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Homological structure of the 2-fold symmetric products sn*sn of an n-sphere 

sn is well known. (See R. Bott [2], S. K. Stein [12] and the recent paper [5] of S. 

D. Liao.) 1) In the present note, we shall calculate sorne homotopy groups of sn*sn 

by making use of the results on homology. If we denote by n; the (stable) homotopy 

group n;(Sn*sn) for i<2n-2, our results are as follows: 

lTn+l == 0, lTn+z == 0, i'Tn-+s ~ Zs, 

(A) 1rn+4 == 0, ï!n+s ~ Z2, 7':n+6 == 0, 

1Tn+7 ~ zl5' lTn+s ""=' Zz, lTn+g ""=' Zz. 2) 

Two different methods are explained. One of these is the method employed by 

J-P. Serre in [10] for calculation of homotopy groups of spheres.3) The other starts 

with a construction of a reduced complex of the same (n+6)-homotopy type as sn*sn, 

in w hi ch the homotopy boundaries in dimensions < n + 7 are well defined. 

In the last section, we state sorne results on the following: i) homotopy of sn*sn 

for n ~ 5, ii) the homotopy groups of the p-fold cyclic product of a sphere, iii) the 

homology and homotopy of the 2-fold symmetric product of the suspended projective 

plane. 

1. Homological properties 

We shall first recall sorne homological properties of sn*sn (see [2], [5], [12]). 

The i-dimensional homology group H;==H;(Sn*sn: Z) 2) is as follows: 

Ho""='Z, H; == 0 for 0 < i < n, Hn=Z, 

Hn+j = 0 for 1 :Ç: j < n with odd j, 

(1. 1) = Z2 for 1 ::=; j < n with even j, 

Hzn == 0 for odd n, 

= Z for even n, 

H; = 0 for i > 2n . 

Thus the i-dimensional cohomology group Hi(Sn*sn; Z2 ) is Z 2 for i ==0, n and 

n + 2 < i::; 2n, and is zero for other i. 

1) Numbers in brackets refer to the bibliography at the end of this paper. 
2) We denote by Z and Zp the additive groups of integers, of integers mod p respectively. 
3) The author is indebted to Prof. H. Toda for pointing out the use of this method. 
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As for the Steenrod square Sqi: Hn+3(Sn*sn; Z2)~Hn+i+J(Sn*sn; Z2), we 

have 

Sqi Hncsn*sn; Z2) = HnH(Sn*sn; Z2), 
(1. 2) 

Sqi Hn+J+1(Sn*sn; Z2) = (;) Hn+ï+J+l(S"*Sn; Z2) (j 2: O) 

where (1) is the binomial coefficient with the usual conventions. 

Let K(n, n) be an Eilenberg-MacLane complex with the only non-vanishing 

homotopy group nn(K(n, n))~n, where n is an abelian group. Denote by u the 

generator of the n-dimensional cohomology group Hn(z, n ; Z2) or Hn(Z2, n ; Z2)4). 

Then it is well known [10] that 

(1. 3) Hn+j(Z, n; Z2) (resp. Hn+j(Zz, n; Z2)) for i<n is a vector space having 

as a base the all iterated Steenrod squares SqirSqir-1-··Sqil u which satisfy the follow­

ing cotÙJitiiJns i), ii) and iii) (res p. i) and ii)). 

The following relations (1. 4) among the iterated Steenrod squares, which are 

found by J. Adem [1], are very useful in later part. 

(1. 4) 

2. Sorne general properties 

Let Kn be a cellular decomposition of sn* sn given by Steenrod, and let E(Sn*sn) 

be the suspended space of sn*sn. Then E(Sn*sn) is imbedded in Sn+1 *sn+l natural­

ly, and forms the (2n+1)-skelton of Kn+t [5]. Thus we have 

be the suspension homomorphism. Since sn*sn is (n-1)-connected from (1. 1), E is 

isomorphic for i::0::2n-2, and is onto for i<2n-1 [13]. Therefore we have 

(2. 1) The homomorphism. 

(fi a E: n;(Sn * sn)~n;+t(Sn+t * sn+t) 

is isomorphic for i<2n-2, and onto for i<2n-1. 

Since sn*sn is (n-1)-connected and Hn(Sn*sn; Z) ~z from (1.1), the Hure­

wicz theorem implies nn(Sn*sn) ~z. Let f: sn~ sn*sn be a map which represents 

4) As usual, we denote H•(K(n:, n); G) by Hi(n:, n; G) simply. 
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a generator of nn(Sn*sn), and let k[p] be a field of characteristic p. Then, for the 

homomorphism f*: H;(Sn; k[p])~H;(Sn*sn; k[p]), we have from (1.1) that 

i) if n is odd, h is isomorphic onto for any i and any p ='F2, ii) if n is even, f* is 

isomorphic onto for any i <2n and any P='F2. Thus the following result is obvious 

from the generalized J. H. C. Whitehead theorem due to J-P. Serre [9]. (See also 

[6].)5) 

(2.2) If n is odd, then n;(Sn*sn) is finite for any i='Fn, and C(n;(Sn*sn), P)""" 

C(rr;(Sn), p) for any odd prime p, where C(rr, p) denotes the p-primary subgroup. 

If n is even, the same properties are true for i~2n--2. 

Let p: snxsn~sn*sn be the projection (i.e. the identification map), and let 

f: sn~sn*sn be a map defined by 

where Yo E sn is a base point. Since it is obvious that f*: Hn(Sn; Z) """Hn(Sn*sn; Z), 

we see that f represents a genera tor e' n of nn(Sn *Sn). Th us p is a map of type (e' n, e' n). 

Therefore it follows from the well known theorem [13] that the Whitehead product 

[e' n, ln'] is zero. Thus we have 

(2.3) [a, J3] = 0 

3. Proof of (A) 

Let (Sn*sn, n+j) (j=O, 1, 2, ···) be the Cartan-Serre sequence of the space 

sn*sn [4]. Then, by the definition, Trn+;(Sn*sn, n+j) =0 for ï<i and nn+ï(Sn*sn) 

"""Trn+ï(Sn*sn, n+j) for i'2.f. Moreover there exists a fiber space for each j such 

that i) the total space is of the same homotopy type as csn*sn, n-tj), ii) the base 

space is an Eilenberg-MacLane complex K(nn+j(Sn*sn), n+j), and the fiber is 

(Sn*sn, n-tj+l). (For brevity of the notation, we use (Sn*sn, n+j) to denote the 

total space of the above fi ber space.) Th us we have for i :=; n + 2j the exact sequence 

[8]: 

(3. 1) 
~ r 

··-~ H"+i-l(Sn*sn, n-tj -tl; Z 2 ) ~Hn+i(nn+j(Sn*sn),n+j; Z 2 ) 

P* i* 
~Hn+i(Sn*sn, n+j; Zz)~Hn+i(Sn*sn, n-tj+l; Zz), 

where P"', i* are the homomorphisms induced by the projection and the inclusion 

respectively, and r is the transgression. 

Throughout this section, we assume that n is sufficiently large (for example 
n~l3). 

I) Let j = 0 in (3. 1), and consider the homomorphism p*: fln+i(nn (Sn* sn), 

n; Zz) -~ fln+i(Sn*sn, n; Z 2). Since nn(Sn*sn) """Z, if we denote by u the generator 

5) We assume throughout this paper that n;;;;;2. 
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of Hn(nn(Sn*sn), n; Z 2 ), then we see from (1. 3) that H*(nn(Sn*sn), n; Z 2 ) has 

a base 

(3.2) 
u, Sq2u, Sq3u, .. · , Sq6u, Sq'Sq2u, .. · , 

Sq13u, Sq11Sq2u, Sq10Sq3u, Sq9Sq4u, 

in dimensions ;;;;;n+13. On the other hand, since (Sn*sn, n) =Sn*sn, we see from 

(1. 2) that H*(Sn*sn, n; Z 2 ) has a base 

(3.3) 

in dimensions <n+13, where v is the generator of Hn(sn*sn, n; Z2 ). Furthermore, 

since Hncsn*sn, n + 1; Z2 ) = 0, P* is onto in dimension n, and so we have p*u =v. 

Thus we see from (3. 2) and (3. 3) by making use of the naturality of Sqi that 

(3.4\ 

(3. 4). 

p* is isomorphic onto for i < 5, and 

P* is onto for i ~13. 

Then it follows from (3. 4) 1 by the generalized Whitehead theorem that P# : 
C(nn+i(Sn*sn), 2) ~ C(nn+;(K(nn(Sn*sn), n)), 2) is isomorphic onto for i<4, and 

so we have 

(3.5) 

Let No be the kernel of p*, then (3. 1) and (3. 4) 2 imply that -r: Hn+i-1(Sn*sn, 

n + 1; Z 2 ) ~No is isomorphic onto for i::;: 13. Furthermore we see from (1. 2) and 

(1. 4) that N 0 bas a base 

Sq4Sq"u, Sq5Sq"u = Sq1Sq'Sq"u, Sq6Sq2u = Sq"Sq4Sq"u, 

Sq7Sq2u = Sq3Sq4Sq2u, Sq6Sq3u = Sq2Sq1Sq4Sq2u, 

Sq8Sq"u, Sq7Sq3u = Sq3Sq1Sq'Sq2u, Sq9Sq2u = Sq1Sq8Sq2u, 

(3. 6) Sq8Sq3u = Sq9Sq2u+Sq4Sq1Sq'Sq2u, 

Sq10Sq2u = Sq2Sq8Sq"u+Sq5Sq1Sq4Sq2u, Sq9Sq3u = Sq5Sq1Sq4Sq2u 

Sq8Sq•u, Sq11Sq"u = Sq3Sq8Sq2u, Sq10Sq3u = Sq2Sq1Sq8Sq2u, 

Sq9Sq4u = Sq1Sq8Sq4u. 

Let a (dim a=n+5), b (dim b=n+9) and c (dim c=n+ll) be the elements 

such that 

respectively. Then, since -rSq' = Sqi-r, it follows from (3.1) and (3. 6) that H*(Sn*sn, 

n+1; Z2 ) bas a base 

a , Sq1a , Sq2a , Sq3a , Sq2Sq1a , 

(3.7) b, Sq3Sq1a, Sq1b, Sq1b+Sq'Sb1a, 

Sq2b + Sq5Sq1a, Sq5Sq1a, c,. Sq3b , Sq2Sq1b, Sq1c 

in dimensions < n + 12. 
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We have from (3. 5) that H*(nn+j(Sn*sn), n + j; Z,) = 0 for 1-::;j :Ç_4. Therefore 

it follows from (3. 1) for j = 1, 2, 3 and 4 that 

H*(Sn*sn, n+5; Z2 ) ""'=' Hi'(Sn*sn, n+1; Z 2 ) 

in dimensions ;;;;, n + 12, un der the composition of the inclusions and homotopy equi­

valences. Thus we may consider (3. 7) as a base of H*(Sn*sn, n+5; Z2) in dimen­

sions :::=.n+12. Especially we see that Hn+ 5 (Sn*sn, n+5; Z 2 ) =Hom (Hn+5(Sn*sn, 

n+5), Z,) =Z,, and so we have C(Hn+s (Sn* sn, n+5), 2) =Z2r for sorne r 21. 

However, since Sq1a~l- 0, r must be= 1. Thus we obtain by the generalized Hurewicz 

isomorphism [9] that C(nn+5 (Sn*sn, n+5), 2)=C(Hn+sCSn*sn, n+5), 2)""='Z,. 

Namely we have 

(3.8) 

II) Let j = 5 in (3. 1), and consider the homomorphism p*: ffn+i(nn+ 5(Sn*sn), 

n+5; Z2)---'>-Hn+~csn*sn, n+5; Z 2). Then it follows from (3.8) that Hn+i(nn+ 5(Sn*sn), 

n+5; Z 2) = Hn+i(Z2 , n+5; Z2). Therefore if we denote by œ the generator of 

Hn+"Cnn+ 5(Sn*sn), n+5; Z 2), we see from (1. 3) that H*Cnn+5csn*sn), n+5; Z 2) has 

a base 

(3.9) 

œ, Sq1œ, Sq2œ, Sq3œ, Sq2Sq1œ, Sq'œ, Sq3Sq1œ, 

Sq5œ, Sq'Sq\:x, Sq6œ, Sq5Sq1œ, Sq4Sq2œ, Sq7œ, Sq6Sq1œ, 

Sq5Sq2œ, Sq'Sq2Sq1œ. 

in dimensions < n + 12. Since p* is onto in dimension n + 5, we see p*œ =a, and so 

p* is isomorphic onto for i ;;;=;n+8. Thus, by the similar arguments as in the proof 

of (3. 5), we obtain 

(3. 10) 

We have by (1.4) 

rp*Sq'œ = Sq'Sq'Sq2u = Sq3Sq1Sq4Sq2u = rSq3Sq1a, 

rp*Sq5œ = Sq5Sq'Sq2u = Sq1Sq7Sq'u::::: 0, 

rp*Sq6œ = Sq6Sq'Sq2u::::: Sq7Sq1Sq3Sq1u::::: 0, 

rp*Sq'Sq2œ = 5q4Sq2Sq'Sq2u = Sq5Sq1Sq'Sq2u+Sq2Sq8Sq2u::::: r(Sq5Sq1a+ 5q2b), 

rp*Sq7œ = Sq7Sq'Sq2u::::: Sq1Sq6Sq'Sq2u::::: 0, 

rp*Sq6Sq1œ = Sq6Sq1Sq'Sq2u = Sq2Sq5Sq'Sq2u = 0, 

rp*Sq5Sq2œ = Sq5Sq2Sq'Sq2u::::: Sq3Sq8Sq2u::::: rSq3b, 

rp*Sq4Sq2Sq1œ = Sq4Sq2Sr/Sq'Sq2u::::: Sq1Sq8Sq'u+Sq2Sq1Sq8Sq2u=r(Sq2Sq1b+Sq1c), 

and r is isomorphic into by (3. 4) 1 • Therefore it follows from (3. 7) and (3. 9) that 

the kernel N 5 of P* has a base 

in dimensions ~n+12, Since P* is onto in dimension n+8, we see that r: Hn+8(Sn*Sn1 
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n + 6 ; Z 2) = N 5 • Let ï be the element such that 

q = Sq4a+Sq'Sq1a. 

Then, since we have by (1. 4) 

,Sq1ï = Sq1Sq4a+Sq1Sq'Sq1a = Sq5a, 

,Sq2ï = Sq2Sq4a+Sq2Sq'Sq 1a = Sq6a, 

,sq'r = Sq1-rSq2ï = Sq7a, 

-rSq2<)q1ï = Sq2-rSq1ï = Sq2Sq5a =Sq"Sq1a, 

it follows from (3. 7) and (3. 9) that H*(Sn*sn, n+6; Z 2) has a base 

(3. 11) ï, Sq1(, b', Sq2ï, Sq1b', Sq2(, Sq~Sq1ï, Sq1c' = Sq2Sq'b' 

in dimensions <n+ll, where b'=i*(b) and c'=i*(c). We have from (3.10) that 

H*Cnn+Ïcsn*sn), n+j; Z 2)=0 for j=6 and 7. Therefore if we consider (3.1) for 

j =6 and 7, we have under a natural map 

Thus we may consider (3.11) as a base of H*(Sn* sn, n+8; Z 2 ) in dimensions 

<n+11. Especially Hn+B(Sn*sn, n+8; Z2)=Z2 and Sq1ï=FO, and so we have 

(3.12) 

by the similar arguments as in the proof of (3. 8). 

III) Let j =8 in (3.1), and consider p*: Hi(nn+sCSn*sn), n+8; Z2)~ 

Hi(Sn*sn, n +8; Z2 ). Then it follows from (1. 3) and (3. 12) that H*Cnn+sCSn*sn), 

n+8; Z 2) has a base 

(3. 13) v, Sq1v, Sq2v, Sq'v, Sq2Sq1v 

in dimensions ~n+ 11, where v is the generator of Hn+8 (n,+8 (Sn*sn), n+8; Z 2 ). 

Sin ce p* is onto in dimensions n +8, we have P*v = r. and so it follows from (3. 11) 

and (3.13) that P* is isomorphic onto in dimensions <n+8, and is isomorphic into 

in dimensions <n+ll. Thus we see from (3.1) that H*CSn*sn, n+9; Z 2) has a 

base 

b", Sq1b" 

in dimensions <n+lO, where b"=i*(b')EHnH(Sn*sn, n+9; Z2). Then we haveby 

the same arguments in the proof of (3. 8) that 

(3.14) 

Since C(n,+i(Sn), P)=Z, for i=3, 7 and P=3, =Z5 for i=7 and P=5, and 

is zero otherwise for i < 9 and any odd prime P [13, 14], our main result (A) follows 

from (2. 1), (2. 2), (3. 5), (3. 8), (3.10), (3. 12) and (3. 14). 
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4. Reduced complex M ~ 

Let e~i Ci= 1, 2, ... , s) be s disjoint r;-cells, and let f;: Cè~i, y;)~ (X, x0 ) be 

s maps of the boundary è~i in a 1-connected space X, where y; E ë;' and x0 EX are 

base points. Th en we shall denote by {X U ei 1 U · · · U e~8 ; ( 1 , • • • , fs} a space 

obtained by identifying each point y E ë~i to /;(y) E X in the union X U ei' U · · · U e~•. 
Let Er be the r-cube in the Cartesian space, and let g;: (Er, Ër, Z0)·-~ (e;i, ë;', y;) 

Ci= 1, 2, ···, t < s) be maps such that 2Jî=di o Cg; 1Er) is null-homotopic, where 

Z0 = (0, 0, ···, 0) and Lj denotes the addition used in the usual definition of homotopy 

group rrr(X, x0 ). Then we can construct a map h of an r-sphere ër+l =sr in 

{XU ei' U ··· U e~•; (1 , · ··, fs} as follows: 

Let éi Ci= 1, 2, ... ' t) be t disjoint r-eelis in sr which have a single point Zo 

in common, and which are oriented in agreement with the orientation of sr. Define 

first hih é'i by hléi=g;o~;(i=1, 2, ···, t), where ~;: Céi. ÊD---?(E', Ë;r) is 

a homeomorphism of degree 1 Then it follows from our assumption that h\ UI=1Ê~ 
of a singular (r-1)-sphere UI=1Ér in X is null-homotopic in X. Choose now such 

a null-homotopy arbitrarily, and define h in S'- U~=l Int éi by this null-homotopy. 

This completes the definition of h. 

In the following, a map obtained by such a construction from g,, g 2 , • • ·, gt will 

be denoted by <g,, g 2 , • ··, gt 1 X>. 
As for spherical maps, we use the following notations: Ir; sr ~sr (r;?l) is 

the identity; 1Jr: sr+l ~sr Cr:;:::; 2) and Yr: sr+3 ~S'Cr;;:.;: 4) are the iterated 

suspensions of the Hopf fiber maps r;2 and Y4 respectively. Let Ôn: 77:n+r Ce'+', it+') 

= 77:n (ër+ 1 ) be the homotopy boundary, then we refer to maps in the homotopy classes 

â;:-1{1r}, â;:-Jdr;r} and â;:-}g{Yr} as Cr+l, nr+l and Vr+l respectively.61 

Until the end of this section, we assume that n'? 7. Consider the following 

(n + k)-dimensional cell complexes M~ (k = 1, 2, · ··, 7) defined inductively by 

M* =Sn, 

M~ = {M~ U en+z 

M~ = {M~ U en+3 

M~ = {M~ U en+• 

M~ = {M~ U enl5 

M~ = {M~ U en+G 

M~ = {M~ U en+'l 

1Jn} ' 

< 21 n+zl sn >} ' 

3vn} , 

<2cn+4• 'l)n+31M~>}, 
< 'lJnHI S" >} , 

<21-n+GIN~>} ,7l 

where N~ is the subcomplex {Sn U enH; 3vn} of M~. The justificatian of above 

definitions follows from 

ti) Let f: sr _,_X, then { f} denotes the element of n:,.(X) containing f. 

7) It can be easily seen that the homotopy type of M~ does not depend on the choice of 

null-homotopy in the definition of identification map. 
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(4.1) i) 2{~n}==O zn sn, ii) {<2ïn+zlSn>o~n+z}==±6{vn} in M~, iii) 

{(3vn) o~n+J ==0 in sn, iv) {<'lln+<lN~>o2cn+s} ==0 inN~. 

In fact, i), ii) and iii) are well known (See [13]). ln the notation of H. Toda, 

we have <2c.n+zlSn>o~n+zE{~,,2cn+z,~n+z}.) iv) is obtained as follows: Consider 

the homotopy exact sequence of pair CN~, sn), then it follows from rrn+4 (S") 

= rrn+s(Sn) == 0 that rrn+s(N~) == rrn+sCN~, sn) un der the inclusion ma p. This and 

rrn+sCN~, sn) =Z2 imply iv). 

Let M~ be a 2n-dimensional cell complex such that i) the (n+7)-skelton of M~ 

is M~, ii) rr;(M~) ==0 for n+7~i<2n (Such a complex does exist). Then we have 

(4. 2) rrnCM~) = Z, rr,+ 1 (M~) == 0, rrn+zCM;,) == 0, rrn+3(M~) = Z3, rrn+4(MÇ,) == 0, 

rrn+sCM~) = Zz, rrn+6CM~) ==O. 

( 4. 3) Let (: sn-----* M~ be the identity map, then 1rn+sCM;,) i s generated by {c 0 Vn}. 

7rn+sCM;,) is generated by { <vn+zlSn> }. 

These cau be proved by the similar arguments used in the proof of (8. 4) in [7]. 

Therefore we will note here only the principle and basic tools used, and omit to 

record the complete calculation. 

Since rrn+iCSn) (i;;::;.,6) is well known (see ii) below), starting with rr,+i(MA), 

we determine rr,HCMD inductively with respect toi and j by making use of the homo­

topy sequence of pair (Mt M~-1). In this consideration, the following i) and ii) play 

essential rôles: i) Let f: (E"+ J, Jin+J)------* (M ~, M ~-l) be the characteristic map of 

the cell en+l, then /t'fis isomorphic onto for i:~n+j-3 in the commutative diagram 

If we take in consideration that the homotopy boundary of any (n+S)-cell of 

M~ is in M~, the following can be easily proved [7]. 

(4.5) Hi(M~; z)=Zfor i==n, =Z2 for n+3, n+5 and n+7, and vanishes for 

other i<n+7 

(4. 6) Let {en} E Hn(M~; Z) and {e"+J} E Hn+1(M~; Z) (j == 3, 5 and 7) be generators, 

then we have 

Sqj { e"} == { e"+ 1} Cj =3, 5, 7), 
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(We may consider Sqi with respect to the integer coefficient, because j is odd [11].) 

Let K be any cellular decomposition of sn*sn, and Kn+J its (n+j)-skelton. 

Take a map f: K"H~M~ such that 

(4.7) 

where {il} E Hn(K; n-nCM~)) and {e"} E H"(M~; n-nCM~)) are generators. It is well 

known that such a map exist. Then we have 

(4.8) f can be extended to a map 1: K"H--- MJ. 
This is proved as follows: Since 7rn+1 (M~), 7rn+zCM~) and 7rn+4 (M~) are trivial 

from (4. 2), and since H"+4 (K; ITn+aCM~)) ~Hom CHn+4 (K; Z), Z3) + Ext 

(Hn+sCK; Z), Z 3 ) = 0 from ( 4. 2) and (1. 1), it follows from the classical obstruction 

theory [11] that f can be extended to a map 1: K"+S---i>M~. Consider now a 

new cell complex 

L = {M~ U em+s; < :ïin+ziSn >}. 
Then we have 7rn+5(L) =0 from (4.4), and so 1 hasan extension f': Kn+B---i>L. 

Thus, for the obstruction { c"+B( 1)} E H"+B(K, ITn+sCM~) ), we have [11] 

(4.9) 

where k: Ln+S ~ M~ is the inclusion. It is obvious from the definition that {c"+B(k)} 

is represented by a cocycle which takes 0 on e"+s and takes {<vn+ziS">} on em+s. 

Therefore if we define 

(X= L or K) using the unique non-trivial homomorphism of n-n(M~) to 7rn+5(M~). 

then we have 

(4. 10) 

Th us it follows from ( 4. 9), ( 4. 10) and ( 4. 7) that 

{cn+scJ )} = Sq4Sq2 {u}. 

However it is seen from (1.2) that Sq4Sq2{u}=O in K. Therefore we have {c"+B(Ï)}=O, 

and so f has an extension f: K"+B--- M~. Since ITn+sCMD =0 from (4. 2), 1 has 

also an extension 1: K"+7--- M~. This completes the proof of ( 4. 8). 

Since n-;(M~) =0 for n+7~i<2n by the definition, and K is 2n-dimensional, 1 
can be extended to a map g: K ~ M~. Let u E H"(K; Z) be the generator, then 

it is obvious from ( 4. 7) that g *{e"} = f*{e"} ==u. Therefore it follows from (1. 2) 

and ( 4. 6) by the naturality of Sqi that g*: Hi(M~; Z) ~ Hi(K; Z) is isomor­

phic onto for i =n, n+3, n+5 and n+7. Furthermore, since Hi(M~; Z) = fli(K; Z) 

for i<n and for i=n+1, n+2, n+4 and n+6, we conclude that g*: Hi(M~; Z) 

~ Hi(K; Z) is isomorphic onto for i S.n+7. Thus, in virtue of the well known 

theorem [15], we have 
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(4.11) sn*sn and M~ is of the same Cn+6)-homotopy type. Especially we have 

rc;(Sn*sn)r=::::::rc;(M~) for i<n+6. 

This together with ( 4. 2) proves (A) for i < n + 6. 

5. Supplementary remark 

n (5.1) sn*sn(2<n~5) is of the same homotopy type as a reduced complex 

Mn defined as follows: L 2 ={S2 Ue'; r;3}, L3 ={EL2 Ue6 ; <2rsiS3 >}, L.={EL3Ue8 ; 

v4 + w4}, L 5 = {EL4 U e10 ; <2r5 , 1Jsl {55 U é; r;5 } >}, where EL; is the suspended space 

of L;, and w4 is the suspension of a map S6 ----o>S3 introduced by Blaker-Massey. 

In fact, since S2 *S2 is the complex projective plane, i) and ii) are a direct con­

sequence of the cellular decomposition of sn*sn due to Steenrod. Thus S4 *S4 is of 

the same homotopy type as {EL3 U e8 ; g} with a sui table map g. However, since 

rc7 (ELJr:::::::Z+Z3 and is generated by {v4} and {w4} [13], we may assume that 

with sorne integer !1 and sorne integer 12 mod 3. We saw in (2. 3) that [14 , 14] =0 

for the inclusion map 14 :S4----o>S4*S4, and know [10] that [14 , 14]=2{v4}-{w4}. 

Therefore we must have 

2{v4}-{w4} =k(l,{v4}+l2{w4}) 

with sorne integer k, and this implies that {g} = ± ( {v4 } + {w4}) or ±(2{v4}- {w4 } ). 

If the latter holds, we have the eup product of the generator of H 4 (S4 *S4 ; Z) with 

itself is 2v8, where v8 E H 8 (S4 *S4 ; Z) is a generator. This contradicts (1. 2). Thus 

we may take v4 +w4 in place of g. This proves iii). iv) is obvions. (Note that 

E( {v.}+ {w.})= 3{v5} ). 

The homotopy group of sn*sn(2~n<5) can be calculated by making use of Ln. 

For example, we have easily 

(5.2) 

II) Recently H. Cartan [3] has given the structure of H*(Z, n; Zp) and 

H*(Zp, n; Zp) for any odd prime p by making use of the reduced cyclic power and 

the Bockstein homomûïphism. On the other hand, S. D. Liao explained the cohomology 

structure of the P-fold cylic product ?Jnp of an n-sphere (See especially (5. 4) and 

(9. 7) in [5]). If we apply these results, we can obtain the results with respect to 

the homotopy of ?J,.p by the arguments similar to those in above sections. For 

example, we have 

(5.3) Let P be an odd prime, and let n?':2P+2. Then C(rc;(fJnp), p)r:::::::Zp for 

i=n + 2j (j = 1, 2, · · ·, p-2) and n+2(p-1) + 1, and vanishes for other i < n+2(P --1). 

III) Let Y be the (n-1)-fold suspended space of the real projective plane. 



Homotopy of two fold symmetr!c products of spheres 29 

Namely Y is a cell complex sn U en+r such that en+r is attached to sn by a map of 

degree 2. Then the Stein's formulas [12, p. 582] give the integral homology group~ 

of the symmetric product Y* Y as follows : 

(5.4) H0(Y*Y; Z)=Z; Hn+i(Y*Y; Z)=Z2 for i=O, n+l and 2<i<n--l; 

H2n( Y* Y; Z) =Z4 for even n, =Z2 for odd n; H;( Y* Y; Z) = 0 for other i. 

Thus the cohomology group Hn+i( Y* Y; Z2 ) is Z 2 for i = 0, 1, 2 and n + 2, and 

is Z 2 + Z 2 for 3 < i,;;;;; n + 1. Let a be the generator of Hn( Y* Y; Z2 ). Then we have 

(5.5) We can take as a base of H*(Y*Y; Z2 ) the following: Sqia(O~i~n), 

SqiSq1a(2 < i < n + 1) and aU Sq1 a. Furthermore we have the relations: 

(j ?_ 1). 

Applying the methods similar to those by which R. Bott [2] gives a proof of 

(1. 2) in this paper, (5. 5) can be proved easily. (The basic tools of this method 

are the Smith-Richardson sequence and the Theorem 2 in [2]). 

Now we can calculate the (stable) homotopy groups n-;(Y*Y) for i<2n-2 by 

the method explained in \'3 3. The results are as follows : 

(5. 6) n-;(Y* Y)= 0 for 0 ::=:::i < n, n+1 ;?:i ::=:::n+4 and n+7. 

n-;(Y* Y)=Z2 for i =n, n+5, n+6 and n+S, and 7l"n-1-lY* Y) is not cyclic. 
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