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1. Introduction

Throughout this paper, spaces are simply connected topological spaces with
base points and have the homotopy types of CW-complexes: #-ad (X; X, -,
Xn—2, %,) is homotopy equivalent to a CW-n-ad (W ; Wy, ---, Wau—z, w,) Where x,
and w, are base points. The fiber space is the one in the sence of Serre.

We shall say that the space X satisfies the condition (A4, ,) if the homotopy
groups 7;(X) of X vanish for i< p and 7 >q.

Let X be a space and A, B be subspaces of X. Denote by 2(X; A, B) ‘the
space of all paths in X starting in A and ending in B, and by 7,, w; the natural pro-
jections 2(X; A, B)—A, 2(X; A, B)—B respectively. We write LX=2(X; x,, X)
and 2X=2(X; x,,%,); LX is the path space of X and £2X is the loop space
of X.

Let X, Y be two spaces. Denote by n(X, Y) the set of homotopy classes of
continuous maps f: (X, x,)— (Y, »,). It is known that:

1.1 n:(X; A, 2)—~>(Y; B, y,) is a homotopy equivalence if hx: m;(X)—
7:(Y), (Bl A)x: mw;(A)—r;(B) are isomorphism for each >0 [4].

(1.2) (LX; £X, %) has the homotopy type of a CW-triad where * is the
constant loop. Also (Q(E: e,, F); LF, QF, %) has the homotopy type of a CW-
tetrad [5].

(1.3) If X satisfies the condition (A, :»—,) for some p, there exists a space
X, such that X has the homotopy type of 2X, [5], [9]: Such a space X, will
be denoted by £271(X).

(1.4) If X, Y satisfy the conditions (A, ), (A4, 2p—) respectively for some
integers (p,q,7), m(X, Y) forms an abelian group, natural with respect to maps
X—X’, Y=Y’. Also there is the natural isomorphism £: n (X, Y)—>n(2X, 2Y)
[51,[9]: We shall denote its inverse isomorphism by £

Under the basic references of (1.1)~(1.4) we shall show in this paper the
following :

(1) Let €=(E, p, B,F) be a fiber space such that all of E, B, F satisfy
the condition (Ap, .p—s) for an integer p. Then there is a class acn(B, 27'F)
such that the equivalence class of the fiber space € is uniquely determined by
the triple (B, F, a). « is called the characteristic class of €.

(2) Under the same assumptions above, the following sequence is exact
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LO* op x) 2P o x) A@T

n(QF, X) « n(F, X)

7k Vol ok
«—na(E, X) <—n(B, X)«—rn(27(F), X)
where X is a space such that #;(X)=0 for i >2p—3.
(3) Let (E, p, B,F), (F", p”, F, F’) be two fiber spaces such that all of E, B,
F, F’, F” satisfy the condition (4, ,;,) for an integer p. Let &, &, be their

characteristic classes. Then there exists a diagram

F’ 5 F// > E’/

N

if and only if a,-2(a)=0, where (E, 3, B, F), (F”, 3", F, F’) are equivalent with
(E, p, B, F), (F”, p”, F, F") respectively and (E’, 3p/, B, F"), (E’, ¢/, E, F") are
also fiber spaces: Such a system is called the poly-fiber space.

(4) We shall construct some higher operations as the obstructions to lift
maps f: X— B (base space of poly-fiber space) to 7: X—E (total space of poly-
fiber space): Some relations among operations induce the higher operations by
constructing the appropriate poly-fiber spaces.

2. Preliminary
Let (E\, p:, Bi, FV), (Es, p., B, F») be two fiber spaces such that there exist
homotopy equivalences kp: By—>B,, hly: B;—~>B,, hr: Fy—>F,, hy: F,—~F,. We have:

LemMma (2.1). If there exists a map hg: (E,, Fy) — (E,, F,) sucn that he|F,
=hp: Fi—>F,, hep,=p.he rel. Fy, then hg is a homotopy equivalence.

Proof. Consider the diagram

(pljl)* 61(1”1*)—1 Ik (171 JU% al(ﬁpk) -

> Ti1(By) > 7;(Fy) m;(Ey) n;(By) 7, (Fy) —
l hex l (he|F)x lhE* l hBsx l(hElFl)*
Beddt, 1) BB, py Ty P gy BT

where ip:F,—E, and j,: (Ep, eor)—~>(Er, Fr) are the injections and 0, :7;(Ey, Fp)—
7;—(Fy) is the boundary homomorphisms (k=1,2). Since hri;=ihe|F, hepiji=
D2dohE, 0:hpx= (he|F)x0,, the above diagram is commutative. Since hsx, (he|F)x
are isomorphisms the five lemma shows that Zgx is an isomorphism. This to-
gether with (1. 1) implies %4g: (E,, F1)—(E,, F,) is a homotopy equivalence. q.e.d.

We shall say that fiber space €,=(E,, p,, B:, F\) is equivalent to €,= (E,, p,,
B,, F,) if there exists a triple (hg, ks, hr) as above, and denote by (kg, ks, hr) :
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¢,=€,. Clearly, this is an equivalence relation.
Let n(A4, B; LX, £X) be the set of homotopy classes of continuous maps

f: (4, B, %) » (LX, 2X, *)
where * are the base points. Define a map » by »(f)=f|B. Then we have:
Lemma (2.2). wx:7w(A, B; LX, 2X)—=n(B, 2X) is 1-1 and onto.

Proof. Let g;: B—~ 82X (i=0, 1) denote the restrictions f;|B of maps f;: (A4, B)
—(LX, £X) and G: BXI—2X be a homotopy between g;.
Define a map Fo: AXIYBXxI—LX by

FlAx@) =f; (G=0,1), FIBxI=G.

Since LX is contractible, we can extend F, to a map F: Ax[— LX, which shows
fo~fi: (A, B)— (LX, 2X). Hence 7% is a monomorphism.

Let g: B—~#2X be a map. Since LX is contractible there exists a homotopy
G’: BXI—LX between the map g and the constant map. Define a map Hy:A X (1)
YBXxI—LX by

H)Ax (1) =%, HI|BxXI=G;
we can extend H, to a map H: AXI—LX, and we have a map
f=F|Ax0): (4, B) - (LX, 2X)

such that f|B=g. Hence 7% is an epimorphism. q.e.d.

Let (E, p, B, F) be a fiber space such that all of E, B, F satisfy the condition
(Ap,2p-s) for an integer p>2. According to (1.3) there exist spaces E,, B, F,
such that E=QFE,, B=2B,, F=2F,.

LemMma (2.3). Under the above condition there exists an appropriate fiber
space G,=(E,, po, Bo, F,) such that €=(E, p, B, F) is equivalent to 26,=(LE,,
2po, £B,, 2F,).

Proof. Since n(E, B)=n(QE,, 2B,)=n(E,, B;), there exists a map p,: E;— B,
such that 2(p)hy=hyp, where by : E— 2E,, hy: B— 2B, are homotopy equival-
ences. Consider the mapping cylinder M, of p:, and construct the space 2(M,, ;
E,, M) as usual. Denote by po: 2(My, ; E1, M) —>M,, the map which associates
the end point to any path. We have the fiber space (E,, po, Bo, Fy), where
E=8Q(My, ; Ei, My), Fo=82(My,: Ei, *) and By=M,,.

In view of the property of the mapping cylinder M, there exist homotopy

equivalences #%: E,— E, and h%: B,— B, such that p,hx=h%p,.
Thus 2(p) -2 hs= 2 2(p)Mr~=2(hW)kkp. Denote 2(h%)hy by hs: B—~2B,.
From the covering homotopy property there exists a map hg: E—> QF, such that
he==82 (W) hy and 2(po)he=hsp. Hence hp(F)C QF,, and by the five lemma we
have that %g|F induces isomorphisms n;(F)—r;(2F,) for each i. q.e.d.
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3. Characteristic class

Let (E, p, B, F) be a fiber space, and (LB, m,, B, £B) be the fiber space of
paths. By (1.2) there exists a CW-triad (W; W,, w,) and there are homotopy
equivalences k: (W; W,, wo,)—~ (LB; B, %), g: (LB; £B, ¥)— (W ; W,, w,), such
that hg=1.B, gh==1,, where * is the constant loop in B.

Consider the map # : WXI— B such that #»’(w, t)=h(w)(#), we W, O<t<1
In view of the covering homotopy theorem, there exists a map % : WX I—E such
that pi'=F and 7 (WX (0)YwexI)=e,. Then we have maps

q : (LB, %) —> (LE, %),
g=q|82B: 9B —> Q(E; e, F)
such as ¢'(op) ) =W (g(om), D), 08€LB, 0<t<1.
Also let L(p): LE— LB be the map such that L(p)(or)(#)=p(0(t)), oe€LE,

0<t<1, and
Y :89E; e, F)—>%B, 'p: 2E—~ 9B

be its restrictions. Then we have:

Lemma (3.1). 2, q are homotopy equivalences (rel. x), and the one of them is
a homotopy tnverse of the other.

Proof. Since (p'q)(os) @) =ph'(g(op), t)=n(g(on), 1)=(hg)(op)(t), we have
Pq=hg|2B=1gp (rel. x). We shall next show that there exists a homotopy

gy’ = locg; ey, m: (Q(E; e, F)XI, LFXI, *XI) — (2(E; ey, F), LF,*) .

By (1.2), there exist a CW-triad (V; V,, v,), a homotopy equivalence %,: (V; V,,
vo) — (2(E; e, F), LF, %), and its homotopy inverse g,: (2(E; e,, F), LF, *)—
(V; Vo, vo).

The above homotopy p'g=1gs induces a map @: VXIXI— B such that

Dho(0) (®) if s=0,
Q, t,s) = { plap’hy) (@)  if s=1,
b, if t=0,1, or vEV,.

In view of the covering homotopy theorem, we have a map @: VXIxI—E such
that pQ@=Q and

ho(0) (8 if s=0,
(gph)(@)(®)  if s=1,

Qv t,8) =+ e if t=0,
ho(0) () if veV,, t<1-s,

=
ho()(1—s) if veV,, t>1-—s.
Hence we have a homotopy H: hgo=qp'hego: 2(E; €y, F)XI—>82(E; e,, F) such as
H(p, s)(®) = Q(g(0), t, s), 0€R(E; e, F).
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Since hgi=lacE; ¢, 7>, We have the desired homotopy. q.ed.
If we denote m¢ by f, in the diagram

F ‘

E
nlq:f// Vﬁl
op~ b g~ ™ .p

we have if =mg’t,, and pmg’ =m,, since hg=1,5. -Also we have:

Lemma (3.2). The homotopy class ‘a€n (2B, F) of f is uniquely determined by
the given fiber space €= (E, p, B, F), and ‘p*'a=0.

Proof. Consider two CW-triads (W; W3, wd), (W?; Wi, w}) and two maps
¢, ¢- induced by W*, W2 respectively. From Lemma (3.1) we have ¢:=¢:p'¢:=¢-.
Hence the induced maps fi=myq, and f,=mg, are homotopic. From fp=mgq,'p=m,
and 7,(2F)=e¢, we have p*'a=0. q.e.d.

Lemma (3.3). The fiber space 2C=(RF, 'p, 2B, 2F) is equivalent to the prin-
cipal fiber space (E, p, 2B, 8F) which is induced from the principal path fibering
w: LF—F by the map f above.

Proof. Since ‘p=p'|2E, in view of Lemma (3.1) there exists a homotopy

H,: (2EXI, QFxI) - (2(E; e, F), LF)

between the inclusion map EC R(E; e¢,, F) and the composition map ¢'p.
Define a map 7r; &E— LF such as

yr(wp) (@) = mH, (g, 1) wp€RE, 0<t< 1.

From the construction of H; (Lemma 3.1), it is easily verified that 7| 2F: 2F —
£F is homotopic to the map wr— 0y, wp€2F and fp=mnyr. Hence we have a
map 7: 2E—E={(ws, or)|ws€ 2B, or€LF, fop=m0r)}

such as 7(wp) = (p(wp), yr(wr))  for any wpClE.
According to Lemma (2.1) we have
(0, 9r, ©): €= (E, p, 8B, 2F)
where i:82B—#B is the identity map. q.ed.

Lemma (8.4). Let € ,=(Ey, ps, Bi, F), €;=(E,, ps, By, F>) be two fiber spaces
each of which induces the homotopy class ‘a; of fi: 2B;—F; respectively (i=1,2).
We make an assumption that there ave homotopy equivalences hp: B,—B;, hp: Fi— F;.
If there exists a map hp: E.—E, such that (hg, hs, hr): €,=C, then 2(hp)*'a,
=hry'a,. Conversely, if 2(hp)*'a,=hry'a, then L€, =R2€,,

Proof. Define a map h: 2(E.; en, F)—2(E,; e, Fs) as k(o) ®)=he[o(®)]
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then it is obvious that
brh=82hp)p1, hrmg,= hmq,
where pi: (E;; eoi, F;) > 82B; and gq;: B;— 2(E;, ey, F;) are the homotopy
equivalences (Lemma 3.1) and mg;=f;. Thus
hefy = hpmyg, = hmgy = mhg, = 70:q, prhg, = f2pihg, = 2 (he) pig, = 22 (hs) .
Coversely, if f,2(hs) =hrf: there exists a map H,: 2B, XI—F, such as

2o i t=1,
o - [ £
1o, 0 hrfio if +=0.
Consider the two principal fiber spaces E;= {(w;, 0;) |w; € 2B;, 0; € LF;, fiw;=m0;}

i=1.2. in (3.3). Define a map 7: £, — E, by y(o,, 0,) = (@, 0,) where 0,=2(hg)w,

and
hpou(26) if 0<t<l,
2
0,(t) = 1
Hi(w,, 2t—1) if ?_gtg].
Now the proof is due to Lemmas (2.1), (3.3). q.e.d.

If all of E, B, F satisfy the condition (Ap,2p-3) for some integer p>>2, we
have the natural isomorphism

Q7' n(@B, F) —> (B, F,)

where Fo=8"(F), (see (1.3)). We shall denote the image £7'(‘@) of 'a by «,
and call it the characteristic class of the fiber space €=(E, p, B, F). The follow-
ing theorem justifies the terminology.

TueoreM (3.5). The equivalent class of the fiber space €=(E, p, B, F) is
uniquely determined by the characteristic class a; ie. a) € is equivalent fto the
principal fiber space which is induced from the principal path fibering w : LF,— F,
by a representative map fo: B—>F, of the characteristic class a.; b) if a; (1=1,2)
are the characteristic classes of the fiber spaces €;=(E;, p;, B;, F;) ((=1,2) and if
there exist homotopy equivalences hp: Bi— By, hr,: Foy—> Fo, with Fo;=27"(F;), then &,
and €, are equivalent if and only if hg*a,=hrpxa,.

Proof. From the above assumption that all of E, B, F satisfy the condition
(Ap,2p-3), there exists a fiber space (Eo, po, By, Fo) as in Lemma (2.3), there
exist homotopy equivalences kg, hk, kg, hp such that the following diagram is
commutative up to homotopy

he

QFE, ——/ E
h/

lew) 7 |
hs

2B, —_—— B
’

g
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We denote by f, a map mgo: 2B,— 2(E,; ew, F,) — F, associated to the given
fiber space (E,, po, Bo, F,) in the sence of (3.2). The map £2(g,) : 2°B— 2(L(E,;
e, Fo)) induces a map ¢ : 2B—R2(E, ¢,, F) such that ¢ (0)(#)=hge(0os:), Where
w€2B, 0<t<1 and 0 €LE, is determined by o0g:(s)=[(2(g)2p)w)(s)1E)
0<s<1. Therefore ¢ =he2(q,)2(hy), where hz: 2(2(Ey; w, Fo))—>R2(E, e, F) is
induced by the map /g as above. By Lemma (3. 1), pigo=1 and so 2(p4)R(g,)=1.
Hence 2(hp)p'hel(g)=1. This implies that

d =822 (hp) p'hel(g)2hp) =1.
By Lemma (3.1) ¢gp’=1. Thus we have g=gp'¢’=¢q’. This implies
f=82p)2(f)2hp).

Since £2:7(B, F,)— (2B, F) is an isomorphism, we conclude that fik% belongs
to the image £7'(a). Now the proof is due to Lemmas (2. 3), (3.3), (3.4), since
L(hp)¥'a,=hpx'a, implies kfa,=hpxa,. q.e.d.

Owing to this theorem, we shall hereafter denote by & (B, F, @) the equivalent
class of the fiber spaces (FE, p, B, F') each of which is associated to the character-
istic class a.

CoroLLARY (3.6). If B and F satisfy the condition (Ap »ps) for an integer
p, then
2®(B, F,a) = ®(2B, F, ‘o) for ‘a=2(«).
Cororrary (3.7). If B, B, F, F’ satisfy the condition (Ay, »p—s) for an integer
p, and*if hs:B’— B, hp: F,—F§ are homotopy equivalences with Fy=82(F) and
Fi=8"(F"), then we have
®(B, F, a) = ®(B’, F’, hhrya) .

4. Exact sequences

Let (E, p, B, F) be a fiber space such that B is g-connected and F is »-con-
nected. It is known [10] that if X is a space such that 7;(X)=0 for j >g+r+1
then the sequence of the sets of homotopy classes

I ¥
4.1 n(F, X) «—n(E, X) «<—n(B, X)
is exact.
On the other hand, let (E, p, B, F) be a fiber space such that all of E, B, F
satisfy the condition (A, .-s) for an integer »>2. If we denote by « the
characteristic class of the fiber space, then we have:

LEMMmA (4.2). The following sequence is exact for any space X

2 (X, OF) —5 7(X, @E) -5 n(X, @B) —5 n(X, @F) —>

(X, F) 25 (x, B) 25 n(x, B) 25 m(x, Fy)
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where Sk=2°(k), 2°( )=80L2°*()) and F,=2(F).

Proof. Since (E, p, B, F) is equivalent to a principal fiber space (E, 3, B, 2F,)
which is induced from the principal path fibering =, : LF,— F, by a representative
map fo: B—F, of the characteristic class «, the proof of this lemma is due to
the results of [8, pp. 282~3]. g.e.d.

Lemma (4.3). Let (E, p, B, F) be a fiber space such that B is g-conmnected,
F is r-connected and the characteristic class of the fiber space (LE,‘p, B, QF)
is ‘a.  Then the following sequence is exact for any space X such that mwj(X)=0 for
j>min (g+7—1,2¢, 2r) ;

1% Lk
n(QF, X) «—n(2E, X) <— (2B, X)
1ok e ¥
(—_—77:<F) X) é——‘ﬂ.'(E, X) <_—'_TE<B, X) .
Proof. Consider the fiber space (2(E; e, F), n,, F, 2F) and the commutative
diagram

11)* 1ok
7(RE, X) «— (@B, X) «—n(F, X)

AN P sy
n(2(E; e, F), X)
where p*, ¢* are isomorphisms by Lemma (3.1). According to (4.1) we have
that the upper row of this diagram is exact.
Consider the fiber space (2(E; E, F), n,, E, 2(E; ¢y, F)) and the commutative

diagram
1

wk A
7(2B, X)) «— n(F,X) <«— n(E, X)
| 1 g % /
4 Hq it | /7§
n(2(E; e, F), X)<—n(Q(E; E, F), X)
where p*, ¢*, nf are isomorphisms. According to (4.1) we have that the upper

row of this diagram is exact.
Combine the exact sequences

Sk S Hk
2(9F, X) ——n(@E, X) (@B, X) s—0,1,

11;* 1ok

n(QE, X) «—n(@B,X) «—=n(F, X),
1ok 7k

TT(.QB,X) (——ﬂ<F)X> (———”(E’X),

then we have Lemma (4.3). q.e.d.

Especially, if all of E, B, F satisfy the condition (4, , ) for an integer » >2
and if X is a space whose homotopy groups n;(X) vanish for j_>2r—3, then
from Lemma (4.3) we have:
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CoroLrary (4.4). The following sequence is exact:

15k Lk
n(QF, X) «—n(QE, X) «—n(¥B, X)
1ok ik pE
«—n(F,X) «—n(E, X) <—n(B, X)
ak i ¥
G—E(FO,X) <—7T<E0)X) 6——ﬂ<Bo,X)

where (Eo, po, B, Fo) is a fiber space as in Lemma (2.3), (3.5).

Assume that (E, p, B, F') is a fiber space such that B, F are g-, r-connected
respectively, and that X is a space whose homotopy groups 7;(X) vanish for
j>2¢—2. Under these assumptions, we have a map

() = Q7' 'ak: n(F, 2X) - n(@B, 2X) - n(B, X) .
This map will be called the generalized transgression homomorphism.
Lemma (4.5). If X is a space whose homotopy type is KU, n+1) with
1<n<min (2¢—3, q-+7) then the following diagram is commutative

) *
H*(F; 1) —> H™'(E, F; IT) <—p—— H(B; II)

t o t o
J (i) i
n(F, 2X) n(B, X)

where =~ are the natural isomorphism

Proof. Consider the diagram

10
¥ /s
n(F, 2X) >»7(2(E; e, F),R%X)— (2B, 2X)
Nk Nk sk 25
¥ L¥ Lp
n(E, F; LX, 2X)—»n(LE,2(E; e0,F) ; LX,2X)e—n(LB,#B; LX, 2X)«—7n(B, X)
p>{<
Tk T Le

n(E, F; X, xo) /

Here %, ¢=1,2,3, are 1-1 onto by Lemma (2.2), and L, Lg are defined
naturally. At first we shall prove that

Leg-mpx = nf .
Let f: (E; F, e) — (LX; 2X, *) be a map representing a class [ f] of =n(E, F;
LX, 2X). Then Lg-mx[ f1, n¥[ f] are represented by g, % respectively, where
g h: (LE, 2(E; e, F), ¥) — (LX, £X, %),

glop) () = floe@®) (D),

£ €ELE, 0Lt 1.
1om) (B = Flos@®, O °F !
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Define a map Hs: (LE, 2(E; ey, F), %) — (LX, 2X,%) 0<s<1 by

Flosen(L)  0=t<s,

Hs(:QE) (t) = {
f o)D) s<r<L1.

Then we have Hy=g, H,=h; i.e. Lg-m,,=n¥.
The commutativities of the other parts in the above diagram are proved
easily from the definition ; i.e.

t(a) = @7tk = pFtempe T

Take X a space whose homotopy type is K(II, n+1), and the lemma follows
from the following commutative diagram

k
H*(F, IT) > H"I(E, F; IT) & B (B 1T

1 ~ I 1 ~
_1 V v
Tk Nk

K
w(F, 8X) "%, (B, F; X, x) L 7(B, X)

g.e.d.
This lemma implies that v(*@) is just the same as the usual transgression
homomorphism of the cohomology groups in this case.
We note that the verification of the Lemma (4.3) implies directly ;

CoroLLARY (4.6). Let (E, p, B, F) be a fiber space such that B, F are gq-, r-
connected vespectively, and let 'a be the characteristic class of the fiber space
(2E, 'p, 8B, QF). Then the following sequence is exact for any space X whose
homotopy groups wi(X) vanish for j >min (2¢—2, g+r—1, 2r)

1% Lpk 1ok R
n(QF, X) «—n({E,X) <—n(@B, X) «—n(F, X) «<—

K 1 ek g
(B, ) L n (5, x) S8 nr, 0x) Fnen, ax) 2o
() 7k
n(B, 2X) « n(F, 22X) «<—— -,

5. Poly-fiber spaces

Let (E, p, B, F), (E’, §’, E, F’) be two fiber spaces such that all of E, B, F,
E’, F’, satisfy the condition (4, . for an integer »_>2. We shall denote by
a, v the characteristic classes of the above fiber spaces respectively.

Z‘// i
F ’ 3 F 4 3 E 4

G.D IL:)N__Z._) }315/

|2

B
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In the above diagram, pp': E’—B 1is also a fiber mapping. We denote
(pp') by by F”. Since F'=p'(ey)Z(pp) (b, there is the inclusion mappings
7/, ¢ such that ¢”/-i”=i’. Denote p'|F” by p”. Then we have:

Lemmva (5.2). (F”, p”,F, F’) is also a fiber space whose characteristic class
is 7Ry,

Proof. From the facts p”"(F") Cp/(E")=E and pp”"(F")=pp’(Z""F") = {by}, we
have p”(F”)CF. Conversely let ¢ € E’ be such an element that p'(¢’) CF, then
we have ¢ €F” since p(p'(¢))=b, and p”"(F")=F. Hence (F”, p”, F, F") is a
sub-fibering of (E’, p’, E, F’). From the definition of ¥ €n(LE, F’) it is easily
verified that the characteristic class of the fiber space (2F”, 2(p"), &F, 2F") is
Q(*. This implies that the characteristic class of the fiber space (F”, p”,
F, F’) is 7¥7. q.ed.

If we denote by B the characteristic class of the fiber space (E’, pp’, B, F”")
then we have:

Lemma (5.3). 27 (p)xB=a, prp=2"1(7")xT.
Namely the following diagram is commutative up to homotopy

L
E ~F} s

b 213"
B F,

where F’=27'(F%), {=0,1,2.

Proof. 1t is sufficient to prove that p{'f='a, p*'F=1i}y where ', '3, i¥ are
2(a), 2(B), 2(r) respectively.

Let (W; W,, w,) be a CW-triad and the one of 4: (W; W,, w,)—(LB; 2B, %),
g: (LB; 2B, x)—~(W; W,, w,) be a homotopy inverse of the other. Consider the
map 4 : WxI— B such that #(w, ) =h(w) (). In view of the covering homotopy
property there exist mappings % : WX I—E, ¥ : WX I--E’ such that pt/=¥, pH =¥
and 7 (WX (0)YwexI)=e,, # (Wx (0)“w,xI)=e}. Then we have two mappings
q: (LB, 2B, x) - (LE, 2(E; ey, F), %), g: (LB, B, *x) — (LE’, (E’; e}, F"), %)
such as ¢(or) () =W (g(on),t), §lon) ®)=H(g(op),t) for pp€ LB, 0<t<1. From
Lemma (3.2) we have 'a>mg|2B, ‘>m,g|8B, and hence p}f='a since g=L(p)g.

Let (V; Vi, Vi, v,) be a CW-tetrad and the one of H, G;

H
(V; V17 VO, vO>—(———GT>—'(LE; Q<E; €9, F)’ ‘QEy *) ’

be a homotopy inverse of the other whose existence are due to the Theorem 3
of [5]. Consider the map H': VXI—E such that H'(v, )=H(®)(#). By the
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covering homotopy property there exists a mapping H’: VXI—>E’ such that
PpH =H and H (VX (0) Y0, xI)=¢}. Then we have a mapping Q : (LE, 2(E; ey, F),
QFE, %)—~(LE’, 2(E"; e}, F”), 2(E’: e}, F"), ¥) such as Q(or)()=H'(G(op), t) for
og€LE, 0<t<1. From the Lemma (3.2) we have ¥ >mQ|&LE. And since
L(pHQ(op) @) =p'H' (G(or), H) =H(G(pgr),t) =HG(pr) (}) we have L(#)Q~=identity
map. Hence there exists a homotopy ¢L(p)=1=L(p")Q, namely there exists a
map H,: 2(E; ey, F)XIXI—E such that

(@L(p)oE) () if t=0,
Hy(0g, t, s) = { L(PHQer)(s) if ¢t=1,

€ if s=0.

In view of the covering homotopy property we have a map H,: V,xIxI—E’
lifting the composition map (H|V,) x1x1 such that

@L(pHH@N ()  if £=0,
Hyo, t, 5) = { QH®)) () if =1,
eg if s=0.

Hence, we have a map H,: 2ExI->F” such that
H,(og, 1) = Hy(G(om), £, )  0E€2E, 0<¢<1.

This implies that 7, 7'p=1:¢"n,Q since HG=1; i.e. p*B=:i{%y. g.e.d.

We shall call the poly-fiber space such a system as in (5. 1).

Lemva (5.4). Let €=(E, p, B, F), &"=F", p”, F, F") be two fiber spaces such
that all of E, B, F, F’, F” satisfy the condition (A, .,—s) for an integer v>2 and
having the characteristic classes a,, a, respectively. Then theve exists a poly-fiber
space (5.1) up to equivalence, if and only if

a,la; =0  where ‘o= 2(a).

Proof. If there exists a poly-fiber space (5.1), we denote by 8 the characte-
.ristic class of (E’, pp’, B, F”"). Then a,-'‘ay=a,( p"+'B) = (p""*a,) =0 by Lemmas
(38.2) and (5. 3).

Conversely, if a,-'a,=a/*(a,) =0, from the Corollary (4.4) there exists a class
7€n(E, Fg) such that #*(7)=a, where F{=2"'(F’). Hence we have a space
E'(¢) € ®(E, F’,r) and a poly-fiber space

F'— F"(7) — E'()
oo o
F—' »E

B

where F”(1)=p' (N FE®(F, F', a5) 5 ie. (F'(D, p"(), F, F)=F". q.ed.
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For the future convenience we shall state another proof of sufficiency: If
a,-to, = (‘) =0, then there exists a class 'B€n(2B, F””) such that pi'f='a,
since the following sequence is exact by Lemma (4.2).

, Z:x: v b% (279 ,
n(@B, F") —> n(2B, F") —> n(2B, F) —> w(#B, F{) .
Hence we have a space E’(8) € ®(B, F”,8) where =2"(B). Namely if fis a
representative map of 3, then we have

E'(B) = {(b,0")|0EB, p” €LFy, f(b) = m (o)},

where (F§, o, Fo, F) is a fiber space associated to the given fiber space (F”, p”,
F, F’) in the sence of Theorem (3.5). We define the principal fiber space E(B) by

EB) = {(b,0)1b€B, p€LF,, pgf(b) = m(0)}
and the maps p’'(®) : E'(B) —ER), p(B) : E(B) — B by
B, 07) = (b, L(pg)(07)), p(b,0) =b.

Since pix(B)=a,, (EB), p(B), B, 2F,)=€ by Theorem (3.5). It is easily seen
that p’(8): E’(B) = E(B) is a fiber map with fiber {(b,, 0”)|0” € RF}} which is
homotopy equivalent to F’. Namely we have the desired poly-fiber space

QF§ —> QF§ —> E'(®)
e |r®

F & or ") e

B

LeMmmMa (5.5). Under the same conditions above, there exists one to one ‘corres-
pondence among (1) the strongly homotopy types of E’, (2) the classes B or n(B, F{),
and (3) the classes v or n(E, F§).

Proof. (1)—(2) and (1)« (3) are obvious from the Theorem (3.5). We shall
give here the direct correspondence of (2)«—(3).

Denote by h: F” () > F”’—2F{ the homotopy equivalence and by B’ the
characteristic class of the fiber space (E'(7), pp'), B, F”()). Then according
to Corollary (3.7) we have ®(B, F”(), B)=® (B, F§, hf’). Namely, if we
denote #*p3" by () we have E'(y) € ® (B, F”, B{)).

Similary, if we denote by # : E—~ E(8) the homotopy equivalence and by 7’
the characteristic class of the fiber space (E’(R), p’'(B), E(B), F}), then we
have ®(EB), 2F4, 1) = ®(E, F’, k). Namely E’(B) € ®(E, F’ r(B)) if we
denote #*y” by r(f). In the above two diagram we have p”(r)=p"+h, i(})=
Wei-h”



32 K. Mizuno

PLCBM)) = pL(he'B) = p" (xR ='ay,
(7 (B)) = ix(Wxy") = i(B*WFY = ay.

Therefore the desired correspondence is given by 7—B({), B—>7(®). g.e.d.

6. Lifting problems—Secondary operations

Let X be a space. We shall consider the lifting problem of the map fi: X—>B
where B is the base space of a poly-fiber space

F/ > F// > E/

s
F — FE

|»

B
By a,, a,, B, ¥ we mean the characteristic classes of the fiber spaces (E, p, B, F),
(F”, p”, F, F") (E’, pp’, B, F"), (E’, VV, E, F’) respectively. In view of Lemma
(4.2), there exists a map f,: X—E with px[ f.1=[ f.] if and only if ax[ fi]=0;
a[ f1] is called the first obstructions.

If [ filen(X, B) satisfies aux[ £,1=0, [ fi] is p«[ /2] for a class [ fz]l€n(X, E).
[Filen(X, E) is pi[ f.] for a class [ f;]en(X, E”) if and only if 7%[ f5]1=0, by
Lemma (4.2). The condition for existency of such f4¢€ p3'[ fi] for a given map
f1 is that there exists f; such that [ fi]=pxpi[ f:1, namely

6.1.1D if f2€pi*[ fil, then 7+[ /-] belongs to the Im (7%0)x=Im ax,
(6.1.2) Bx[ £11=0.

From the condition (6.1.1) we can define a secondary operation
0: (X, B) ~nKeray —> n(X, F§)/axn(X, F)

such that the coset @[ f,] contains 7:[f,]. Namely, @[ f;]=0 if and only if [ fi]

is representable as pypi[ fi]; @[ f1] is called the secondary obstruction.
Consider the diagram

L7 )%

n(X, F§

ERS"

;l>[:
(X, E)——n(X, Fp)
6.2 223 B

n(X, B) n(X, Fo) ,

then by Lemma (5.3) this diagram is commutative. Since au[ f11=0, Bx[ fi]
belongs to the Ker 27'(»”)x. By the exactness of the sequence

. ‘Q-—l L4 Q—l 7/
2(X, F) 25 nx, pp 2% n(X, FY O n(X, F,)

there exists an isomorphism
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i: Coker ayy ~ Ker 71(p" ).

From the commutativity of the diagram (6.2) we can define @[ f.] as i~ Bx[ fil.
It is obvious from our definitions that

(6.3.1) O[ f,]=0 if and only if B«[f]=0,
(6.3.2) @[ p] is represented by 7,

(6.3.3) @ is natural: ie. if g: Y—>X is a map and [f]en(X, B) ~Ker a;x,
then @[ fg]l=g*@[ ], where

g¥*: n(X, Fo)/aun(X, F) »n(Y, Fo)/axn(Y, F) .

Levmma (6.4). Let €=(E, p, B, F) be a fiber space. If [ fi], [f-]€n(X, B) A
Ker ax then

O [ fdeLfoD = @[ f 10 f]1.

Here o denote the group multiplications of =n( , ), which are same to the multiplica-
tions induced by the loop structures of E=826€,. (Lemma 2.3).

Proof. If [ flen(X, B) satisfies the condition a[ f]=0, there exists a map-
ping g: X~ E such that pg=f. Hence O[ f1=0[ pgl=g*@[ pl=g*{r} by (6.3.2)
and (6.3.3). If pg=f=pg. then there exists a mapping %: X—F such that
[gd=ix[A]e[g]. We have gfr=gfroh¥*i*y=g¥roh*a,, and so g¥y is uniquely
determined as the coset of a,x—Image. If [ fil, [ f:l1€n(X, B) ~Ker a;x, there
exist mappings gi, &: X— E such that pg;=f;, i=1,2. Then

0<[f1]0[f2]> = @<(g1°gz>*[ﬁ]) = (gieg)*0[ p]
= (giog)*{r} = gl {r}ogd i} = O[ fil0[ f.].
q.e.d.
Summarizing the results of (5.4), (5.5), (6.3), (6.4) we have:
TuroreM (6.5). The relation o:-'a,=0 induces a secondary operation
@: n'(X, B)f‘\Ker al* —_—> T[(X9 Fé)/az*”(X, F) 9
and it is determined uniquely mod primary operations associated to n(B, Fy).

Proof. It is obvious that the secondary operation @ is uniquely determined
by the strongly homotopy type of E’, namely by the class 8 or by the class 7.
Here 7y is determined for the class «, such as ¥y=a,, namely 7 is uniquely
determined mod p¥n(B, F{). Fix an element 7 and construct a poly-fiber space
(5.1), then we have a secondary operation @(7) as in Lemma (6.4). Let
acn(B, F}) be a class and 77 be a class 7op*a. Then we have

PGOLSY = g*{r'} = gFlrop*ra) = gH{rtog*{pra} = 0L fleax[ f]
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where f, g are the same as in the proof of Lemma (6.4). This show that {0(G")}
are uniquely determined mod primary operations {ay}. g.ed.

By @(a,, &) we mean a class of secondary operations which are determined
in the sence of Theorem (6.5) by the given relation a,-'a;=0. Also, we shall
denote by @, ~'@ the secondary operations determined by the class {7}, {77}
respectively if the conditions for dimension are satisfied, where 7=2(y) and
“r=2-.

For example let B=K(Z,, n), F=F =K(Z,, n), a,=a,= Sqg*(*) = %6, then
0(Sq', Sq') is the Bockstein operation —41—6, where modulous is zero. We shall
denote @(Sq', Sq*) by @, for any integer .

Let B=K(Z,, n), F=K(Z;, n) xK(Z,, n+1), F’' = K(Z,, n+2), &, = Sg* X 5S¢,
a,=Sg* Sg? then @(Sg*Sg?, Sq' X S¢?) is the Adem operation [2], where modulous
is zero. We shall denote this operation by @,.

LemMma (6.6). @(a,, a)ax=0(a,, o), ax0(a,, a) =0@ar,, ), where
a€n(B, B) and acn(F}, F}) satisfy the conditions for dimension [3].

Proof. Let B€n(B, F§) be a class such that pif='a,. Then we have
P%(B'a)='a,'a«. This implies that we may chose '3'a as the characteristic class
of (F, p%, B, F”") where £’ is the total space of poly-fiber space associated with
the relation a,-'a,'a=0. Thus the first part of the lemma is trivial by Lemmas
(5.4), (6.5), (6.5).

Let F"e€ ®(F, F’, a,) be a principal fiber space induced from the principal
path-fiber space (LF}, n,, F§, 2F}). Let F”¢ ®(F, F’, aa,) be a principal fiber
space induced from the principal path-fiber space (LF}§, =y, F'§, 2F4). Then there
exists natural mapping &: F”—F” such that &(wr, 05)=(0r, L(@)pr) where
wp€F, ppr€LF§ and L(@):LF§{—LF}{ is induced by @ This implies that we
may choose &’B as the characteristic class of (E’, pp’, B, /) where E’ is the
total space of poly-fiber space associated with the relation @a,-'a;=0. Now the
second part of the lemma is obvious since the following diagram is commutative

n(X, F§) —5 (X, F{)

lﬂ* B J{ 2718«
2(X, F) - (X, FY).
q.e.d.

LEMMA (6. 7)- If ag’laz'zal =0 then @(0&3 10‘2’ lal) = @<a3, (2%} 10‘1) : Ker 1a1 -
Coker a;, where *a,=82(a) [3].

(*) Here Sg! is the homotopy class of the map f: K(Z,, n) = K(Z,, n+i) i=degI such that
f*‘n—H:SqI‘n .
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P7’00f. Let (Ely 171, B, Fl), (EZ, 172, Fl; FZ), (Es, Ps, FZ, Fs)y (Ei: 17{, “QB, Fz)
and (E3, p4, 2F,, F;) be fiber-spaces associated with given classes a,, a,, a;, &',
and a,'a, respectively.

F,—> E,—> E, F, —> E} —> E,
F,—> E1 QF —> 2F,
2B 2B

There exists a natural mapping @,: 2FE,— E{ such that &,|2F,='a,. If [ f]€
7 (X, £B) satisfies the condition 'ay f]=0, then there exists a class [ g, 1€n(X, 2E,)
such that 2(p)«x[gl=[f1 Let 7, be the characteristic class associated to the
poly-fiber space E,: which induces the operation @(a;, a,'a,) ; i.e. in*7,=a,. Since
&,i,=1,"'a, we may choose @&,*7, as the characteristic class associated to the poly-
fiber space E, which induces the operation @(a;'a,, ‘).

. _.‘T.%-;—E'
o = g A
l e, l &, yp %
F, 2 B R,

Since pix(@x[g. D =[r1, @(a;, a,'a)) can be represented by (& g)*7,. Now the
proof is due to the fact that (@mg)*7.=g¥(@fr.)=g¥7.. q.ed.

LemMMA (6.8). If ay-'a;=0 i=1,2, then

O(ayoty, ;X ap) = O(dy, ay)o@(ay, ayp):
Ker o, ~Ker a, —> n( , F§) / Imay,“Im e, [3].

Proof. Let (E;, p;, B, Fy), (F/, p7, F;, F’) be fiber spaces associated with
the given classes ay;, a; i=1,2 respectively.
F’' —— F{XF{ —> E{XE}

l

FiXFé —> E\ X E,

B

If [fl1€n(X, B) satisfies the conditions a;x[ f1=0, ax[ f1=0, then there exists
a class [g;]1€n(X, E;) such that px[g;]1=[f]. Since a;-'a;;=0, there exists poly-
fiber spaces E; each of which induces the operation @(ay;, ;) respectively i=1,2;
ie. if we denote by 7; the characteristic classes of (E}, pi, E;, F) i=1,2,
O (ay;, a N[ 7] is represented by gfr; i=1,2 respectively.

On the other hand, @(a, oy, ayXayp)[f] is represented by (g:Xg)* (71o72).
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Then the proof follows from that (g:X g)* (71072) =gF 11085 7. q.e.d.
For examples, S¢*0,;,=0(Sq*Sq?°S¢’Sq?®, Sq> X Sq*) =0 (¢°Sq*, Sq*) =S¢°Dy,, and if
we denote @ (Sq'oSqg?Sq*eSq*, Sq* < Sq* < Sq') by @, then Sg'@,=®@(Sq'Sq'>Sq*Sq*Sq'o
Sq*Sq*, Sq* < Sq®x Sq*) =@ (Sq¢’Sq*>(Sq*Sq'Sq*+Sq*Sq*), Sq*xSq*) =0(Sq*Sq*>Sq*Sq®, Sq*
X Sq') + O(Sq*Sq', Sq*)=Sq°Dy;+Sq* Doy
Thus we have:
(6.9.1D Sq¢*®,,=Sq°@,, mod primary operations [1],
(6.9.2) Sq* @2 = Sq*0+1+ Sq Do
Lemma (6.10). Let g:Y—>X beamap. If [ fl1en(X, B) satisfies the conditions

[ £1=0, g5[71=0, then gr0(a,, a)[ fl1=ama [ f1 where a, is the functional
operation associated with the following commutative diagram

7%, F) —25 2%, B) 25 n(x, B 2% n(x, R
A A P
ey Ik D
n(Y,82B) — n(Y,F) — n(Y,E) —> =n(Y, B)
Proof. Let [f] be a class of n(X, B) ~Ker ax~Ker g¥ Then from the
commutativity and naturality of the diagram (6.2) we have
g¥0(a,, aD[ f1= g*«[7 1 = rxg*[F 1 = {a izt g*[F 1)
where [Flén(X, E) is a class such that p«[f]1=[f] and the existency of
iR g*[F1€n(Y, F) is due to that px(g*[f]) =g*(px[FD =g f1=0. Since
it g*[ ] represents the coset a, [ f] and a,-'a;=0, we have g*O[ fl=azma,[ f]
mod Im a,, g*. q.e.d.

7. Generalizations

Consider the diagram

:3, -
l

N«

7.1

where all spaces satisfy the condition (4,,,,—;) for an integer » >2, (Y, p*, B, YD),
(Y p%, Y, YD), (Y3, p°, Y? Y3), - are fiber spaces. We denote inductively
(Praapitt - pm )™ (xi2D) by Y2, 0<n<m, where p3=p", Yo=Y" Y°=B and %}

is the base point of Y77}. It is easily seen similarly as in §5 that
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(7- 2. 1) (Y;ln’., ;:—H p;ln} YZ, YT—H)
is a fiber space and, we denote its characteristic class by a(m, k, n), m >k=mn.

(7.2.2). The following diagram is commutative up to homotopy

alm, 7, n) i
2 P =Y 0
n)
Jp alm, 2%
al g, k,n)
Yy 'Y‘/’(n,-x,n

m>j >k=n, where p=pit' - pl, po=82"(plii - pP) and Y,=27(Y).
(7.2.3). Let the following systems (1), (2) be as above. Then there exists a

system (3) as above, if and only if a(m,k, k)-‘a(k, k—1,7)=0 where 'a=2(«a),
m>k>i=>0.

Yi_>..._>Y£? Yg_>..._>yzn Y%—»---—>Yt"
! v !
€Y} : @ : 3 :
v ! !

Y Y Yi.

We shall refer such a system (3) as also a poly-fiber space.

Now, we shall consider the lifting problems of the map f,: X—B where B
is the base space of a poly-fiber space (7.1).

If [ file€n(X, B) satisfies the conditions a(1, 0, O)x[ fi1=0, «(2, 0, 0)«[ f,]j=0
(ie. 0(a(2,1,1), a(1,0,0)[f1=0), [ f] is representable by (p'p)«[ f.] for a
class [ fi1€n(X, Y?). The third obstruction for that [ fi] can be represented by
(PP« fu] for a class [ fi]€n(X,Y?) is the class a(3,0,0)«[ f1]. Consider the
diagram

2(X, YD) = (X, YD > n(X, ¥ 23208 20 v8) s 20X, Yi—>n(X, Y i)

P s 43100 Blo
2(X, YD > a(X| Y — 42 L O s 21X, Vi) —»z(X, Yi0)
lﬁ (3,0, 0 Phox
(X, B) aB,0,0%  _zk v

By (7.2.2) this diagram is commutative. Since a(2, 0, 0)x[ £i\1=0 a8, 0, 0)«[ f.1
belongs to the Ker pipx. From the exactness of the sequence

a(3,2,1 o 3
(x, v OB v vy o v 2% ox v

we have an isomorphism

i (m(X, Yi)/Ima(3,2,2)x) / Im® ~ Ker plox
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as follows, where 0=0(a(3,2,2), a(2,1,1)); Let [g] be a class of n(X, Y.
Then «(3,2, x[g] represents a class @(pix[g]) € Coker «(3, 2,2)x. Thus we
have 7 as the composition of the isomorphisms.

Coker &(3, 2, 2)+/Im® =~ Coker a(3,2, Dx ~ Ker plox.

We denote by Coker @ the quotient group Coker a(3, 2, 2)x/Im @. Define the
third operation

¥: Ker@(a(2, 1, 1), a(1,0,0)) —> Coker 0(a(3,2,2), a(2,1,1))

by [ fid=i"a(,0,0)«[f].
It is easily seen similarly as in $6 that:

(7.3.1)  ¥[f]=0 if and only if a(3,0,0)x[f]1=0,

(7.3.2) ¥l pp*] is represented by «(3,2,0),

(7.3.3) ¥ is natural: ie. if g: Y—X is a map and [fle€n(X, B)~
Ker 0(a(2,1, 1), a(1,0,0)), then ¥[ fgl=g*¥[ 1, where

gk (X, Yi)/Ima(3,2,2)%) / Im& —> (Y, Yi)/Ima(,2,2)x) / Im0,
0=0(a@,22), a2,1,1)) .

(7.3.9  VUAAIPLAD=YLfI¥Y[f.] (see Lemma (6.4)).

TureoreMm (7.4). If either the relations «(3,2, 2)x '@ («(2,1,1), «(1,0,0))=0
or ®(a(8,2,2), a2, 1, 1))-'a(l,0,0)x=0 is satisfied, there exists a third operation ¥

as above, and it is determined uniquely mod secondary operations.

Proof. It is obvious that the third operation ¥ is uniquely determined by
the equivalent class of (Y3, p'p?°, B, Y3) namely by the class a(3,0,0) or by
the class a(3, 2, 0).

We assume that «(3,2,2)-'@(«(2,1,1), «(1,0,0))=0. This relation implies
that a(3, 2, 2) 'a(2, 1, 0)=0, and so by Lemma (5. 4) there exists a poly-fiber space:

Yi— Y} —— 73

I

2
Y;i——— Y2

[
z‘l
Yi— Y.

The characteristic class @(3, 2, 0) of the fiber space (Y3, p’, Y?, Y3) is uniquely
determined mod p#n(Y?, Y3, since i#*a(3,3,0) =a(3,2,2). Fix an element
a(3,2,0) and construct a poly-fiber space as above.

Let acn(Y?, Yi,) be a class and @'(3,2,0) be a class @3, 2, 0)-p**a.

Then we have ¥(@)[ f]= @} =F*a@p*a} = F*{@ o f{pra) = V(@[ f1-0[ ]
where [ flen(X, B) ~Ker a(2,0,0)%, f: X—>Y? is a map such that (p'pD«[F1=[7]
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and @ is a secondary operation @(Z*a, «(1,0,0)) associated to the poly-fiber space

Y§— F — E
Lo
Z’l
YI— Y!
%
B
(The characteristic classes of (E,p, Y, Y3), (Y4 p', B, Y] are a,a(l,0,0) re-
spectively).
Hence ¥ is uniquely determined mod secondary operations whose type is
O a, a(l,0,0)).
We assume that #(«(3,2,2), «(2,1,1))-'@(1,0,0))x=0. This relation implies
that «(3,1,1) *a(1,0,0)=0, and so by Lemma (5. 4) there exists a poly-fiber space:

3 ia 3 V3
Yz——‘—> Yl———‘)Y

Lt | |#

Y3 Yi— Y!

v

B.
The characteristic class @(3,0,0) of the fiber space (Y3, p'p/, B, Y} is uniquely
determined mod %7 (B, Y $,) since p"*a@(3,0,0) =a(1,0,0). Fix an element @(3,0,0)
and construct a poly-fiber space as above.
Let acn(B, Y3) be a class and @ (3,0,0) be a class @(3, 0, 0) o> a.

Then we have
v@)[f1=a[ 1= @i« f1=i @[ fli i al f1=¥ (@[ F1-0[ f]
where [ flen(X, B) ~nKera(2,0,0)x and @ is a secondary operation 0(«(3,2,2),
Ploxa) associated to the poly-fiber space
Yi—> Y§—> E’

| |#

Y} — E

|

B

(The characteristic classes of (E’, pp’, B, Y3), (Y3, p3, Y3, Y3 are a,a(3,2,2)
respectively).

Hence ¥ is uniquely determined mod secondary operations whose type is
0(a(3,2,2), pierw). q.e.d.

THEOREM (7.5). Let ¥ be a third operation associated with the relation a'@=0.
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Let g: Y—X beamap. If [flen(X,B) satisfies the conditions O f1=0, g*[ f1=0,
then g*U[ fl=ax@.[ 1 mod Imaxg* where @y is the functional operations asso-
ciated with the following commutative diagram
)% 0
R (X, Y9/ a5 m (X, v “LE0% 20X, B) o Ker ag —>
e e e
. .

142
s (Y, VB Im s — 2 (Y, ¥ ~22% (v, B) AKer aus..

Here 0=0(a,, o), a,=a(1,0,0), a,=a(2,1,1), a=«(3, 2, 2), and we use the same

notations as above.
Proof. Let [ f] be a class of n(X, B) ~Ker @ ~Ker g*. Then we have
UL 1= g3, 2,0«[ 71 = (aB, 2, 0xgt[F 1} = {a(3, 2, 2)xiz'g* [/ 1}

where [F]€n(X, Y?) is a class such that (p'p2)«[/1=0. Since i3'g*[ /] represents
the coset @,[ f]and a'@=0, we have g*¥[ fl=ax@.[ f ] mod Im ayg*. q.e.d.

We may continue these considerations about higher poly-fiber spaces; and
we have some higher operations similarly as above.

8. Applications

We denote by 7 the essential map: S”*'—S” for any m=>2. Let # be an
integer=>7. X=S5"Y¢"** where ¢"** is attached to S* by the composition map
gy S*3—>S8"  Let ¥ be a third operation associated to the relation S¢*@q;+ S¢*@y,
+Sq*0y,=0 (6.9.2). We denote the generators of H"(X, Z,)(~ n(X, K(Z,, n))),
H"(X, Z;) by s”, e"* respectively. Then we have:

Tueorem (8.1). ¥(s®)=e".

Proof. Since Sq'(s") =0, Sg*(s™)=0, Sq*(s”)=0, we can define @y(s"), O,(s™),
0, (s™). By the conditions for dimension it is obvious that @,,(s”) =0, @y (s”) =0.
Also 0y,(s®)=0 (see Lemma (8.2)). Thus we can define Z(s").

Let Y=S5"+2Ygn+t where ¢”** is attached to S**?by the map ». Let V=5""¢"3,
where ¢"*® is attached to 5” by the composition map »-7: S**2—5%. We denote
the generators of H*"2(Y), H**(Y), H*(V), H*(V) by s"*? g"™ 35" " re-
spectively, where H*( )=H*( , Z,). Then it is known [2] that @,,(§%)=¢"*3,

Let g: Y— X be a map such that g|S"*?*=v-7; we denote by f, 7, j the map
g|S*+% and the inclusion maps S$”— X, S""?— Y respectively.

s

S T S

]

x £y
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If we denote by C the mapping cylinder of f, it is easily seen that H™(C, S"*?)
~H"(V) for any m_>1. Thus we have @uf(s()"):sﬁ“ where s3, sgt? are the
generators of H"(S™), H"t?(S"*?) respectively.

From naturality of the functional operations we have @ng(s")zs'“rz since
j*s”+2=s”.3+2=0nf (s?.’)=wnf (4Hs™) = JFOu, (s") and j* is isomorphisms. By the
conditions for dimension, it is obvious that @, (s”) =0, @, (s")=0.

Hence by Theorem (7.5) we have g*¥(s") =Sg¢’@y,,(s") = Sq¢*(s"+*) =¢"**. This
implies ¥ (s") =¢"*™* since g*: H*""*(X) ~ H"*(Y). q.e.d.

We denote by v:S#”™3-»S” the suspension of the Hopf map S'—S4 X,=

Tuett, where ef** is attached to ST by v. X,=Srues™, where ¢5™* is attached
to S3 by 6v. We denote the generators of H"(X;, Z,), H"**(X;, Z,) by s?, &7,
i=1, 2, respectively. Then we have:

Lemma (8.2) Do (s5) =e5t, Bp(s™) =0.

Proof. Since Sq'(s3) =0, Sq*(s%) =0, Sg*(s3) =0, we can define @y, (s%).
Let g: X;— X, be a map such that g|S?: St S% (degree 6). Similarly as in
the proof of Theorem (8.1) we have

¥ Dy (s8) = Sq*-Sq',(s1) +S¢°Sq*+ Sq?,(s%) + Sq*+ Sq* ,(s%)
= Sg*+Sq',(s8) = Sg*(sD) = el**.
This implies @y, (s%) =e5™*
Let g’: X;— X be a map such that g’IS?: ST—S” (degree 12). It is obvious
that Sg¢'y (s”)=0, then

Dy(s™) =0 since 12v = y-3-7. qg.e.d.

(Added in proof) See 579-36: M. Mahowald; On obstructions to extending
a maps, Notices, Amer. Math. Soc., Vol. 8 (1961) p. 241.
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