = 

{f*lfED(R)}. 

LEMMA 9. If lim enCxo) =0 (Xo ER), then lim en *Cxo) = O(Xo ER*). 
n~= tz~= 

8) S(x0 , Um)='---'(S!xoE SE Uml 
9) See "On uniform homeomorphism ... ". In this paper we proved the theorem generally 

in a complete uniform space without iso!ated point. 
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LEMMA 10. If {en} satisfies d) of 1), then for every e >o and xE R* there 

exists f*ED*(R) such that f*(x)<e, f*(y)?._e"":n(Y) (d(x, y)"?:~). 
We omit the proofs of these lemmas. 

Therefore, if D(R) is a directed set of uniform nbds satisfying 1), 2), tnen 

D*(R) = {f*lfED(R)} is a directed set satisfying 1), 2) for R*, which elements 

satisfy I), II)'. Let R, and R2 be metric spaces, then an isomorphism between D(R1) 

and D(R2) implies an isomorphism between D*(R,) and D*(R2 ) from Lemma 6, and 

hence we obtain the following 

THEOREM 4. If R, and R 2 are metric spaces and if D(R,) and D(R2 ) are iso­

morphic, then R,* and R2* are uniformly homeomorphic, where D(R1 ) and D(R2 ) are 

directed sets of uniform nbds of R satisfying 1), II). 

CoROLLARY 4. La(R), Ld(R) and V(R) of a metric space R characterize the 

uniform topology of the completion R* respective/y. 


