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1. Introduction. 

As the projective plane, we have four main examples, namely, the real, complex, 

quaternion and octanion projective planes, which are denoted by P, M, Q and II re­

spectively. Since the real, complex, and quaternion number fields are associative, the 

projective planes over these fields can be treated by the quite similar methods and have 

the similar properties. However, since the octanion number field (i.e. Cayley number 

field) is non-associative, we can not sometimes treat it as well as the formers. H. 

Freudenthal [2], [3] and the others [1] firstly have constructed the octanion projective 

plane by the matrix method. This construction is also applicable in the associative cases. 

Our first purpose of this note is to give the connection between the usual construction 

and the above construction of P, M and Q (see § 6). 

The topological properties of the spaces P, M and Q are well known as the space 

with the simplest structure, for example, they are CW-complex') in the sense of 

}. H. C. Whitehead [6], [7]. The second purpose of this note is to show that II is 

also a CW-complex in which the 16-dimensional cel! e16 is attached to the 8-dimen­

sional sphere S8 by the Hopf map r;: S15->S8 (see § 4). 

2. Definition of the octanion projective plane II. 

In §§ 2-5, the latin letters x, y, z, s, t, ······ will denote the octanion numbers and 

the Greek letters ~, r;, (, d, -r, · ·· ··· the real numbers. 

Let :;'5 be the set of all hermitian matrices of three order 

(
;, X3 

x= .x3 ~z 
1Xz X1 

with coefficients in the octanion number field. W e define the multiplication in :;'5 by 

1 X o Y= Z (XY + YX) , 

where XY is the usual matrix multiplication of X and Y. Then :;'5 becomes a 27-

dimensional distributive, commutative and non-associative algebra over the real 

1) For the definition of C W-complex, see [8]. 
2) The symbols x and 1 x 1 indicate the conjugate number and the absolute value of x respectively. 
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number field. And we define the inner product in :?5 by 

(X, Y) = fr (X o Y) 3) 

If X is an element of ;?5, then each of the following five conditions is equivalent 

to each other4) : 

1) X is an irreducible idempotent, i.e. if X=X 2 =\=;05 ) and X=X1 +X2 , where 

XE;?5, X[=X; (i=1, 2), and X1 oX2 =0, then X1 =0 or X 2 =0. 

2) fr (X)= fr (X2 ) =fr (X3 ) = 1"). 

3) X=X 2 and fr(X)=l. 

4) X= œ(E1), where E1 = (1 0 0) and œ E F 4 : 6) 

0 0 0 

0 0 0 

œ is an automorphism of ;?5, i.e. a non-singular linear transformation of :?5 which 

satisfies 

œ(X o Y) = œX o œ Y. 

~3~1 = lxzl 2 , 

~zXz = X3X1, 
~1~2= lx31 2 , 

~1X1 = xzx3. 

Now, let II be the set of all elements X satisfying one of the above conditions 

1)-5). ll is called the octanion projective plane. Each element of II defines a point 

and also a line of ll and we caU that a point X and a line Y are incident if 

(X, Y)= O. Then, H. Freudenthal [2], [3] show that ll becomes a projective plane 

(in which the Desargues' axiom is not satisfied). 

Using the condition 4) and Y. Matsushima's result [5] which states that the 

subgroup of F4 consisting of all automorphisms œ such that œE1 = E, is isomorphic 

to the universal covering group spin (9) of the proper orthogonal group SO (9), 

then we have ll = F 4/spin(9). Thus ll is a compact homogeneous manifold. 

3. Hopf map r;: S 15->S8• 

We take a 15-dimensional sphere S15 as the space of all pairs of octanion num­

bers (x, y) with lxl 2 + IYI 2 =1, and an 8-dimensional sphere S8 as the space of all 

pairs (s, a) of octanion number s and real number a with 1 s 1 2 =a (1--- a). We as-

3) t,(X)=Ç,+Çz+Ç3· (X, Y)=(Y, X)=Ç,,hHil7z+Ç3'13+2((x,, YI)+Cxz, Yz)+Cx3, Ya)) where 
(x, y) indicates the inner product of x and y. 

4) For a proof of this proposition, see [2] and [3]. 
5) xz=X o X=X X. X 3=X2 o X=X o X2 (if XE ~). 
6) The group consisting of al! automorphisms of ~· is denoted by F4 • This group is a compact, 

connected, simply connected and the exceptional F4-type simple Lie group in the Cartan's 
classification of the simple Lie groups, and is called the elli ptic projective group of the oeta­
pion projective plane n. 
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sociate the point (x, y) of SIS with the point (xji, IYI 2 ) of S8• Thus we obtain a 

mapping r; : S15~$8 called Hopf map, and SIS becomes a fibre space with base space 

S8, fibre S 7 and projection r;. 

4. Cellular decomposition of II. 

We take 816 as the space of pairs of octanion numbers (x, y) with lxl 2 + IYI 2=1 

8 16 with lxl 2 + IYI 2 <1 and Ë16 =S15 with lxl 2 + IYI 2 =1. A representation of II as a 

CW-complex composed of three cells e0 , e8 , e16 is obtained as follows: The vertex c0 

is defined by the point E3 = (0 0 0) . The line E1 is the set of all points X such 
0 0 0 . 
0 0 1 

that (X, E 1 ) = 0, namely, 

(0 0 0) 
x= 0 ~2 x, 

0 .X, ~3 

with 1 x1 12 = ~2~3 and ~2 + ~3 = 1, so that the li ne E, defines an 8-dimensional sphere 

S8 and e" is defined as the cell S8 -- e0 • 

Now, we define a continuous map f: 816---"li by 

(
1-lxi 2 -IYI 2 .Xv1-lxi 2 -·IYI 2 

f(x, y)= xJ/1-Ixi 2 -IYI 2 lxl 2 

YJ/1--Ixi 2-1Yl2 jiX 

Obviously f' = f 1 S15 map S15 onto the line E 1 , in fact, 

( 0 0 0) 
f'(x, y)= 0 lxl 2 xy 

\o yx IYI 2 • 

This map may be regaded as the Hopf map r;: S15--e.S8• 

Yv1-lxi 2 --IYI 2) 

X ji 

IY 12 •• 

Next, in order to define the 16-dimensional cell e16 , we shall show that f 1 8 16 

maps 816 homeomorphically onto II -S8• To this purpose, we take a 16-dimensional 

cell 18 16 as the set of all pairs ( s, t) of any octanion numbers. W e define two map­

pings h : 816-'> 1 8 16 and h1 : 1 816---'>816 by 

and 

respectively, and define two mappings g: 1c16-•Il -S8 and g 1 : II -S 8- 1c16 by 
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(
1 

- 1 
g(s, t) -1+ lsl 2 + lW ; 

and 

respectively. The fact that X is not lying on the line E 1 shows ~1 =f=O, so g' is well 

defined. Now, we can easily verify that h? h' = 1, h' oh= 1, gog'= 1 and g' o g = 1. 

The continuities of h, h', g and g' are obvious from their definitions. Therefore h 

and g are homeomorphisms. Since f 1 ê 16 =go h, f 1 ê 16 is also a homeomorphism. So, 

we may define é 6 by the cel! II - ss. 

Thus we have the following proposition : 

The octanion projective plane II is a CW-complex in which the 16-dimensional 

cel! e16 is attached to the 8-dimensional sphere ss by the Hopf map "f): $ 15.--;.Ss. 

5. Homology, cohomology and sorne homotopy groups of II. 

With the above cell structure of II, the homology and cohomology groups are 

easily computed. The homology groups with the integral coefficient are 

HoCII) = Hs(II) = H 16(II) = Z ,s) 

H;(Il) = 0 otherwise. 

The cohomology groups with the integral coefficient are also 

H 0(II) = HS(IJ) = H 16(li) = z' 
Hi(II) = 0 otherwise. 

Since II is a connected compact manifold, if we wish to compute the eup product 

es v es, 9) we canuse so called Poincaré duality theorem. In the projective plane, any two 

distincct projective lines intersect exact! y just one point, so that we have é V es = el" 9 ) 

if e16 is suitably oriented. 

Sorne homotopy groups of TI are 

for 1 <i < 15. 

In fact, with the above cellular decomposition, it is obvious that the injection 

homomorphisms i*: n;(Ss)-n;(II) are onto-isomorphisms for 0 < i < 14 and onto-

7) J...(ao)=(MiJ) 
8) Z is the infinite cylic group. 
9) We assume that es and e16 represent also the cohomological class containing the cell es and 

els respectively. 
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homomorphism for i = 15. By the suspension isomorphism n;_,(S7)--+ ni (58), the 

results for 1 < i < 14 are obtained. For i = 15, since n15 (S8 ) = n15(S'') +n14 (S7) and the 

first term is the kernel of the injection i*: n15(S8)~>n15(Il), we have n15(Il) = n14(S7). 

Since m(II) =0 for O<i<7, by making use of the homotopy exact sequence of 

F 4/spin(9) =II, sorne homotopy groups of F 4 are obtained as follows: 

n;(F4 ) = 0 

n;(F4) = n;(S0(9)) 

for O<i < 1, 

for 2<i < 6, 

n7(S0(9))=nlspin(9))--+nlF4) is onto by the injection. 

6. Comparison between II and the associative cases. 

Since P, M and Q are treated by the quite similar methods, we shall treat only 

the complex projective plane M in the following. 

The usual definition of Mis the following: In the set of all triples of complex num­

bers [x,, X2 , x3], not all zero, two such triples [x,, x2 , x3] and [y,, y 2 , y3] are said 

to be equivalent if there exists a complex number a such that y;= x; a Ci= 1, 2, 3). 

The set of equivalent classes forms a complex projective plane M. Any element 

[x1 , x2 , x3] of M defines a point and also a line of M, and a point :[x,, x2 , X3] and 

a line [y1 , Yz, y3] are called incident if X1 ji1 + Xz.ji2 + x3y3 =O. As is known, M becomes 

a projective plane by this incidence, and is a connected compact manifold. 

In the notation of ~~ 2-5, let the latin letters x, y, z, s, · · · · · · denote the complex 

numbers. Then ~ (M) is a 9-dimensional commutative, distributive and associative 

algebra consisting of all complex hermitian matrices of three order. Let F(M) be 

the group consisting of its automorphisms. The Hopf map mentioned in ~ 3 becomes 

the Hopf map 'fJ(M): S3->S2 defined by 'fJ(M) (x, y)= (xy, IYI 2), and this is equivalent 

with the usual definition of the Hopf map 'fj1 : S3-S2 such that 'fJ'(x,y)=[x,y,O]. 

The definition and the consideration mentioned in ~~ 2-4 is applicable if we replace 

~, F 4 and '1J by ~(M), F(M) and 'fJ(M) respectively. Thus we obtain an another 

construction of the complex projective plane M,. 

The connection between the classical construction and the new one is given as 

follows: We define a continuous mapping cp; M->M1 by 

cp does not depend upon the choise of the representatives of [a, b, c]. Conversely, 

since any point X of M, contains at least one non zero column vector, we define a 

continuous mapping 1/J: M1->M assigning X to the point of M which contains the 

above non zero vector as its representative. cfi does not depend upon the choice of 

non zero column vectors of X. Since cp o cfi = 1 and 1/J o if;= 1, cp and 1/J are homeomor-
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phisms. Furthermore, the incidencies between the corresponding points and the 

corresponding lines are equivalent to each other. Therefore M and M1 are quite 

coincided as a projective plane by rjJ and cf;. 

The automorphisms of :S(M) are never new operations, i.e. they are closely con­

nected with the linear unitary transformations of the 3-dimensional complex linear 

space. These connection will be clear by the following lemma : 

If a E F(M), i. e. a is a non-singular linear transformation of :S(M) su ch that 

a( X o Y)= aX o a Y for any X, Y E :J(M), then there exists an unitary matrix U of 

three arder such that aX = UXU*10 l or œX = UXU* for all XE :J(M), and converse/y. 

Proof. The relations E; o Ej = O(i-=Fj), E; o E; = E; imply that œE; E M1(i = 1, 2, 3) 

and aE; are mutually incident. Therefore cf;(aE1 ) =[a, b, c], cf;(œE2) = [p, q, r] and 

cf;(aE3 ) = [u, v, w] are unitary orthogonal with respect to the' usual unitary inner 

product defined in the 3-dimensional complex linear space. We may assume that they 

are normalized.11l If we take a matrix U such that 

then U is an unitary matrix and œE; = UE;U* (i = 1, 2, 3). Therefore we may assume 

that a invariant E; (i = 1, 2, 3). 

Let Ff be the point X of M1 with x;= x and ali numbers except x; are zero. 

Then E; o Ff = 0, 2Ej o FI = Ff if i =F j. Whence we have E; o aFf = 0 and 

2Ei o aFf= aFf. It follows 

aFf=F~;x Ci= 1, 2, 3), 

where a; are linear transformations of the complex number field. 

Now, Ff oF~= (x, y) (E;.H + E;+2 ), where {i, i + 1, i + 2} is a permutation of 

{1, 2, 3}, implies 

(a;x, œ;y) =(x, y). 

Further Fi'" o F~Y = F~(xYJ implies 

œl(x) œz(Y) = œs(xy). 

If we put al(1) =a, az(l) =b, a3(1) = c, œ1Cv -1)=al, az( 1/ -1)=bh and asCv -1) 

= c1, then we have ab= c, ab1 = - c1 , a1b1 = - c and a1b = -- c1 • These imply 

a2+a12=0 with lal=lall=1andb2 +bl2 =0 with lbl=lb1 l=l. Therefore,a1 =a1/-1 

10) U* is the transposed conjugate matrix of U. 
11) Any point x=[xl, X 2 , X3] of M contains a representative a=[a1 , a2 , a 3] such that 

1 a 1 12+ 1 a2 12+ 1 a3 l 2 = 1. This process X---'>a is called the normalization of x. 
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ora1 =-a1/-1 and b1 =b~-1 or b1=-b1/-1. 

At last, we have 

\ 

œ1.(x) = ax 

œz(x) = bx 

œ3(x) =ex 

or 
[ 

œl(x) = ax 

œz(x) = bx 

œ.(x) =ex. 

with ab = ë, be= a and ca= b. Therefore if we take an unitary matrix V such that 

(
1 0 

V= 0 ë 
0 0 

~) 
b ' 

Then we have œX = VXV* or œX = VXV*. q .. e. d. 

Therefore, as the group which opera tes transitively on M1 , we may take the 

group PU(3) consisting of all automorphisms u of ~(M) such that u: X--UXU* 

where XE ~(M) and U is an unitary matrix of three order. This group PU (3) is 

isomorphic to the U(3)/ZU(3) (where U(3) is the unitary group of three order and 

ZU(3) is its central normal subgroup), and is called the elliptic projective group 

of M1 • 

7. Conjecture. 

In § 5, we have 

for 1<i<15. 

However, we conjecture that 
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