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Homological structure of the 2-fold symmetric products S$”*S" of an n-sphere
S” is well known. (See R. Bott [2], S. K. Stein [12] and the recent paper [5] of S.
D. Liao.)” In the present note, we shall calculate some homotopy groups of S”%S”
by making use of the results on homology. If we denote by =; the (stable) homotopy
group m;(S”%S") for { <2n—2, our results are as follows:

Tnir =0, Tnie =0, Tpis = Zs,
(A) Tnte = 0, Tpis = Zy, Tnis = 0,
2
Tnig = Lis, Tis = Zs, Tpae = Z, P

Two different methods are explained. One of these is the method employed by
J-P. Serre in [10] for calculation of homotopy groups of spheres. The other starts
with a construction of a reduced complex of the same (#+6)-homotopy type as S”*S”,
in which the homotopy boundaries in dimensions <#n+7 are well defined.

In the last section, we state some results on the following : i) homotopy of S”*S”
for <5, ii) the homotopy groups of the p—fold cyclic product of a sphere, iii) the
homology and homotopy of the 2-fold symmetric product of the suspended projective

plane.

1. Homological properties

We shall first recall some homological properties of S”%S” (see [2], [5], [12]).
The i—dimensional homology group H;=H;(S"*S"; Z)® is as follows:

H,~ Z, H; =0 for 0<i<m, H,~Z,
H,.; =0 for 1 <7< n with odd 7,
1.1 ~Z, forl1<j<n with even j,

Hzn =0 fOi’ odd n,
~Z  for even n,
H;=0 for i >2n.

Thus the i-dimensional cohomology group Hi(S"xS"; Z,) is Z, for i=0, n and
n+2<i<2n, and is zero for other 7.

1) Numbers in brackets refer to the bibliography at the end of this paper.
2) We denote by Z and Z, the additive groups of integers, of integers mod p respectively.
3) The author is indebted to Prof, H, Toda for pointing out the use of this method,
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As for the Steenrod square Sqgi: H"W(S"xS"; Z,)—> H™I(§"xS"; Z,), we
have
Sqi H*(S"+S"; Z,) = H™*(S"*S"; Z,),

1.2 . )
( ) Sqi H"”“(S"*S"; Zz) — (Z) Hn—‘ri+1+1(sn*sn; Zz) (]z(n

where (i ) is the binomial coefficient with the usual conventions.

Let K(w, n) be an Eilenberg-MacLane complex with the only non-vanishing
homotopy group 7m.(K(w, n))=m, where = is an abelian group. Denote by u the
generator of the #-dimensional cohomology group H™(Z, n; Z,) or H(Z,, n; Z,)*.
Then it is well known [10] that
(1.3) H™I(Z, n; Z,) (resp. H**i(Z,, n; Z,)) for j<n is a vector space having
as a base the all iterated Steenrod squares Sqi»Sqir-1---Sqi u which satisfy the follow-
ing conditions 1), il) and iii) (resp. 1) and iD)).

1) dyAiyte i, =7, i) dpy =220 for k=1, 2, -, r—1, iii) i, >1

The following relations (1.4) among the iterated Steenrod squares, which are
found by J. Adem [1], are very useful in later part.

(1.4) Sqg?t Sq° = '§=o(s_t_2'_]-j—1) Sqt+s+i Sqti .

2. Some general properties

Let K, be a cellular decomposition of S”#S” given by Steenrod, and let E(S”*S")
be the suspended space of S”%S”. Then E(S”%S") is imbedded in S"*'%S"*! natural-
ly, and forms the (2n+1)-skelton of K,;; [5]. Thus we have

fw: m(E(S"%S™) & my (S" 1% S™1)
for i <2n—1, where 7 : E(S"xS") C S"*'%S"*! is the inclusion. Let

E: mi(S"™S")—> mi (E(S”%S"))
be the suspension homomorphism. Since S"%S” is (#-1)—connected from (1.1), E is
isomorphic for { <2n—2, and is onto for { <2n—1 [13]. Therefore we have
(2.1) The homomorphism

izo E: mi(S"#S")—> miy (S"H % S

is isomovphic for i <2n—2, and onto for i <2n—1.

Since S”%S” is (n—1)-connected and H,(S"*S"; Z)~Z from (1.1), the Hure-
wicz theorem implies 7,(S”"*S")~Z. Let f:S"——> S”xS” be a map which represents

4) As usual, we denote Hi(K(w, n); G) by Hi(w,n; G) simply.
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a generator of m,(S"%S"), and let k[ p] be a field of characteristic p. Then, for the
homomorphism fy: H;(S"; k[p])—> H;(S"xS"; k[ p]), we have from (1.1) that
i) if # is odd, fy is isomorphic onto for any i and any p=k2, ii) if # is even, fy is
isomorphic onto for any {< 2% and any p==2. Thus the following result is obvious
from the generalized J. H. C. Whitehead theorem due to J-P. Serre [9]. (See also
[61)%

(2.2) If n is odd, then m;(S"xS"™) is finite for any i=Fn, and C(m;(S**S"), p) =~
C(m;(S™), p) for any odd prime p, wheve C(m, p) denotes the p—primary subgroup.
If n is even, the same properties are true for i < 2n—2.

Let p: S”XS”"—-> S"”%S” be the projection (i.e. the identification map), and let
f: 8§"—> S"%S” be a map defined by

F) =p(yxy) = p(3xy), yeS”

where y,€S” is a base point. Since it is obvious that fy: H,(S"; Z) ~H,(S"*S"; Z),
we see that f represents a generator ¢/, of m,(S"%S"”). Thus p is a map of type (¢y, ¢'n).
Therefore it follows from the well known theorem [13] that the Whitehead product

[¢xn, t:’] is zero. Thus we have
(2.3) [a, B]=0 for a, BEm,(S"%S").

3. Proof of (A)

Let (S"xS” n+j) (7=0,1,2, ) be the Cartan-Serre sequence of the space
S"xS” [4]. Then, by the definition, m,.;(S”%S"”, n+j) =0 for i<(j and m,;(S"*S")
~,.i(S"*%S”, n+j) for i=7. Moreover there exists a fiber space for each j such
that i) the total space is of the same homotopy type as (S”*S”, n+j), ii) the base
space is an Eilenberg-MacLane complex K(m,.;(S**S"), n+j), and the fiber is
(S"%S" n+j+1). (For brevity of the notation, we use (S”*S” n-+j) to denote the
total space of the above fiber space.) Thus we have for { <#n+2f the exact sequence

[8]:

* T
(3.1) s> H™Y (S5 S ntj+1; Z,) —> H™ (1,0 5(S" S n+7; Z,)
% ¥
LS Frs(sresn, nej; Z) - HM(SS™, nait1; Z),
where p¥, i* are the homomorphisms induced by the projection and the inclusion
respectively, and ¢ is the transgression.

Throughout this section, we assume that # is sufficiently large (for example
n=13).

I) Let =0 in (3.1), and consider the homomorphism p*: H"*¢(x, (S"+S"),
n; Z,) —> H™(S"%S" n; Z,). Since m,(S"*S™)~Z, if we denote by u the generator

5) We assume throughout this paper that #»>2.
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of H"(n,(S"*S™), n; Z,), then we see from (1.3) that H*(m,(S"*S™), n; Z,) has
a base
u, Sq*u, Sq*u, ---, Sq°u, Sq*Sq*u, -+,

3.2
3-2) Sq*u, Sq''Sq*u, Sq*°Sq*u, Sq¢°Sq*u ,

in dimensions <#-+13. On the other hand, since (S”%S”, n) =S”*S"”, we see from
(1.2) that H*(S"xS”, n; Z,) has a base

(3.3) v, Sq*v, S¢*v, ---, Sq**v, Sq"v

in dimensions < #+13, where v is the generator of H”(S"*S"” n; Z,). Furthermore,
since H*(S"%S", n+1; Z,) =0, p* is onto in dimension %, and so we have p*u =uv.
Thus we see from (3.2) and (3.3) by making use of the naturality of Sg? that

(3.4), p* is isomorphic onto for <5, and
(3.4), p* is onto for i <13.

Then it follows from (3.4), by the generalized Whitehead theorem that pu:
C(mpi(S"xS™), 2) —> C(muyi( K(mwa(S"%S™), n)), 2) is isomorphic onto for i <4, and
so we have

(3.5) Clmni(S"%S™), 2) =0 for 1<i<4.

Let N, be the kernel of p*, then (3.1) and (3.4), imply that : H™?*1(S"%S”
n+1; Z,) —> N, is isomorphic onto for 7<,13. Furthermore we see from (1.2) and
(1.4) that N, has a base

Sq¢*Sq*u, S¢*Sq*u = Sq*'Sq'Sq*u, Sq¢°Sq*u = Sq¢*Sq'Sq*u ,

Sq'Sq*u = S¢*Sq*Sq*u, Sq°Sq*u = Sq*Sq'Sq*Sq*u ,

Sq®Sq*u, Sq'Sq¢*u = S¢*Sq*'Sq*Sq*u, Sq¢°Sq¢*u = Sq*Sq*Sq*u ,
(3.6) Sq¢®Sq*u = Sq°Sq*u+Sq*Sq*Sq*Sq*u ,

Sq*°Sq*u = Sq*Sq®Sq*u+Sq°Sq'Sq*Sq*u, Sq°Sq*u = Sq°Sq*Sq*Sq*u

Sq®Sq*u, Sq¢*'Sq¢Pu = S¢*Sq¢®Sq*u, Sq“°Sq¢Pu = Sq*Sq*Sq*Sq*u ,

Sq°Sq*u = Sq'Sq®Sq*u .

Let ¢ (dim a=n+5), b (dim b=#+9) and ¢ (dim c=#n+11) be the elements

such that
ta = S¢*Sq*u, b = Sq¢*S¢*u, vc = Sq*Sq*u
respectively. Then, since 7Sg? = S¢ir, it follows from (3.1) and (3. 6) that H*(S"*S”,
n+1; Z,) has a base
a, Sq'a, Sq’a, Sg’a, S¢*Sq'a,
3.7 b, S¢Sq*a, Sq'b, Sq'b+Sq‘Sha,
Sq*b+Sq°Sq*a, Sq¢°Sq*a, c¢, S¢*b, Sg*Sq'b, Sqg'c

in dimensions <n+12,
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We have from (3.5) that H*(mu4;(S"%S™), n+j; Z,) =0 for 1<{j<4. Therefore
it follows from (3.1) for j=1, 2, 3 and 4 that

H*(S"%S" n+5; Z,) ~ H¥S"*S", n+1; Z,)

in dimensions < #+12, under the composition of the inclusions and homotopy equi-
valences. Thus we may consider (3.7) as a base of H¥*(S"*S" n+5; Z,) in dimen-
sions <n+12. Especially we see that H"*(S"%S”, n+5; Z,) ~Hom (H,s(S"*S7,
n+5), Z,)~Z,, and so we have C(H,.(S"*S”, n+5), 2)~Z, for some r_>1.
However, since Sq'a¢=+0, » must be=1. Thus we obtain by the generalized Hurewicz
isomorphism [9] that C(mu.s(S"*S” #+5), 2) &~ C(H,ys (S"%S” n+5), 2) ~Z,.
Namely we have

(3.8) C(mpys(S"xS"), 2) =~ Z,.

II) Let j=5 in (3.1), and consider the homomorphism p*: H™ ¥ (m,..;(S"*S"),
n+5; Z,)—>H" 1 (S"%S” n+5; Z,). Then it follows from (3.8) that H"™ ?(7,.,.s(S"*S"),
n+5; Z,) ~H"*(Z,, n+5; Z,). Therefore if we denote by a the generator of
H"(7,,.5(S"%S"), n+5; Z,), we see from (1.3) that H*(m,s(S"*S"), n+5; Z,) has
a base

a, S¢'a, S¢a, S¢a, S¢*Sq¢'a, Sq¢*a, S¢Sqa,
(3.9) S¢°a, S¢*Sq*e, Sq°a, S¢°Sq'e, Sq'Sq*a, Sq'a, S¢°Sq'a,
S¢°Sq*a, Sq*Sq*Sq'a .

in dimensions <#+12. Since p* is onto in dimension n+5, we see p*a=a, and so
p* is isomorphic onto for i <#n+8. Thus, by the similar arguments as in the proof
of (3.5), we obtain
(3.10) C(mpi(S"%S"), 2) =0 for i =6 and 7.
We have by (1.4)
5S¢ = S¢iSqtSqPu = S¢*Sq'Sq*Sq*u = tSq¢*sqla ,
p¥SgPa = S¢°S¢*Sq*u = Sq'Sq"Sq*u =0,
7 p*Sq%a = Sq°Sq*Sq’u = Sq'Sq'S¢*Sq'u =0,
Tp*S¢ Sq?a = Sq*S¢?Sq'Sq*u = Sq¢°Sq'Sq*SqPu+ Sq*Sq*Sq*u = v(Sq°Sq*a+ Sq*h) ,
Tp*Sq'a = Sq"Sq*Sq*u = Sq'Sq°Sq'Sq*u =0,
p¥Sq*Sq'a = S¢*Sq'Sq*Sq*u = Sq*Sq°Sq*Sq’u =0,
Tp*¥S¢°SqPa = S¢PSq*Sq*Sq’u = Sa*Sq*SqPu = tSqh ,
p¥Sq*Sg?Sq'a = Sq*Sq*Sq*Sq*SqPu = Sq'SqPSq*u-+ Sq>Sq'SqPSqPu=1(Sg*Sq'b+ Sq*c) ,
and 7 is isomorphic into by (8.4),. Therefore it follows from (3.7) and (3.9) that
the kernel N; of p* has a base &

Sq¢ta+S¢@Sq*a, S¢°a, Sq*a, Sq'a, S¢*Sq'a

in dimensions <#+12, Since p* is onto in dimension #+8, we see that v: H"*%(S"xS”,
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n+6; Z,)~N;. Let y be the element such that
7 = Sq*a+S¢*Sq'x .
Then, since we have by (1.4)
wSq'y = Sq'Sq*a+Sq'S¢*Sq*a = Sg°ar |
=S¢’y = Sg*Sq*a+Sq¢*S¢*Sq*a = S,
5S¢ = Sq'tSq*r = Sq'a,
S¢?S¢'y = Sq*tSq'y = S¢*S¢°a =Sq°Sq'a ,

it follows from (3.7) and (3.9) that H*(S"%S", n+6; Z,) has a base
(3.11) r, Sar, ¥, S¢r, Sq¥, S¢r, S¢’Sq'r, Sg'c =S¢"Sqt

in dimensions <#n+11, where ¥ =i*(d) and ¢’ =i*(c). We have from (3.10) that
H*(7,,;(S"%S™), n+j; Z,)=0 for j =6 and 7. Therefore if we consider (3.1) for

j=6 and 7, we have under a natural map

H*(S"%S" n+8; Z,) ~ H¥(S"%S", n+6; Z,).
Thus we may consider (3.11) as a base of H¥*(S"*S” n+8; Z,) in dimensions
<n+11. Especially H***(S"*S", n+8; Z,)=~Z, and Sq¢'y==0, and so we have
(38.12) C(myss(S"xS™), 2) = Z,,
by the similar arguments as in the proof of (3.8).

M) Let =8 in (3.1), and consider p*: Hi(m, ,s(S"*S"), n+8; Z,) —>
Hi(S"+S" n+8; Z,). Then it follows from (1.3) and (3.12) that H*(z, (S"*S"),
n+8; Z,) has a base
(3.13) v, Sqv, Sq¢*, Sq¢®, Sq¢*Sq'v

in dimensions < #+11, where v is the generator of H"*%(m, . 4(S"%S"), n+8; Z,).
Since p* is onto in dimensions #+8, we have p*v =y, and so it follows from (3.11)
and (3.13) that p* is isomorphic onto in dimensions <#%-+8, and is isomorphic into
in dimensions <#+11. Thus we see from (3.1) that H*(S"*S"” n+9; Z,) has a
base

v, Sq'b”
in dimensions <#n+10, where b”=*(b") € H**°(S"*S"”, n+9; Z,). Then we have by
the same arguments in the proof of (3.8) that
(3.14) C(rpro(S"xS™), Z)) = Z,.

Since C(mn::(S™), p)=~Z, for i =3, 7 and p=3, =~Z, for i =7 and p=>5, and
is zero otherwise for <9 and any odd prime p [13, 147, our main result (A) follows
from (2.1), (2.2), (3.5), (3.8), (3.10), (3.12) and (3. 14),
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4. Reduced complex M/,

Let €5 (i=1,2, -+, s) be s disjoint 7—cells, and let fi: (&%, ) —> (X, x,) be
s maps of the boundary ¢;’ in a 1-connected space X, where y; € é;° and x,€ X are
base points. Then we shall denote by {XUel'U--Ues; fi, -, fs} a space
obtained by identifying each point y € &i° to fi(¥) € X in the union X Uet* U - U €5°.
Let E” be the r—cube in the Cartesian space, and let g;: (E”, E7, 2,)—> (ei’, &1, 9:)
(i=1, 2, ---, t<s) be maps such that Zi:lin(gilE’) is null-homotopic, where
2,=1(0, 0, ---, 0) and > denotes the addition used in the usual definition of homotopy
group n,(X, x,). Then we can construct a map % of an r-sphere E™'=S" in
{(XUer*U--Ues; i, -, fs} as follows :

Let & (i =1, 2, .-+, t) be t disjoint 7-cells in S” which have a single point 2,
in common, and which are oriented in agreement with the orientation of S”. Define
first & in E:? by k& =gio& (i=1, 2, -, t), where &: (&%, &) —> (E’, E") is
a homeomorphism of degree 1 Then it follows from our assumption that 7| &)
of a singular (7 —1)-sphere U§=1é§ in X is null-homotopic in X. Choose now such
a null-homotopy arbitrarily, and define % in S"— U%-; Int & by this null-homotopy.
This completes the definition of 4.

In the following, a map obtained by such a construction from g, g,, ==+, & will
be denoted by < gy, &, -, & X >.

As for spherical maps, we use the following notations: ¢ ; S"——>S" (r=1) is
the identity; %,: S™'——>S"(r>=2) and v,: "7 ——> S"(r2>4) are the iterated
suspensions of the Hopf fiber maps 7, and v, respectively. Let 0,: m,+, ("™, &"*")
~m, (&) be the homotopy boundary, then we refer to maps in the homotopy classes
07Yer}, O7hi{ns}t and 07%{v,} as tyu1, Tryy and Dy, respectively.®

Until the end of this section, we assume that #->7. Consider the following
(n+k)-dimensional cell complexes Mk (k=1, 2, ---, 7) defined inductively by

Mi=s",

Mg ={M3Ue™ 5 w,},

ME=AMRU "™ ; <20,4,|S" >},

My =M} U e™ ; 3u,},

M5 = {Mz\Ue"®; <20, Tusl ME>Y,

MG = M3 U™ < 3,44|S" >},

M =A{M3 U e*" 5 < 20,6 Ni>},”
where N} is the subcomplex {S"Ue"*; 3v,} of M4 The justificatian of above
definitions follows from

6) Let f: S"—X, then {f} denotes the element of 7,.(X) containing f.
7) It can be easily seen that the homotopy type of M} does not depend on the choice of
null-homotopy in the definition of identification map.
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(4.1) 1) 2{n,) =0 in S i) {<20,4]S" >0 puuay = £6{v,} in Mg, iiD)
{(30,) © Dpaat =0 in S™, iv) {<Gpuaa Nt >0 245y =0 in N3,

In fact, i), ii) and iii) are well known (See [13]). In the notation of H. Toda,
we have < 20,-51S" >0 %y15€ {Wns 2nt2, Busz}-) 1v) is obtained as follows: Consider
the homotopy exact sequence of pair (N#, S™), then it follows from m,.,(S™)
A~ 1p45(S") =0 that m,45(N2) =n,45(Ns, S*) under the inclusion map. This and
Taes(NE, S")=~Z, imply iv).

Let M, be a 2n-dimensional cell complex such that i) the (#-+7)-skelton of M

is M7, ii) m(M;) =0 for n+7<i<2n (Such a complex does exist). Then we have

4.2) m,(Mp)=Z, w(Mp) =0, mpu(M) =0, mps(M)~Z;, wp(Mp) =0,
Tpis(Mp) = Z, pis(Mp) = 0.

(4.3) Let ¢: S"™—> M} be the identity map, then w,.s(M;) is generated by {tov,}.
Tars(M}) is generated by {<Vys,|S">1.

4.4 7ps(MR)~Z,+Z, and is generated by {<V,2|S" >} and {<7,+,|S">}.

These can be proved by the similar arguments used in the proof of (8.4) in [7].
Therefore we will note here only the principle and basic tools used, and omit to
record the complete calculation.

Since m,4;(S") (1<6) is well known (see ii) below), starting with m,.;(M}),
we determine m,,,(M}]) inductively with respect to i and j by making use of the homo-
topy sequence of pair (M7, M. In this consideration, the following i) and ii) play
essential roles: i) Let f: (E™Y, E™3)—> (Mj, M=) be the characteristic map of

the cell ¢**/, then fi is isomorphic onto for i<#+j—3 in the commutative diagram

. 0 .
Ty (E™, E™Y) — w0 (E™Y)
| 7 | crigmo.

J j—1 0 J-1

7Tn+i(Mn7 Mn ) e n'n+i—1<M'n )
[7]. i) 7, (S =Z,, 7,1, (S =Z;, T,1:(S") = Zyy, T,u16(S”) = Z, ; they are generat-
ed by {7n}, {8 ° 1}, {¥u} and {v, o v} respectively ; m,4,(S") = m,45(S") =0. [13].
If we take in consideration that the homotopy boundary of any (#-+8)-cell of

M, is in M§, the following can be easily proved [7].

(4.5) H(Myp; Z2)~Z for i=n, =Z, for n+3, n+5 and n+7, and vanishes for
other i<n+7

(4.6) Let {¢"t € H*(M;; Z) and {"7} ¢ H"/(M}; Z) (j =3,5and 7) be generators,
then we have

Sgi{e"t ={e™}  (j=3,5 D,
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(We may consider S¢/ with respect to the integer coefficient, because j is odd [117].)
Let K be any cellular decomposition of S"#S” and K™ its (n+j)-skelton.
Take a map f: K"*'—> M§ such that

(4.7 ey ={a},
where {a} € H*(K; n,(MS)) and {&"} € H*(MS; x,,(MS)) are generators. It is well
known that such a map exist. Then we have

(4.8) f can be extended to a map F: K"+ —> M.

This is proved as follows: Since 7, ;(MS), mp,(MS) and =, ,(MS) are trivial
from (4.2), and since H"**(K; n,;(M$))~Hom (H,.,(K;: Z), Z;)+Ext
(H,+s(K; Z), Z,) =0 from (4.2) and (1.1), it follows from the classical obstruction
theory [11] that f can be extended to a map f: K"*5——>M$¢. Consider now a

new cell complex
L={MiUe""*"; <Vn|S">}.

Then we have m,5(L) =0 from (4.4), and so 7 has an extension f’: K"+6—— L,
Thus, for the obstruction {c¢”*( 7)} € H*+*(K, m,4s(MS)), we have [11]

(4.9) {cmr ()} =f* e (B},
where k: L""5—— MS$ is the inclusion. It is obvious from the definition that {c"*°(k)}
is represented by a cocycle which takes 0 on ¢”*® and takes {< V,1,|S" >} on %5,

Therefore if we define
Sq¢*Sq* : H™(X; ma(M$)) —> H"**(X; mnis(M5)),

(X=L or K) using the unique non-trivial homomorphism of w,(M$) to mus(M3),
then we have
(4.10) {c"*e(k)} = Sq'Sq*{e"} .
Thus it follows from (4.9), (4.10) and (4.7) that
{c™+e( f)} = Sq'Sq*{a} .

However it is seen from (1.2) that S¢*S¢?{#} =0 in K. Therefore we have {¢"+°(f)}=0,
and so f has an extension ,F: K"%—— M. Since muis(M%) =0 from (4.2), ]% has
also an extension f: K"+"——> M. This completes the proof of (4.8).

Since (M) =0 for n+7<i< 2n by the definition, and K is 2#-dimensional, 7
can be extended to a map g: K——> M,. Let u€ H"(K; Z) be the generator, then
it is obvious from (4.7) that g*{e"} =f*{e"} =u. Therefore it follows from (1.2)
and (4.6) by the naturality of S¢¢ that g*: Hi(M,; Z)—> Hi(K; Z) is isomor-
phic onto for i =m, n+3, n+5 and n+7. Furthermore, since Hi(M,; Z) =H!(K; Z)
for i<n and for i =n+1, n+2, n+4 and #+6, we conclude that g*: Hi(M,; Z)
—> Hi(K; Z) is isomorphic onto for i <#z+7. Thus, in virtue of the well known
theorem [15], we have
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(4.11) S*xS" and M), is of the same (n+6)-homotopy type. Especially we have
mi(S*"%S") ~m;(M}) for i <n+6.

This together with (4.2) proves (A) for i <n+6.

5. Supplementary remark

D (5.1) S"xS"(2<n<5) is of the same homotopy type as a reduced complex
M, defined as follows: L,={S*Ue*; 3}, Ly={EL,Ue°; < 2¢;|S*>}, Ly={EL;U¢*;
vitw}, Ls={EL,Ue"; <2, 7,]{S° Ue"; 95} >}, where EL; is the suspended space
of L;, and w, is the suspension of a map S°——>S® introduced by Blaker-Massey.

In fact, since S**S? is the complex projective plane, i) and ii) are a direct con-
sequence of the cellular decomposition of S”#S” due to Steenrod. Thus S*#S* is of
the same homotopy type as {EL;\e®; g} with a suitable map g. However, since
n,(ELy) ~Z+Z, and is generated by {v,} and {w,} [13], we may assume that

{g} = L{v} +1L{n}

with some integer /; and some integer /, mod 3. We saw in (2.3) that [¢, ¢,]=0
for the inclusion map ¢,: S*——>S**S* and know [10] that [¢,, ¢, ]1=2{v,} —{w,}.

Therefore we must have
2{v} —{o} = k(L {v} +{o))

with some integer k, and this implies that {g} =4 ({v,} +{w}) or +(C2{v}—{w}).
If the latter holds, we have the cup product of the generator of H*(S*xS*; Z) with
itself is 20%, where v®€ H3(S**S*; Z) is a generator. This contradicts (1.2). Thus
we may take y,+w, in place of g. This proves iii). iv) is obvious. (Note that
E({v} +{o}) =3{ys}).

The homotopy group of S”*S*(2<_n<5) can be calculated by making use of L,,.

For example, we have easily
(5.2) (S S~ Z,

II) Recently H. Cartan [3] has given the structure of H*(Z, n; Z,) and
H*(Zy, n; Zp) for any odd prime p by making use of the reduced cyclic power and
the Bockstein homomorphism. On the other hand, S. D. Liao explained the cohomology
structure of the p-fold cylic product ¢},, of an #m-sphere (See especially (5.4) and
(9.7) in [5]). If we apply these results, we can obtain the results with respect to
the homotopy of ¢, by the arguments similar to those in above sections. For

example, we have

(5.3) Let p be an odd prime, and let n=2p+2. Then C(m;(D,p), p) = Zy for
i=n+2j (j=1,2, -, p—2) and n+2(p—1) +1, and vanishes for other i <n+2(p-1).

III) Let Y be the (#n—1)-fold suspended space of the real projective plane.
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Namely Y is a cell complex S”Ue"*! such that ¢”+! is attached to S” by a map of
degree 2. Then the Stein’s formulas [12, p. 582] give the integral homology groups

of the symmetric product Y*Y as follows:

(5.4) H(Y*Y; Z)~Z; H*"*i(YxY; Z)~Z, for i=0, n+1 and 2<i<n—-1,;
H,(YxY; Z)=~Z, for even n, =Z, for odd n; H(Yx*Y; Z) =0 for other i.

Thus the cohomology group H™(YxY; Z,) is Z, for i =0, 1, 2 and #+2, and
is Z,+Z,for 3=i<m+1. Leta be the generator of H*(Y*Y; Z,). Then we have

(5.5) We can take as a base of H¥(YxY; Z,) the following: Sqgia(0<i<n),
Sq¢iSqra(2<Li<n+1) and a\USq* a. Furthermore we have the velations:

SqiSqgit'a = ({) Sqititia + ({‘%) Sqi+iSqta ,

SqiSqi+'Sq'a = (g ) Sqiti*'Sq'a, (Gj=1).

Applying the methods similar to those by which R. Bott [2] gives a proof of
(1.2) in this paper, (5.5) can be proved easily. (The basic tools of this method
are the Smith-Richardson sequence and the Theorem 2 in [2]).

Now we can calculate the (stable) homotopy groups 7m;(Y*Y) for i<2xn—2 by
the method explained in §3. The results are as follows :

(5.6) m(Y*xY)=0 for 0<i<m n+1<i<n+4 and n+7.
ni(Y*Y)~Z, for i =mn, n+5, n+6 and n+8, and n,., Y*Y) is not cyclic.
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