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0. Introduction

Let X, Y be two spaces and f: X— Y be a map. Then, there are a fibre space
and a cofibre space such that the projection and the injection are equivalent to
f, respectively. Hence, for any spaces U and V, we have the well-known exact
sequences of sets of homotopy classes:

#(U, Fy) —> (U, X) L5 =(U, 7)

and
f*
7(Cr, V) —n(Y, V) —n(X, V)
where Fr and Cr are the fibre and the cofibre, respectively.

The main purpose of this paper is to extend these exact sequences by one
term, under the assumption that Fr and Cr are homotopy equivalent to the loop
space and the suspension of a space, commuting with operators and cooperators
(in the sense of Eckmann- Hilton [2]), respectively.

In §81-2, we shall deal with the notion of cofibre spaces following Eckmann
and Hilton, [1],[21,[3]. In $3, the theorem for cofibre spaces is proved, and in
§84-5, it is dualized for fibre spaces and the main theorem is proved.

The author wishes to express his sincere thanks to Professor M. Sugawara
for valuable suggestions and discussions, and also to Professors M. Nakaoka and
K. Mizuno for helpful advices and encouragement.

1. Cofibre spaces

Throughout this paper, unless otherwise stated, spaces will be arcwise con-
nected and have the homotopy type of a CW-complex. On each space a base
point is given, each map takes base point to base point and each homotopy
leaves base point fixed.

The following definition of the cofibre space is due to Eckmann-Hilton [1].

DerFintTiON (1.1) A triple (4, ¢, B) of two spaces A, B and a map ¢: A—B
is called a cofibre space (or a cofibration), if the following condition is satisfied :
Let V be any space (which is not necessarily of the same homotopy type as a
CW-complex), and let g,: A—V, hy: B—V be maps such that g,=hyq. Then, for
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any given homotopy g; (¢€I=[0, 1]) of g,, there exists a homotopy #: of &, such
that g:=hyq.

For a cofibre space (4, ¢, B), the identifying space C=B/gA of B, shrinking
gA to the base point, is called the cofibre; A and B are called the cobase and the
total space, respectively. We shall denote the identification map B—C by 7.

Derinition (1.2) Let (4, ¢, B) and (4, ¢, B) be two cofibre spaces whose
cofibres have the same homotopy type. A cofibre map f: (A, q, B) = (4, ¢, B)
is a triple of maps (f, 7, ) such that the diagram

4 L5 ¢

L

A/ s B c’
is commutative and 7 is a homotopy equivalence.

DerinitioN (1.3) Let A, A’, B be spaces and ¢; A—A’, ¢ : A— B be maps.
We shall define M(4, ¢) to be the space obtained from the disjoint union A’“~'B
by identifying ¢#(a) € A’ and ¢ (@) € B for each a € A. The natural maps A —M(9, ¢)
and B—M(¢, ¢) are denoted by ia’, and im, respectively, and ia’(as) =in(b,) is
taken as the base point of M(9, ¢) where aj€ A’, b, € B are the base points.

Derinmrion (1.4) Let A, B be space and f: A— B be a map. The mapping
cylinder By of f is the space obtained from the disjoint union AXI“YB by identi-
fying (a,0) € AxX0 with f(a) € B for each a€ A and shrinking «,xI to the base
point. The mapping cone Cy of f is the identifying space By/Ax1. In particular,
the space C; for the identity map i: A—A is the cone over A and denoted by
TA. The suspension XA of A is obtained from TA by shrinking Ax0 to the
base point. '

It is easy to prove the following lemma.

Lemma (1.5) Let A, B be spaces and f: A—B be a map. Then, the triple
(A, ir, Br) is a cofibre space whose cofibre is the mapping cone Cr of f, where
ir: A—> Br is the natural injection. (We shall call such a triple the cofibre space
associated with the map f.)

Lemma (1.6) Let (A4,¢q,B) be a cofibre space whose cofibre is C, and
f: A—~ A" be a map. Then, (4, ia’, M(f, q)) is a cofibre space having C as the
cofibre, and there is a cofibre map f: (A4, g, B)—(A4’, ia7, M(f, q)), ie., the follow-
ing diagram is commutative :

a2 p T, ¢

f s . lf:ZB s lf:ldc
q=1t4’ 7

A ——>M(f,¢) —> C.
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Proof. As easily seen, M(f, ¢)/ia’A’=B/qgA=C, and the above diagram is
commutative.

Let g{: A’—V be a homotopy and %j: M(f,¢)—>V be a map such that
gt=htia. Then, g{f: A—V is a homotopy of hjirg: A—V. Therefore, we have
a homotopy #:: B—V such that

ho = h(/)iB and htq = g;f’

because (4, g, B) is a cofibre space. These relations show that the homotopy
Wi M(f, q)—V of h§, defined by

hita’ = gt, hiisg=h:,
is well-defined. Hence, (A4, ¢4/, M(f, ¢)) is a cofibre space. q.e.d.

DeriNitioNn (1.7) The triple (A, 147, M(f, q¢)) of the above lemma is called
the cofibre space induced from (A, q, B) by f, and its total space M(f, ¢) is denoted
by fz(B). Also, the above triple of maps (f,is, idc) is called the cofibre map
induced by f. (See Hilton [3], §6.)

Lemma (1.8) Let (f, 7, 7): (4,q, B)—~ (A’ ¢, B) be a cofibre map, and
(A, q,B”) and (f, &, &): (A, ¢, B)—(A,q", B”) be the cofibre space and the
cofibre map induced by f, respectively. Then, there is a cofibre map (ida, fo, 7o)
(4, q", B") — (A, ¢, B) such that fog=/ and F.Z=7F.

Proof. By the definition of the induced cofibre space, B”=M(f, q), ¢”"=ia’,
Z2=ip and g=idc. Define the map fo: B”—B by

Fiar=¢q and Foip=f.
By the definition of M(f, ¢) and ¢'f=7gq, 7, is well-defined and 7og=7ip=7,
Fog/=Fida=q. Hence 7, induces a map f,: C=B"/¢”A—~C'=B'/¢A’. Since f

and Z are induced by f and 2, respectively, /,g=7 shows that 7,&=7. Therefore,
7, is a homotopy equivalence, because 7 is so and F=idc. q.e.d.

Lemma (1.9) Let (4,q, B) and (A4, ¢, B) be cofibre spacs over the same
space A. Assume that there is a cofibre map f: (4, ¢, B) = (4, ¢/, B’) such that
f: A— A is the identity map, and the total spaces B and B’ are simply connected.
Then, B and B’ are homotopy equivalent.

Proof. From the exactness of the homology sequence of cofibre spaces and
Five Lemma, it follows that fuwH;(B)=~H;(B"), for iZ>0. Since B and B’ are
simply connected, fi:7;(B) ~n;(B’), for i=1. Therefore, B and B’ are homotopy
equivalent, because they have the same homotopy type of a CW-complex. q.e.d.

From (1.8), (1.9) and van Kampen’s Theorem [6], the next corollary follows
immediately.
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Cororrary (1.10) Let (4, ¢, B) and (4, ¢/, B) be cofibre spaces such that
there is a cofibre map (f, 7, 7): (4, ¢, B) ~ (4, ¢, B). If B, A’ and B’ are simply
connected, then B’ and fz(B) are homotopy equivalent.

2. Existance of cofibre maps

Let (4, g, B) be a cofibre space and B=C,=TA ‘;J B be the mapping cone of
qg: A—B.

Let g:: A— B be the homotopy defined by g;(¢)=(a,1),a€ A, and f,: B—B
be the map defined by f,(b)=b, b€B. Since fug=g, and (A, q, B) is a cofibre
space, there is a homotopy f;: B— B such that fig=g;, in particular, fig(4)=b,.
Hence, f, defines a map

@D e: C—B.

Next, let 7: B—> XAV C be the map shrinking Ax0=TA~ B to the base point,
and psa: JAVC—>2A be the projection. Define maps

2.2) 6:C—>IJAVC, 0:C—~>23A
by
$p=7e, 0 = psad = psaTe.

Remark. The map ¢ is unique up to a homotopy and defines the cooperator
in the sense of Eckmann-Hilton [2].

The following lemma is clear.

Lemma (2.3) For the cofibre space (Z, iz, TZ) with cofibre XZ, the map
¢z XZ—~>23ZV3Z, in (2.2), may be taken as the map defined by

¢Z(Z, t) = (Z, t/t0> s Ogtgt()’
:(z, t_t0)9 togtél,

for a fixed number #,, 0<#,<1.

Therefore, ¢z defines an H-structure on 27, i.e., p;9z~idsz, where p;: XZV
37— 27 is the projection onto the 7-th component, i=1,2. (See Eckmann-Hilton
[1b

Now, let (A4, q, B) be a cofibre space whose cofibre C=B/qA is homotopy
equivalent to the suspension 3Z of a space Z.

We shall consider the following diagram:

57 2%, sovsz

ml lr;o Vi

& 2 save

2.4

where « is a homotopy equivalence, k,=0k, ¢, 6 and ¢z are maps in (2.2) and (2.3).
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ProrosiTiON (2.5) Let (A4, q, B) be a cofibre space such that ¢ is an inclusion
map. Assume that the cofibre C of (A4, g, B) is homotopy equivalent to the sus-
pension 2Z of a space Z, and the diagram (2.4) is commutative. Then, there is
a cofibre map h: (Z,iz, TZ)— (A, q, B).

Proof. Let f: TZ—> TAYB=B be the map defined by
J=exy.
Then, the commutativity of the diagram (2.4) shows that
F(Zx[0,t,]) © TA and F7(Zx[t,1]) CB.
Define the homotopy #s: TZ— TZ by

hs(2, ) = (2, A—s)t+tes), O0=t=t,
=(t, Lh=t<1.
Then, ho=id, h(Zx[0, t,]) CZxt,, hs|Zx[ty, 1]1=id, s€I and hs(izZ) = Zx[0, t,],
sel.
Let 7s: TZ—~B be the homotopy defined by

fo=Ths.
Then, fo=7, 7/.(ZX[0, t,]) © TAAB, Fs|Zx[t,, 1]= f]ZX[to, 1], s€l, and 7s(izZ)
C TA, s€I. Hence, f, defines the maps
h: TZ—B and kh=hlZ:Z— A.
The map %: 2Z—C, defined by
hr=7h,
is well-defined, and we have

e, D = 7z, ) = { 7 0=i<t,
T/E’CT(Z; t) ’ togtgly

= pcTey (2, t)
= pcdrr(z, 1),

where pc: FAVC—C is the projection onto C. Therefore, we have Z=pcor,
because 7 is the identification map.
On the other hand, by the commutativity of (2.4) and (2.3),

pcdt = pc(kVE)Oz = kpsbz ~ k.
Hence, % is a homotopy equivalence, and therefore the triple (%, %, %) is a cofibre
map of (Z,iz, TZ) into (A4, ¢, B). q.ed.
ReEmark. The maps ¢z and ¢ define the cooperators in (Z, iz, TZ) and

(4, q, B), respectively. Hence, the commutativity of (2.4) means that the homo-
topy equivalence £ commutes with the cooperators.



72 Noboru YAMAMOTO

As a sufficient condition that the diagram (2.4) is commutative, we have
the following lemma.

Lemma (2.6) If Yis the space obtained from X by attaching cells, indepen-
dently to each other, (i.e., Y=X"Je;), or, more generally, if Y is the space

obtained from X by attaching a space 7Z by a map u: Z— X, then, the com-
mutativity of (2.4) holds for the cofibre space (X, ir, Yr) associated with the
inclusion map f: X— Y.

Proof. If is sufficient to prove the latter case. Since Cr is homotopy
equivalent to Y/fX, it is also to 2Z by the map rt: 2Z—Cy such that

k() = w@),1-20, 0Lt<L1/2,
=(z2t—-1), 12 <1,

Let ¢z: 3Z—>23ZV3Z and ¢: Csr— 22XV Cr be the maps defined by

$z(z, 1) = ((z,41), 20) , 0<t<1/4,
= (20, (z, W—-1)/2)), 1/45t<L1/2,
= (2o, (3, 0)), 12t <1,
and
() = (50,9 5 yey,
(x, £) = (30, (x,2)), 2€X, 0515172,
= (30, 30 » x€X, 1/2<1<3/4,
= ((x,4—3),3), x€X, 341,
Then, the commutativity of (2.4) is easily verified. q.ed.

3. An exact sequence

For given spaces X and Y, the set of homotopy classes of maps X—Y is
denoted by n(X, Y), and the constant map and the class containing it by the
same letter 0.

TueoreM (3.1) Let X and Y be simply connected spaces and f: X—Y be
a map. Assume that the cofibre Cr of the cofibre space (X, ir, Yr) associated
with f is homotopy equivalent to the suspension 3Z of a spaces Z such that the
diagram (2.4) is commutative. Then, there exists a cofibre map %: (Z, iz, TZ) —
(X, ir, Yr) and the following sequence of sets of homotopy classes is exact for
any space V:

w(Cr, V) o 2y, vy L5 mix, vy 2wz vy

Proof. The exactness of the first three terms is well-known. (See Puppe

[7], p. 305)
The existence of a cofibre map (B, &, %) : (Z,iz, TZ) — (X, ir, Yr) such that
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irh=nhiz is proved in (2.5). Since Y is a deformation retract of Yy, there is a
retraction 7: Yr—Y such that 7i,=f. Since TZ is contractible, iz~ 0 and hence
Sh=rish=rhiz~0. Therefore, we have i*f*=0, ie., Ker P OIm fk,
Conversely, let g: X—V be a map such that gh~0. Then, there is a map

G: TZ— V defined by a null-homotopy of gh. We define the map G': hu(TZ)—->V
by

G(rz(z, 1) = G t), z2€Z tel,

G (x(x) = glo), xeX,

where hx(TZ) is the space defined in (1.7). Since X, Y are simply connected,
Yr is homotopy equivalent to #:(TZ), by (1.10). Hence, there is a map G”:
Y ;— V such that G"i,~g. Therefore, the map g'=G"j: YV satisfies g'f~g,
where j: Y— Y, is the inclusion map. This shows that Ker #*CIm f*, and we
have the exactness of the last three terms. q.e.d.

4. Dual situation for fibre spaces

DerFiNiTION (4.1) A triple (E, p, B) of two spaces E, B and a map p: E—~B
is called a (strong) fibre space, if the homotopy lifting property holds for any
space U (which is not necessarily homotopy equivalent to a CW-complex), i.e.,
for any homotopy g;: U— B of g,=pf,, there is a homotopy f;: U— E of f, such
that g:=pf:.

For a fibre space (E, p, B), the space F=p*(b,) is called the fibre; E and B
are called the total space and the base, respectively. We shall denote the injection
F—E by i.

DerinitioN (4.2) Let (E, p, B) and (E', p', B) be two fibre spaces whose
fibres F and F’ are homotopy equivalent. A triple of maps (7, 7, f) is called a
fibre map if the following diagram is commutative:

r-r 2op
1
RNy ANy %

and 7 is a homotopy equivalence.
The following proposition is well-known. (See Serre [8], p. 479)

Prorosition (4.3) Let X, Y be spaces, f: X—>Y be a map and Y, be its
mapping cylinder. Then, the triple (2(Y,; X, Y /), p, Y,) is a fibre space where
Q(Yy; X, Y, is the set of all maps 7: ([0,#1; 0,7) > (Y ,; X, Y /), 0<<r<+oo,
with the compact open topology and p: (Y ,; X,Y,) »Y, is the map defined
by p()=1(). (We shall call such a triple the fibre space associated with the map f.)

Now, assume that the fibre F,=2(Y,; X, 7) of (2(Y;; X,Y ), p, Y., (5
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is the base point of Y ), is homotopy equivalent to the loop space £Z of a space
Z, and we shall consider the following diagram:

¢
Q(Yy; X,,J’_o)XQYf —> (Y5 X, 30)
[ K

Q7% 97 9z, 27z

“. 4

where k: 2(Y,; X, 5) —%Z is a homotopy equivalence, &, is its restriction to
QY ; and ¢:2(Y,; X, Jo) X2Y ;= L2(Y 5 X, 30) and $z: QZXLZ— L7 are the maps
defined by the path addition V in the sense of Moore.

ProrositioNn (4.5) Let X, Y be two simplicial complexes and f: X— Y be
a simplicial map. Assume that the fibre 2(Y,: X, 7,) of the fibre space (2(Y;
X,Y,),p, Yy) is homotopy equivalent to the loop space £2Z of a space Z, and
the diagram (4.4) is commutative. Then, there exists a fibre map (4, 7, &) :
Q(Yy; X, Y0, 0, Y= (LZ, pz, Z) such that h: 2(Yr; X, 5,) —~8Z is the given
homotopy equivalence k, where LZ is the path space over Z.

The proof of this proposition will be given in the next section.

RemArk. The maps ¢ and ¢z define the operators in (2(Yr; X, Yr), p, Yr)
and (LZ, pz, Z), respectively, in the sense of Eckmann-Hilton [2]. Hence, the
commutativity of (4.4) means that the homotopy equivalence # commutes with
the operators.

Tueorem (4.6) Let X,Y be two spaces and f: X—Y be a map. Assume
that the fibre Fr of the fibre space (2(Yr; X, Ys), p, Yr) associated with f is
homotopy equivalent to the loop space £Z of a space Z such that the diagram
(4. 4) is commutative. Then, the following sequence of sets of homotopy classes
is exact for any space U:

2O, F) s 2 (U, 1) T =u, vy 22U, 7).

Proof. The exactness of the first three terms is well-known. (For example,
see Nomura [5], p. 118)

Since X, Y have the homotopy type of a CW-complex, and any CW-complex
has the homotopy type of a simplicial complex (see Milnor [4], Theorem 2), we
may rteplace X, Y by simplicial complexes Kx, Ky, respectively, and f by a
simplicial map ¢. Hence, it is easily seen that %(K,; Kx, Ky) is homotopy
equivalent to 2(Yr; X, Yr) where K, is the mapping cylinder of ¢: Kx— Kvy.
Since the commutativity of (4.4) for (2(Yr; X, Ys), p, Ys) implies that for
(2(Ke; Kx, Ko), p, Kp), (4.5) shows the existence of a fibre map %#: (2(K,; Kx,
Ky, p, Ky) -~ (LZ, pz, Z) such that pzh=hp. Since LZ is contractible, we have
hp~0. On the other hand, the injection map ix: Kx—2(K,; Kx, K,) is a
homotopy equivalence and pix=¢. Hence we have Zwwx=0, i.e., Ker s DIm ¢x.
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Conversely, let g: U—~Y be a map such that 2Zg~0. Then, there is a map
G: U—LZ defined by a null-homotopy of kg. As is well-known, 2(Ko; Kx, Ko)
is homotopy equivalent to the space which consists of all pairs (y, /), y€ Ko,
€ LZ such that h(y)=pz(). Therefore, there is a map g’: U—L2(Ky; Kx, Ko)
defined by g and G, and satisfies pg’~g. This shows that there is a map
g”: U— Kx such that ¢g”’~g, and we have Ker 2« CIm¢x.

Since X, Y are homotopy equivalent to Kx, Ky, and f is equivalent to ¢, the
exactness of the last three terms is proved. q.ed.

TueoreMm (4.7) Let X and Y be spaces and f: X— Y be amap. Let Fr be
the fibre 2(Yr; X, 5,) of the fibre space associated with f, and Cs be the cofibre
Yr/irX of the cofibre space associated with f.

1) Assume that X and Y are simply connected, and Cr is homotopy equivalent
to the suspension of a space Z such that the diagram (2. 4) is commutative. Then,
the following sequence is exact for any space V:

T* Fx ik
7Cr, V) — a(Y,V) — X, V) —> n(Fr, V).

2) Assume that Fr is homotopy equivalent to the loop space of a space Z’
such that the diagram (4.4) is commutative. Then, the following sequence is
exact for any space U:

(U, Fp) 5 20, 10 5 2w, vy 5w, cp

Proof. 1) By (4.6), the sequence

(2, Fp) 25 2z, ) 5 2z, 1)

is exact. On the other hand, by (2.5), there is a map %#: Z— X such that fz~0.
Hence, there is a map u: Z— Fr such that iu~h.
Consider the following diagram

n(Cr V) —/—*—> n(Y, V) ——in (X, V) —]ﬁ; n(Z, V)

n(Fr, V)
where the horizontal sequence is exact, by (3.1). If a€n(X, V) is an element
such that *(a)=0, then we have #*(a)=w¥*(a)=0. Therefore, there is an
element f€n(Y, V) such that f*(B)=a. Hence, Ker #*CIm f* Ker#DIm f*
is obviuos.
2) A similar argument is valid for this case. q.e.d.
The following corollary is an immediate consequence of (4.7).

CororLLarRY (4.8) 1) Under the same assumptions of (4.7), 1), f*: z(Y, V)
—n(X, V) is onto for any space V if, and only if, Fr is contractible in X.

2) Under the same assumptions of (4.7), 2), fix: n(U, X) —»n(U, Y) is onto
for any space U if, and only if, 7 ~0.
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5. Proof of (4.5)

For a convenience, we shall denote Ys by Y, 2(Y; X, Y) by E, 2(Y; X, y0)
by F and the portion of E over a subset Y of Y by E|Y’. Also, denote the
k-skeleton of Y by Y%

Define the maps %,: E|Y°—~LZ and hy: Y°—~Z by

(D) =e(VIY, forveY,lcEv,
and '

h(v) =z, (base point of Z),
where /, is a fixed path starting at y, and ending at ». Then obviuosly we have
pzho=hep, and k| F=kx.

We shall prove the proposition by the induction on the dimension of skeleton
of Y under the following assumption : _

Assumption (5.1)z: For k=0, maps 7: E|Y*—LZ and h,: Y% — Z are defined
such that

pzhe = hp,
and the following diagram is commutative :
Q(Y; X, 30 X2(Y; 30, YE) —> 2(Y; X, YF)
(5.2) :cx/“zzl 1z
RIXLZ E—— LZ
where 7} : 2(Y ; y,, Y*) — LZ is the restriction of 7, to 2(Y; 5,, YO C2(Y; X, Y*)
and the horizontal maps are defined by the path additions.

The assumption (5.1), is satisfied when k=0. For, if 1¢2(Y; X, ) and
2€Q(Y; 50, 0),

(W) V(B = e Ve@VIhH
=e@VEVIY (by (4.4))
= (Vi) .
Now, assume (5.1),,: Let s” be an n-simplex of Y. Each point y of s” is
represented by
y=@10, x€s", tel,
such that
(x,0) =x2 and (x, 1) =v,
for a fixed point v in s”—$", Hence, there is a continuous set of paths u,, y € s*,
definep by

2y(8) = (%, t+s), 0<s<1-¢, for y= (0.
Define the maps gs#:s*—~LZ and ks s”— Z by

gsn(%, 1) = ”ny (LY 159, 0 <L1/2,
=ha(LV 0 1 @20, 1/2<t<1,
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and
hs"(x, t) = ngs”(xy t) ’

where 7, is a fixed path starting at y, and ending at », and Z[¢=/|[0, #], for
. [0, 71— Z.
Then, by 5.1y,
hsn () = pzlinroV 11" = hnsp@oY 1552 = hn (%), for x € 8",
Therefore, hsn|§"=hy,,.
Let 4, y=(x,1), be the path defined by

ﬂ?’l(s)z(xyt—s)y Oé\?gt, Ogt§1/29
= (x,t—s), 0<s<1—¢, 1/2<¢t<1.
Since s, VI71VI,V 3! is homotopic in LY to the constant path, fixing its
end points, let F,: §” > LY be its homotopy such that
F,(x) = p, VIJVI,Vyt,  F.(x) = constant path at x.
Define the map 7%s»: E|s”—LZ by

hsn (D) = hns (N 1y V Fi0: (%)), 0<Lt<£1/2,
=eUVpVp Y, VIgH Vem(y), 1/2<t<1,

for y=(x,¢) and /€E|y. Then, if y=(x,1/2) and /€E]y,
En~1<lvul,l VF) = ﬁn—x(l\’#{/vux v ZJIV 7,;\/#;1)
= ﬁn—l(lvﬂzllvﬂl//—lVﬂyvz%—lvivvﬂ;l)
=V N p Y s VITH Vs (Y 150 (by (5.2))
=V pVp Vs VIgH Vga(y),
since 7'V puy=pr, 0=t <1/2. Therefore, i is well-defined.
If /€E|x, x=(x,0) €57,

ﬁs”<l) = ;l.n—l(lvﬂ;:VFD = Enﬂ(l) s

since u/, and F, are constant paths. Hence Zs2!| (E|$8") =Fy—,.
It is easily verified that pzh,»=hsnp, and also

k(D) Vhn(A) = hsn(AN )

for 1€ 2(Y; X, o), R€L2(Y; 3o, 8™).
Thus, the maps %,: E|Y*"—LZ and hy,: Y"— Z, defined by

hn| (E|8™) =Rsn, and hals" = hen,

for a simplex s” € Y*, are well-defined and satisfy the inductive assumption (5.1),.
This completes the proof of Proposition (4.5).
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