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Introduction. This paper is devoted essentially to two main subjects lying in 

the study of involutive Banach algebras; the first is an investigation about the positive 

boule of the dual space, while the second is the gener<~l Banach representation theory 

of Banach algebras, the greater part of whose interest however might be found in 

connection with the group algebra of a locally compact (abbrev. LC) group. 

Here the positive boule is a regularly convex subset of the dual unit sphere 

consisting of positive linear functionals; in the case of a real commutative algebra 

possessing the unit of norm 1, it is well known that the positive boule coïncides 

with the weakly closed linear convex hull of all multiplicative linear functionals, 

Propositions K and Kbis. 

In Chapter II, these circumstances are extensively investigated in more general 

situations, where the algebras are assumed throughout to be over the complex field, 

not necessarily commutative, and without unit but with the approximate indentity. 

Thus Theorem 2 is the most general form of the above fact, Proposition Khis, and 

under sorne additional conditions, œ) and {3) in § 5, this result is made more precise 

of in Theorem 3, while Theorem 4 determines the complete structure of the positive 

boule. 

Although these results have their own interests, one may easily and directly 

reproduce them in the theory of topological groups, e.g. the representation theory or 

the analysis of positive definite functions, without considering the underlying groups. 

Therefore, our theorems would be considered as a generalization of the group repre­

sentation theorem. 

Chapter I is a basic preliminary ; above all Theorem 1 plays an important rôle 

in later discussions in respect of the real restriction method. 

Chapter I. Preliminary study of the functionals 

on B-algebras 

1. Preliminaries about B-algebras. We shall recall sorne fundamental notions 

and fix our notations at first. Let R or K be the real or complex number field 

respectively. 

A(S) is a Banach algebra (B-algebra) over the scalar field S which is either R 
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or K; if A(S) has an algebraic unit 1 with norm 1, we say A(S) to be unitary. 

If A( S) bas an approximate identity {vÀ} such that avÀ -7 a and vÀa -~a ( uniformly) 

in A(S), yve call A(S) semi-unitaryC'l. 

An involutive (or self-adjoint) B-algebra (B*-algebra) over S is a B-algebra 

which admits such a *-operation that is a conjugate linear, involutely, anti-automorph­

ism of A(S).c2J Further if a B*-algebra A*(S) bas the norm condition 

(1. 1) Il aa* Il = Il a Il • Il a* Il , 

A*(S) is called a B*-algebra over S: it bas sometimes a stronger norm condition, 

Il aa* Il= li a 11 2 ; in the case, it must be Il a Il= Il a* Il csJ. 

If A*(S) is commutative, it is easily proved that the latter norm condition is 

equal to (1. 1). 

Throughout this paper, we shall assume A(S) or A*(S) to be over K. i.e. S=K, 

unless otherwise specified by adding the term "real" : then we abbreviate sometimes 

A(S) (or A*(S)) to A (or A*) only, if there is no confusion. 

An element a with a= a* is called hermitian (or self-adjoint) and the collection 

of all hermitian elements in A is called the hermitian kernel of it, denoting by HCA*). 

It is easy to see H(A) being a B-algebra (necessarily over the reals R), if and 

only if A is commutative; in other words, a commutative real B-algebra is charac­

terized by a B*-algebra A* with A*=H(A>f.), and if it forms moreover a B*-algebra, 

it is essentially a continuous function algebra C(X) on a compact XC4l. 

If A; is unitary, unit must be hermitian. 

Proposition 1. Denoting by DCA*) the subset of H(A*) consisting of all such 

elements as in the form h*h, hE A*, every product ab in A* may be written as follows; 

(1. 2) 

for dk E DCA*), and if A* is semi-unitary, A* is uniformly approximated by the 

complex linear envelope of D(A*}. 

In fact, (1. 2) is easily deduced, putting dk=hk*hk and hk= ~ (f*-1 ( -i)k-'g) 

for k=1, 2, 3, 4: the rest is somewhat manifest. 

As mentioned above, H(A*) is not always an algebra, but there exist two definable 

manners of introducing products in it, that is, 

Proposition 2. H(A*) is a special Jordan and besides special Lie algebra with 

respect to the products; 

1) It should be noticed that the word "unitary" or "semi-unitary" is sometimes used in 
different senses ; e.g. see ]. Diximer [2]. 

2) That is ; (œa-1-b)*=Œa*+b*, a**=a, (ab)*=b*a*. 
3) For example, C. Rickart, Banach algebra with an adjoint operation, Ann. of Math., 47 (1946), 

pp. 528-550; I. Kaplansky, Normec algebra, Duke Math. ]., vol. 16 (1949), pp. 339-418. 
4) R. V. Kadison [4], Theorem 6. 8; S. Matsushita, [6] Theorem 4. 
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(1. 3) 1 
a ob== 2 cab+ba) 

and 

(1. 4) [a, b] ==(ab--ba) (special Poisson's product) respective/y. 

The former is always commutative, distributive, but not associative, while the 

latter skew-symmetric, distributive, and satisfies the Jacobi's equality 

[a, [b, c]]+[b, [c, a]]+[c, [a, b]] == 0. 

Then H(A*) is a non-associative real normed algebra with respect to the product 

(1. 3), satisfying usual norm condition 

(1. 5) Il aob [[<Il a [[ • Il b [[ 

and a o a== a2 • If A* is semi-unitary, it is clear that v~<. o a== a o v~<.--~> a for every 

a E H(A*) no matter when the approximate identity {vi<.} is in H(A*) or not. 

If an approximate identity is wholly contained in H(A*), it is called an hermitian 

approximate identity; for example, this is the case when Il a* Il== Il a [[ for every a 

of A*. 

Proposition 3. In H(A*), every ]ordan product a ob may be written in the form; 

(1. 6) fog == ~ [d,+d,'-(d3+d/)J, 

d;, d/ E DCA*), so that if A* has an hermitian approximate identity, H(A*) is 

uniformly approximated by the real linear envelope of D(A*). 

According to the decomposition (1. 2), assume now ab=='ij ik-'dk and ba=='ij ik-'dk'; 
le ' ~ 

then by simple calculation, we have 

ik-l(f + ik-l. g)(f + (- i)k-1. g) + ik+l(J + ik+l. g)(f + (- i)k+l. g) == 0 

for k==2n, so that 

id2+ ( --i)d.' =id/+( --i)d. = 0, 

from which follows (1. 6). 

The set of all w such that w==[a, b] for all pairs a, b in HCA*) is denoted by 

W(A*). 

2. Functionals on B*~algebras. To study the functionals defined on B*-algebras, 

the following symbolical conventions are adopted: 

r( ·)=the dual space of a normed vector space ( ·); r(A) and r(H(A*)) are 

mainly considered. re·) is over K or R, according to ( · )'s circumstances; for 

example r(A*) is over K, while T(H(A*)) over R. 

E(A*)=the sub-space of T(A*), over R, whose elements are characterized by 

(2.1) ({J(a*) = ({J(a) for every a E A* . • 

ll(A*)=the convex subset of T(A*), whose elements called positive functionals, 

are characterized by the property ; 
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(2. 2) ~.p(a*a);?: 0, i.e. ~.p(d) :=:;;; 0 for every dE DCA*). 

IP(A*) =the set of all multiplicative linear functionals; 

(2.3) ~.p(ab) = ~.p(a)~.p(b). 
A 

TI(A*)=Il(A*) n E(A*), which is clearly a convex subset of TI(A*). 
A 

IP(A*)=IP(A*) n E(Aù 

As immediate consequences of the definition, we hold 
A A 

i) IP(A*)CTI(A*) (bence Cll(A*)), ii) if aEH(A*), then ~.p(a2)>0 for every 

l.fJ E Il(A*). 
A 

Lemma 1. (generalized Cauchy-Schwarz's Lemma) If 1.p is in TI(A*), we have 

(2.4) ll.fJ(a*b) 1 2 = ll.fJ(b*a) 1 2 < ~.p(a*a)~.p(b*b) . 
In fact, for an arbitrary œ in K, we hold ~.p(œa+b)*·(œa+b))=lœl 2 1.fJ(a*a) 

+œ~.p(a*b)+ü.i.p(b*a)+l.fJ(b*b);?:O: if ~.p(a*a)=O and ~.p(a*b)=FO, we may put 

a (real)<--~.p(b*b)/21Jt(~.p(a*b)) and geta contradiction; if ~.p(a*a)=FO, putting 

a= -~.p(b*a)j~.p(a*a), we can easily obtain (2. 4). 

Now denoting the zero functional by 0, which is evidently contained in ali the 
A A 

classes enumerated above, we shall make use of T 0 , TI0 , IP0, etc. instead of r --0, 
A A 
II -(1, 1])- 0, etc. respectively. 

Proposition 4. For any 1.p E T(A), the set 'lep. lep', or lep, dejined by 

'l"' = {a; ~.p(œa+xa) = 0 for every x of A} , 

!'"' = {a; ~.p(œa+ax) = 0 for every x of A} , 

l"' = {a; ~.p(œa+xay) = 0 for every x, y of A} , 

where a being an arbitrary number of S, forms a closed left, right, or two-sided ideal 

of A(S) respectively; further if 1.p is in E(A*), then 'l"' *=l'"' and lep is self-adjoint, 

i.e. I"'*=l"'. 

If l.fJ E T 0(A), these ideals are proper. 

Proposition 4bis. Analogously as above. 1.p being in F(A), the set 'j"', l "'' or f"', 
dejined by 

'i"'= {a; ~.p(xa) =0 

l''~'= {a; ~.p(ax) = 0 

J"' = {a; ~.p(xay) = 0 

for every x of A}, 

for every x of Al, 

for every x, y yof A}, 

forms respectively a closed le{t, right, or two-sided ideal of A, tao. The assertions 

mentioned in the latter half of Proposition 4 are also valid for these ideals, except 

the last assertion. 

The proof follows immediately from the definitions themselves. As a matter of 

course, 'l"'C'lcp, l'"'cl'"', IcpCf"'; but we shall make a further remark: 

Proposition 5. If A is semi-unitary, or especially unitary, these two kinds of 

ideals must be identical; that is, 'lcp='icp, I'cp=l"'' and l"'=l'P. 
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Proposition 6. For any cp E ll(A*), the quotient E-space A*/' lep (or A* ;.lep) 

jorms a pre-Hilbert space with the inner product; 

(2.5) (Xa, Xb)cp = cp(b*a) (or =cp(ab*)), 

where Xa is an element of A*/'Jcp (or A*/I'cp) 'which contains a of A. Completing 

A*/'Jcp (A*/I'"') by the norm Il Xa [[cp= (Xa, XaW 2, we have Hilbert space 'Hep which 

contains the dense subspace A*/'lcp (or resp. H'cp). 

By the same reasoning, for a two-sided ideal lep, the completion of A*/ lep with 

respect to the norm Il • Il cp forms a Hilbert algebra. Owing to Proposition 5, if A* 

is semi-unitary, 'lep ctcp, or ]cp) may be replaced by 'lep (l'cp, or lep). 

To prove this proposition, we have only to prove that Il Xa [[cp=O if and only if 

aE'lcp (or resp. El'~p); indeed, aE'Icp implies cp(a*a)=llXallE=O and conversely if 

cp(a*a)=O, cp(b*a)=O for ail b in virtue of Lemma 1. 

Proposition 7. For any cp E (b0 (A), the set 

(2.6) lep = {a; cp( a) = 0} , 

forms a maximal two-sided regular ideal, for which A/ lep is isomorphic to the scalar 
1\ 

field S of A(S). If A*(K) is considered, then (b0(A*) =@0(A*). 

Here, the notion of regularity in ideals follows a costomary manner ; that is, a 

left (right, or two-sided) ideal is said to be regular if there exists such an element 

u, cailed right (left, or res p. two-sided) identity modulo the ideal, that au- a (ua-- a, 

res p. aub- ab) in the ideal for every a, b in the algebra. 

We shail now prove the above Proposition: but the first half is somewhat trivial, 
1\ 

and to prove @0 (A*) = @0(A*), we need only to show @0(A*) c 5'0 (A*). For this 

purpose, we prepare 

Lemma 2. If u is a (two-sided) identity modulo lep, then cp(u)=cp(u*)=l. 

In fact, u*u--uElcp implies that (u*u-u*)*=u*u-uElcp*=lcp, so that u*-uElcp 

or equivalently cp(u*)=cp(u), which must be equal to 1 from A/lcp~K. 

Proof of @0(A*)C5'0(A*): Putting z=cp(a) (EK), zu-a is in lep, and so 

(zu-a)* =.Zu*-a*, from which it holds cp(a*) =Zrp(u*) =.Z=cp(a). This completes 

the proof of Proposition 7. 

Remark I: The iverse problem of Proposition 7, which will estima te profoundly 

the existence of non-trivial (i.e. '*IJ) multiplicative functionals, is solved in such a 

manner that if lep is a two-sided regular ideal which is maximal as a left as well as 

right ideal, then rp E (b0(A). 

Remark II: Owing to the latter half of Proposition 7, in the case of B*-algebras 
1\ 

there needs no distinction between (b and (b at ail. 

3. Functional on H(A*). We shail begin with sorne notations: T(H(A*)) 

is the same as mentioned above, l3 2. 
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ii(H(A*)) =the convex subset of r(H(A*)) consisting of all such functionals ip 

defined on H(A*) ; 

(3.1) 

iP(H(A*)) =all of multiplicative linear functionals with respect to the product 

(1.3), i.e. ~p(aob)=~p(a)·~p(b), vanishing on W(A*). 

Then we can establish; 

Theorem 1. i) In a B*-algebra A*(K), any functional of r(A*) is entirely 

determined on H(A*). ii) Especially, we have 

a) 

[3) 

r) 

E(A*) = r(H(A*)) , 
1\ -
Il(A*) = Il(H(A*)), 

m(A*) = @(H(A*)) , 

where .d(A*) = l(H(A*)) means that .:1 and lare topologically isomorphic one another 

withe respect ta the weak topologies (w*-topology) as functionals in respective dual 

spaces, r(A*) and r(H(A*) ), in such a fashion that if èJ3 .,__, ifJ for èJ3 E .J, ifJ E J, then 

(3.2) (a+a*\ (a-a*) cp(a) = ijJ ~2-; +ièj! .-----zt _ 

Proof of i) is immediate; if cp coïncides with cJ; on H(A*), both of which being 
- - - a+a* a-a* in reA*), then cp(a)=êp(s)+iïp(t)=c/J(s)+icJ;(t)=c/J(a), wher(' s=-2- and t=-----zz 

Proof of ii) : a). Since ip, cp E E(A*), is real on H(A*), the restricted èj3 of 1p 

on H(A*) is in r(H(A*)); conversely, any extended 1p of êp, èj!Er(H(A*)) by the 

relation (3. 2), is clearly contained in E(A*). The algebraic isomorphism between 

them is somewhat trivial, but the topological one shall be proved afterwards in a lump. 
1\ 

[3). We shall first prove that each functional of Il(A*) becomes an element of 

Îi(H(A*)). For the decomposition a:=:s+it as above, we have 

(3.3) 

1\ 

{ a*a = a2 +f2 +2[s,t] 

aa* = s2 +t2 --2[s,t], 

so that if rp is in Il(A*), rp(s2)+rp(t2 )::?:2rp([s, t]) and -2rp([s, t]), from which the 

inequality (3.1). The converse assertion is also clear on account of (3. 3). 

r). For rpE @0 (A*), it is easy to see that the restricted èj3 is also in iP(H(A*)), 

since èj!([a, b]) =ii (rp(ac)--rp(ba)) =0. Thus, it is sufficient to prove that every 

èj3 E rfi(H(A*)) is extensible to the whole A* preserving its multiplicativity. 

Let rp be the extension of èj3 as in the form (3. 2), them 

rp(st)-rp(ts) = 2i(rp(st);rp(ts)) = 2i·rp([s, t]) = 2i·èj!([s, t]) :=: 0, 

for every a, b in H(A*); putting a=s1 +if1 and b=s2 +it2 , a, bEA*, s1 , s2 , t1 , 

t2 E H(A*), it holds 
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{ ab: S1S2--ftfz+~· (s1i2 + i1S2), 

ba- S2S1-- fzf1 +t· Ctzs1 + S2f1), 

<p(ab) -<p(ba) == [lf!(S1S2) -<p(S2St)] --[<p(t1f2) --<p(t2f1)] 

+i[<p(stf2 ) -<p(t2St)]+f[lf!(tts2 ) --<p(S2f1)] == 0, 

that is, <p(ab)==~p(ba). Therefore, we can conclude the multiplicativity as follows; 

1 
<p(ab) = 2 (<p(ab) + <p(ba)) 

1 1 
:=: 2 [lf!(StSz) + ip(SzSl)]- 2[1f!(ttfz) --l-ip(tzfl)] 

i i + 2- [~p(sttz) + lf!Ctzs1)] +2[1f!Cftsz) +- <p(szfJ] 

== êj!(sl 0 Sz)- cp (tl o fz) +i( êj!(sl o f2 ) +- êj!(t1 ° sz)) 

= êj!(sl)êj!(sz) -- êj!(tl)Îjl(tz) +i(êj!(sl)êj!(tz) +- ëp(tl)êj!(sz)) 

= (êj!(S1)+iêj!(t1))(êj!(s2)+iêp(t2)) = <p(a~<p~b). 

7 

iii) Finally, it remains only to prove the topological equivalency of = in œ), 

{3), r): but the continuity .J__,.A is evident; in fact, for a w*-nighborhood of lf!o in 

A, Uq;0(a1 , ••• ···, an; e), ak E A*, e > 0, we see easily that the w*-neighborhood 

U;p0(Sl, ······,Sn, th,······, ln; e/1/2) of êp0 in J is mapped into U'P0, sil::ce we have 

evidently 
1 <p(ak)- lf!o(ak) 1 = 1 ( êp(sk) +- iëp(tk)) -- ( êpo(Sk) +- iêpoCfk)) 1 

= ( 1 cp( Sk) -- êpo( Sk) 1 2 + 1 êp(tk)- if5oCfk)i2) 1/ 2 

< J/e"72 + e"72 = " , 

for k=1, ...... , n. The inverse continuity A-> .J is clear, since H(A*)CA* and 

consequently the wrtopology of A is stronger than that of J. 
Thus Theorem 1 is completely proved. 

In a commutative A*, (3.1) is naturally replaced by êj!(aoa)=êj!(a2 );;:;,0 for 

a E H(A*), and @(H(A*)) is characterized by the singule condition of multiplicativity. 

Moreover if A is real and commutative, i.e. A= A* with A* =HCA*), the both 

sides of = in Theorem 1 must be identical and of course r(A) =E(A), so that the 

sign 1\ would be unnecessary. 

In passing, we shall touch on the *-operation defir_:d in r(A*) : putting 

(If!, a)= <p(a), 

we may consider it as a bilinear functional defined on the direct space r(A*) x A*: 

there exists in reA*) such an element If!* that (If!*, a:=C'i:a-)(=~p(a*)), for which 

the following properties are verified; i) (œ<p1 -f-<p2)*=iJ<p1*+1f!2*, ii) lf!**=lf!, iii) lf!*=lf! 

for If! E E(A*). 

Thus we comprehend that E(A*) is the hermitian kernel of r(A*) with respect 

to such *-operation and (rp, a) is real on the product of both hermitian kernels 

BCA*) xH(A*). 
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Chapter II. Structure of positive boule 

In the preceding Chapter, we have investigated the space of functionals defined 

on a B- (or particularly Br) algebra, but we shall now pursure the further investiga­

tion about it, correlating with ideals of the algebra or with the reducibility of 

quotient spaces (or algebras) relative to the ideals ; from su ch a stand point, the 

following well-known assertion plays a fundamental rôle in the case of a real 

commutative unitary B-algebra A, i.e. unitary A with A*=H(A*) : 

Proposition K. Denoting the unit sphere (boule) of T(A) and its surface by E 
1\ 

and S(E) respective/y, S(E)=li(A)nSCE) is a w*-compact convex subset of I'(A) 
1\ 

and if S(E) is non-nul!, each of its extreme points, whose set shall be denoted by 
1\ 

extr_ S(E) is multiplicative and vice versa, that is, 
1\ 

(K) extr. S(E) = IP0(A) , 
1\ 

so that <p-1(0) is a maximal ideal of A for every extreme <p of S(E). (See R. V. 

Kadison [9], pp. 23-24). 
1\ 

We should remark that cp E S(E) if and only if cp E II(A) with cp(1)=1 (1 being 

the unit of A). 

In this Chapter, this result shall be extended to the case that A is a non­

commutative, non-unitary (but semi-unitary), complex Bralgebra A=A*(K) in a 

certain situation. W e shall begin with sorne prepara tory discussions. 

4. Extremity and irreducibility. 

Denoting the unit sphere of I'(H(A*)) by E0 , which is a w*-compact convex 

set, due to S. Kakutani and J, Dieudonné, the intersection ( called the positive boule) 

(4. 1) 

is also w*-compact and convex, i.e. regularly convex in the sense of M. Krein-V. 

Smulian; since E0 is bounded, the Krein-Milman's theorem is also applicable to it, 

from which it follows that E0 has sufficiently many extreme points whose convex hull 

is w*-dense in E. c5J 

As we have seen before, for each closed one-sided (two-sided) ideal /, the quotient 

space A/ I turns to be a Banach or Hilbera space (algebra) by suitable norming 

and, if necessary, completing; then it is easy to see that A/ 1 (completion of A/ 1, 

or =A/ 1 if it is complete in itself) admits the left, right or two-sided translation 

opera tor La, Ra or Ta respectively according as 1 is a left, right or two-sided ideal; 

LaX = {ax; xE X) , 

and TaX=LaX=RaX 

Ra X = {xa ; x E X} 

for XEA/1, aEA. 

Obviously, LaXx = Xax and RaXx = Xxa, so that '(A)r= {La; a E A}, (A)'r 

5) See N. Bourbaki [1], Chap. II, §4. 
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-{Ra; aEA} or (A)I=oc{Ta; aEA} forms a bounded, continuons Banach or Hilbert 

representation of A on A.}1 according to l's kind, with respect to the usual operator 

norming. Then we arrange 

Definition 1. Let I be a closed left ideal of A such that H =A/ I forms a Hilbert 

space. If there exists no such projective operator P on H relative to any closed 

proper subspace of H, as reduces (or equivalently :commutes with) every element 

La of Hilbert representation '(A)I, then H=A/l is said to be irreducible, otherwise 

reducible. In right or two-sided cases, these notions are analogously defined. 

Proposition 8. La*=La*, Ra*=Ra* and Ta*= Ta*' where S* is the conjugale 

operator of Son H=A/I; therefore, for each aEH(A*), La, Ra and Ta are hermitian 

operators. 

A bounded hermitian operator A is reduced by the projective operator P relative 

to a closed sub-space M if and only if AMCM; then decomposing every La as in 

the form 

(4.2) 

where s= ~ (a+a*) and t= ;i (a~a*), both Ls and Lt are hermitian and hence we 

see directly 

Proposition 9. H=A/ I is irreducible if and only if there is no closed linear 

manifold which is invariant under {La}, {Ra} or {Ta} according to I's kind. 

It is easy to see that l is never maximal but A/ I is irreducible, wh ile the con­

verse is not necessarily true. We appreciate however that the converse is also true 

in the case of unitary commutative B*-algebras A*; 

Lemma 3. If A* is unitary and commutative, the following four conditions are 

mutually equivalent; i) Hep=A*/lep is irreducible, ii) Hep is simple, iii) lrp ismaximal, 

iv) <p is multiplicative. 

The equivalency of ii) iii) and iv) is clear, so that we have only to show that of i) 

and ii) : in fact, if Hilbert algebra H is supposed not to be simple, then there would 

exist an ideal !0 such that IC l 0 , for which l0/l is a proper ideal of H and so 

contained in a maximal ideal M of H which is invarümt under {Ta}. This yields 

the reducibility of H,,, that is, i)- ii). Next if Hç is simple, then lep is maximal, 

so that H is irreducible from Theorem 3 mentioned later, since A satisfies the 

conditions a) and fi) in § 5. 

Thus we can replace, in beforesaid Propcsition K, the terms "<p- 1(0) is maximal" 

by those of "A/ lep is irreducible ", and get 

Proposition Kbis. Und er the same conditions as in Pro Positon K, Hep= A/ lep, 
A A 

<p E S(E), is irreducible, if and only if r.p is extreme of S(E) or equivalently lep is 
maximal, 
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In the following, we shall extend this assertion to more general cases, as is 

already announced at the outset of this Chapter. To begin with, sorne conventions 

and notation for later use ; 

1) For cp E F(H(A*)), q; means the extend functional of cp over the whole A*, 

i.e. ~(a)=cp(a~a*) +icp(a;;*), while for cp E E'(A*), q; the restricted one of cp to 

H(A*); these are really reasonable owing to Theorem 1. 

We often use, however, the same cp instead of ~ or of q;, if there exists no 

confusion. 

2) 1lrp(lr/, lrp), cpEE0 , is the ideal 1lif(l1if, lt;) defined by the extended ÇJ of cp. 

3) If 1lrp= 1l<f1 for cp, <PEE0 , we call such cp and 1/J (left) equivalent, writing 

cp -<P; it is easily possible to define right, or two-sided equivalency in an analogical 

manner. 

Although we are going to consider mainly about the case of left ideals (and 

bence of left equivalency) hereafter, the other cases are still weil treated by analogy ; 

then we abbreviate "left equivalent" to the term "equivalent" merely, unless other­

wise specified. 

Definition 2. If cp E E0 is equivalent to no linear convex combination of I/J1 and 

I/J2, each of which is in Ë0 and not equivalent to cp, then cp is said to be weakly 

extreme (or abbr~y. w. extr.) in E0 • 

From the definition itself, it follows immediately : 

i) cp---1/J implies cp---(œ~p+[jcp) for œ,[j>O with œ+[j=1, 

ii) if cp is w. extr. in E0 and cp -1/J, then 1/J is also w. extr. in it, 

iii) 1frpn 1 f<f1 ='lœ'P+fl</1 for œ, [1>0 with œ+[j=l. 

It should be noticed that the collection of ail mutually equivalent elements in E0 is 

not always w*-closed: for a counter-example, it is sufiicient to consider 1Ïrp and 1l<J1 

such that 1 f</1 C 1 f"' properly ; indeed, œcp + [ji/J ...., cp for œ > 0 but œcp + {ji/J -<P for œ = O. 

The theorem enlarging Proposition Kbis is : 

Theorem 2. For a semi-unitary B*-algebra A*, a necessary and sufficient 

condition 1H =A*/1lrp, cp EË0 , would be irreducible is that cp is w. extr. in E0 ; thus 
if 1lrp is maximal, cp is w. extr. in E0 • 

Proof. Suppose first fP not to be w. extr. in Ë0 , then there exists such cp0 E E0 

that 'P""'Po and 'Po=~(cp1+cp2), where 'l"'l'=f!h2, cp1,cp2EE0. By iii) above, we have 

'l"'1n 1I"'2 ='l"'o· Denoting the completion of M 0='l"'d'I"'o by M, we see that Mis a 

closed proper sub-space of 'H"'='H'P0 , which is evidently invariant under {La}; in 

fact, if M 0 were dense in 1Hrp, there would exist for each given e>O an element x. 
lying in M 0 such that Il Xv\- X. Il "'< e, v~>. being an arbitrarily fixed element of the 

approximate identity {vi>.}, then since Il Xe 1!'1'1 =0 by the assumption, it holds 
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rpt(v~<.*vÀ )tfz =Il Xvii. !l'Pt= 1 Il Xvii. !l'Pt- Il X. Il 'Pt 1 

~Il Xv~-.-X.II'Pt < ,/2 ·Il XvÀ-Xe!!'P < ~2 e, 

and bence rpt (v~<.* vÀ) - 0 along with e- 0, so that every v~<. would be contained in 'J"'t, 

where X means the corresponding element of A*/' l'Pt to XE 'H . This is absurd 

and bence M is proper, or in other words, 'H'P is reducible, which complets the proof 

of necessity. 

To prove the sufficiency, we employ the orthogonal decomposition of 'H'P: assume 

that H='H'P is reducible, then H=M1 tt;M2 , both of which are invariant under {La}, 

whence each X of His also decomposed into Xt+X 2 for XiE Mi(i=1, 2). 

Then putting (/Ji(b*a) =ex~. XD'P' both (/Jt and (/Jz are weil defined on A* by 

virtue of the approyimate identity ; in fact, 

(X~\, X~*b)'P =(X~~~.. Ta*XD'P =(X!\, T*aXO'P 

= C TaX~~-.. XD'P = (X~vÀ, XD'P, 

so that q;i(b*a)=limrpi(b*av~<.)=(XLXD'P and hence (/Ji is uniquely determined for 
À 1\ 

i=1, 2. Clearly, rp1 and rp2 are in Il(A*) and, from (X, Y)'P=(X\ X1)~p+(X2, X2 )~p, 

it follows 

(4.3) 

As is easily seen, both Il ?ft Il and Il if2 Il are < Il rp Il < 1 and bence setting 

(4.4) (/Jo= arp1 +{3rp2 for a, {3 > 0 with a+{3 = 1, 

we see that rp ~rp0 and rp0 E E0 , since Il rp0 Il <a+ {3 = 1. This completes the proof of 

Theorem 2 entirely. 

5. Extremity and irreducibility, cont. One may make precise of Theorem 2 in 

sorne special cases: the first is the case when A* is semi-unitary again and, more­

over, satisfies the following two conditions ; 

a) Il a*a Il < Il a 1! 2 for every a E A* , 
{3) Il v~<. li = 1 for each element of the approximate identity {vi<.}. 

The condition a) is fulfiled in the case of a B*-algebra with stronger norm 

condition Il a*a Il= Il a W (e. g. C*-algebra) or of the group-algebra L (G) on a 

locally compact group G, while the latter {3) is so in the case of every unitary 

B-algebra or L(G) again. The algebra discussed in Proposition K and Khis is 

also the one which satisfies these two conditions, so that the following Theorem 3 is 

applicable to it. 

In such cases, each element Xl>. =Xv\, being contained in A*/' I'P for a fixed 

rp E Eo, is bounded and (Xa, Xl>.)'P=fp(v~<.*a) converges to fp(a); since Xa, a E A*, is 

dense in 'H'P, we see consequently that {X~~.} converges weakly to a certain element 

X'P in 'H<p. 
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Proposition 10. Under the above conditions a) and S), it holds that Il <p Il = Il ip Il 
A -

for <p E II(A*) with restricted ip E II(H(A*)). 

In fact, by Lemma 1 we have 

J~p(a*vl-)12 < <p(a*a)<p(vl-*vl-) < <p(a*a) Il <p Il, 

from which l<t(a)l 2 >ïp(a*a)J\<p\J and bence, for aEA* with 1\al\?.1, \\<pl\ 2 

~ ip(a*a) Il <p Il< Il ip Il· 119 Il, i.e. Il <p Il< Il ip 11. On the other hand, it is clear that 

li ip Il< Il <p Il, which proves the Proposition. 

This shows that, in such cases, it holds 

(5.1) 

(5.2) 

where the sign = designates the same equivalency as is mentioned in Theorem 1, 

and S(E0 ) means the surface of E0 , that is, =S(E)nfi(H(A*)), while S(Ê)=S(E) 
A 

nii(A*); about S(E), refer also to the outset of this Chapter. 

Now, we define the subset E0 of E0 as the collection of such functionals lying 

in E0 that (Xcp, Xcp)cp=l. We cali Ba normalized positiue boule. 

Proposition 11. The jollowing three conditions are mutually equivalent; 
= 

i) <p E Eo, 
A 

ii) cp E II(A*) and (X$, X;;);;= 1 for <p' s extended fi;, 
- A 

iii) <p E S(E0) or its extended fi; E S(E), owing to (5. 2). 

Proof. We shall prove this in rotation; iii)-<--i).,__ii).,__iii). At first, i)...,.iii). 

Since fp(vi-)=(Xrp,X;...)rp...,.(X;;,X;;);:>=1 and l~(v1-)l<ii011~1 for <pEE0 , it follows 
A -

1 <Il fp Il:::=; 1, that is, Il tp Il = 1 and bence fi; E S(E) or equivalently <p E S(E0). 

ii)__,. i). For every a with JI a 11 ~ 1, we have by Schwarz's inequality that 

1 ~(a) 12 = 1 (Xa, X$)ffl 2 <(X;;, Xrp)rp· (Xa, Xa)$ = tp(a*a) <Il~ li 

from which Il ép 1\ 2 <Il ép Il and so li ép Il< 1. This shows that <p E E0 • 

iii)~ii). Clearly ICX~..,Xi?)$I=IY,Cv~..)l<ii<tll=1, from which (X;;,X;;);; 
=a~1: suppose now a<1. then putting {pja=fP0 , we see immediately '/ifi0 ='lrp, 

A 

XiPo = Xq, and fPo E Il(A*), then ii) and bence successively i) and iii) are valid for 

such fPo, so that Il fPo Il = 1 and Il ép Il =a< 1, which is contradictory with the 

assumption {/> E S(E). Renee (Xcp, Xcp)cp = 1, which make sure of ii). 

Corollary P. 11. Il <p Il = Il ép Il = (X$, X$)@. 
= A 

Thus we conclude that E0 is nothing but a w*-closed convex subset of Il(H(A*)) 

with the property (Xcp, Xcp)cp = 1, which coïncides with the surface S(E0 ) of E 0 

entirely ; indeed, the fact that E0 is w*-closed and convex is easily verified. These 

make us confirm the 

Theorem 3. Provided that A* satisfies the conditions a) and {j) above, 'Hep is 

irreducible if and on! y if <p is an extreme point of Eo. 
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Proof. Assume that 'H, is reducible, then in the same manner as in the proof 

of Theorem 2, we get two functionals ip1 and 1p2 , cf. (4. 3), both of which belong to 
1\ 

II(A*). As is easily varified, (X'P;, X'P;)'P;=(X~, X~)'~' for i=1, 2, and we have 

(5. 3) (X'1' 1 , X'1'1)'1'1 + (X'1'2 , X'1'2)'1'2 = (X<p, X<p)<p = 1: 
1\ 

putting (X'P;,X'P;)'P;=a;>O and fp;ja;=c/J;E!I(A*) for i=1,2, we see that 
- = 

llc/J;ll=ll{f;ll/a;=(X'P;,X'P;)'P;/a;=1, so that c/;;EE0 for i=1,2. On the other 

hand, it holds 

lfJ=a1c/;1 +a2c/;2 , where a1 +a2=1 by (5. 3), which shows ifJ being a mid point of a 
= 

segment in E0 • This proves the sufficiency. 

Conversely, let '1!._'1' be irreducible ; if ifJ = ~ ( I{J 1 + ip 2 ) for sui table I{J1 and ip2 E Ba, 
then ifJo= ~ I{J1 is in Ba and (Xa, Xa)'P 0 =1fJ0 (a*a) ( <(Xa, Xa)<p for every a E A*) defines 

an hermitian form in 'H'P and hence an hermitian operator A such that 

(AX, X)<p =(X, X)'~'o for all X E'H'P. 

As is easily seen, A is commutative with every La and, since 'H'P is irreducible, 

it must be in the form (AX,X)'P=a(X,X)'P for a fixed number a; from lfJ,IfJ1 EBo, 
it follows a=~ and so lfJo=lfJ 1/2=1fJi2, that is, ip1 =lfJ2 =21fJ. This shows ifJ is extreme 

in E 0 • 

Thus, Theorem 3 is completely proved. 

Summerizing all these arguments, we can determine the complete structure of E0 : 

Theorem 4. If A* satisfies the condition a) and fi), the set of extreme points, 

extr. E0 , consists of that of Ba, extr. Ba, and the origin (zero functional) O. Every 

w. extr. ifJ of E0 is either extreme of it or a inner point of a segment combining the 
= 

origin {} with an element of extr. E0 , ifJo say, i.e. 

(5. 4) ifJ = a~po 

In fact, an exreme ifJo is either of norm 1 or identical with 0, since ifJo with 

li lfJo Il< 1, >O is necessarily a midpoint of a segment. Let ifJ be w. extr. in E0 and 

Il ifJ Il ccp 0, then lfJo=lfJ/ Il ip Il lies on Ba and A*/' l'l' is irreducible by Theorem 2; ifJo 

is hence extreme by Theorem 3, ip=aip 0 for a=lllfJoll which is >O. If lllfJII 

= 1, ifJ itself is extreme. Thus Theorem 4 is completely proved. 

Next we shall define another notion : in our present considerations, we need not 

the assumptions a) and fi), which are assumed in the preceding arguments for A*. 

Assume that an element ifJ of r CH CAc)) has the following properties ; 

1°) 'l~p(l'~p, l~p) is a closed regular ideal, 

2°) fp(j)=1 for an identity j modulo the corresponding ideal cited in 1°) above. 

Then lfJ (or rp) is called le ft (right, tow-sided) re gu! ar; there need however 

only two regularities of lfJ, one-sided and two-sided, since ifJ is also Tight regular, 

having j'k modulo l'~p=('l~p)*, for each left regular ip. 
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The set intersection of E0 and of all one-sided (or two-sided) regular functionals 

is denoted by Ê0 (or resp. E0), which is evidently w*-closed and convex. Ê0(E0 ) is 

called one-sided (tow-sided) regular positive boule. 

Lemma 4. Let <p E Îi(H(A*)) be one-sided regular; then if holds that q;(a) 2 <q;(a2 ) 

and hence Il <p Il< 1, where a E H(A*). 

Indeed, in the inequality (2. 4) we have only to put b=j and get q;(a) 2 =fj;(a) 2 

=0(aj)2<V;(a2 ) if;(j* j) =fj;(a2) =q;(a2 ) for a E H(A*), sin ce fp(j* j) =0(j) =1. The 

proof of the latter is immediate, hence shall be omitted. Then we assert 

Proposition 12. The following two conditions are mutually equivalent ; i) 

<p E Ê0(E0 ), ii) <p E ll(H(A*)) and if is one-sided (two-sidbd) regular. 

Theorem 5. For <p E Ê0(E0), if H'P=A*/'lw(A*/Iw) is reducible, then there exists 

a segment of Ê0(E0 ) just in which <p is an inner point. 

Proof. As is easily verified, an identity j modulo 'I'P is also the one both modulo 'l'P 1 

and modulo 'l'P2 , where <p 1 and <p 2 are just the same as in (4.3), i.e. <p=<p1 -l-<p 2 • As 

<p;(j) =<p;(j* j)> 0 and rp( j) =<p1( j) + <p 2(j) =1, we see that 1::2';q;;( j)> 0 for i=1, 2; 

putting a:;=tp;(j) and ip;=ij}ja:;, we see that 

(5.5) 

1\ -
Since IF;(j)=1 and 'l'Pi=' hi, <Pi is one-sided regular and clearly <PiE JI(H(A*)), 

from which results IF; E É0 by Proposition 12. This shows that <p is an inner point. 

Corollary T. 5. 1. For an extreme <p in E0 'cor E0 ), each of A*/'l; and A*/ l' 'P (or 

res p. A*/ I'P) is irreducible. 

Corollary T. 5. 2. Every extreme point of Ê0 (or, if the algebra is unitary, of 

E0 ) is w. exter. in E0 • 

As in Proposition 7, ~ 2, every q; in @0 (A*) causes a maximal two-sided regular 

ideal I'P and clearly q;(j) =1 for an identity j modulo I'P. Moreover by the multipli­

cativity of <p, it must be Il <p Il< 1 (if A* is unitary, =1). Ail these make us 

confident that 

(5.6) 

More precisely we have 

Theorem 6. Every <p in i 0 (H(A*)) is an extreme point of Eo and hence that 

of Éo and of E11 • 

1 - 1 
Proof. Suppose that <P=z(i1'1 +<p2 ) for <p1 , q> 2 EE0 : we have q;(a2 ) =-z[<P1(a2 ) 

-I-<P2(a2 )]=(<P(a)) 2 =-i[<P,(a) 2 +2·<p1 (a)·<P2(a) -l-q>2 (a) 2]; therefore it follows that 
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0 = 4[q>(a2 ) -qJ(a)2] = [q't(a2 ) -qJ1(a)2J+[qJia2 ) -qJia) 2] 

+ [qJ1(a2) -2qJ1(a)qJla) +qJ2(a2)]::? rh(a2 ) -2qJ1(a)qJla) +qJla2 ) 

:;=;;:; [qJ1(a) -qJia)]2 ::? 0 (owing to Lemma 3). 

Consequently, qJ1(a)=qJia) and so qJ is never a midpoint of any segment in E0 • 

This completes the proof. This skilful way of proving Theorem 6 is essentially due 

to R. V. Kadison [3], Lemma 3. 1. 

6. Summerizing and group algebra. W e now summerize the considerations of 

the preceding paragraph and realize those results to the special case of group.algebra 

on a locally compact group. 

First we present a convenient proposition : 

Proposition 13. If A* is semi-unitary, satisfying the conditions œ) and {3), then 

it holds for each qJ E E 0 (or E0 ) Xrp=Xi as elements of 'Hrp (resp. Hrp), where j is 

an identity modulo 'lrp (resp. lrp). Therefore, E0CE0CE0 • 

In fact, we have (Xa,X@)rp=fp(a)=tp(aj)=(Xa,Xj)fP for qJEEo and for every 

a E A*, so that Xrp=X;p=Xi; since (Xj, Xj )<P=fF(j* j) =fl;(j) =1, we obtain (Xrp, Xrp)rp 

=1 and so qJ E E 0 , i.e. EoCEo. 

Then, in the case of such A* as is semi·unitary and satisfies œ) and {3), we 

establish the following "inclusion schema," in which we write 0V 0 , "v0 ,V0 or V0 for 

extr. E0 , extr. E 0 , extr. E 0 extr. E0 respectively and "X---+ Y" reads "X is the set 

of all extreme points of Y " : 

@o(H(A*)) C Vo C Vo C Vo C Vo = fJ U Vo 
(6.1) {, {, {, {, 

Eo C Éo C Ba = S(Eo) C Eo , 
and if A* is unitary, 

rb0(H(A*)) C Vo = Vo = Vo 
(6.2) {, {, t 

Moreover, if A* is commutative, then 

(6.3) 

When A* is unitary in addition, (6. 3) cornes from Proposition 3 and Theorem 3 

as is mentioned before. 

In non-unitary case, A* can be immedded as a maximal ideal of a unitary 

A* == { ( œ, a) ; œ E K, a E A*} , having the product, norm, involution as follows ; 

(œ, a)({3, b) = (œ{3, a+œb+ab), Il (œ, a) Il= lai+ Il a Il, (œ, a)*= (il, a*). Putting 
A A 

(,O(œ, a) = œ+qJ(a) for qJ E S(E), it is easily seen that (,0 E E1 =the unit sphere of 
- A - A 

T(A*)nllCA*) and moreover Il (,0 Il = 1, that is, (,0 E S(E1), since Il qJ Il~ Il (,0 Il, 
~(1, 0) = 1 and 
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ÇO((œ, a)*(œ, a))= lai 2 +2!R(ücp(a))+cp(a*a) > 0 .(6) 

Â Â 

Conversely, putting cp( a)= cp(O, a) for cp E S(E1), we see that cp E E and 'P=t cp 
- Â -

for ëp, cp E S(E1), implies cp='pcp because ëp(1, 0) = cp(1, O) = 1. Then, suppose that 

ëp = ~ ( rp1 + ëft2 ) for q; E extr. S(E0) and <P1 , <Pz E S(i_) with rp1 ='P <Pz, thein it follows 

that fP = ~ (fj;1 +f!;z) with f!;z='Pf!;z, both of which lying in E0 , so that (j; cannot be 

extreme in E0 and so in S(E), which is impossible. Therefore cp E extr. S(E0 ) implies 

ëp E extr. S(E1) and, by above argument concerning about unitary A*, it concludes 

that cp E ib0(H(A*)), so that cp E ib0(H(A*)). This proves (6. 3) completely. 

Proposition 14. If cp E S(E0) and A*/' l"' (or A*jl'rp) is jinite dimensional as a 

quotient Banach space, then cp is in Ë0 • 

If the assumption is held, owing to a noted theorem of Riesz, the unit sphere of 

A*/'1"' (or A*jl'rp) is compact and hence a suitable sub-family {X~-'} of {XvÀ}, which 

is entirely contained in the unit sphere, converges to a certain X 0 for which XaXIL 

~XaXo=Xa (resp. XILXa~X0Xa=Xa). so that each element uEXo is a let (resp. 

right) identity modulo 'l"' (res p. l' rp). 

Now we know that there exist two intersting and important objects to which we 

could realize the foregoing considerations ; one is the C*-algebra, in which cp E S(E0) 

is called a "state", while cp E extr. S(E0) a "pure" one(7), and another is the group 

algebra, in which every cp E S(E0) corresponds to a continuous positive defini te func­

tion, while cp E extr. S(E0) to a '' elementary" onecsJ. 

The following is devoted exclusively to study of the latter, i.e. the group algebra. 

Let G be a locally compact (LC) group with the unit e, and L(G) the group algebra 

of G with respect to the left-invariant Haar mesure dx, with elements f, g, · · · · · · and 

the approximate identity {è}. 

L(G) forms a B*-algebra with respect to the involution 

(6.4) f*(x) = p(x)f(x-1 ) ,· 

where p(x) is the density of right-invariant Haar measure, dx- 1=p(x)dx. 

In the case, every vÀ is helmitian and of norm 1 and Il f* Il = Il fIl for every 

fEL(G), so that L(G) satisjies the conditions œ) and (j) of §5. 

Lemma 5. Putting fx( • )= f(x- 1·) (left translation), we have 

(6.5) 

Proof. By a direct calculation as follows ; 

6) Consuliting the Cauchy-Schwarz's !emma (2. 4), the second term ~ 1 œ lz-2j œ l· v cp(a*a) 

+cp(a*a)= (Jœl- Vcp(a*a))Z~Q. 

7) Cf. I. E. Segal [7]. 
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C fx)*· g( ·) ::::: L /xCr') p(y) g( y- 1·) dy 

= ~af(x 'y 1)p(y)g(y-1·)dy= ~atcz-')p(z)g(xz-1 ·)dz 

= ~Gf*(z) gx-1 ( z- 1·) dz ::::: /*· (gx_ 1 ) ( ·) • 

We can arrange this Lemma in the following manner, using the operator Ux on 

the Hilbert space 'H L(G)/'lq;, <p E E0=S(E0), defined by UxXt=Xtx; 

( UxXJ, Xg)q; = (Xt, Ux- 1 Xg)q;. 

Thus, we see that Ux is unitary and { Ux; xE G} forms a continuous unitary 

:representation of G on 'Hq;. Then (X, UxX)cp is a continuous positive definite 

(c. p. d.) function on G. Denoting the collection of ali c. p. d. functions with norms 

less than 1 by P(G) and that of those with norms::::: 1 by P0(G), we see that 

t;cp(X)=(Xq;, UxXcp)cp for <p E È0 (or E E0 ) is an element of P(G) (resp. of P0(G)). 

Conversely, for each t;EP(G) (or EP0(G)) the functional on L(G) defined by 

(6.7) <p~(f) :::::~a t;(x)f(x) dx. 

1\ 1\ 

is clearly contained in E (res p. in S(E)) and moreover 

(6.8) 

Thus we can establish : 

Proposition 15. csJ E0 (or Îfo = S(E0)) is ane-to-one corresponding to P( G) (res p. 

to Po( G)) by <p- !;cp and t; -> <p~ as dejined ab ove, where 

i) <p~q;=<p, f;cp~:=t;, 

ii) <p oJh+Nz ;::: Ü.(/Jh + ~<p~z , t; oJ(Ill+~(llz ;::: ü.i;(ll1 +~!;'Pz , 

iii) Il t; Il ::::: Il <F ~ Il , Il !.f! Il = Il t;"' Il , 

iv) éj;(f)::::: Lt;cp(x)f(x)dx, fp~(f) = ~ct;(x)f(x)dx. 

In fact iii) cornes from Il t; Il= t;(e) = (Xq;~, X'P~)À~::::: Il <p~ Il by Corollary P. 11. 

Proposition 16. A continuous positive dejinite function t; is elementary if and 

only if <Ft EV= exter. S(E0). 

From (6. 3) above, in the case where G is commutative (and so is L(G) ), Vo 
coïncides with @0 (H(A*) ), from which it follows immediate! y that !;cp, <p E extr. S(E0), 

- 1\ 
is a continuous character of G and vice versa ; V0 = G. 

8) See e.g. L. H. Loomis [5], R. Godement [3]. 
Additional: The summary of this paper was published in the Proceedings of the Japan 

Academy, Vol. 29 (1953); the present full note has been completed in 1953 but is late in 
publishing for sorne reasons. 
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