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§ 1. Introduction. 

A problem in solid geometry 

By Shigetake MATSUURA 

(Received September 6, 1961) 

The problem which we will consider here in this papet has its origin in a 

talk among our colleagues sorne years ago. The talk was like this: "Suppose 

the earth be made of transparent glass and suppose there be a material body 

contained in it. Assume that the body is seen like a round dise (i.e., the set of 

all lines of sight to the body is a solid circular cone) from every point on the 

surface of the earth1). Is the body then a hall ?2) We may allow any disconti

nuous varying of the radius and the center of the dise as the seeing point varies." 

In the following, we shall give an affirmative answer to this question in a 

slightly generalized form. 

I thank here my friend Mr. K. M. Rao for his critical reading of the manuscript. 

§ 2. Statement of the problem. 

Since the statement of the problem in the above is too intuitive, let us 

restate it in more rigorous terms. 

DEFINITION 1. Let p be a point and A be a set in space (Euclidean three 
space). A straight half line is called a ray from the point p to the set A if it 
starts at p and passes sorne point of A. We denote by Cp(A) the set of all rays 
from the point p to the set A and cali it the sight cane at p for A. 

DEFINITION 2. In space, a set A is said to be equivalent to a ball if there 

exists a hall B such that 

(1) 

where 8B denotes the bounding sphere of the ball B. 

DEFINITION 3. Let A and B be two sets in space. We say that Ais strict/y 

contained in B if the condition 

holds, where A denotes the closure of A and B the· interior of B. 

DEFINITION 4. In space, let S be a closed convex surface, i.e., the topological 

1) The surface of the earth is supposed to be a sphere. 
2) A bal! is, of course, a set of points whose distances from a fixed point are Jess than or equal 

to a certain positive num ber. 
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boundary of a compact convex set D with non-empty interior. We simply say 

that a set A is strictly contained in S, if A is strictly contained in D. 

Using these terms, an affirmative answer to the problem is given, in a 

generalized form, by the following 

THEOREM. ln space, let S be a closed convex surface and A be a set strictly 

contained in it. lf the sight cane C p(A) at p for A is always a solid circular cane 

for any point p on S, then the set A is equivalent to a bal!. 

Our problem is to prove the above theorem. We shall prove it as Theorem 5 

at the end of the following paragraph. The notion of independence defined in 

Definition 5 below will play the central role. 

§ 3. Solution to the problem. 

By the very definition of sight cone, we see the following 

PROPOSITION 1. For any point p and for any set A, C p(A) contains A. For 

any two sets A, and A 2 with A,CA2 , Cp(A,)CCp(A2) for any point p. 

For this, we see 

PROPOSITION 2. For any set A and for any two points p and q, every ray from 

p to A passes the cane Cq(A) and, in turn, every ray from q to A passes the cane 

Cp(A). 

Proof. This is nothing but the relations: Cp(A) CCp(Cq(A)) and Cq(A) C 

Cq(C p(A)). And these relations are clear from the preceeding proposition. 

Now we give 

DEFINITION 5. Let A be a set and let p and q be two distinct points in 

space. p is called independent of q with respect to A, if the condition 

(2) 

holds. We say that p and q are independent with respect to A if each of them is 

independent of the other. We also say that a set V is an independent set with 

respect to A if any pair of points in V are independent. 

DEFINITION 6. A surface3J S is called a local! y inde pendent sur face with respect 

to a set A if every point of S has a neighbourhood (relative to S) which is an 

independent set with respect to A. 

We proceed hereafter by supposing that there are given a set A and a surface 

S. We assume once for al! that the sight cane C p(A) is always a solid circular cane 

(naturally with its vertical angle less than re) for any point p on S. From now 

3) By a surface, we understand a topologically embedded two dimensional manifold in space. 
A closed convex surface is a surface in this sense since it is homeomorphic to a two dimen
sional sphere. (C.f. the foot-note 7). 
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on, we shall simply write Cp for Cp(A) and we shall simply say "independent" 

instead of saying "independent with respect to A". 

We denote by I p the central axis of the cone Cp, I p being a ray (from p) 

but not a whole line. 

THEOREM 1. If p and q, are independent, then the axes Ip and lq intersect. And 

in this case, there exists a common inscribed bal! ta bath of the canes Cp and Cq with 

center at the intersecting point. 

Proof. Let g be the straight line passing both points p and q. Since these 

points are independent, we have the relations 

(3) gnCp={P) and gnCq={q). 

In fact, if we deny, for instance, the first of these relations, we see that g should 

contain a ray from p to A. We should, therefore, have a point of A on the line 

g. In such a situation, however, it is impossible for the points p and q to be 

inde pendent. Th us we should have (3). 

Take a plane H which is orthogonal to the line g. Denote by 0 the inter

secting point of H and g. Now project ali the figures on H along g. By the 

relations (3) above, we see that the cones Cp and Cq become certam minor angular 

regions on H with the common origin 0 which is the common image of the 

vertices p and q. Then, by Proposition 2, we see that these angular regions 

coïncide. From this coïncidence, going back to the original figures, we see that 

the axes I p and I q should lie on the plane L determined by the line g and the 

bisecting line of the angular region on H. 

Now consider the sections of the cones Cp and Cq by the plane L. Then we 

get two angular regions Dp and Dq the origins of which are vertices p and q. 

Let us show that the axes lp and lq intersect in the plane L. According to the 

relations (3), we see that both the regions Dp and Dq lie on the same side of 

the line g in the plane L since, the section of the set A by L being in the 

intersection DpnDq, DpnDq is not empty. Now take line g as horizontal and 

suppose that both regions Dp and Dq are in the upper half of the plane L. We 

suppose that the point p is on the left of the point q (both points lying on the 

horizontal line g). We denote by s1 and s2 the sides of Dp and by t1 and t2 those 

of Dq (from left to right). We see, by Proposition 2, that the line s1 should 

eut t1 and that t2 should eut s2 • From these facts we cau easily conclude that 

Ip and lq should intersect. 

Now consider the inscribed balls Bp and Bq to the cones CP and Cq respec

tively with common center at the intersecting point of the axes Ip and lq. We 

see that, in fact, these balls coïncide because we knew already that the projec

tions of both cones coincided on the plane H. This concludes the proof. 
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THEOREM 2. lf S is a locally independent surface, then, every point of S has 

a neighbourhood V (relative ta S) such that there exists a common inscribed bal! ta 

al! the canes Cp for p in V. 

Proof. S being locally independent, every point of S bas a neighbourhood 

U (relative to S) which is an independent set. Since S is locally Euclidean"J, 

there exists in U another neighbourhood V which is homeomorphic to the interior 

of a square in plane. Let us show that this neighbourhood V has the property 

stated in the theorem. 

To this end, we first show that it is impossible for all the axes lp Cp in V) 

to lie in a single plane. Suppose the contrary and assume that all the axes 

lp (p in V) are lying in a plane L. Then, a fortiori, V is a subset of L. Since 

V is homeomorphic to a two dimensional open set, we can conclude, by Brower's 

invariance theorem of domain'!, that V is an open subset of L. Take a point p 

in V, then, since l p lies in L and since Vis open in L, it is easy to see that there 

exist other points in V w hich are contained in Cp. This contra diets the assump

tion that V is an independent set. Thus we have shown that there exist at least 

three points p,, Pz, Ps in V the axes l p 1 , l h, l P3 of w hi ch do not lie in a single 

plane. 

By Theorem 1, l PI a!1d l Pz intersect. Let us denote the intersecting point 

by c,z. Again by Theorem 1, l P3 intersects l p 1 and l h· But, since l Ps does not 

lie in the plane determined by l PI and l P2, l Ps should pass the common point c1z of 

IP! and lp2 • Let us denote by c this common point to these three axes. Now, 

we shall show that, for any point p in V, lp passes this point c. Let L be the 

plane determined by l p1 and l Pz • If l p does not lie in L, then, by the same 

argument as a hove, we see that l p should pass the common point of l p 1 and l Pz 

which is the point c. If, on the contrary, lp does lie in L, then lp should intersect 

IPs at a point in the plane L. But since c i~ the only common point to lp3 and 

L, lp should pass the point c. 

N ow, consider the inscribed bali B P to the cone CP with center at the point 

c. These balls Bp for p in V should coïncide since, according to Theorem 1, 

any pair of them coïncide. This completes the proof. 

THEOREM 3. lf S is a locally independent surface, then each connected component 

of S has a common inscribed bal! to ali the canes Cp for p in the component. 

Proof. L.et p be a point on the surface S. By the previous theorem, we 

know that p has a neighbourhood V such that there exists a common inscribed 

hall to all the cones Cq for q in V. Denote by Bp this common inscribed hall. 

---------- --·---

4) See the foot-note 3). 
5) See [2] pp. 95-96. 
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Now, let B be a bali. We denote by SB the set of those points p of S for which 

Bp=B holds. Then, by Theorem 2, SB is always an open set61 in S. Since S is 

clearly the disjoint union of these SB, each SB is open and closed in S. Therefore, 

each component of S should be contained in sorne SB. This concludes the proof. 

For the proof of Theorem 4 below, we need the following elementary 

PROPOSITION 3. Let D be a convex set with non-empty interior. lf P is an 

adherent point of D and if q is an interior point of D, then every point on the segment 

connecting p and q lies, with the only possible exception of p, in the interior of D.71 

For the proof of this proposition, see [1] p. 51. 

THEOREM 4. A closed convex surface which strictly contains the set A is a con

nected locally independent surface. 

Proof. Let S be a closed convex surface which strictly contains the set A. 

Since S is homeomorphic to a sphere, S is clearly connected. Let us show that 

S is locally independent. Denote by D the compact convex set with non-empty 

interior whose boundary is the surface S. Since D contains strictly the set A, S 

and A are disjoint (see Definitions 3 and 4). Now take any point p on S. Since 

p is not adherent to A, there exists an open bail E with center at p such that 

E~' A is empty. Put 

V= EnS. 

W e shall show that this V is an in dependent set. 

To this end, it is sufficient to show that the condition 

(4) 

holds for any two distinct points q1 and q2 in V. To prove the relation ( 4), take 

any ray R from q2 to the set A. We are to show that 

( 5) qi$ R. 

Let F be the complement of the open ballE in space, and di vide R into two parts 

R1=RnE and R2 =RnF. Since q1 is in E, (5) is equivalent to 

( 6) 

R being a ray, there exists a point q in AnR. Denote by Ro the segment con

necting q2 and q. Since A CD, we see, by Proposition 3, that q2 is the only point 

of Ra on the boundary S of D. It is clear that R1 C Ra, sin ce q is a point in F. 

Therefore q2 is the only point of R1 on the boundary S of D. But q1 is on S=âD 

and distinct from q2 • Renee (6) holds. This completes the proof. 

6) Sorne of these sets Ss might be empty. 
7) From this proposition, one can also easily see that a closed convex surface is homeomorphic 

to a sphere. 
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Now we are in position to answer the question posed in Introduction. 

THEOREM 5. ln spa ce, let S be a closed convex sur face and A be a set strictly 

contained in it. If the sight cone Cp(A) at p for A is always a solid circular cone 

for any point P on S, then the set A is equivalent to a ball. 

Proof. By Theorem 3 and Theorem 4, we know already that there exists 

a common inscribed bali B to ali the cones C p(A) for p on S. Let us show that 

the set A is equivalent to this bail B. 

First we prove that 

(7) ACB. 

Suppose that there be a point q of A which does not belong to B. Then, it is 

evident that we can draw a straight line g which does not touch the bali B. 

Since A is strictly contained in S and since Sis a closed convex surface, g should 

intersect S at two points. Let p be any one of these two points and consider 

the corre Cp(A). The ray R from p to q should be contained in Cp(A) but R 

does not touch the bali B. This contradicts the fact that B is an inscribed bali 

to Cp(A). Renee we should have (7). 

Second we prove that 

(8) ôBCA. 

Suppose that there be a point r of the sphere ôB which does not belong to the 

set A. Consider a straight line h tangent to ôB at r. By a similar argument to 

what was used above, h intersects S at two points. Let p be any one of these 

points and consider the cone Cp(A). Denote again by R the ray from p to r. 

By the construction above and by the relation (7), R is not a ray from p to A. 

But since B is an inscribed bail to Cp(A), R should be contained in C p(A). Thus 

we arrived at a contradiction. Renee we should have the relation (8). 

From (7) and (8), we conclude that A is equivalent to the bali B. This 

completes the proof. 

~ 4. Remarks. 

1. Higher dimensional analogue of the problem. 

Our problem was posed and has been studied so far in the ordinary three 

space. It has, however, its n-dimensional analogue for general n >3, though it 

does then Jose its intuitive meaning. This generalized problem can also be solved 

in a way quite analogous to that we have used for the case n=3. A slight 

modification may be required only in the proof of Theorem 1 for general n>3. 

We shaH indicate it here. 

In that proof, we should replace" plane H" by "hyperplane H", "mi nor angular 

region with origin 0" by "(n-1)-dimensional solid circular cone with vertex 0", 
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"bisecting li ne of the angular region" by "axis of the (n-1)-dimensional sol id cane 

in H", and "plane L" by "two dimensional li ne ar variety L determined by the li ne 

g and the axis of the (n-1)-dimensional solid circular cane in H". 

2. Convexity assumption on the surface S. 

We posed convexity assumption on the surface S in our problem. This 

assumption was utilized to deduce the local independence property of S with 

respect to the set A. And the independence property was crucial in our argument. 

It would seem, however, very natural that the problem could be solved for general 

closed surface S containing the set A. This remains to be solved. 
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