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1. Introduction 

Throughout this paper, spaces are simply connected topological spaces with 

base points and have the homotopy types of CW-complexes: n-ad (X; X~>···, 

Xn-2' Xo) is homotopy equivalent to a CW-n-ad ( w; wh ... ' w n-2' Wo) where Xo 

and w0 are base points. The fiber space is the one in the sence of Serre. 

We shall say that the space X satisfies the condition (Ap,q) if the homotopy 

groups n:;(X) of X vanish for i<P and i>q. 
Let X be a space and A, B be subspaces of X. Denote by JJ(X; A, B) the 

spa ce of ail paths in X starting in A and ending in B, and by n:0 , 11:1 the natural pro­

jections .Q(X;A,B)--A, .Q(X;A,B)->B respectively. We write LX=JJ(X;xo,X) 

and JJX=JJ(X; Xo, x0); LX is the path space of X and JJX is the loop space 

of X. 

Let X, Y be two spaces. Denote by n:(X, Y) the set of homotopy classes of 

continuous maps j: (X, Xo)--+ (Y, Yo). It is known that: 

(1.1) h: (X; A, x0)->(Y; B, y 0) is a homotopy equivalence if h*: n:;(X)­

n:;(Y), (hiA)*: n:;(A)->n:;(B) are isomorphism for each i;?-0 [4]. 

(1. 2) (LX; JJX, *) has the homotopy type of a CW-triad where * is the 

constant loop. Also (.Q(E: e0 , F); LF, JJF, *) has the homotopy type of a CW­

tetrad [5]. 

(1. 3) If X satisfies the condition (Ap, 2p-2 ) for sorne p, there exists a space 

Xo such that X has the homotopy type of .QX0 [5], [9] : Such a space Xo will 

be denoted by .Q-1 (X). 

(1. 4) If X, Y satisfy the conditions (Ap,q), CAr, zp-z) respectively for sorne 

integers (p, q, r), n:(X, Y) forms an abelian group, natural with respect to maps 

X-X', Y--Y'. Also there is the natural isomorphism .Q: n:(X, Y)--n:(JJX, .QY) 

[5], [9]: We shall denote its inverse isomorphism by .Q-1• 

Under the basic references of (1. 1)- (1. 4) we shall show in this paper the 

following: 

(1) Let Œ= (E, p, B, F) be a fiber space such that all of E, B, F satisfy 

the condition (Ap,zp-3 ) for an integer p. Theo there is a class aEn:(B, .Q-1F) 

such that the equivalence class of the fiber space Œ is uniquely determined by 

the triple (B, F, a). a is called the characteristic class of Œ. 

(2) Under the same assumptions above, the following sequence is exact 
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Q(i)* SJ(p)* SJ(a)* 
n(SJF, X) ~--rr(SJE, X) ~--rr(SJB, X)~-- rr(F, X) 

i* P* a* 
~rr(E, X) ~rr(B, X) ~rr(SJ-1 (F), X) 

where X is a space such that rr;(X) =0 for i>2p-3. 

(3) Let (E, p, B, F), (F", p", F, F') be two fiber spaces such that all of E, B, 

F, F', F" satisfy the condition (Ap,zp-J for an integer p. Let a 1 , az be their 

characteristic classes. Then there exists a diagram 

F'----'> F"----'> E' 

1 jj" 1 p' 
F----" E 

1jj 
B 

if and only if a 2 -f2(a1) =0, where (E, jj, B, F), (F", jj", F, F') are equivalent with 

(E, p, B, F), (F'', ji', F, F') respectively and (E', jjp', B, F"), CE', ji, E, F') are 

also fiber spaces: Such a system is called the poly-fiber space. 

(4) We shall construct sorne higher operations as the obstructions to lift 

maps f: X- B (base space of poly-fiber space) to l: X~ E (total space of poly­

fiber space) : Sorne relations among operations induce the higher operations by 

constructing the appropriate poly-fiber spaces. 

2. Preliminary 

Let CEt, Pt, B1, F1), (Ez, Pz, Bz, Pz) be two fi ber spa ces su ch that there exist 

homotopy equivalences hs:B1~Bz, h's:Bz-Bt, hp:Ft~Fz, h'p:Fz->Ft. We have: 

LEMMA (2. 1). lf there exists a map hE: CEt, F1) ___,. (Ez, Pz) sucn that hEIF1 

=hp: F1- Pz, hsP1 = PzhE rel. F1, then hE is a homotopy equivalence. 

Proof. Consider the diagram 

where ik: Fk->Ek and ù: (Ek, eok)~(Ek, Pk) are the injections and ôk: n;(Ek, Fk)->­

n;-t(Fk) is the boundary homomorphisms (k=l, 2). Since hEit=izhEIFt, hsPâ1 = 

PzjzhE, ÔzhE*= (hEIF1)*ôl, the above diagram is commutative. Since hs*, (hEIF1)* 

are isomorphisms the five lemma shows that hE* is an isomorphism. This to­

gether with (1.1) implies hE: CEt. F~)~(Ez, Pz) is a homotopy equivalence. q.e.d. 

We shall say that fiber space Œ1 =(E~,P1 ,B1 ,F1) is equivalent to Œz=CEz,Pz, 

B2 , F2) if there exists a triple (hE, hs, hp) as above, and denote by (hE, hs, hp) : 
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Œ,- Œ2 • Clearly, this is an equivalence relation. 

Let n(A, B; LX, QX) be the set of homotopy classes of continuous maps 

j: (A, B, *)_,.(LX, QX, *) 

where * are the base points. Define a map r; by r;(/) = f 1 B. Then we have: 

LEMMA (2. 2). 'YI*: n(A, B; LX, QX) ->n(B, QX) is 1-1 and onto. 

Proof. Let g; : B--" QX (i = 0, 1) denote the restrictions /; 1 B of maps /; : (A, B) 

->(LX, QX) and G: Bx[->QX be a homotopy between g;. 

Define a map Fo: A x jv Bxi --LX by 

Fol A x (i) = /; (i = 0, 1), FolBxi = G. 

Since LX is contractible, we can ex tend F0 to a map F: A xI--" LX, which shows 

fo"" / 1 : (A, B) --7 (LX, !JX). Renee 'YI* is a monomorphism. 

Let g: B--" QX be a ma p. Since LX is contractible there exists a homotopy 

G' : B xI-> LX between the map g and the constant ma p. Define a map H 0:A x (1) 

v Bxl->LX by 

HolAx (1) = *, HolBx I = G'; 

we can extend Ho to a map H: A xI--" LX, and we have a map 

1 = FI A x (0) : (A, B) --" (LX, QX) 

such that /1 B= g. Renee 'YI* is an epimorphism. q.e.d. 

Let (E, p, B, F) be a fiber space such that ali of E, B, F satisfy the condition 

(Ap,zp- 3) for an integer P>2. According to (1.3) there exist spaces E,, B,, F, 
such that E=SJE,, B=tJB,, F=QF,. 

LEMMA (2. 3). Under the above condition there exists an appropriate jiber 

space (î;0 = (E0 , Po, Bo, Fo) such that Œ= (E, p, B, F) is equivalent to QŒ0 = (QE0 , 

f2Po, t2Bo, t2Fo). 

Proof. Since n(E,B)=n(QE,,!JB,)=n(E,,B,), there exists a map p,:E,--B, 

such that Q(p,)h1=h1P. where h"k: E-,.QE,, h1: B__,.QB, are homotopy equival­

ences. Consider the mapping cylinder Mp, of p,, and construct the space Q(Mp,; 

E,, Mp,) as usual. Denote by Po: Q(Mp,; E,, Mp,) --> Mp, the map which associates 

the end point to any path. We have the fiber space (E0 , Po, B0 , F 0), where 

Eo=t2(Mp,; E,, Mp,), F0 =t2(Mp,: E,, *) and Bo=Mp,. 

In view of the property of the mapping cylinder Mp, there exist homotopy 

equivalences h};;: E, --> Eo and h~: B, -> Bo such that Poh'i=h~p,. 

Thus !J(Po)·Q(h};;)h"k=t2(h~)Q(p,)h1=t2(h~)h1P. Denote Q(h~)h1 by hB: B__,.!JB0 • 

From the covering homotopy property there exists a map he: E-'>-!JE0 such that 

he=t2(h};;)h1 and !J(Po)he=hBP- Renee he(F)ct2F0 , and by the five lemma we 

have that helF induces isomorphisms n;(F)-"'n;(t2F0 ) for each i. q.e.d. 
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3. Characteristic class 

Let (E, p, B, F) be a fiber space, and (LB, rr1 , B, !JE) be the fiber space of 

paths. By (1. 2) there exists a CW-triad (W; Wo, Wo) and there are homotopy 

equivalences h: (W; Wo, Wo)--(LB; !JE,*), g: (LB; !JE, *)--CW; Wo, Wo), such 

that hg=hs, gh=lw, where * is the constant loop in B. 

Consider the map h': Wxl->B such that h'(w, t)=h(w)(t), wE W, O<t<l. 

In view of the covering homotopy theorem, there exists a map h': Wx [->E such 

that pli'=h' and /i'(Wx (0) uwoxl) =eo. Then we have maps 

q': (LB, *) ~(LE,*), 

q = q'I.QB: .QB ~ .Q(E; eo, F) 

such as q'CPs)(t)=h'(g(ps), t), .osELB, O~t<l. 

Also let L(p): LE-> LB be the map such that LCp)(PE)(t)=PCPE(t)), PEE LE, 

O<t< 1, and 
P': !J(E; eo, F) ->!JE, 1P: !JE-> !JE 

be its restrictions. Then we have : 

LEMMA (3. 1). p', q are homotopy equivalences (rel. *), and the one of them is 

a homotopy inverse of the other. 

Proof. Since (p'q)(ps)(t)=pli'(g(ps), t)=h'(g(ps), t)=(hg)(ps)(t), we have 

p'q=hgi.9B=l0 s (rel.*). We shall next show that there exists a homotopy 

qp'=loœ:e0 ,F): (!J(E; e0 , F)xl, LFxi, *XI)- (!J(E; e0 , F), LF,*). 

By (1.2), there exista CW·triad CV; Vo, v0 ), a homotopy equivalence ho: CV; Vo, 

V0 ) -~ (!J(E; e0 , F), LF, *), and its homotopy inverse go: (!J(E; eo, F), LF, *)­

CV; Vo, Vo). 

The above homotopy p'q= los induces a map Q: V x Ix I-- B such that 

l P·ho(V) (t) 

Q(v, t, s) = p(qp'h0) (v) (t) 

bo 

if 
if 

if 

s = 0' 
s = 1, 
t = 0, 1, or vE Vo. 

In view of the covering homotopy theorem, we have a map Q: V x Ix I -> E such 

that pQ = Q and 

1 ho(")(l) 
if s = 0' 

_ (qp'ho) (v) (t) if s = 1, 

Q(v, t, s) = eo if t = 0' 
ho(v) (t) if vE Vo, t ~ 1-s, 

hoCv)(l-s) if vE Vo, t > 1-s. 

Renee we have a homotopy H: h0g0 = qp'hogo : !J (E; eo, F) xI- !J (E; e0 , F) such as 

H(p, s)Ct) = Q(goCo), t, s), P E !2 (E; eo, F) . 
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Since hogo=1nCE; eo, F)' we have the desired homotopy. q.e.d. 

If we denote rr1q by f, in the diagram 

we have if =n1q/i1, and Prr1q/=rr1, since hg~1LB· Also we have: 

LEMMA (3. 2). The homotopy class 1a E rr(SJ B, F) of f is unique! y determined by 

the given fiber space Œ= (E, p, B, F), and 1P* 1a=O. 

Proof. Consider two CW-triads (W1 ; W/i, w/i), (W 2 ; W5, w5) and two maps 

q1 , q2 induced by W\ W 2 respectively. From Lemma (3.1) we have ql=qlp/qz=qz. 

Hence the induced maps f1=rr1q1 and fz=n 1qz are homotopie. From f'P=rr1q1 1P=rr1 

and rr1(SJE) =eo we have 1P*1a=0. q.e.d. 

LEMMA (3. 3). The fiber space JJŒ= (SJE, 1p, SJB, SJF) is equivalent to the prin­

cipal fiber space (E, p, SJB, SJF) which is induced from the principal path fibering 

rr1 : LF -> F by the map f above. 

Proof. Since 1P=P/[SJE, in view of Lemma (3.1) there exists a homotopy 

H 1 : (SJExi, SJFxl) -> (SJ(E; e0 , F), LF) 

between the inclusion map SJEc SJ(E; eo, F) and the composition map q1p. 

Define a map r; F ; SJ E ~ LF su ch as 

"f/F(WE)(t) = 7r1Hl(WE, f) WEESJE, 0 < t < 1. 

From the construction of H1 (Lemma 3. 1), it is easily verified that r; F 1 SJF: JJF ~ 

SJF is homotopie to the map wF~w;1, wFESJF and f'P=n1ïJF· Hence we have a 

map r;:SJE~E={(wB, PF)[wBESJB, PFELF, fwB=7rlPF) 

such as ïj(WE) = ('p(WE), "f/F(WE)) for any wEESJE. 

According to Lemma (2. 1) we have 

(r;, "f/F, i) : SJŒ = (E, p, SJB, SJF) 

w he re i : SJ B -> SJ B is the identity ma p. q.e.d. 

LEMMA (3.4). Let Œl=(El,pl,Bl,Fl), Œz=(Ez,Pz,Bz,Fz) be two fiber spaces 

each of which induces the homotopy class 1a; off;: SJBi-->F; respective/y (i=1,2). 

We make an assumption that there are homotopy equivalences hB: B1-> B2 , hF: F1~ F2 • 

If there exists a map hE: E 1 -->Ez such that (hE, hB, hF): Œ1 =Œ2 then SJ(hB)* 1a2 

=hF*1a1. Converse! y, if SJ(hB)* 1a2=hF* 1a1 then SJŒ1- SJŒz. 

Proof. Define a map h: SJ(E1; eo1, Fl)->SJ(Ez; eoz, Fz) as h(p)(t)=hE[p(t)] 
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then it is obvious that 

w he re P~ : !2 (E; ; eo;, F;) __,. !2 B; and q; : !2 B; __,. !2 (E;, e0;, F;) are the homotopy 

equivalences (Lemma 3. 1) and rr1q;= /;. Thus 

hF/1 = hFrr1q1 = hrr1q1 = rr1hq1 = rr!q!pfhq! = fzP~hq1 = fz!J(hs)Piq! = fz!J(hs) . 

Coversely, if fz!J(hs) = hF/1 there exists a map H1: !JB1 xI-> F2 su ch as 

if t = 1' 
if t = 0. 

Consider the two principal fiber spaces E;= { (w;, P;) 1 w; E !JB;, P; E LF;, /;w;=rr1p;} 

i=1.2. in(3.3). Defineamap r;:E1->Ez by r;(w!,PJ)=(wz,Pz) where w2=!J(hs)w1 

and 

{ 
hFP!(2t) 

pz(t) = 
H1(w1, 2t-1) 

ifO<t<~, 

if ~ <t<l. 

Now the proof is due to Lemmas (2. 1), (3. 3). q.e.d. 

If all of E, B, F satisfy the condition (Ap, zp-3) for some in te ger p >2, we 
have the natural isomorphism 

Q-1: rr(!JB, F) - rr(B, Fo) 

where F0 =!J-1(F), (see (1. 3)). We shall denote the image Q-1(1a) of 1a by a, 

and call it the characteristic class of the fiber space Œ= (E, p, B, F). The follow­

ing theorem justifies the terminology. 

THEOREM (3. 5). The equivalent class of the jiber space Œ= (E, p, B, F) is 

uniquely determined by the characteristic class a; i.e. a) Œ is equivalent ta the 

principal fiber spa ce which is induced from the principal pa th jibering rr1 : LF0 __,. F0 

by a representative map fo: B-Fo of the characteristic classa; b) if a; (i=1,2) 

are the characteristic classes of the fiber spaces Œ;=(E;, P;, B;, F;) (i=1, 2) and if 

there exist homotopy equivalences hs: B1 __,. Bz, hF0 : Fo1 -> Foz with Fo;=!2-1(F;), then Œ1 

and Œ2 are equivalent if and only if hs*az=hFo*a1. 

Proof. From the above assumption that all of E, B, F satisfy the condition 

(Ap,zp-3), there exists a fiber space (Eo, Po, Bo, Fo) as in Lemma (2. 3), there 

exist homotopy equivalences hE, hÉ, h8 , h's such that the following diagram is 

commutative up to homotopy 
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We denote by fo a map n1qo: SJB0 ->SJ(E0 ; e00 , F0)->Fo associated to the given 

fi ber spa ce (E0 , Po, Bo, Fa) in the serree of (3. 2). The map S2 (qo) : S2 2 B-> S2 (SJ (Eo; 

e00 , F0)) induces a map q':SJB->SJ(E,eo,F) such that q'(w)(t)=hE(PEt), where 

wESJB, O<t<1 and PEtES2Eo is determined by PEt(s)=[(SJ(qo)SJ(hé)w)(s)](t) 

O<s< 1. Therefore q'=ïiESJ(qo)f2(hé), where hE: SJ(SJ(Eo; eoo, Fo))->SJ(E, eo, F) is 

induced by the map hE as above. By Lemma (3. 1), P6q0 = 1 and so SJ(p6)SJ(qo)= 1. 

Renee SJ(hé)P'ïiESJ(qo)= 1. This implies that 

p'q' = SJ(hB)SJ(hé)ft'hESJ(qo)SJ(hé) = 1. 

By Lemma (3.1) qp'= 1. Thus we have q=qp'q'=q'. This implies 

f=!2(hE)!2Cfo)S2(hé). 

Since !2: n(B, Fo)->n(SJB, F) is an isomorphism, we conclude that !ohÉ belongs 

to the image SJ-1(1a:.). Now the proof is due to Lemmas (2. 3), (3. 3), (3. 4), since 

!2(hB)* 1lXz=hp* 1a:.l implies h'ha.z=hp0*a.l. q.e.d. 

Owing to this theorem, we shall hereafter denote by CP (B, F, a) the equivalent 

class of the fiber spaces (E, p, B, F) each of which is associated to the character­

istic class a:.. 

CoROLLARY (3. 6). If B and F satisfy the condition (Ap,zp-3) for an integer 

p, then 
S2(9(B,F,a.) = (9(SJB,SJF, 1a.) for 1lX = SJ(a:.) . 

CoROLLARY (3. 7). If B, B', F, F' satisfy the condition (Ap, zp-3) for an integer 

p, and' if hB: B'-> B, hp: F0 -> F6 are homotopy equivalences with F 0 =SJ-1(F) and 

F6=f2-1(F'), then we have 

(p(B, F, a) = (p(B', F', h'JJhp*a.). 

4. Exact sequences 

Let (E, p, B, F) be a fiber space such that B is q-connected and F is r-con­

nected. It is known [10] that if X is a space such that 7rj(X) =0 forj>q+r+ 1 

then the sequence of the sets of homotopy classes 

(4.1) 
i* P* 

n(F, X) ~ n(E, X) ~ n(B, X) 

is exact. 

On the other hand, let (E, p, B, F) be a fiber space such that ali of E, B, F 

satisfy the condition (Ar, zr-a) for an integer r >2. If we denote by a the 

characteristic class of the fiber space, then we have: 

LEMMA ( 4. 2). The following sequence is exact for any spa ce X 

si* sp* sa* 
~ n(X, S2 8 F) ---+ n(X, SJ 5 E) ---+ n(X, S28 B) ---+ n(X, Qs-1F) ----* 

i* p* a:.* ··· ~ n(X, F)---+ n(X, E)---+ n(X, B)---+ n(X, Fo) 
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where 5 k=J25 (k), J25 ( ) =JJ(JJH( )) and P 0 =SJ-'(P). 

Proof. Since (E, p, B, P) is equivalent to a principal fiber space (E, p, B, S2Po) 

w hi ch is induced from the principal pa th fibering re, : LP0 --:.Po by a representative 

map fo : B ~>Po of the characteristic class a, the proof of this lemma is due to 

the results of [8, pp. 282~3]. q.e.d. 

LEMMA ( 4. 3). Let (E, p, B, P) be a jiber spa ce such that B is q-connected, 

P is r-connected and the characteristic class of the fiber space (SJE, 'P, SJB, SJP) 

is 'a. Then the following sequence is exact for any space X such that rej(X) =0 for 

j>min (q+r~1, 2q, 2r); 

'i* 'P* re(SJP, X) ~ re(SJE, X) +---- re(SJB, X) 

'a* i* P* 
+---- re(P, X) +---- re(E, X) +---- re(B, X) . 

Proof. Consider the fiber space (SJ(E; eo, P), re,, P, SJE) and the commutative 

diagram 

'P* 'a* re(SJE, X) +---- re(SJB, X) +---- re(P, X) 

' P'*ll * / if". q /ref 
re(SJ(E; eo, P), X) 

where p'*, q* are isomorphisms by Lemma (3. 1). According to (4. 1) we have 

that the upper row of this diagram is exact. 

Consider the fiber space (SJ(E; E, P), re0 , E, SJ(E; eo, P)) and the commutative 

dia gram 

'a* i* 
re(SJB, X) +---- re(P, X) +---- re(E, X) 

P'* l\ q* "* l ref /~ 
Jz re(SJ(E; e0 , F), X) +--rc(SJ(E; E, P), X) 

where P'*, q*, ref are isomorphisms. According to (4. 1) we have that the upper 

row of this diagram is exact. 

Combine the exact sequences 

si* sp* 
re(S25P, X) ~ re(S25 E, X) +---- re(SJ5 B, X) s = 0, 1' 

'P* 'a* 
re(SJE, X) ~ rc(SJB, X) ~ re(P, X) , 

1ot~ i* 
rc(SJB, X) ~ re(P, X) .,__ re(E, X) , 

then we have Lemma (4. 3). q.e.d. 

Especially, if all of E, B, P satisfy the condition CAr, 2r-3) for an integer r >2 

and if X is a space whose homotopy groups rej(X) vanish for j>2r~3, then 

from Lemma (4. 3) we have: 
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CoROLLARY ( 4. 4). The following sequence is exact: 

li* lp* 
n(JJF, X) +---- n(JJE, X) +---- n(JJB, X) 

1œ* i* P* 
+---- n(F, X) +---- n(E, X) +---- n(B, X) 

œ* it Pt 
+--n(Fo, X) +---- n(E0 , X) <E-- n(B0 , X) 

where (Eo, Po, Ba, Fo) is a fiber space as in Lemma (2. 3), (3. 5). 

Assume that (E, p, B, F) is a fiber space such that B, F are q-, r-connected 

respectively, and that X is a space whose homotopy groups nj(X) vanish for 

j>2q-2. Under these assumptions, we have a map 

r(lœ) = Q-1 • 1œ*: n(F, QX) """n(JJB, JJX) ->- n(B, X) . 

This map will be called the generalized transgression homomorphism. 

LEM MA ( 4. 5). If X is a spa ce whose homotopy type is K(II, n + 1) with 

1<n<min (2q-3, q+r) then the following diagram is commutative 

n(B, X) 

where ~ are the natural isomorphism 

Proof. Consider the diagram 

nt P'* 

rc(FI, ~1:) n(tJ(E; e01, ~:..· .fJ X)------ n(.!JB~:Xl )~ .fJ B 

~ u ~ 
n(E, F; LX, SJX)-n(LE, SJ(E; e0 , F); LX, JJX)--n(LB, SJB; LX, SJX)---n(B, X) 

~ ~LE _______!t-~ 
" 1~, ~n(E,F; X,xo)~ 

Here 7/i*, i = 1, 2, 3, are 1-1 onto by Lemma (2. 2), and Le, LE are defined 

naturally. At first we shall prove that 

Let f: (E; F, e0)->(LX; JJX, *)be a map representing a class [/]of n(E,F; 

LX, JJX). Theo LE·7r1*[/], nt[f] are represented by g, h respectively, where 

g, h: (LE, JJ~E; eo, F), *)->(LX, JJX, *), 

g(p E) (f) = f(p E(t)) (1) , 
for PEELE, O<t<1. 

h(PE)(t) = /(PE(l))(f), 
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Define a map Hs: (LE, JJ(E; eo, F), *) --7 (LX, JJX, *) 0 < s < 1 by 

( t ) f(PE(s)) -
Hs(PE) (t) = { S 

f(PE(t))(1) 

O<t<s, 

s<t<l. 

Then we have Ho=g, H1=h; i.e. LE·n:,.=n:'f. 

The commutativities of the other parts in the above diagram are proved 

easily from the definition ; i.e. 

Take X a space wh ose homotopy type is K(II, n + 1), and the lemma follows 

from the following commutative diagram 

i3 P* 
Hn(F, JI)---~ Hn+ 1(E, F; II)+----- Hn+ 1(B; JI) 

t~ t~ t~ 
{,~ 1 j,~ {,~ 

rr1*'l'!!* P* rc(F, !JX) ---~ rr(E, F; X, X0 ) +----- rc(B, X) 

q.e.d. 
This lemma implies that r(la) is just the same as the usual transgression 

homomorphism of the cohomology groups in this case. 

We note that the verification of the Lemma (4. 3) implies directly; 

CoROLLARY (4. 6). Let (E, p, B, F) be a fiber space such that B, Fare q-, r­

connected respective/y, and let 1a be the characteristic class of the jiber space 

(!JE, 1p, !JB, JJF). Then the following sequence is exact for any space X whose 

homotopy groups n:j(X) vanish for j>min (2q-2, q+r-1, 2r) 

ti* tp* ta* i* 
rc(JJF, X) ~ n:(!JE, X) ~ rc(JJB, X) +----- rc(F, X) +-

P* r(la) i* P* 
rc(E, X) ~ rr(B, X) <---- rr(F, !JX) +----- rr(E, QX) ~ 

r(la) i* 
rr(B, !JX) <--- rc(F, J2 2X) ~ .... 

5. Poly-fiber spaces 

Let (E, p, B, F), (E', p', E, F') be two fiber spaces such that all of E, B, F, 

E', F', satisfy the condition (Ar, zr-3) for an integer r >2. We shall denote by 

a, r the characteristic classes of the above fiber spaces respectively. 

i'l i'll 
F'-F''-E' 

(5. 1) 
lp" . lp' 

z 
F ~>E 

lp 
B 
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In the above diagram, pp': E' _, B is also a fiber mapping. We denote 

(pp')-'(b0) by pt'. Since pt=pH(e0)C(pp)'-'(b0) there is the inclusion mappings 

i", i'" such that i'"·i"=i'. Denote p'IF" by p". Then we have: 

LEM MA (5. 2). CF", p", F, F') is also a fiber spa ce whose characteristic class 

is i*r. 

Proof. From the facts p"(F") cp'(E') =E and pp" CF")= pp'(i"'F") ={bol, we 

have p"(F")cF. Conversely let e'EE' be such an element that p'(e')cF, then 

we have e' EF" since p(p'(e')) =b0 and p"(F") =F. Renee (F'', p", F, F') is a 

sub-fibering of CE', p', E, F'). From the definition of 'rE rr(SJE, pt) it is easily 

verified that the characteristic class of the fiber space (SJF", SJ(p"), S2F, JJF') is 

JJ(i)*'r. This implies that the characteristic class of the fiber space CF", p", 

F, F') is i*r. q.e.d. 

If we denote by (3 the characteristic class of the fiber space (E', pp', B, F") 

then we have: 

LEMMA (5. 3). JJ-'(P")*(3=a, P*f3=JJ-'(i")û. 

Namely the following diagram is commutative up ta homotopy 

. JJ-'(i") 

î~~'(i') 
B }~ 

Proof. It is sufficient to prove that p~'(3='a, 'P*'(3=i~'r where 'a, '(3, 'rare 

JJ(a), !2({3), JJ(r) respectively. 

Let (W; W 0 , w0 ) be a CW-triad and the one of h: (W; Wo, Wo)___,(LB; JJB, *), 

g: (LB; JJB, *)___,(W; Wo, wo) be a homotopy inverse of the other. Consider the 

map h': Wx I ___, B such that h'(w, t) =h(w) (t). In view of the covering homotopy 

property there exist mappings Tt': Wx I___,E, h': Wx [-+E' such that pïi'=h', p'li'=li' 

and li' ( Wx (0) uw0 Xl)=e 0 , h' ( Wx (0) uw0 X I)=e6. Then we have two mappings 

q: (LB, JJB, *)·~(LE, JJ(E; eo, F), *), q: (LB, JJB, *)___,(LE', JJ(E'; e6, F"), *) 

such as q(pB)(t)=li'(g(.oB),t), lJ(PB)(t)=h'(g(pB),t) for PBELB, O<t<l. From 

Lemma (3. 2) we have 'a '3 rr,q 1 JJB, '(3 '3 rr,q 1 JJB, and hence p* '(3= 'a sin ce q= L(p')q. 

Let (V; V,, Vo, Vo) be a CW-tetrad and the one of H, G; 

H 
(V; V,, Vo, Vo) ~(LE; JJ(E; eo, F), JJE, *), 

G 

be a homotopy inverse of the other whose existence are due to the Theorem 3 

of [5]. Consider the map H': V xI___, E such that H'(v, t) =H(v) Ct). By the 
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covering homotopy property there exists a mapping fl': V xI-"' E' such that 

p'fl'=H' and fl'(Vx (0) uv0 xl) =eô. Then we have a mapping Q: (LE, SJ(E; eo, F), 

SJE, *)->(LE', SJ(E'; eô, F 11), SJ(E': eô, F'), *) such as Q(PE) (t) =fl'(G(pE), t) for 

PEELE, O<t<l. From the Lemma (3.2) we have 1r3rr1QISJE. And since 

L(p')Q(pE) (t) = p'fl'(G(PE), t) =H'(G(pE), t) =HG(PE) (t) we have L(P')Q = identity 

map. Renee there exists a homotopy qL(p)=1=L(p')Q, namely there exists a 

map Ho: SJ(E; eo, F)xixi-E such that 

{ 
(qL(P)PE) (s) 

Ho(PE, t, s) = (L(p')QpE) (s) 

eo 

if 
if 

if 

t = 0' 
t = 1' 
s = 0. 

In view of the covering homotopy property we have 

lifting the composition map (Hl V1) x 1 x 1 such that 

a map flo: vl x [X [ -> E' 

1 
(qL(p)(H(v)))(s) 

fl 0 (v, t, s) = (Q(H(v)))(s) 

eô 

Renee, we have a map H1 : SJEx I -~ F 11 such that 

if t=O, 

if t = 1' 
if s =o. 

PEESJE, O<t<l. 

This implies that rr1 q 1p=i11rr1Q since HG=1; i.e. 1P* 1{3=i'.J."r. q.e.d. 

We shall call the poly-fiber space such a system as in (5. 1). 

LEMMA (5. 4). Let Œ= (E, p, B, F), lY11 = (F 11 , p11 , F, F') be two fiber spaces such 

thal all of E, B, F, F', F 11 satisfy the condition (Ar, zr-3) for an integer r >2 and 

having the characteristic classes œ1 , œz respective! y. Then there exists a pol y-fiber 

space (5. 1) up ta equivalence, if and only if 

Proof. If there exists a poly-fiber space (5. 1), we denote by {3 the characte­

ristic class of (E', pp', B, F 11 ). Then œ2 • 1œ1 =œ2 (P''* 1{3) = (P11*œz) 1{3=0 by Lemmas • 
(3. 2) and (5. 3). 

Conversely, if œz· 1œ1 = 1œ1*(œ2) =0, from the Corollary (4. 4) there exists a class 

rErr(E, Fô) such that i*(r)=œ2 where Fô=SJ-1(F'). Renee we have a space 

E' Cr) E (9 (E, F', r) and a poly-fiber spa ce 

F' ~ F 11 (r) ~ E'Cr) 

lPIICr)_ lP'Cn 
z 

F ---~ E 

l 
B 

where Fll(r) =P'(r)-1FE (9(F, F', œ2 ); i.e. (F 11 (r), p11 (r), F, F 11)=lY11 • q.e.d. 
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For the future convenience we shall state another proof of sufficiency: If 

a 2 • 1a 1 =a2*('a1)=0, then there exists a class 1(3Err(SJB, F") such that p~'(3='a, 

since the following sequence is exact by Lemma (4. 2). 

i~ P~ a2* 
rr(SJB, F') - n(SJB, F") - n(SJB, F) - n(SJB, FiJ) . 

Renee we have a space E'((3) E (Jl(B, F", (3) where (3=SJ-'('(3). Namely if fis a 

representative map of (3, then we have 

E' ((3) = { (b, p") 1 bE B, p" E LFf{ ,/(b) = rr1 (p")} , 

where (F({, pê{, Fo, F 6) is a fi ber space associated to the given fi ber space (F", p", 
F, F') in the sence of Theorem (3. 5). We define the principal fiber space E((3) by 

E((3) = { (b, p) 1 bE B, p E LF0 , p({f(b) = rr, (p)} 

and the maps p'((3) : E'((3)- E((3), p({3) : E((3)---;> B by 

p' ((3) (b, p") = (b, L(p({) (p")), p(b, p) = b • 

Since p({*((3)=a,, (E((3), p((3), B, IJF0)=Œ by Theorem (3.5). It is easily seen 

that p' ((3) : E' ((3) - E((3) is a fi ber map with fi ber { (b0 , p") 1 p" E IJF 6) which is 

homotopy equivalent to F'. Namely we have the desired poly-fiber space 

IJF6 - IJF({- E'((3) 

l IJ (p({) l p' ((3) 

F }!!:__ IJFo ~ E((3) 

l 
B 

LEMMA (5. 5). Und er the sa me conditions above, there exists one to one 'Corres­

pondence among (1) the strongly homotopy types of E', (2) the classes (3 or n(B, F({), 

and (3) the classes r or n(E, F iJ). 

Proof. (1).-.(2) and (1)+->(3) are obvious from the Theorem (3. 5). We shall 

give here the direct correspondence of (2) <--->(3). 

Denote by h: F" Cr)-> F" -> IJF({ the homotopy equivalence and by (3' the 

characteristic class of the fiber space (E'(r), pp'(r), B, F"(r)). Then according 

to Corollary (3. 7) we have (Jl(B, F"(r), (3')=(Jl(B, IJF({, h*(3'). Namely, if we 

denote h*W by (3(r) we have E'Cr) E (J>(B, F", (3(r)). 

Similary, if we denote by h': E-> E((3) the homotopy equivalence and by r' 
the characteristic class of the fiber space (E'((3), p'((3), E((3), SJFiJ), then we 

have (Jl(E((3), J2F6, r') = (Jl(E, F', h'*r'). Namely E'((3) E (J>(E, F' r(f3)) if we 

denote h'*r' by rC(3). In the a,bove two dia~ram w~ have p"(r)=p"·h, i(~)= 

ft'·i·ft 
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p',[,(1{3(r)) = P*(h* 1(3') = P"Crh 1(3' = 1al, 
i*(r({3)) = i*(h'*r') = i((3)*h"*-1r' = az. 

Therefore the desired correspondence is given by r -> (3 Cr)' {3- rC/3). q.e.d. 

6. Lifting problems-Secondary operations 

Let X be a space. We shall consider the lifting problem of the map /1: X-B 

where B is the base space of a poly-fiber space 

F'-F''-E' 

l p" l p' 
F-E 

lp 
B 

By al> a:a, (3, r we mean the characteristic classes of the fi ber spa ces (E, p, B, F), 

(F", p", F, F') (E', pp', B, F"), CE', p', E, F') respectively. In view of Lemma 

( 4. 2), there exists a map / 2 : X-E with p* [ fz] = [ /1] if and only if a1* [ /J = 0 ; 

a1*[/1] is called the first obstructions. 

If [/JEn(X, B) satisfies a 1*[/1]=0, [/1] is p*[fz] for a class [/z]En(X, E). 

[/f]En(X, E) is p~[f,] for a class [/,]En(X, E') if and only if r*[tn=o, by 

Lemma (4. 2). The condition for existency of such /~ EP;iH/1J for a given map 

/1 is that there exists / 3 such that [!J=P*P~[js], namely 

(6. 1. 1) 

(6. 1. 2) 

if fz EP*1 [/J, then r*[/z] belongs to the Im (i*a)*=Im az*, 

{3*[11]=0. 

From the condition (6. 1. 1) we can define a secondary operation 

([); n(X, B)nKera1*- n(X, F6)/az*n(X, F) 

such that the coset ([)[f~J contains r*[/2 ]. Namely, @[/1]=0 if and only if [/1J 

is representa ble as P*PHf,] ; ([) [ /J is called the secondary obstruction. 

Consider the diagram 

n(X, F({) 

(6. 2) ~ JJ·l(P"h 

rr(X, B).-c__ _________ n(X, Fn) , 

then by Lemma (5. 3) this diagram is commutative. Since a 1*[/1]=0, (3*[/1] 

belongs to the Ker JJ-1(P")*. By the exactness of the sequence 

az* Q-l(i") Q-l(p") 
n(X, F) - n(X, F6) *_, n(X, F(f) *_, n(X, F 0 ) 

there e4ists qn isomorphism 
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From the commutativity of the diagram (6. 2) we can define (J)[f,] as T-'~*[f,]. 

It is obvions from our definitions that 

(6. 3. 1) 

(6.3.2) 

(6.3. 3) 

(/) [!,] = 0 if and only if ~* [!,] = 0 , 

(J)[p] is represented by r' 

(/) is natural: i.e. if g: Y ---0> X is a map and [f] E n(X, B) n Ker a,*, 

then (J)[fg]=g*@[j], where 

LEMMA (6. 4). Let Œ= (E, p, B, F) be a fiber space. If [!,], [f2 ] E n(X, B) n 

Ker a,* then 

Here o denote the group multiplications of n( , ), which are same ta the multiplica­

tions induced by the loop structures of Œ=tJŒ0 • (Lemma 2. 3). 

Proof. If [f] En(X, B) satisfies the condition a,*[f]=O, there exists a map­

ping g: x-~E such that pg=f. Renee @[j]=@[pg]=g*@[p]=g*{r) by (6. 3. 2) 

and (6. 3. 3). If pg, = f = pg2 th en there exists a mapping h : X ---0> F su ch that 

[gz]=i*[h]o[gJ. We have gfr=gfroh*i*r=gfroh*az, and so g*r is uniquely 

determined as the coset of a 2*- Image. If [f,], [f2 ] E n(X, B) n Ker a,*, there 

exist mappings g,, g2 : X->E such that pg;=f;, i=1,2. Then 

(J)([f,]o[fz]) = (J)((g,ogz)*[p]) = (g,ogz)*@[p] 

= (g,ogz)*{rl =gf{r)og:[{r) = @[f,]o(J)[fz]. 

q.e.d. 

Summarizing the results of (5. 4), (5. 5), (6. 3), (6. 4) we have: 

THEOREM (6. 5). The relation a2 ·'a,=O induces a secondary operation 

and it is determined unique/y mad primary operations associated to n(B, F6). 

Proof. It is obvious that the secondary operation (/) is uniquely determined 

by the strongly homotopy type of E', namely by the class ~ or by the class /. 

Here r is determined for the class œz such as i*r=az, namely r is uniquely 

determined mod P*n(B, F6). Fix an element r and construct a poly-fiber space 

(5. 1), then we have a secondary operation @(/) as in Lemma (6. 4). Let 

aEn(B, F6) be a class and r' be a class rop*a. Then we have 

(J)(r')[f] = g* {/'} = g*{rop*œ) = g*{r) og*{p*a) = @(r)[f]oœ~{f] 
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where /, g are the same as in the proof of Lemma (6. 4). This show that {@(r')l 

are uniquely determined mod primary operations {a*}. q.e.d. 

By @(a2 , a,) we mean a class of secondary operations which are determined 

in the sence of Theorem (6. 5) by the given relation a 2 ·'a,= O. Also, we shall 

denote by '(/), _,(/) the secondary operations determined by the class {'rl, {-'rl 

respectively if the conditions for dimension are satisfied, where 'r=SJ(r) and 

-'r=SJ-'Cr). 

For example let B=K(Z2 , n), F=F'=K(Z2 , n), a,=a2 =Sq'(*)= ~ o, then 

@(Sq', Sq') is the Bockstein operation ~ o, where modulons is zero. We shall 

denote @(Sq', Sq') by @00 for any integer n. 

Let B=K(Z2 , n), F=K(Z2 , n)xKCZ2, n+l), F'=KCZ2, n+2), a,=Sq'xSq2, 

a 2 =Sq3oSq2, then @(Sq3oSq2 , Sq' x Sq2 ) is the Adem operation [2], where modulons 

is zero. We shall denote this operation by @11 • 

LEMMA (6. 6). (!)(a2 , a,)a* = (!)(a2 , a,a), a*(/)(a2 , a,)= (/)(aaz, a,), where 

aErc(B, B) and aErc(F0, F6) satisfy the conditions for dimension [3]. 

Proof. Let {3 E re (B, F({) be a class su ch that p~ '{3 = 'a,. Then we have 

p~(1{3'a) = 'a,'a. This implies that we may chose '{3'a as the characteristic class 

of (E', pJi', B, F") where E' is the total space of poly-fiber space associated with 

the relation a 2 • 1a,'a=O. Thus the first part of the lemma is trivial by Lemmas 

(5. 4), (5. 5), (6. 5). 

Let F" E CP (F, F', az) be a principal fi ber space induced from the principal 

path·fiber space (LF6, re,, Fb, S2F0). Let F" E CP(F, F', aaz) be a principal :liber 

space induced from the principal path-fiber space (LF 0, re,, F6, S2F0). Then there 

exists natural mapping a: F"-'>F" such that a(wp, PF')=(wp, L(a)pp') where 

OJpEF, PF'ELF6 and L(a) :LF0-c;.LF6 is induced by a. This implies that we 

may choose a'{3 as the characteristic class of CE', pJi', B, F") where E' is the 

total space of poly-fiber space associated with the relation aa2 ·'a,= O. N ow the 

second part of the lemma is obvions since the following diagram is commutative 

q.e.d. 

LEMMA (6. 7). lf a 3 ·'a2 • 2a 1 = 0 then (!)(a/a2, 1a 1) = @(a3 , a 2 1a 1) : Ker 'a,-"" 

Cokera3 , where 2a,=S2('a,) [3]. 

(*) Here Sqi is the homotopy class of the map f: K(Z2 , n) -o.K(Z2 , n-H) i=deg I such that 
f*'•+i=Sqitn. 
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Proof. Let (E~> p,, B, F,), (E2 , Pz, F,, Fz), (E3 , P3 , Fz, Fs), (Ei, PL S2B, Fz) 

and (EL PL S2F,, Fs) be fiber-spaces associated with given classes a,, a 2 , a 3 , a 2 'a, 

and a3 'az respecti v ely. 

Fs-Es-E, 

l l 
Fz-Ei 

l 
!2B SJB 

There exists a natural mapping &z:SJE,->Ej_ such that a 2 [S2F,= 1a 2 • If [/]E 

n(X, SJB) satisfies the condition 'a,*[/]=0, then there exists a class [g,]Err(X, RE,) 

such that SJ(p,)*[g,]=[f]. Let rz be the characteristic class associated to the 

poly-fiber space E,: which induces the operation l])(a3 , az'a,); i.e. iz,*rz=a3 • Since 

&zi,=i2,'az we may choose a 2*rz as the characteristic class associated to the poly­

fiber space E2 which induces the operation l])(a/az, 'a,). 

Since Pi*(az*[g,])=[f], l])(a3 , az'a,) can be represented by (a2*g,)*rz. Now the 

proof is due to the fact that (az*g,)*rz=gt(ahz) =gfr,. q.e.d. 

LEM MA ( 6. 8). If az; ·'a,;= 0 i = 1, 2, then 

l])(a2,oa22 , a 11 Xa12) = l])(a21 , a 11)ol])(a22 , a,2): 

Ker annKer a,z - rr( , FiJ) / Im az, urm azz [3]. 

Proof. Let (E;, Pi, B, F;), (F'(, p'(, F;, F') be fiber spaces associated with 

the given classes a,;, az; i = 1, 2 respectively. 

F'- F'{xF1,- Ej_xE~ 

l l 
FixFf --;. E,xEz 

l 
B 

If [/] E n(X, B) satisfies the conditions an*[/]=0, a,z*[f]=O, then there exists 

a class [g;]En(X,E;) such that P;*[g;]=[!]. Since az;·'a,;=O, thereexistspoly­

fiber spaces Ei each of which induces the operation l])(az;, a,;) respectively i=1, 2; 

i.e. if we denote by r; the characteristic classes of (Ef, p;, E;, F') i = 1, 2, 

l])(az;, a,;)[f] is represented by g[r; i=1, 2 respectively. 

On the other hand, l])(a21oa2z, a 11 Xa1z)[f] is represented by (g,xgz)*(r,or2). 
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q.e.d. 

For examples, Sq3@11 =1!J(Sq3Sq2 oSq3Sq3, Sq2 X Sq1 ) =@(q5Sq\ Sq1) =Sq5@oo, and if 

we denote @(Sq1aSq2Sq1oSq4 , Sq4 x Sq2 x Sq1) by @02 then Sq1@02 =@(Sq1Sq1 oSq1Sq2Sq1o 

Sq1Sq4 , Sq4 x Sq2 x Sq1 ) = @(Sq2Sq2a (Sq2Sq1Sq2 + Sq4Sq1), Sq2 x Sq1) = @(Sq2Sq2oSq2Sq3, Sq2 

x Sq1 ) + @(Sq4Sq\ Sq1 ) = Sq2@u + Sq4@oo. 

Thus we have : 

(6. 9. 1) 

(6.9.2) 

Sq3@11 = Sq5@00 mod primary operations [1] , 

Sq1rf)o2 = Sq2rf)u + Sq4rf)OO . 

LEMMA (6. 10). Let g: Y___,. X be a ma p. If [!] E rr(X, B) satisfies the conditions 

al*[/]=0, g*[/]=0, then g*@(tx2 , al)[/]=txz*alg[/] where tx1g is the functional 

operation associated with the following commutative diagram 

Proof. Let [/] be a class of rr(X, B) nKer tx1*nKer g*. Then from the 

commutativity and naturality of the diagram (6. 2) we have 

g*I!J(az, a,)[!J = g*{ï*[l]) = {ï*g*[l]) = {az*i;j;'g*[l]) 

where [l] E rr(X, E) is a class such that p*[Ï]=[f] and the existency of 

i;j;1 g*[Ï]Err(Y, F) is due to that p*(g*[l]) =g*(p*[l]) =g*[fJ=O. Since 

i;j;1g*[Ï] represents the coset a,g[/] and t'Xz· 1tx,=O, we have g*@[j]=txz*œ,g[/] 

mod lm œ2*g*. q.e.d. 

7. Generalizations 

Consider the diagram 

t ~ ~ t 
Y~-n- Yî--->- Y 3 

lp~ lPÎ lp3 
(7.1) n--->-Yy--->-Y2 

lPi lp2 
Y~--->-Y 1 

lpl 
B 

where ali spa ces satisfy the condition CAr. zr-3) for an in te ger r > 2, (Y\ p\ B, YD, 

(Y2, P2, Y', YD, (Y3, p3 , Y 2, YD, ···are fiber spaces. We denote inductively 

(P~-lp~.::_~ ···p;::.._l)-1 (*;:=D by Y;;', O<n~m, where Pô=pn, Y 0=Yn, Y 0 =B and*;:=~ 

is the base point of Y~-=t. It is easily seen similarly as in ~ 5 that 
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(7. 2. 1) 

is a fiber space and, we denote its characteristic class by a(m, k, n), m>k>n. 

(7. 2. 2). The following diagram is commutative up to homotopy 

Y,: Y{-!-t,o 

(7. 2. 3). Let the following systems (1), (2) be as above. Then there exists a 

system (3) as above, if and only if a(m, k, k) · 1a(k, k-1, i) =0 where 1a=JJ(a), 

m>k>z>-0. 

n __,. ··· __,_Yi Y;;: -> · · · __,. Yk' Y;;:__,. ···__,.Y';' 

t t t 
(1) (2) (3) 

t t 
Yl Y! Yi. 

We shall refer such a system (3) as also a poly-fiber space. 

Now, we shall consider the lifting problems of the map / 1 : X___,. B where B 

is the base space of a poly-fiber space (7. 1). 

If [/1]En(X,B) satisfies the conditions a(1,0,0)*[!1]=0, a(2,0,0)*[/1]=0 

(i.e. <Z>(a(2, 1, 1), a(1, 0, 0))[/1]=0), [/1] is representable by (p1p2)*[/3] for a 

class [/3] E n(X, Y 2 ). The third obstruction for that [/1J can be represented by 

(p1p2p3)*[/4 ] for a class [/4] E n(X, Y 3) is the class a(3, 0, 0)*[/t]. Consider the 

dia gram 

n(X, YD ~ n(X, YD -> n(X, Y 2) a(3•2•0)* n(X, Y~c)~ n(X, no)--rr(X, Yîo) 

lp2 jp2 a(3, 1, 0)* P~o* J p3 * 1* * 10· 

n(X, YI)~ n(X, Y 1) a(2, 1• Oh 'no)-rr(X, Yio) 

lp1 a(3,0,0)* l p2 
~ . ~ 

n(X, B) n-(X, Ylo)• 

By (7. 2. 2) this diagram is commutative. Since a(2, 0, 0)*[/1]=0 a(3, 0, Oh[/J 

belongs to the Ker Pfo*. From the exactness of the sequence 

( 2 ) a(3, 2, 1h 3 io* 3 PÎo* 
n X, Y 1 • n:(X, Y3o) ------->- n:(X, Y 10) ------->- n:(X, Yto) 

we have an isomorphism 

z: (rr(X, no) /lm a(3, 2, 2)*) 1 Im <Z> = Ker PÎo* 
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as follows, where (/)=@(a(3, 2, 2), a(2, 1, 1)); Let [g] be a ~lass of n(X, Yi). 

Then a(3, 2, 1)*[g] represents a class @(py*[g]) ECokera(3, 2, 2)*. Thus we 

have T as the composition of the isomorphisms. 

Coker a(3, 2, 2)*/Im (}) ""'=' Coker a(3, 2, 1)* = Ker PÎo* . 

We denote by Coker (/) the quotient group Coker a(3, 2, 2)*/Im (/), Define the 

third operation 

1JI: Ker @(a(2, 1, 1), a(1, 0, 0)) - Coker (f)(a(3, 2, 2), a(2, 1, 1)) 

by 1JI[f~J=7-la(3, o, O)*[f~J-
It is easily seen similarly as in § 6 that: 

(7. 3. 1) 

(7.3.2) 
(7. 3. 3) 

1JI[f]=O if and only if a(3, 0, 0)*[!]=0, 

1JI[p1p2 ] is represented by a(3, 2, 0), 

1JI is natural: i.e. if g: Y---;>X is a map and [/]En(X, B),. 

Ker (f)(a(2, 1, 1), a(1, 0, 0)), then 1JI[fg]=g*1JI[f], where 

g*: (n(X, Y~0)/Im a(3, 2, 2)*) / lm(/) ------* (n(Y, Y~0)/Im a(3, 2, 2)*) / lm(/), 

(/) = @(a(3, 2, 2), a(2, 1, 1)). 

(7. 3. 4) 

THEOREM (7. 4). lf either the relations a(3, 2, 2h 1@(a(2, 1, 1), a(1, 0, 0)) = 0 

or @(a(3, 2, 2), a(2, 1, 1))· 1a(1, 0, 0)*=0 is satisfied, there exists a third operation 1JI 

as above, and it is determined unique/y mad secondary operations. 

Proof. It is obvious that the third operation 1JI is uniquely determined by 

the equivalent class of (Ys, P1P2P3, B, YÏ) namely by the class a(3, 0, 0) or by 

the class a(3, 2, 0). 

We assume that a(3,2,2)· 1@(a(2, 1, 1), a(1,0,0))=0. This relation implies 

that a(3, 2, 2) 1a(2, 1, 0) =0, and so by Lemma (5. 4) there exists a poly-fiber space: 

n- Y~---? Y 3 

l '2 l p' 
Y~-~ Y 2 

lp2 
Yi~Y1 • 

The characteristic class a(3, 2, 0) of the fiber space (Ys, p', Y", YD is uniquely 

determined mod P2*n(P, no) since i 2*a(3, 3, 0) = a(3, 2, 2). Fix an element 

a(3, 2, 0) and construct a poly-fiber space as above. 

Let a E n(Y\ Y~0) be a class and a'(3, 2, 0) be a class a(3, 2, 0) · p2*a. 

Then we have 1JI(a')[f) = Ï*{a') =Ï*{aop2*a) =f*{a} of*{P2*a} = 1JI(œ)[j]o(})[f] 

where [!] E n(X, B) "Ker a(2, 0, 0)*, 1 : X-> Y 2 is a map su ch that (p1p2)* [1] = [1] 
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and (f) is a secondary operation (J)(P*a, a(1, 0, 0)) associated to the poly-fiber space 

Y~ ---+ F --+ E 

l '1 lp 
Yi~ Y' 

lp' 
B 

(The characteristic classes of (E, p, Y', Y§), (Y', p', B, YD are a, a(1, 0, 0) re­

spectively). 

Renee f{l is uniquely determined mod secondary operations whose type is 

(f)(i'*a, a(1, 0, 0)). 

We assume that (f)(a(3,2,2), a(2,1,1))· 1a(1,0,0))*=0. This relation implies 

that a(3, 1, 1) 'a(1, 0, 0) =0, and so by Lemma (5. 4) there exists a poly-fiber space: 

i3 -
n---+ n ___.. Y3 

l p~ l p" l p' 

n Yi---+ Y1 

lp' 
B. 

The characteristic class a(3, 0, 0) of the fiber space (Y 3, p'p', B, YD is uniquely 

determined mod i 3*n(B, Y~0) since p"*a(3, 0, 0) =a(1, 0, 0). Fix an element a(3, 0, 0) 

and construct a poly-fiber space as above. 

Let aEn(B, Y~0) be a class and a'(3,0,0) be a class a(3,0,0)oi3*a. 

Then we have 

where [/] E n(X, B) ,.Ker a(2, 0, Oh and (/) is a secondary operation l])(a(3, 2, 2), 

P~o*a) associated to the poly-fiber space 

y~ ---+ y~ ---+ E' 

lp~ lp' 
Y§---+E 

lp 
B 

.(The characteristic classes of (E', pp', B, Yü, CYL PL n, YD are a, a(3, 2, 2) 

respectively). 

Renee f{l is uniquely determined mod secondary operations whose type is 

l])(a(3, 2, 2), P~o*a). q.e.d. 

THEOREM (7. 5). Let f{l be a third operation associated with the relation a'(f)=O. 
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Let g: Y->X be a map. If [f]En(X,B) satisfies the conditions IJ)[/]=0, g*[f]=O, 

then g*W[j]=a*IJ)g[f] mad Ima*g* where l})g is the functional operations asso­

ciated with the following commutative diagram 

Here I/)=IJ)(a2 , a,), a,=a(l, 0, 0), a 2 =a(2, 1, 1), a=a(3, 2, 2), and we use the same 

notations as above. 

Proof. Let [/] be a class of n(X, B) n Ker Il) n Ker g*. Then we have 

g*W[f] = g*{a(3, 2, 0)*[1]} = {a(3, 2, O)*g*[l]} = {a(3, 2, 2hi*'g*[Ï]} 

where [l] En (X, P) is a class such that (P'P2)* [l] =O. Sin ce i*' g* [1] represents 

the coset IJ)g[f] and a'IJ)=û, we have g*W[f]=a*l})g[f] mod lm a*g*. q.e.d. 

We may continue these considerations about higher poly-fiber spaces; and 

we have sorne higher operations similarly as above. 

8. Applications 

We denote by r; the essential map: sm+l---0> sm for any m?2. Let n be an 

integer?7. X=S"Uen+• where en+• is attached to sn by the composition map 

r;·r;·r;: S"H~>S". Let lJf be a third operation associated to the relation Sq'l})oz+Sq21})11 

+Sq'l/)00 =0 (6.9.2). We denote the generators of H"(X,Zz)(=rc(X,K(Zz,n))), 

H"+<(X, Zz) by s", en+• respectively. Then we have: 

Prooj. Since Sq'(s")=O, Sq2 (s")=0, Sq4(s")=O, we can define l/)02 (s"), (/)11 (s"), 

l/)00 (s"). By the conditions for dimension it is obvions that @11 (s")=O, 1/)oo(s")=O. 

Also (/)0z(s") =0 (see Lemma (8. 2)). Thus we can define W(s"). 

Let y= sn+ZU e"-f-4, where ë"-f-4 is attached to sn+Z by the map r;. Let v= snu e"+3, 

where en+3 is attached to S" by the composition map r; · r; : sn-rz ---0> S". We denote 

the generators of Hn+2 (Y), H"+<(Y), Hn(V), Hn+ 3(V) by s"+2, e"+', s", e"-ra re­

spectively, where H*( )=H*( , Zz). Then it is known [2] that @11 (s")=e"+ 3• 

Let g: Y ---0> X be a map su ch that g 1 sn+z = r; · r; ; we denote by /, i, j the map 

g 1 sn+Z and the inclUSiOn ffiapS sn~> X, sn+Z --o> Y respectively. 

sn L sn+Z 

li l 
xJ-y 
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If we denote by C the mapping cylinder of /, it is easily seen that Hm(C, sn+z) 

=Hm(V) for any m>l. Thus we have @11f(s0)=s0+2 where s(l, s0+2 are the 

generators of Hn(sn), Hn+2(Sn+2) respectively. 

From naturality of the functional operations we have @11/sn) =sn+z since 

j*sn+ 2 =s[/2 =@nf (sô) =@nf Ci* sn)= j*@ng (sn) and j* is isomorphisms. By the 

conditions for dimension, it is obvious that @00gCsn) =0, @02g(sn) =0. 

Renee by Theorem (7. 5) we have g*IJ!(sn) =Sq2@11gCsn) =Sq2 (sn+2) =en+•. This 

implies lF(sn) =en+• since g*: Hn+•(X) =Hn+<(Y). q.e.d. 

We denote by v: sn+s __ >Sn the suspension of the Hopf map S7 -"S4• X,= 

Sîue]:+<, where e]:+< is attached to S]_ by v. X2 =S2ue2+ 4, where e2+ 4 is attached 

to S2 by 6v. We denote the generators of Hn(X;, Z 2), Hn+<(X;, Z2 ) by s~, e~+<, 

i = 1, 2, respective! y. Then we have: 

LEMMA (8. 2) 

Proof. Since Sq'(s2) =0, Sq2 (s2) =0, Sq4(s2) =0, we can define @ozCs2). 

Let g: X,->X2 be a map such that g[Sî: Sî-->S2 (degree 6). Similarly as in 

the proof of Theorem (8. 1) we have 

g*@ois2) = Sq4 ·Sq'g(s2) +Sq2Sq'·Sq2g(s2) +Sq'·Sq4g(s2) 

= Sq4 ·Sq'g(s2) = Sq4(sî) = e~+<. 

This implies @o2Cs'2) = e2+ 4 • 

Let g' : X,_,. X be a map such that g' 1 Sî: S!-> sn (degree 12). It is obvious 

that Sq'g' (sn) =0, then 

q.e.d. 

(Added in proof) See 579-36 : M. Mahowald; On obstructions to extending 

a maps, Notices, Amer. Math. Soc., Vol. 8 (1961) p. 241. 
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