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O. Introduction 

Let X, Y be two spaces and f: X-> Y be a map. Then, there are a fibre space 

and a cofibre space such that the projection and the injection are equivalent to 

f, respectively. Renee, for any spaces U and V, we have the well-known exact 

sequences of sets of homotopy classes : 

/* n(U, Ft) --n( U, X)---- n(U, Y) 
and 

f* 
n(Ct, V)---- n(Y, V)- n(X, V) 

where Ft and Ct are the fibre and the cofibre, respectively. 

The main purpose of this paper is to extend these exact sequences by one 

term, under the assumption that Ft and Ct are homotopy equivalent to the loop 

space and the suspension of a space, commuting with operators and cooperators 

(in the sense of Eckmann- Hilton [2]), respectively. 

In §§ 1-2, we shall deal with the notion of cofibre spaces following Eckmann 

and Hilton, [1], [2], [3]. In § 3, the theorem for cofibre spaces is proved, and in 

§§ 4-5, it is dualized for fibre spaces and the main theorem is proved. 

The author wishes to express his sincere thanks to Professor M. Sugawara 

for valuable suggestions and discussions, and also to Professors M. Nakaoka and 

K. Mizuno for helpful advices and encouragement. 

1. Cofibre spaces 

Throughout this paper, unless otherwise stated, spaces will be arcwise con

nected and have the homotopy type of a CW-complex. On each space a base 

point is given, each map takes base point to base point and each homotopy 

leaves base point fixed. 

The following definition of the cofibre space is due to Eckmann-Hilton [1]. 

DEFINITION (1. 1) A triple (A, q, B) of two spaces A, B and a map q : A-B 

is called a coji.bre space (or a coji.bration), if the following condition is satisfied: 

Let V be any space (which is not necessarily of the same homotopy type as a 

CW-complex), and let go: A- V, ho: B- V be maps such that g0 =h0q. Then, for 



68 Noboru YAMAMOTO 

any given homotopy gt (tE [ = [0, 1]) of g0 , there exists a homotopy ht of ho su ch 

that gt=htq. 

For a cofibre space (A, q, B), the identifying space C=B/qA of B, shrinking 

qA to the base point, is called the cofibre ; A and B are called the cobase and the 

total space, respectively. We shall denote the identification map B->C by r. 

DEFINITION (1. 2) Let (A, q, B) and (A', q', B') be two cofibre spaces whose 

cofibres have the same homotopy type. A cofibre map f: (A, q, B) _,.(A', q', B') 

is a triple of maps ( f, Ï, 1) such that the diagram 

is commutative and 1 is a homotopy equivalence. 

DEFINITION (1. 3) Let A, A', B be spaces and if> ; A_,. A', 1/J: A-> B be maps. 

We shall define M(if;, 1/J) to be the space obtained from the disjoint union A'u B 

by identifying if;(a) E A' and cp(a) E B for each a E A. The natural maps A'->M(if;, 1/J) 

and B-->M(if;, 1/J) are denoted by ÎA', and is, respectively, and ÎA'(a6)=is(bo) is 

taken as the base point of M(if;, 1/J) where a6 E A', boE B are the base points. 

DEFINITION (1. 4) Let A, B be spa ce and f: A-B be a ma p. The mapping 

cylinder Bt of f is the space obtained from the disjoint union A x ru B by identi

fying (a, 0) E A x 0 with f(a) E B for each a E A and shrinking a0 xI to the base 

point. The mapping cone Ct off is the identifying space B;/ A x 1. In particular, 

the space C; for the identity map i: A_,. A is the cane over A and denoted by 

TA. The susbension 2A of A is obtained from TA by shrinking A x 0 to the 

base point. 

It is easy to prove the following lemma. 

LEMMA (1. 5) Let A, B be spaces and f: A-B be a ma p. Then, the triple 

(A, it, Bt) is a cofibre space whose cofibre is the mapping cone Ct of /, where 

it: A-> Bt is the natural injection. (We shall cali such a triple the co fibre space 

associated with the map f.) 

LEMMA (1. 6) Let (A, q, B) be a cofibre space whose cofibre is C, and 

/: A~A' be a map. Then, (A', ÎA', M(f, q)) is a cofibre space having C as the 

cofibre, and there is a cofibre map /:(A, q, B)->(A', ÎA', M(/, q)), i.e., the follow

ing diagram is commutative : 

q r 
A~ B --+ 

fl ' · V=is , 
A'~ M(j, q) ___!_____,. 

c 
lJ=idc 
c. 
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Proof. As easily seen, M(/, q)/iA'A'=B/qA=C, and the above diagram is 

commutative. 

Let g;: A'_,. V be a homotopy and h6: M(/, q) ->V be a map such that 

gfJ=hbiA'. Then, gf/: A-> Vis a homotopy of hbieq: A-> V. Therefore, we have 

a homotopy ht: B-> V such that 

because (A, q, B) is a cofibre space. These relations show that the homotopy 

h; : MC/, q) _,. V of hfJ, defined by 

is well-defined. Renee, (A', ÏA', M(/, q)) is a cofibre space. q.e.d. 

DEFINITION (1. 7) The triple (A', ÏA', M(f, q)) of the above lemma is called 

the cofibre space induced from (A, q, B) by /, and its total space M(/, q) is denoted 

by /#(B). Also, the above triple of maps (f, iB, ide) is called the cofibre map 

induced by f. (See Hilton [3], § 6.) 

LEMMA (1. 8) Let (/, 1, ]) : (A, q, B) _,.(A', q', B') be a cofibre map, and 

CA', q", B") and (/, g, li) : (A, q, B) _,.(A', q", B") be the cofibre space and the 

cofibre map induced by /, respectively. Then, there is a cofibre map (idA', 10 , ] 0): 

CA', q", B") ---7 (A', q', B') such that loii=l and loli=l. 

Proof. By the definition of the induced cofibre space, B"=M(/, q), q"=iA', 

g=iB and g=idc. Define the map lo: B"-> B' by 

loi A' = q' and loiB = f. 

By the definition of M(f, q) and q'f=lq, lo is well-defined and loii=loiB=l, 

] 0q"=loiA'=q'. Renee lo induces a map Jo: C=B"/q"A->C'=B'/q'A'. Since J 
and li are induced by 1 and g, respectively, Ïoii=l shows that foli=l. Therefore, 

] 0 is a homotopy equivalence, because J is so and li=idc. q.e.d. 

LEMMA (1. 9) Let (A, q, B) and (A, q', B') be cofibre spacs over the same 

space A. Assume that there is a cofibre map /: (A, q, B) ->(A, q', B') such that 

f: A_,. A is the identity map, and the total spaces B and B' are sim ply connected. 

Then, B and B' are homotopy equivalent. 

Proof. From the exactness of the homology sequence of cofibre spaces and 

Five Lemma, it follows that h:H;(B) = H;(B'), for i ;::'>O. Sin ce B and B' are 

simply connected, /*: rr;(B) =n;(B'), for i 1. Therefore, Band B' are homotopy 

equivalent, because they have the same homotopy type of a C W-complex. q.e.d. 

From (1. 8), (1. 9) and van Kampen's Theorem [6], the next corollary follows 

immediate! y. 
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CoROLLARY (1. 10) Let (A, q, B) and (A', q', B') be cofibre spaces such that 

there is a cofibre map ( {, 1, 1): (A, q, B)- CA', q', B'). If B, A' and B' are simply 

connected, then B' and /#(B) are homotopy equivalent. 

2. Existance of cofibre maps 

Let (A, q, B) be a cofibre space and 13=Cq= TAU B be the mapping cone of 
q 

q: A->B. 

Let g 1 : A->13 be the homotopy defined by gt(a)=(a,t),aEA, and / 0 : B--è>B 

be the map defined by fo(b)=b, bE B. Since foq=go and (A, q, B) is a cofibre 

space, there is a homotopy ft: B -> 13 su ch that ftq = g1 , in parti cul ar, [ 1q(A) =bo. 

Hence, /1 defines a map 

(2.1) e: c-13. 

Next, let/: 13-.SAVC bethemapshrinkingAxO=TAnBto the base point, 

and P:z.A: .SA v C ->.SA be the projection. Define maps 

(2. 2) 

by 

cp: C--+ .SA vc, 

cp= /ê' 

i3: C -+.L:A 

REMARK. The map cp is unique up to a homotopy and defines the cooperator 

in the sense of Eckmann-Hilton [2]. 

The following lemma is clear. 

LEMMA (2. 3) For the cofibre space (Z, iz, TZ) with cofibre .SZ, the map 

cpz: .SZ -> .szv .SZ, in (2. 2), may be taken as the map defined by 

cpz(z, t) = (z, t/to) , 

= (z, ~=;:)' 
for a fixed number fo, O< to< 1. 

Therefore, cpz defines an H'-structure on .SZ, i.e., p;c/Jz- id~z, where P;: .szv 
.SZ- .SZ is the projection onto the i-th component, i = 1, 2. (See Eckmann-Hilton 

[1]) 

Now, let (A, q, B) be a cofibre space whose cofibre C=B/qA is homotopy 

equivalent to the suspension .SZ of a space Z. 

W e shall consider the following diagram : 

(2. 4) 

where r.; is a homotopy equivalence, r.:0 =i3r.:, cp, i3 and cpz are maps in (2. 2) and (2. 3). 
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PROPOSITION (2.5) Let (A, q, B) be a cofibre space such that q is an inclusion 

map. Assume that the cofibre C of (A, q, B) is homotopy equivalent to the sus

pension 2Z of a space Z, and the diagram (2. 4) is commutative. Then, there is 

a cofibre map h: (Z, iz, TZ) ->(A, q, B). 

Proof. Let Ï: TZ-TAuB=B be the map defined by 

Ï = e,q. 

Then, the commutativity of the diagram (2. 4) shows that 

Ï(Zx[O, to]) c TA and Ï(Zx[t0 , 1]) c B. 

Define the homotopy hs : TZ _,. TZ by 

hs(Z, t) = (z, (1-s)t+tos), 

= (z, t), 

O~t < to, 

t0 < t <1. 

Then, ho=id, hl(Zx[O,to])CZXt0 , hs1Zx[to,1]=id, sEl and hs(izZ)cZx[O,t0 ], 

sEI. 

Let Ï s : TZ -> B be the homotopy defined by 

Ïs = Ïhs. 

Then, Ï 0 =Ï, Ï1(Zx[O, fo])C TAnB, ÏsiZx[to, 1]=ÏIZX[t0 , 1], sEl, and Ïs(izZ) 

c TA, sEI. Renee, Ï 1 defines the maps 

ÏÏ: TZ _,. B and h = ÏÏ 1 Z: Z ->A. 

The map li: 2Z->C, defined by 

'!ir = tïï, 

is well-defined, and we have 

lir(z, t) = tïi(z, t) = { Yo' 
r'etq(z, t) , 

= pcfetq(z, t) 

= pcr/Jtq(z, t) , 

0 < t < fo, 

t0 < t < 1, 

where Pc : 2A v C __,. C is the projection onto C. Therefore, we have Îi= PcifJK, 

because r is the identification map. 

On the other hand, by the commutativity of (2. 4) and (2. 3), 

PcifJK = Pc(Ko v K)ifJz = KPzifJz- K. 

Renee, h is a homotopy equivalence, and therefore the triple (h, ïï, li) is a cofibre 

map of (Z, iz, TZ) into (A, q, B). q.e.d. 

REMARK. The maps ifJz and ifJ define the cooperators in (Z, iz, TZ) and 

(A, q, B), respectively. Renee, the commutativity of (2. 4) means that the homo

topy equivalence K commutes with the cooperators. 
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As a sufficient condition that the diagram (2. 4) is commutative, we have 

the following lemma. 

LEMMA (2. 6) If Y is the space obtained from X by attaching cells, indepen

dently to each other, (i.e., Y=Xu Ue;), or, more generally, if Y is the space 
' 

obtained from X by attaching a space TZ by a map u : Z- X, then, the com

mutativity of (2. 4) holds for the cofibre space (X, if, Yf) associated with the 

inclusion map f: X~ Y. 

Proof. If is sufficient to prove the latter case. Since Cf is homotopy 

equivalent to Y/ /X, it is also to 2Z by the map ,. : 2Z-Cf such that 

and 

tC(z, t) = (u(z), 1-2t), 

= (z, 2t-1), 
0 < t::; 1/2' 
1/2 < t < 1. 

Let ifJz: .sz-.szv 2Z and ifJ: Cf->2XYCf be tre maps defined by 

ifJz(z, t) = ((z, 4t), Zo), 0 < t < 1/4, 

= (zo, (z, (4t-1)/2)), 1/4 < t < 1/2, 

= Czo, (z, t)), 1/2 < t < 1, 

ifJ(y) = (yo, y)' 

ifJ(x, t) = (yo, (x, 2t)), 

= (yo, Yo)' 

= ((x, 4t- 3), Yo) , 

y E Y, 

x E X, 0 < t < 1/2 , 

xE X, 1/2 < t < 3/4, 

xE X, 3/4 < t < 1. 

Then, the commutativity of (2. 4) is easily verified. 

3. An exact sequence 

q.e.d. 

For given spaces X and Y, the set of homotopy classes of maps X- Y is 

denoted by re (X, Y), and the constant map and the class containing it by the 

same letter O. 

THEO REM (3. 1) Let X and Y be sim ply connected spaces and f: X.--;. Y be 

a map. Assume that the cofibre Cf of the cofibre space (X, if, Yf) associated 

with f is homotopy equivalent to the suspension 2Z of a spaces Z such that the 

diagram (2. 4) is commutative. Then, there exists a cofibre map h: (Z, iz, TZ) ___,. 

(X, if, Yf) and the following sequence of sets of homotopy classes is exact for 

any space V: 

r* !* h* 
rc(Cf, V) --+ rc(Y, V) --+ rc(X, V) - rc(Z, V) . 

Proof. The exactness of the first three terms is well-known. (See Puppe 

[7], p. 305) 

The existence of a cofibre map (h, ïi, h): (Z, iz, TZ) ->(X, if, Yf) such that 
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ifh=hiz is proved in (2. 5). Since Y is a deformation retract of Yf, there is a 

retraction r : Y f-- Y such that rif= f. Sin ce TZ is contractible, iz- 0 and bence 

fh=rifh=rhiz-0. Therefore, we have h*f*=O, i.e., Kerh*=:Jlm/*. 

Conversely, let g: X-+ V be a map such that gh-0. Then, there is a map 

G : TZ -> V defined by a null-homotopy of gh. W e define the map G' : h!i!i ( TZ) ->V 

by 

G'(iTZ(z, t)) = G(z, t), 

G' Cix(x)) = g(x) , 

z E Z, tE I, 

xE X, 

where h!fi(TZ) is the space defined in (1. 7). Since X, Y are simply connected, 

Yf is homotopy equivalent to ~(TZ), by (1.10). Hence, there is a map G": 

Y f-- V su ch that G"i f- g. Therefore, the map g' = G" j: Y-> V satisfies g'f- g, 

where j: Y-- Yf is the inclusion map. This shows that Ker h*cimf*, and we 

have the exactness of the last three terms. q.e.d. 

4. Dual situation for fibre spaces 

DEFINITION ( 4. 1) A triple (E, p, B) of two spaces E, B and a map p : E----> B 

is called a (strong) fibre space, if the homotopy lifting property holds for any 

space U (which is not necessarily homotopy equivalent to a CW-complex), i.e., 

for any homotopy gt: U->B of go=Pfo, there is a homotopy ft: U--Eofj0 such 

that gt=Pft· 

For a fibre space (E, p, B), the space F= p-' (bo) is called the fibre ; E and B 

are called the total space and the base, respectively. We shall denote the injection 

F->E by i. 

DEFINITION ( 4. 2) Let (E, p, B) and (E', p', B') be two fibre spaces wh ose 

fibres F and F' are homotopy equivalent. A triple of maps Cl, 1, f) is called a 

fibre map if the following diagram is commutative: 

i p 
F--*E ->B 

71 i' 11 p' lt 
F'-> E'-> B' 

and J is a homotopy equivalence. 

The following proposition is well·known. (See Serre [8], p. 479) 

PROPOSITION ( 4. 3) Let X, Y be spaces, f: X--> Y be a map and Y f be its 

mapping cylinder. Then, the triple (tJ(Yf; X, Yf), p, Yf) is a fibre space where 

tJ(Yf; X, Yf) is the set of all maps l: ([0, r]; 0, r)-'> (Yf; X, Yf), O<r< +co, 
with the compact open topology and p: JJ(Yf; X, Yf) _, Yf is the map defined 

by p(l) =l(r). (We shall cali such a triple the fibre space associated with the map f.) 

Now, assume that the fibre Ff=tJ(Yf; X, .Yo) of (tJ(Yf; X, Yf), p, Yf), C.Yo 
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is the base point of Yf), is homotopy equivalent to the loop space S2Z of a space 

Z, and we shall consider the following diagram: 

(4. 4) 

where r.:: Q(Yf; X, .Yo) ->QZ is a homotopy eq~ivalence, Ko is its restriction to 

S2Yf and rfJ:S2(Yf;X,.Yo)XS2Yf->S2(Yf;X,.Yo) andr/Jz:S2Zx!2Z->S2Zarethe maps 

defined by the path addition Y in the sense of Moore. 

PROPOSITION ( 4. 5) Let X, Y be two simplicial complexes and f: X___, Y be 

a simplicial map. Assume that the fibre !l(Yf: X, .Yo) of the fibre space (Q(Yf; 

X, Y f), p, Yf) is homotopy equivalent to the loop space S2Z of a space Z, and 

the diagram ( 4. 4) is commutative. Th en, there exists a fibre map (li, Tt, h) : 

(.Q(Yf; X, Yf), p, Yf) __,. (LZ, Pz, Z) such that ÎÏ: !l(Yf; X, .Yo) _,Qz is the given 

homotopy equivalence r.:, where LZ is the path space over Z. 

The proof of this proposition will be given in the next section. 

REMARK. The maps rjJ and r/Jz define the operators in (SJ(Yf; X, Yf),p, Yf) 

and (LZ, pz, Z), respectively, in the sense of Eckmann-Rilton [2]. Renee, the 

commutativity of (4. 4) means that the homotopy equivalence r.: commutes with 

the operators. 

THEOREM (4.6) Let X, Y be two spaces and/: X-> Y be a map. Assume 

that the fibre Ff of the fibre space (SJ(Yf; X, Yf), p, Yf) associated with fis 

homotopy equivalent to the loop space QZ of a space Z such that the diagram 

( 4. 4) is commutative. Then, the following sequence of sets of homotopy classes 

is exact for any space U: 

i* h h* n(U,Ff) ....---? n(U, X) ....---? n(U, Y) -~ n(U, Z). 

Proof. The exactness of the first three terms is well-known. (For example, 

see Nomura [5], p. 118) 

Since X, Y have the homotopy type of a CW-complex, and any CW-complex 

has the homotopy type of a simplicial complex (see Milnor [4], Theorem 2), we 

may replace X, Y by simplicial complexes Kx, Ky, respective! y, and f by a 

simplicial map rp. Renee, it is easily seen that JJ(Kço; Kx, Kço) is homotopy 

equivalent to SJ(Yf; X, Yf) where Kço is the mapping cylinder of rp: Kx->Ky. 

Since the commutativity of (4. 4) for (.Q(Yf; X, Yf), p, Yf) implies that for 

("Q(Kço; Kx,Kço),"b,K,o), (4.5) shows the existence of a fibre map h: (SJ(Kço; Kx, 

Kço), p, Kço) ···ô> (LZ, Pz, Z) such that pifi=hp. Since LZ is contractible, we have 

hp-O. On the other hand, the injection map ix: Kx->SJ(Kço; Kx, K 1o) is a 

homotopy equivalence and Pix=rp. Renee we have h*rp*=O, i.e., Kerh*=::Jlmrp*. 
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Conversely, let g: U ->Y be a map su ch that hg~ O. Then, there is a map 
G: U -> LZ defined by a null-homotopy of hg. As is well-known, Q(K'P; Kx, Kcp) 

is homotopy equivalent to the space which consists of ail pairs (y, l), yEKcp, 

lELZ such that h(y)=Pz(l). Therefore, there is a map g': U--o>Q(Kcp; Kx, Kcp) 

defined by g and G, and satisfies pg' ,.._, g. This shows that there is a map 
g": U --o> Kx su ch that cpg"-. g, and we have Ker h* c lm cp*. 

Since X, Y are homotopy equivalent to Kx, Ky, and fis equivalent to cp, the 
exactness of the last three terms is proved. q.e.d. 

THEOREM (4. 7) Let X and Y be spaces and f: X-> Y be a map. Let Ff be 
the fibre Q(Yf; X, .Yo) of the fibre space associated with /, and Cf be the cofibre 
Yf!ifX of the cofibre space associated with f. 

1) Assume that X and Y are simply connected, and Cf is homotopy equivalent 
to the suspension of a space Z such that the diagram (2. 4) is commutative. Then, 
the following sequence is exact for any space V: 

r* f* i* 
n(Cf, V) ~ n(Y, V) ~ n(X, V) ~ n(Ff, V). 

2) Assume that F f is homotopy equivalent to the loop space of a space Z' 
such that the diagram (4. 4) is commutative. Then, the following sequence is 
exact for any space U: 

i* h r* n(U, Ff) ~ n(U, X) ~ n(U, V) ~ n(U, Cf). 

Proof. 1) By (4. 6), the sequence 

i* h n(Z, Ff) ~ n(Z, X) ~ n(Z, Y) 

is exact. On the other band, by (2. 5), there is a map h: Z --o> X such that fh ,.._,O. 

Renee, there is a map u : Z --o> F f such that iu,..,. h. 

Consider the following diagram 

r* !* h* 
~ n(Y, V) ~ n(X, V) ~ n(Z, V) 

~ 1u* 
n(Ff, V) 

where the horizontal sequence is exact, by (3. 1). If a E n(X, V) is an element 

such that i*(a) =0, then we have h*(a) =u*i*(a) =0. Therefore, there is an 

element j3 E n(Y, V) such that /*(fl) =a. Hence, Ker i*clmf*. Ker i*=>Im/* 

is obviuos. 

2) A similar argument is valid for this case. q.e.d. 

The following corollary is an immediate consequence of ( 4. 7). 

CoROLLARY (4. 8) 1) Under the same assumptions of (4. 7), 1), /*: n(Y, V) 

--> n (X, V) is onto for any space V if, and only if, F f is contractible in X. 

2) Under the same assumptions of (4. 7), 2), h: n(U, X) --o>n(U, Y) is onto 
for any space U if, and only if, r~O. 
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5. Proof of ( 4. 5) 

For a convenience, we shall denote Yf by Y, .Q(Y; X, Y) byE, .Q(Y; X, Yo) 

by F and the portion of E over a subset Y' of Y by El Y'. Also, denote the 

k-skeleton of Y by Yk. 

Define the maps ho : E 1 Y 0 ---'> LZ and ho : Y 0 --> Z by 

ÏÏ0(l) = ~r(l v l-;;1), for v E Y, lE El v, 

and 

ho(V) = Zo (base point of Z), 

where lv is a fixed path starting at Yo and ending at v. Then obviuosly we have 

Pzho=hoP, and hoiF=K. 

We shall prove the proposition by the induction on the dimension of skeleton 

of Y under the following assumption: 

Assumption (5. 1) k: For k > 0, maps ïïk: E 1 Yk---'> LZ and hk: Yk---'> Z are defined 

such that 

Pzhk = hkP, 

and the following diagram is commutative : 

(5. 2) 

.Q(Y; X,y0)x.Q(Y; y0 , Yk) -> .Q(Y; X, Yk) 

KXÏÏ~l lhk 
.QZxLZ ~ LZ 

whereïï7,:.Q(Y;y0 , Yk)-LZistherestrictionofïïkto JJ(Y; y 0 , Yk)cJJ(Y;X, Yk) 

and the horizontal maps are defined by the path additions. 

The assumption (5.1)k is satisfied when k=O. For, if ) E.Q(Y; X, y0) and 

fi E .Q (Y ; Yo , v), 

~>cA) V ÏÏv(fi) = ~>0) V K(fi V l;;I) 
= ~>0 v fi v l-;;I) 

= hvO V fi) . 

(by (4. 4)) 

Now, assume (5. 1) n-1 : Let sn be an n-slmplex of Y. Each point y of sn is 

represented by 

y= (x, t), xE sn, tEl, 

such that 

(x, 0) = x and (x, 1) = v , 

for a fixed point v in sn_ sn. Hence, there is a continuous set of paths /J.y, y E sn, 

definep by 

for y = (x, t) . 

Define the maps gsn: sn __ , LZ and hsn: sn-> Z by 

gsn(x, f) = hn-1 Cl v V p-;;1) , 0 ~ t < 1/2, 

= hn-1Clv V p-;;1) 1 (2-2t), 1/2 < t < 1, 
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and 
hsn(x, t) = pzgsn(x, t), 

where lv is a fixed path starting at y 0 and ending at v, and llt=li[O, tr], for 

l : [0, r] _,. Z. 

Then, by (5.1) n-1, 

hsn (x) = Piïin-1 Cl v V p-;1) = hn-1PClv V p-;1) = hn-l (x) , 

Therefore, hsn 1 s"=hn-l· 

for xE sn. 

Let pf, y= (x, t), be the pa th defined by 

p~(s) = (x, t-s) , 0 < s < t, 0 _::;::: t < 1/2, 

= (x,t-s), O<s<l-t, l/2S::t<l. 

Since /f.x v l-;;1 v lv v p-;1 is homotopie in LY to the constant path, fixing its 

end points, let Fu: ;;n --+ LY be its homotopy such that 

F, (x) = constant pa th at x. 

Define the map ÏÏsn: El sn-> LZ by 

hsn(l) = hn-I(lV If.~ V F1-2t(x)), 

= K(lV pf V pf-1 V /f.y V l-;;1) V g 3 n(y), 

0 < t < 1/2, 

1/2 < t < 1' 

for y= (x, t) and lE Ely. Then, if y= (x, 1/2) and lE Ely, 

hn-l (lV pf V Po) = Ji,_, (lV pf V /f.x V l-;;1 V lv V p-;1) 
= Ji,_1 (lV pf V pf-1 V /f.y V l-;;1 V lv V p-;1) 

= ~>(!V 1'-f V 1'-f-l V /f.Y V l-;;1) V hn-1 Cl v V p-;1) 

= K([V pf V f.!.-f-1 V /f.Y V l-;;1) V g8 n(y), 

since pf- 1 V py= !f.x, 0 < t < 1/2. Therefore, hsn is well-defined. 

If lE Eix, x= (x, 0) Es", 

sin ce p; and F, are constant paths. Renee li sn 1 (E 1 s") = ÎÏn-1. 

It is easily verified that Pzlisn=hsnp, and also 

K(Â) V hsn(p.) = hsnO V fl) 

for .l.EJJ(Y; X,y 0), i1EJ2(Y;y0 ,s"). 

Th us, the maps ÏÏn : E 1 yn -> LZ and hn : Y"-+ Z, defined by 

(by (5. 2)) 

for a simplex snE yn, are well-defined and satisfy the inductive assumption (5. 1),. 

This completes the proof of Proposition ( 4. 5). 



78 Noboru YAMAMOTO 

References 

[ 1 J B. Eckmann and P. J, Hilton, Groupes d'homotopie et dualité, I, II, C. R. Acad. Sei. Paris, 
246 (1958), pp. 2444-2447 and pp. 2555-2558. 

[ 2 J B. Eckmann and P. J. Hilton, Operators and Coopera tors in homotopy theory, Math. Ann., 
141 (1960), pp. 1-21. 

[ 3] P. J, Hilton, Homotopy theory and duality (mimeographed), Cornell University, 1959. 
[ 4] J, Milnor, On spaces h~ving the homotopy type of a CW-complex, Trans. Amer. Math. 

Soc., 90 (1959), pp. 272-280. 
[ 5 J Y. Nomura, On mapping sequences, Nagoya Math. J., 17 (1960), pp. 111-145. 
[ 6 J P. Olum, Non abelian cohomology and van Kampen's theorem, Ann. of Math., 68 (1959), 

pp. 658-668. 
[ 7 J D. Puppe, Homotopiemengen und ihre indizierte Abbildungen I, Math. Zeit., 68 (1958), 

pp. 299-344. 
[ 8] J. P. Serre, Homologie singulaire des espaces fibrés, Ann. of Math., 54 (1951), pp. 425-505. 


