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Introduction

In the present work we determine the cohomology algebras modulo 2 of the
compact simply connected exceptional Lie groups Es and E,. The results are
stated in Theorems 2.7 and 3. 13.

For this purpose we compute the cohomology of loop spaces of the compact
symmetric spaces E/F, and E,/E;x T* in lower degrees, using the method of
Bott-Samelson [11]. On the course of this argument we see that all K-cycles [11]

which describe the corresponding homology basis are orientable. This fact will
be used elsewhere.

As another tool we use the spectral sequence arguments.

§1. Compact symmetric spaces.

1.1. Let G be a compact connected Lie group and T be a maximal torus in G.
Denote by g and t the Lie algebras of G and T respectively. Using a positive
definite invariant metric (,) in ¢ we have the Cartan orthogonal decomposition

1D g=t+2ey

where the summation runs over all positive roots @ of g relative to t with respect
to a linear order in t* (dual space of t). Since we are concerned only with
compact symmetric spaces we mean by “roots” the angular parameters in the
sence of E. Cartan. The space ¢, is of dimension 2 and invariant under the adjoint
action of T (or t). The adjoint action of t€ T on ¢, is a rotation through the
angle 2za(t). We put ¢_,=¢, by convention.

We can choose an ortho-normal basis {Us, Va} in e, to satisfy the following
structure equations :

[H, Us] = 2rna(H)V,
1.2 [H, Uy]= —2ra(H)U, for any Het,
[Uy, Vol = 2nH,

where H, €1 is defined by (H,, H)=a(H) for all Het. The frame {U,, V) is
determined not uniquely, but up to rotations in ¢,. Hence, in particular the

orientation of e, is determined uniquely by any choice of the ortho-normal frame
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{Us, Vau}. Any frame {U,, V,} satisfying (1.2) is called a bdasic frame of the
oriented plane ¢y. If we put U_,=U, and V_uy=—V,, then the pair {U_., V_o}
satisfies the equations (1.2) for the root —«. Hence the orientation of e_, given
by a basic frame {U_4, V_,} is opposite to that of ¢, given by {Us, Vo). In this
sense we can distinguish e, from e_, as oriented 2-planes.

If we choose a basic frame {U,, V,} for each positive root a, we obtain an
additive basis of t+ (orthogonal complement of t in g). The so obtained basis
is called a canomical basis of (g, 1).

1.2. Let G be a compact connected Lie group and K be a closed connected
subgroup of G. If there exists an involutive automorphism ¢ of G such that K
is the e-component of the group K consisting of all fixed elements under o, then
the pair (G, K) is called a symmetric pair and the homogeneous space G/K (K&
KCK) is a compact Riemannian symmetric space ([11]).

The symmetric space G/K can be canonically identified with a totally geodesic
subspace M of G endowed with an invariant Riemannian metric. M is the diffeo-
morphic image of G/K under the map 7x: G/K—G induced by a map 7: G—G
defined by »(g)=g-s(g™"). (Cf., [10]).

In this work we are concerned only with the case G is simply connected,
then K=K by [11, 12] so that G/K is identified with M by 7.

For a subset L of M its centralizer in K is denoted by Zx(L). An element
a of M such that Zx(a)=K is called a central element of M. Such an element
is contained in every maximal torus of M.

By f we denote the Lie algebra of K and let m be the orthogonal complement
of ¥in g. Then M=expm as is well known.

The involution ¢ of G induces an involutive automorphism of g denoted by
the same letter o. fis the eigenspace of ¢ with eigenvalue 1 and m is the eigen-
space with eigenvalue —1.

1.8. Leti_ be a Cartan subalgebra of m, i.e.,, T_=exp ({_) is a maximal torus
of M. Let t be a Cartan subalgebra of g containing t—. Put {,=t~1%, then

(1.3) t=t,+1- (direct sum) .

T=exp (1) is a maximal torus of G. Further we put To=exp (), then T=T,T-
and Ty~ T- is a finite group.

By (1.3) we see that t is invariant by ¢, whence the transposed linear map
ot : v —>t¥ is induced. We put ¢¥=—o¢?. o*images of roots are also roots.

Let v denote the system of non-zero roots of g relative to {. By easy com-

putations we see that
(1. 4) 0Hy, = —Hyug for all acr,

and
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<1. 5) 0y = Corg »
Further, we see immediately,

(1.6) if {Ua, Vo is a basic frame of ¢, then {6V, cUy} is a basic frame of
¢ora SO any a €,

For each pair (e, ¢¥a) of roots we say that a basic frame {U, Vi of ¢ is
o-related to a basic frame {U,su, Vora} Of .40 When the relations

1.7 0Up = Upsa, Vo= —Viuq

are satisfied. When {U,, V,} is orelated to {Upa, Vo), then {Ussa, Voew} is o-
related to {Uy, Vu} and {U_,, V_,} is o-related to {U—_gvs, V_ora}t, where U_g=Up
and V_pg=—"V; for B=a or s*a.

A canonical basis of (g, {) determines a basic frame {U,, V,} of ¢, for each
positive root a. Let us use the convention that U_,=U, and V_,=—V,, then
a canonical basis of (g,1) determines a basic frame {U,, V,} of ¢, for each a€r.
These basic frames are called the associated frames to the canonical basis. A
canonical basis of (g, t) is said to be o¢-normalized when the associated frame
{Uw, Vu} is o-related to the associated frame {Ussg, Vove} for any a«€r.

ProrosrtioN 1.1. Under the above choice of the Cartan subalgebra t of ¢ (i.e.,
if t contains a Cartan subalgebra {_ of m), there exists a o-normalized basis of

(g, D.

(Proof) Two transformations, a— —a and a— o¢*a, of t generates a trans-
formation group I” on t. Choose a positive root as a representative for each /-
orbit. For each representative positive root a we discuss three cases separatedly.

Case ). o*a==+a., In this case the orbit I"a consists of 4 roots +a, +s¥a.
Choose a basic frame {U,, V,} of ¢, arbitrarily. By (1.6) {¢V,, ¢U,} is a basic
frame of e;«. Rotate this frame by angle 7/2, then we obtain a basic frame
{oUy, —0Vy Of touw. We put Usia=0U, and Vywg=—0V,, then {Ussy, Vera) 1S a
basic frame of ¢, and {U,, V,} is o-related to {Usiw, Vorw}. When o¥a is a
negative root, we put U_suz=Uss, Vora= — V_gxe by our convention.

Case ii). o*a=a. In this case the orbit /'« consists of 2 roots +a. If we
take a basic frame (U}, Vi) of ¢,, then {¢V,, ¢U}} is also a basic frame of ¢, by
(1.6). Hence the frames (U, V,} and {cU4, ¢V}} determine opposite orientation
of ¢,, i.e., the restriction ¢le¢, is a reflection in the plane ¢,. We have a unit
vector U, of ¢,, which is invariant under ¢. Choose another vector V, of ¢, so
as to make the pair {U,, V,} a basic frame of ¢,. Then oVy=—V,=— Veua.
Hence {U,, V,} is o-related to itself.
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Case iii). o¥a=—a. The orbit I'a@ consists of 2 roots +a. Let ¢ be the
semi-simple part of g. ¢ is invariant under ¢, and t'=t~g is a Cartan subalgebra
of ¢ satisfying the assumption of our proposition for ¢’ and ¢'=olg’. Let g} and
1, be the complexification of ¢" and t’ respectively. Let {Es; S€r} be a Weyl base
of g} relative to t;. The involution ¢ of ¢ is extended uniquely to an anti-
involution of ¢’. Under this situation the Lemma 5 of [17, Exp. 11] can be applied

and we conclude that
(%) JdE,=E_,.

If we put Uy=c(E,+E_,) and V,= _1c¢(E,—E_,), where ¢ is a positive
constant to normalize (U,, U,)=(V,, Vu)=1, then the pair {U,, V,} is a basic
frame of ¢, as is easily seen. Then sU,=Uyand aV,=V, by (x). Hence {Uy, Va}
is o-related to the basic frame {U_,, V_o} of e_,, where U_,=U, and V_,=—V,
by our convention.

The cases 1)-iii) exhaust all possible cases. Therefore we have chosen a
basic frame {U,, V,} for each positive root. The totality of these basic frames
constitute a canonical basis of (g, 1). By our construction it is clear that this
canonical basis is o-normalized. Q.E.D.

1.4. Put
t, = {@€r; ok = —aj .

This is a closed subsystem of roots of t. The restriction of any root acr—1, to
t_1is a non-zero linear form on t_, called a root of m relative to {_ [10, 11]. By
t_ we denote the totality of roots of m relative i—. About the basic properties
of roots and Weyl groups of symmetric spaces we refer to [10, 11, 12, 14].

We remark that the root system t_ is slightly different from root system of
reductive Lie algebras in the point that 2 times of a root of t— may be a root
of t—. However fundamental systems of roots of r_ are isomorphic to some
fundamental systems of roots of some reductive Lie algebras (Cf., Satake [147]).

When G is simply-connected and r_ is isomorphic to a root system of some
semi-simple Lie algebra, then basic translations in r_, corresponding to simple
roots of a fundamental system of roots of r_, generate the unit lattice exp(e) ~i_
of M, as is easily seen from (6.8) of Bott [10].

1.5. Let 3 (-) be the centralizer of t_ in t. This is the Lie algebra of
Zr(T-), and we see easily that

1.8) 3¢ (A=) = to+ 2 e

T2 (x> 0
In particular we have the

ProrosiTion 1.2. Let [, I, and X be respectively the ranks of G, Zx(T-) and
G/K. Then
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1) lo=I1—2 and T, is a maximal torus of Zx(T-),

i) to, as the set of linear forms on t,, is the root system of Zx(T-).

1.6. A linear order in t* satisfying the property: “a€tr—t,, « >0" implies
“o*a>>0", is called a ¢-order. The usage of s-order is convenient to describe
the relations between fundamental systems of t,, t and t—. Cf. Satake [14].
Let 4 be a fundamental system of t defined by a s-order, then 4,=4~1, is a
fundamental system of roots t,, and the subset 4_ of r—_, which is obtained by
restricting 4—4, to t_, is a fundamental system of roots of r_ [14].

Choose a g-order in t* and a o-normalized canonical basis of (g,1). For each
positive root of t—1, such that ¢*a-+a, we put

Au=Aria = 2 (Ust Una), Ba= Bora = — (Vat Vora)
Vv'2 ’ v'2 ’

(Va—Vira), Bh= — ;m=—]71_?<—uw+vm>.

1.9 1

Vv'2
Then A., AL€f and By, By€m. For each a€tr we put &=al|i_ and d=alt,.
Then we have that

A& = “‘Aé—*m =

[H, Ayl = 2z8(H)By, [H, Bs]= —2ra(H)Aa,
LH, Asl = 2ra(H)Bs, [H, Bil= —2ra(H)A,

for all H€t_. Further

(1.10)

(1.11) [H, A.]=2ra(H)A;,, [H, Ail= —2ra(H)As
for all H€t,. Here we put
1.12) ¢4 = 2-plane spanned by A, and Aj.
When s¥a=a we see that U,€¥ and V,€m, which satisfy
(1.10»  [H, Uyl =2ra(H)V,, [H, Viol= —2ra(H)U,

for all Het .

Let y€r— and 1Y denote the singular plane in t_ defined by y(H)=0 for He€_.
Further we put T?=expt’. 3 (i) is the Lie algebra of Zx(TY).

Hereafter we shall make the following assumption :
(1.%) t_ is isomorphic to a root system of some semi-simple Lie algebra.

If a positive root 7 of t— have even multiplicity, then the set of roots
ty={a€r; a=y}, is divided to pairs (&, ¢*a) such that s*a=Fa. (1.13) proves that

(1.13) (L) =3 () + ey

where the summation runs over all pairs (a, s¥a) such that a=ry.
By (1.11), (1.13) and Prop. 1.2 we can see easily the
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ProrositioN 1.3. When a root v or v— has an even multiplicity, then, under the
assumption (1.%),

1) rank of 3 (4L =rank of 3 4-)=1—12, and 1, is a Cartan subalgebra of 3% 10,

ii) tryufy s a root system of 3 (1) relative to t,, where ty is the set of linear
forms on t, obtained by restricting the roots of ty to t,.

If a positive root 7 of tr— have odd multiplicity, than 7 itself, extended as a
linear form on t by 7/1,=0, contained in ty, and ty— {y} is divided to pairs (&, o*a)
such that o*a==a. (1.10) and (1.10") proves that

(1.14) ) =3 U +R{Uy} + Zea

where 9t {Uy} denotes the 1-dimensional space generated by Uy and the summation
runs over all pairs (a, ¢*a) such that ¢*a=a and &=7.

Since 7|t,=0, Uy commutes with t,. Further, if multiplicity of y is 1, then
Uy commutes with 3 (1_) because 7=« is not a root for all a€r,. Hence we
obtain the

ProrositioN 1.4. When a root v of t— has an odd multiplicity, then, under the
assumption (1.%),
rank of 3 ({') —rank of 3 (1-) = 1.

Further, if the multiplicity of 7(€r-) is 1, then 3 (1) is the direct sum of Lie
algebras 3 (1-) and R{Uy}.

1.7. The groups Zx(T-) and Zx(TY), y €r_, are generally non-connected.

ProrositioN 1.5, Let Zix(T-) denote the e-component of Zx(T-). If G is
simply comnnected, then we have the isomorphism

Zr(T_)/Zy(T-) =K~ T_/TornT-.
Under the assumption of this proposition K=X [11, 12]. Hence
(1.15) K~AT_={tcT_;t*=¢}.

The two groups K~ 7_ and T,~ 7- are computable by diagrams of G, G/K and
Zr(T-).

(Proof) First we remark that the centralizer of 7_ in G, Z(T-) is o-closed
and connected. Hence (Z(T-), Zx(T-)) is a symmetric pair with the induced
involution. We see easily that 7- is a maximal torus of this symmetric pair.
Each connected component of Zk(T_) is Zg(T_)XZx(T-) orbit and intersects
witb 7T_ [11, p. 10247]. Therefore

Ze(T)/Zx(T) = Zk(T) A T-/Zx(T) A T-.

It is clear that Zg(T_)~AT-=K~T-. On the other hand: for each element
a€Zg(T-) A T- choose a maximal torus T4 of Zx(7T_) such that «€ T§. Since



Cohomology modulo 2 of the compact exceptional groups Es and E, 49

T, is a maximal torus of Zix(T-) by Prop. 1.2, there exists b€ Z%x(T-) such that

bTio'=T,. Since a€T_ and beZi(T-), bab'=a. Hence a€ T,~T-. There-

fore Zk(T)AT-=TonT-. Q.E.D.
Similarly we have the

ProrostrioN 1.6. Let L be a subset of T— and Zy(L) be the e-component of
Zg(L). If G is simply connected, then we have the isomorphism

Zr(L)/Zg(L) = K~T-/Zx(L) A T.

§2. H¥*(E;, Z,).

2.1. First we discuss the symmetric pair (G, K) with G=E; and K=F,. The
space Eq/F, is a compact, simply connected symmetric space of type EIV in E.
Cartan’s notation. This space is of rank 2 and has the root system isomorphic
to that of the Lie algebra A,. The multiplicity of every root is 8 [12, p. 422].

Zg(T-) is of rank 4 by Prop. 1.2 and of dimension 52—26+2=28 by [11],
p. 1019, (2.2) or [12], p. 353. Furthermore, every root of Zx(7_) has the same
length since the root system of Zx(T-) is a subsystem of the root system of Ej.
Hence 3 (1-)=D,.

The o-fundamental system of roots of Es is described by the rule of Satake
[14] as follows:

where o*p;=¢,+20,+20,+ ¢+ ¢s and o¥@s= s+ @+ 20, +2¢,+¢s. Put &,=¢; and
@s=¢.. Then the Schlafli figure of E;/F, is

N &,

O -0
and the roots of r_ are +¢,, =¢,, = ({1 +¢.).

The groups Zx(TY:) (i=1,2,3, ¢;=¢,+¢,) are isomorphic, of rank 4 by Prop.

1.3 and of dimension 28+8=36. The root system of these groups can be dis-
cussed by Prop. 1.3. 3 (1¥:)=B,, e.g., the Schlafli figure of 3 (1¥1) is

1 O O O O
5 (94— 9s) Ps @3 (2

where the arrow < directs from longer root to shorter one.

The unit lattice exp'(¢) ~t of Es in t is generated by basic translations
v; (1Li<6), where 7; is a vector perpendicular to the plane ¢;=0 such that
¢;(t)=2 [17]. Since 7,, 75, 7, and 7, generate exp'(e) ~to, Zx(T-) is simply
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connected. Basic translations of i, corresponding to the roots ¢;, are denoted
by 7;, i=1,2. By (6.8) of [10] and the fact that t_ is exactly isomorphic to the

root system of Lie algebra A,, we see that 7, and 7, generate exp*(e) ~t—. 71
and 7, are expressed by basic translations of Es in t as follows:

7, = 21+ 20,4+ 25+ 7,4+ T,
Ty = Ty + 21+ 20,4+ 215+ 75 .

By (L.15), K~ T_ is generated by exp %r,-, i=1,2. Now

1.
?"1

modulo the unit lattice of E; in . Hence

= ’21“(T4+Ts> s —;—"fz = %(TZ'I'TG)

eXp%?gG T, for i=1and 2.

Therefore KA T—=To~T-. Then by Prop. 1.5 we have the

ProrosiTioN 2.1. In the symmetric pair (Ee, Fy), Zx(T-) is connected and
simply-connected. Zg(T-)=Spin (8). ‘
Further, KA T-=Zxg(T¥%)~ T- for i=1,2,3, whence by Prop. 1.6 we have the

ProposITIiON 2. 1. [n the symmeiric pair (Es, Fy), Zx(TY:) is connected and
Zx(TY) = Spin (9)

for i=1,2,3.

2.2. Since Zx(T¥)/Zx(T_)~S8pin (9)/Spin (8) =~S® and Spin (8) operates
on S® through SO(8), the K-cycles [11] to describe the homology basis mod 2
of 2(E,/F,) are all orientable iterated 8-sphere bundles over 8-spheres with cross-
sections. In particular, these K-cycles are orientable as is easily seen. Hence,
by [11],

ProrosiTiON 2.2. H¥(Q(E/F,) ;Z) has no torsion.

Let

F=({Xect; ¢;(X)>0, i=1,2}

be a Weyl chamber in {_. % is subdivided in cells by singular planes in it. A
subgraph of the 1-skeleton of the dual subdivision of % in the sense of Bott-
Samelson [11], is described as follows:

where vy is the dual vertex to the fundamental cell in ¥ and the singular planes
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dual to edges a, b, ¢ are respectively (¢;+¢,, 1), (¢1, 1), (¢, 1). By this we see
immediately that
H;(Q(E/F); Z)=0 for %0 (mod 8),
2.1 =7 for 1=0,8,
=7Z+7Z for i=16,
by discussing along the scheme of Bott-Samelson [11].

The set of central elements of the pair (Es, F,) form a group of order 3
which coincides with the center of E;. Hence we have a central element ¢ of
the pair (£, F,) which is not identical with the neutral element e¢. Since a
minimal geodesic segment from ¢ to ¢ in 7T- is contained exactly in a singular
plane, the set of minimal geodesic segments in 2.,(M), M=nx(E,/Fy), is a
homeomorphic image of the space F,/Spin (9) =W, the projective plane of Cayley-
Graves octanions, by Prop. 2.2 and [10]. Using the method of Bott [10], we
have a cellular space decomposition :

Qe,a(Ee/F/;) =W"e," -
where --- denotes higher dimensional cells. The cohomology of W implies the

LemMa 2.3. Let us denote the genevator of HY(Q(Es/F,) ; Z); then (us)? is not
divisible by any integer larger than 1.

Discussing the spectral sequence associated with the standard fibre space of
loop spaces of E;/F,, we see easily the

LemmMma 2.4. Hi(E/F,; Z) =0 for 0<i<9 and 9<i<17,
=Z for i=0,9 and 17.
Further, let z, and 2y, denote the generators of H° and H"Y, then

2y = Sq®2y mod 2,

where Sq® is the Steenrod squaring operation.
The later half of this lemma is concluded from Lemma 2.3 and (u#s)?=Sq%s.
Since dim E;/F,=26 we can now apply the Poincaré duality, then we have the

ProrosriTiON 2.5. H*(Es/F,; Z) has no torsion and
H*(Es/Fy; Z) = Nz(2, 211) ,
where /\z denotes an exterior algebra over Z with generators described in paventheses.

2.8. Let us discuss the cohomology spectral sequence E%? mod 2 associated
with the fibration (Es, Es/F,, F., ¢).

2.2) H*(Fy; Z,) = Zz[xs]/(xg) R Na(®s, %15, X25)

by Borel [5], p. 330, Théo. 19.2 (c), where deg x;=¢, x:=Sg¢’%,. These generators
are universally transgressive. Hence they are transgressive in the spectral se-
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quence considered here. By Prop. 2.6, E{*°=0 for ¢=3,5,15 and 23. Hence all
generators of EJ* must be parmanent, i.e., remains up to E.-terms unkilled, and
the spectral sequence considered here is collapsed, whence we obtain the

LeEmMA 2.6. F, is totally non homologous zero mod 2 in Es.
By this Lemma we have the additive isomorphism

2.3) H*(Es; Z,) = H¥(Fy; Z,) Q /N\(g%2s, ¢%211) .
Since HY(Es; Z,) = H"*(E,; Z,)=0 by (2.3), we see that ’
(%)t =0 and (F'x;)2=

in H*(Es; Z,), where i: F,—FE; is the inclusion, which in tern concludes that the

isomorphism is a multiplicative one.
By Bott-Samelson [11], p. 995, Theo. V,

m;(Es) =0 for 4<i<8,
=~7Z for i=3and 9.
We have a map f: E;— K(Z,3) such that f*u,=x,, a generator of H*(Es; Z),
where #, is the fundamental class of H*(Z,3; Z). f* mod p is bijective in
degrees <8 and injective in degree 9 for any prime p. The cohomology mod 2
of K(Z,3) is computed in Serre [16]. From these we see that f*H*(Z, 3; Z,) is
2-dimensional with generators (x,)® and S¢*Sg%¢;. On the other hand H*(Es; Z,)
is 2-dimensional with generators (x;)® and ¢*z,. Hence we can use Sg¢*S¢%t; as
the generator of deg 9 instead of g*z,, and S¢®Sq*S¢*r, as the generator of deg 17
instead of g¢%z;,=Sg%¢*z,. (Note that every element of deg 9 and deg 17 of
H*(E,; Z,), has square zero by (2.3)).
Hence we obtain the

THEOREM 2.7. H*(Es; Z,)=Z,[x:1/ (xR N2 (X5, X, X15, ¥17, X23)
where deg x;=1, and /\; denotes an exterior algebra over Z, with generators described
in parentheses. Further we have the following relations of genmerators with Steenrod
squarings :

x5 = Sq*,, %= Sq'xs and % = Sq¢x,.

2.4. Consider the cohomology spectral sequence E7? mod p associated with
the fibration (Es, Es/Fy, F,, ¢) for any odd prime. Cohomology mod p of E; and
F, is determined for every odd prime in Borel [7] Cor. to Théo. 1, [6] Theéo. 2.2
and 2.3, [5] Théo. 19.2 (a), (b). These results of Borel, combined with Prop. 2. 5,
proves that

Poincaré polynomial of E%? = Poincaré polynomial of EZ%?

for every odd prime. Hence the considered spectral sequences are collapsed.
Then, combined with Lemma 2.6, we have the
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ProrosritioN 2.8. F, is totally non-homologous zero mod p in Es for any prime
p=2.

This proposition completes a partial result of [1], p. 256, Prop. 1.

About the loop spaces, £F, is totally non-homologous zero in 2F; for any
coefficients. The proof is easy. Cf., also the final proposition of [2].

$38. H*(E,;; Z,).

3.1. Let us consider the symmetric pair (G, K) with G=E, and K=E,;-T",
where K is not the direct of direct of E; and 7! in the strict sense but a 3-fold
covering group of K is the direct product, or equivalently E;~ T'=Z,. However
we shall write K=E,x T* according to the usual description. The space E,/E,
X T'! is a compact, simply connected symmetric space of type EVII in E. Cartan’s
notation, of rank 3 and has the root system isomorphic to that of Lie algebra C;.
The multiplicities of long roots are 1 and those of short roots are 8 [12, p. 423].

By the same reason as in 2.1, 3; (1-)=D,. The o-fundamental system of roots
of E, is described by the rule of [14] as follows:

(21 2 @3 Py @s Ps
@] ® @ @® O O

®
4]

where o%@1=¢,+20,+2¢0s+ @+ @1, FPs=@s+ 2 +20;+2¢,+¢; and oFg;=¢;. Put
P1=¢1, Ps=¢, and Ps=¢,. Then the Schlafli figure of E,/E;x T*' is
&1 ¢, &5
O—0O<«==0
For all short roots ¢ of t— the groups Zx(TY¥) are isomorphic, of rank 4 by
Prop. 1.3 and of dimension 36. The root system of these groups can discussed

by Prop. 1.3, and we obtain that 3 (1*)=B, for every short root ¢ of t_, e.g.,
the Schlafli figure of 3 (1¥1) is

1 O O O O
7(%—%) o @3 @2

For all long roots ¢ of t_ the groups Zx(T*") are isomorphic, of rank 5, and
3 1Y) =D, x T* by Prop. 1.4.

3.2. The unit lattice exp™(e) ~t of E, in t is generated by basic translations
7; corresponding to simple roots ¢; for 1</ <7. Since 7, 73, 7, and 7, generate
expt(e) Ato, Zx(T-) is simply connected. Basic translations of i_, corresponding
to the simple roots ¢;, are denoted by 7;, 1</<(3. 7;,1<7<3, generate exp*(e¢)
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~1— by the same reason as in No. 2.1, which are expressed by 7;, 1</ <7 as
follows : ‘

T = 27,4 21,4+ 23+ 7,4 74,

Ty = T+ 213427, + 205+ 7,

<3

3 = T6.

By (1.15), K~ T- is generated by exp %f"’ 1<i<3. Now

DOt

n=g @), 6=k (nte)
modulo the unit lattice of E; in . Hence

3.1 expé—?lé T, for i—=1and 2,

whereas exp %T3=exp %FG is not contained in 7,. Therefore
K~AT_/TonT-=2Z,

generated by exp%re. Hence Zx(T-) has two components by Prop. 1.5.

The center of E, is a group of order 2. Let ¢’ be an element of the central
lattice [17] of E; defined by

p;(¢) =0 for =6,
=1 for i=6.

Then c=expc¢’ is the generator of the center of E;, ie., c=e and c?=¢. ¢ is
expressed as a linear combination of basic translations 7;, 1<;/<7, as follows:

= 71+272+313+%74+275+% 16+%T7 .
Then

o= %<74+76+T7>

modulo the unit lattice in t. Hence

c-(exp % Te) = exp —;— (ty+7) €Ty,

which implies that ¢ belongs to the component of Zx(7T-) not containing e.
Therefore we obtain the

PropositioN 3.1. In the symmetric pair (E,, E;x T*),
Zr(T_) = Z4(T-) +c-Z(T-) = Spin (8) X Z,,
where ¢ is the central element of E,, not identical with the neutral element.

8.3. Let ¢ be a short root of r_. Z4i(T-)=Spin (9) as is easily seen from
the above discussions. In the inclusion Spin (8) —Spin (9), the center of the
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latter is contained in the center of the former. Hence the center of Zi(TY) is
contained in the center of Zx(T-), which does not contain ¢ by Prop. 3.1.
Therefore

3.2) w(TY) 3¢, Zg(TY)AZx(T-) = Zx(T-).
(3.2), Prop. 1.6 and Prop. 3.1 conclude easily that
Zr(TY/Zy(TY) = Z,,
Zg(TY) = Zix(T¥) +¢-Z3(TY) .
Hence we obtain the
ProrositioN 3.2. For any short root ¢ of t—,
Zr(TY) = Zp(TE) + ¢+ Zx(TY) = Spin (9) X Z, .

Let ¢’ be a positive long root of t—. Let S} be the 3-sphere in E, tangential
to ey +N {7y}, where R{7y’} is 1-dimensional subspace of g, generated by the basic
translation 7y corresponding to ¢/, and ¢’ is also considered as a root of t such
that ¢’|t—_=¢’. exp —:zl—?‘p’ is the antipode of ¢ in the 3-sphere S3/. Let (Uy, Vi)
be a o-related basic frame of eyr. Uy is in f and generates a Cartan subalgebra
of S3/, whose exponential (a circle) passes through the antipode of ¢ in S3/. Hence
there is a real number «a such that exp aU. fzexp%z‘w, which means in particular,
that

exp %a;.f €ZH(TY).

¢’ is one of the following three roots of r_:

413? 20+, 200 +24+ ¢
The unique root of t, which gives ¢’ restricted to v—, is:

Poy C2 205420, + 205+ 0s+@; O 201+ 30+ 40+ 30, + 205+ 06+ 20, .
Hence 7y’ is the one of the following three vectors:
Tg, To+ 203+ 20+ 2054+ 16+ 7, 2r,+3r,+473+ 30,4+ 205+ 716+ 27,
Then we see easily that
(exp —% ﬁp/)<exp —%—Tg) €T, C Zp(T¥) .

Therefore

(3.3) exp % 76 € Zg(TY)

for any long root ¢ of t—. By (3.1), (3.3) and Prop. 1.6 we obtain the
Prorosririon 3.3. For any long root ¢ of t1—, Zx(TY¥") is connected, and
Zx(TY") = Spin (8) x T*

in the sense that the semi-simple part is Spin (8) and the commected center is T*.
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8.4. Let us discuss K-cycles [11] to describe the additive homology basis
mod 2 of 2(E,/Esx T"). They are iterated fibre bundle with cross sections with
base spaces and successive fibres Zx(TY)/Zx(T_)~Z4(T¥)/Z4(T-)~S*® (8sphere)
by Props. 3.1 and 3.2 when ¢ is a short root of r—, and Zx(T¥)/Zx(T-)=~S*
(a circle) by Props. 3.1 and 3.3 when ¢’ is a long root of r_.

When ¢ is a short root, the non-trivial central element ¢( € Zxg(T_)—Z4(T-))
of E; operates as the identity transformation on Zx(TY)/Zx(T_)=~8?® from the
left, whence Zx(T-) operates through SO (8)” SO (9) on the 8-sphere.

When ¢’ is a long root, Zx(T-) is a normal subgroup of Zx(T¥"), whence
Zx(T-) operates trivially on Zg(T¥")/Zx(T-)=~S"

Hence we obtain the

Prorosition 3.4. Every K-cycle to describe the additive homology basis mod 2
of Q(E;/EsxT*") is an iterated orientable sphere bumdle with cross-sections whose
base space and successive fibres are 8-spheres or l-spheres. Every K-cycle is an
orientable manifold.

The later half of this proposition is proved easily by computing Gysin sequence
of an orientable sphere bundle with an orientable manifold as the base space.

3.5. By Prop. 3.4, and [11] we see that Hy.(2(FE,/EsX T*) ; Z) has no torsion.
An additive basis of Hyw(2(E,/E:x T") ; Z) in low degrees can be obtained follow-
ing the scheme of Bott-Samelson [11].

Let & be a Weyl chamber in i defined by

T ={Xet_; ¢;(X) >0 for i=1,2,3}.

& is subdivided in cells by singular planes in it. A subgraph of the 1-skeleton
of the dual subdivision of &, which is sufficient to describe an additive basis of
Hy(2(E,/E;xTY) ; Z) in degrees <27 is described as follows:

a, b,

o
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The roots corresponding to the edges a; (or b;) are long roots (or short roots).
If we express the singular planes dual to edges a; and b; by aF and b, then
we have
af = Q¢ +20,+¢s, 1), bF = (@1+2¢+¢s, 1),
af = af = af = Qbr+¢,, 1),
bf = bf = (W1 +¢et+ds, ), bf =0 = (¢ot¢s, 1,
af = af = af = Qs+2¢,+¢,,2), af = (¢, D
b¥ = bf = (¢1+¢a, D
Since the multiplicities of a¥ (or &¥) are 1 (or 8), we see by [11] that
Hy(Q(E,/E;xTY; Z)=Z for i=0,1,9,10,17,19,
=7Z+7Z for i=18,26,
=7Z+Z+7Z for =27
= otherwise for <27,

Since H*(R(E,/E;<T")) is a Hopf algebra, the aboves and the Borel-Hopf
structure theorem of Hopf algebras [4] conclude the
ProrosiTiON 3.5. H¥(Q(E,/E;XT"Y); Z) has no torsion.
H¥(Q(E,/EsXTY ; Z) = N\z(uy, the, tts7) QR Z[this, 6]
in degrees <27, where deg u;=1i for each generators.
8.6. The central elements of the symmetric pair (E,, E;x T') form a group

of order 2. Let b be the generator of this group. Let &’ be an element of the
central lattice in i{_ defined by

() = (b)) =0, ¢(0)=1.
Then b=exp .

A minimal geodesic segment in £2.,(M), M=u(E;/E;x T"), is given by
exp t, 0<¢<1, whose index is zero. A geodesic segment in £.,(M), whose
index has a positive minimal value, is given by

expt(¥'+7), 0=r=<1,
of which the index is 18, calculated by the rule of Bott [10], $6.
Hence, by [10], we have a cellular space decomposition
G. 9 Qo s(E;/EsX T") == N¥ ey -
where --- denotes higher dimensional cells and
N=Zxb)/Zx(expth/, 0<t<1)
is homeomorphic to the set of minimal geodesics in 2, ,(M).

Zr(b)=E:x<T*. Since {exp tV/, 0<t<1}=T¥1 ~T"2, we see that
L = 3 (121) + 3¢ (1¥2) + 3¢ (12202)
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where L is the Lie algebra of Zx(exp b, 0<¢t<1). L is of rank 4 and of dimen-
sion 52. 1, is a Cartan subalgebra of L and the root system of L relative to t,
is the union of root systems of 3 (t¥1), 3, (1¥2) and 3 (1*17¥2). From these we see
that L=F,. Hence
Zxlexp th', 0<¢t<1) = F,.

Discussing similarly with Prop. 3.2, we see that

Zr(expth’, 0<t<1)

=Zk(exp tt/, 0t D4c-Zg@t, 0t <1) = F,XZ,.
Hence

N~ EGX Tl/F4><Z2 = EGX (TI/ZZ)/F4
where Z,CT*.
Putting T'=7T*'/Z,, consider the principal bundle
(EX T, E;XT'/Es, Ey)

where Esx T'/E;=S" a circle. Since fibre E; is connected and the base space is
a circle, this bundle has a cross-section. Hence the associated bundle
(N, 8, E;/Fy)

is a product bundle, and N~S*'x E,/F, (the product space). Then by Prop. 2.5
and Lemma 2.4 we have the

LemMma 3. 6.

H*(N; Z) = N\z(z1, 2, 211)

and 21;,=Sq%2, mod 2.

By (3.4) the cohomology maps induced by the inclusion N &2, ,(M) are
isomorphic in degrees < 16 and injective in degree 17. Then Lemma 3.6 prove the

LemMma 3.7. We have the relation

#17 = Sq*ue mod 2 .
in gemerators of Prop. 3.5.

8.7. Consider a fibre bundle (E,/E;, E,/E;X T, E;XT'/E;s, q¢), and we put
A=E,/E;, B=E,;/E,XT* and F=E;xT'/E;, then F=S8"' a circle and T" is a 3
fold covering of S*.

Let b€ F and £r;(A) denote the space of paths in A from F to b. Let

Rq: rp(A) — 28
be the induced map by ¢. Then, as is well known,
2qx: m;(RFp(A) = m;(2B)
for all =>0, namely £¢ is a weak homotopy equivalence. Hence

Qg¥: H¥(QB) = H*(Qr 5(A))
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for any coefficients.
Let
r: pi(A) > F=8"
be a mapping defined so as to map each path of 2r;(A) to its starting point.
This is a fibration in the sense of Serre [15], with fibre £A. Since the base
space of the fibration » is a circle, the associated spectral sequence collapses for
any coefficient. In particular

EX*(Z) = H*(S', H¥(2A; Z)) .

Since m,(A)=0 as is easily seen from the homotopy sequence of the bundle
(E,, E;/E;, E;), m,(S") operates trivially on the local coefficients H*(£2A) and
we have the isomorphism
EX*(Z)=H¥(S'; Z) QH*LA; Z).
Now consider the exact sequence
0— E**(Z) - H*(®2B; Z) > E¥*(Z) -0,

where EL*(Z)=E%¥*=~H*(QA; Z). H*(RA; Z) is isomorphic to a subgroup of
H*(2B; Z), which has no torsion by Prop. 3.5, whence H*(2A; Z) has no
torsion.

H*(QA; Z) = H¥(2B; Z)J H*(S'; Z)

using a notation / of Milnor-Moore [13], where H*(S'; Z), identified with a
subalgebra of H¥(2B; Z) by (ro£¢)%*, is a normal Hopf subalgebra of H*(R2A;Z)
in the sense of [13].

Finally, by applying Prop. 3.5 and Lemma 3.7, we obtain the

Prorosition 3.8. H*(Q(E,/E;); Z) has no torsion, and
H¥(Q(E,/Ey) ; Z) = Nz(us, ) @ ZLss, ts]
in degrees <26. Furthermore
#1 = Sq°uy, mod 2.

2.8. Let us consider the spectral sequence mod 2 associated with the standard
fibre space of loop spaces on E;/E;. By Prop. 3.8 and the well known properties
of suspension (e.g., use [15], p. 468, Prop. 5) we see immediately the

(3.5)  uy, uy; is transgressive. H'(E:/Es; Z,) =0 for 0< i< 10 and 10< i< 18.
HY=H%=7,, whose generators z,, and zi3 are transgression images of
uy and uy; rvespectively. Further z,=Sq%z,.

About the behavior of ;s of Prop. 3.8 in the considered spectral sequence
there are two possibilities :
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pos. (@) wuys is d,-cocycles for {9, and

drokto(t1s) = £30(210 X u5) , ¥
or

pos. (b) uy is transgressive.

In No. 3.9 we will prove that pos. (b) is impossible.
We shall determine Hi(E,/Es; Z,) for 19<{<26. Consider

. dr ;
(3.6) Ej < BTt

for 2<r<i and 19<i<26. By Prop. 3.8 and (3.5) Ei""'=0 if »<17 and
r==10, or if 0<i—7<18 and ¢—r=+10. Hence d, of (3.6) may be non-trivial
only if ¢) =10 and /=20, or i) i=r=19. In particular, regarding E}% =0, we
have the

3.7 Ey® =0 for 21<7<26.

About the remaining two cases, the two possibilities (a) and (b) are related.

When pos. (a) occurs: E° is generated by r#o(210Rus), which is a di,-image.
Hence d;, of (3.6) is trivial for the case ¢), and E3°°=~0. On the other hand
for the case 4i), E%!®=0, whence dy, of (3.6) is trivial, and E}°=0.

When pos. (b) occurs: E}3° is generated by x3,(2:0®u,), which is not a d,o
image and E1°=0. Hence d;, of (3.6) is non-travial for the case 7), and E3%°
=7, generated by (z,)% TFor the case i7), E%'® is generated by r}(uy) since
#5s is transgressive. E3°==0 implies that dy, is isomorphic, and E}°=Z, with
generator z;,, which is a transgression image of us.

Summarizing the above we have the

LemMma 3.9. If pos. (a) occur, then
H¥(E:/Es; Zy) = N\2(210, 21s)
in degrees <26. If pos. (b) occur, then
H*(E,/Es; Z,) = Zy[ 210, 218, 210]
in degrees <26, where 2y is a transgression image of ws. In any case
218 = Sq¢°2y0 .

3.9. Let us discuss the spectral sequence mod 2 associated with the fibration
(E7, E7/E6’ P, Eﬁ)-
By [111, p. 995, Theo. V, n;(E;) =0 for 4<:<10. Hence

(3.8) H*(E,; Z,) = H¥(Z,3; Z,) in degrees <10,
= Z,[xs, Sq*ts, Sq'Sq’x,1 in degrees <10

* xs” is the natural projection of a subgroup of E,%? consisting of d,~cocyles for »<_i< s—1, onto

E&b. Cf. [4].
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by [16].
By Theo. 2.7, we know that

H*(Es; Z) = Z,0 9.1/ (93) Q@ Na( s, Yo, Yisy Y115 Yoz

with relations: ys=S¢%ys, ¥9=S¢"S¢*vs, y1:=Sq*Sq*Sq*ys.

In the spectral sequence considered here, y,=i*(x;) is parmanent, i.e., remains
up to the E. term, where *: H¥*(E,; Z,) — H*(E;; Z,) is induced by the inclusion
E;C E,. Hence ys, y, and y,; are also parmanent, and

3.9 S¢*Sq*Sq*x; == 0 and indecomposable

in H*(E,; Z,). Since the remaining generators of fibre cohomology are y,; and
Yu, the elements z;, and z,, of base cohomology remain unkilled up to E. by the
reason of degrees. Therefore

P¥(20) 0, p¥zi) #0.
Since HY(E;; Z,) = Z, with generator (S¢g’x:)? by (3.8),

(3.10) P*(210) = (SgPx,)2.
Then
(3.11D) P(218) = p¥(S¢®210) = (S¢*Sg*05)* +0.

Now we state the

(3.12) In any system of gemerators of type M ([4]) of H*(E;; Z,), the generators
of degrees <9 are x,, x5 and x,. x; and xs ave unique, Xs=Sgx;. Xo=
Sq*Sq*x; modulo the decomposable elements. The heights of these generators
are all =4.

The first statement of (3.12) and the uniqueness of x, and x; follows from
(3.8). (8.8) also proves that the heights of x; and x; are =4. Since H(E;; Z,)
=7,+7Z, with generators S¢'Sq¢’, and (x,)%, x,=S¢'Sq%; or = Sq¢"Sq¢ts+ (x5)°
(Sg*Sg?x)*=+0 by (3.11). And (Sg'Sg’s+ (x5)®)* = (Sg*Sg%x:)*+ (x,)°. If (x5)°=0,
then this element is not primitive, whereas (S¢*S¢*r;)? is primitive about the
coproduct of H*(E,; Z,), whence (S¢*Sq*v;)2== (x;)%. Therefore (x,)?==0 in any
case, and the height of x, is ==4. Therefore (3.12) is proved.

We remark that, when we use the generator x, only to the exponent<3, we
can use Sq¢*Sg’r, as the generator of degree 9. For example, we can conclude
(Sq*x3)?(Sq*Sq%c;)® #=0 from (3.12) and the structure theorem of Hopf algebras [4].

We shall determine the behavior of the generator y;; in the present spectral
sequence. ;5 is d,~cocycles for » <9. If dykte(yis) =50, then diokdo( yis) =r30(210 R
()%, which implies that p*z,0(x;)%=(x,)2(S¢?x;)? represent zero in EX.°. But
EY7=0 for 1<i<6. Hence (x,)%(S¢’,)*=0, which contradicts to (3.12).
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Therefore yis is di-cocycle. Then yi; is parmanent by the reason of E§“=0 for
11<i<16.

We have an element xis€ H®(E,; Z,) such that #*(x{s)=y15. Since y;s is
indecomposable in H*(E;; Z,), xis is also indecomposable in H*(E;; Z,).

The above argument, combined with (3.9), conclude the

(8.12) In any system of gemerators of type M of H*(E,; Z,), the generators of
degrees=10 and <17 are x5 and xy;. xs=xis and x,=35¢°Sq"Sq*x,
modulo the decomposable elements.

Lemma 3.10. pos. (b) does not occur.
(Proof) Assume that pos. (b) occurs. Then

(21000 and p¥(z5) =0

by the reason of their degrees. Then the generator x5 of H*(E;; Z,) has height
>8 since (x:5)*=p*(24)?=0. Remark that the spectral sequence considered in
this No. collapses in total degrees<<22 by the above discussions. Then, since
p*(255) can not be a square of some other element, it is indecomposable, and any
system of generators of type M of H*(E;; Z,) contains a generator x;, of degree
19 such that x,,=p*(z,,) modulo decomposable elements. Now

DH(210) %% (21) p¥(200) = ()" (X9) %10

modulo a subalgebra of H*(E,; Z,) generated by the elements of degrees=<18.
The later is non-zero by the above discussions, (3.12) and the structure theorem
of Hopf algebras [4]. Hence

P¥((210)%15210) =0 and  (210)%21s21 =0 .
But this is impossible because

deg (240)%1521o = 57 >55 = dim E,/E;.
Therefore pos. (b) does not occur.

3.10. By Lemmas 3.9 and 3.10 H*(E,/E;; Z,) is determined in degrees < 26.
Now
PF(20) pF(zw) = (S¢°2:)°(Sq*Sq’x:)* == 0
by (3.10)-(3.12) and the structure theorem of Hopf algebras [4]. Hence
(3.13) 230213+ 0

in H®*(E,/E;; Z,).

Let us discuss the behavior of the generator u,, of H*(R(E,;/E;); Z,) in the
spectral sequence considered in No. 3.8. u, is d,-cocycles for »<<9. If d,or3o(sts)
=0, then diokfo(um) =r3o(210Qus;) which is also a dyimage of ug,;,. Hence, by
replacing Uss DY sy +ugty; if necessary, we can choose the generator u, such that
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it is also di-cocycle. Then, u., is d,-cocycles for »<17. If dk3s(uss) =50, then
distitg(ty) = K38 (21s X ug), which implies that z,02:4=0 in H*(E,/Es; Z,). This con-
tradicts to (3.13). Hence uy is dis-cocycle. Then u, is fransgressive since E3°=0
for 19<a <26 by Lemmas 3.9 and 3.10. Therefore we proved the

(38.14) uyx can be chosen to be transgressive. H¥*(E;/Es; Z,) = Z, with generator

247, Which is a transgression image of ty.

Lemmas 3.9, 3.10 and (3.14) determines H¥*(E.;/Es; Z,) in degrees<27.
Then, by Poincaré duality and dim (E,/E;)=55, we can determine H*(E,/E;; Z,)
additively as follows:

Hi(E,/Es; Z,) = Z, for i=0,10,18, 27,28, 37, 45, 55
=0 for other degrees 7.

By (3.13), 22,5 generates H®(E,/E;; Z,). Then 2,22, generates H®(E,/E,; Z,)
by Poincaré duality. Hence 2,2162::=F0, 2102,; =0 and 22,20, 2102 and zp2.
generates H¥ and H* respectively. Hence we obtained the

PropositioN 3.11. H*(E,/Es; Z,) = N\o(2w0, 2is, 2o1)-

3.11. We shall continue the discussion of the spectral sequence discussed in
No. 3.9. The only thing to be discussed is the behavior of the generator y, of
fibre cohomology since all other generators of fibre cohomology are parmanent.

23 I8 d,-cocycles for r<9. Since H“(Es; Z,) =7Z,+Z,, generated by (y;)%ps
and ys%,, ‘

dioi3o( y2s) = £0(210 @ (@(3:)%y5+bys95))

with @, b€ Z,, which implies that 2,0& (a(y:)%ys+bys¥,) represents zero in EX.Y,
namely
a(%5)°(Sq?x3)* +b(Sq*x3)°%, =0

modulo the elements of filtration>10. On the other hand, EW+i“—i=~( for
1<i<14 expect for i=8 by Prop. 3.11. And, if diox?(ys;) =0, then E¥5=7,
generated by r2 (2,5 (¥,)?). Hence

a(%3)3(Sqr3) % +b(Sqxs) %9+ ¢ (%3)2(Sq*Sq*x5)* = 0

with ¢€Z,. Then (3.12) and the structure theorem of Hopf algebras [4] conclude
that a=b=c=0. Consequently, y; is dj,-cocycle.

Next y,; is d,-cocycles for 11<r <17 by Prop. 3.11. A discussion similar as
above concludes that y, is also dy-cocycle. Then, by Prop. 3.11 Ei°=0 for
19<7/ <24, which implies that y.; is parmanent.

Consequently, the spectral sequence discussed here collapses. Therefore

ProrosriTiOoN 3.12. Ej is totally non-homologous zero mod 2 in E,.
And we have the additive isomorphism
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(8.15) H¥(E;; Z,) = H*(E,/Es; Z;) Q H*(Es; Z,)
= No(p¥22) R Zy[ %3, %5, %01/ (43, %2, 28) Q Ne(&is, Xz, Xas)

by (3.10)-(3.12), where *(%xs)=1.;. Since HZ?(E,; Z,) is generated by an im-
primitive element #x,%, about the coproduct of H*(E,; Z,) and (x,)* must be
primitive, (x,)*=0. By Prop. 3.11, (2,0)?=(215)?=0. Hence, (Sg?x;)*=(p*2:0)*=0
and (S¢*S¢*x;)*=0, i.e., S¢’xs and S¢*S¢*x; have heights 4. Therefore we can
choose the generator of degree 9 as x,=Sg¢‘S¢?x;. p¥*2y is indecomposable in
H*(E,; Z,) since it can not be a square of any other element and (3. 15) indicates
this. Hence H*(E,; Z,) contains a generator x,. (2,)?=0 (by Prop. 3.12) im-
plies that we can choose the generator of degree 27 as xx=p*2,; with height 2.
Finally x5, xy; and x,, have height 2, and

(S¢°S¢*Sq*x)* = Sq**(Sq*Sq*xs)*
= p¥(S¢*zs) =0,
for H*(E,/Es; Z,) =0 by Prop. 3.11. Hence, by (3.9), we can choose the gene-
rator of degree 17 as x,,=3S5¢°Sq*Sq’x;.

In the above we determined a system of generators of type M of H*(E,; Z,),
and by the structure theorem of Hopf algebras [4] we obtain the

TueoreMm 3.13. The cohomology ring H*(E,; Z,) is described as

H*(E,; Zy) = Z.[ %5, %s, 2]/ (x5, %8, 28) @ N\a(Fis, %17, Xz, X2) s

where deg x;=1, with relations: x5=Sq’%,, %o=Sq*xs and x1;=Sq¢%,.
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