Journal of Mathematics, Osaka City University, Vol. 12, No. 1-2.

On Poincaré conjecture for M⁵

By Hiroshi YAMASUGE*

(Received November 5, 1961)

1. Introduction

Let M be a compact, connected differentiable *n*-manifold of class C^{∞} , with n > 1. According to M. Morse [2] there is a non-degenerate function f on M such that f has just one critical point of index 0 and just one critical point of index n, which is termed the *polar function*. The similar way to the proof of the existence of canonical functions proves that we can modify a polar function f so that it satisfies the following properties (see [3]):

- a) f is a polar function,
- b) if P_j^i $(j=1, \dots, n_i)$ are all critical points of index i, then

$$\eta_i = f(P_1^i) = \cdots = f(P_{n_i}^i), \quad i = 0, \cdots, n,$$

c)

then

$$\eta_0 < \eta_1 < \cdots < \eta_n$$
.

For an arbitrary real number c let $V_c = \{P \in M | f(P) \leq c\}$, $V'_c = \{P \in M | f(P) \geq c\}$. Introduce a Riemannian metric on M, and denote by L^i_j the set of all ortho-*f*-arcs which are stretched to P^i_j , and denote by $L^i_j(c)$ the set of all points P on $L^i_j \cup P^i_j$ at which $c \leq f(P) \leq f(P^i_j)$. Then $L^i_j(c)$ is diffeomorphic with an *i*-dimensional ball in a euclidean space R^i .

By a regular cell in M we mean the image of the open unit ball under a regular imbedding map of its closure into M.

Suppose that U is an arbitrary regular cell such that $\partial L_j^i(c) \subset U$ and $L_j^i(c)$ is transversal to ∂U . Let τ_U be a C^{∞} -map of M into itself such that τ_U is regular 1-1 in M-U and $\tau_U(\bar{U})=a$ point in M. If for every $L_j^i(c)$ $(j=1, \dots, n; i=1, \dots, [n/2])$ $\tau_U L_j^i(c)$ is contained in a regular cell, we can show that V_c is contained in a regular cell. Similarly we can show that V_c' is also contained in a regular cell. Hence M is a sum of two cells and thus M is a sphere. (Theorem 1). We see that if $\pi_1(M^n)=0$ $(n\geq 4)$ then $\tau_U L_j^1(c)$ is contained in a regular cell. Furthermore, when n=5, we can show that if $\pi_2(M^5)=0$ for every $L_j^2(c)$ and U then there is a cell containing $\tau_U L_j^2(c)$, thus we conclude that if $\pi_1(M^5)=0$ and $\pi_2(M^5)=0$, then M^5 is homeomorphic to a sphere S^5 (THEOREM 3).

^{*} Deceased Nov. 11, 1960.

Hiroshi YAMASUGE

2. The sets L_j^i and $L_j^i(c)$

Let f be a canonical polar function as in § 1. We choose in a neighborhood $U(P_j^i)$ of P_j^i a system of coordinates x_1, \dots, x_n so that f is represented in $U(P_j^i)$ as

$$f = a - x_1^2 - \cdots - x_i^2 + x_{i+1}^2 + \cdots + x_n^2$$
.

By the *level manifold* of f we mean the set of all points P at which f(P) = c, where c is an arbitrary real number. Riemann metric into M which is represented in every $U(P_j^i)$ as $ds^2 = \sum_{k=1}^n dx_k^2$. Then the trajectories orthogonal to the level manifolds of f are well defined in $M - \sum P_j^i$. These trajectories are called *orthof-arcs* on M. The differential equations defining them in $U(P_j^i)$ are

$$rac{dx_k}{dt} = arepsilon_k x_k$$
 , $1 \leq k \leq n$,

where $\varepsilon_k = -1$ for $1 \leq k \leq i$ and $\varepsilon_k = 1$ for $i < k \leq n$. Hence the solution of these equations is

$$x_k = c_k \exp \varepsilon_k t$$

We suppose that the direction of every ortho-f-arc coincides with that of increasing of f.

If we put $c_{i+1} = \cdots = c_n = 0$ and make $t \to +\infty$, we have $x \to 0$. Therefore, by putting $c_{i+1} = \cdots = c_n = 0$ and by considering that c_1, \cdots, c_i are variables, we get all ortho-*f*-arcs stretched into the critical point P_j^i . Therefore the set L_j^i of all points which are in $U(P_j^i)$ and on the ortho-*f*-arcs stretched into the critical point P_j^i is an *i*-dimensional space:

$$L_j^i = \{x | x_{i+1} = \cdots = x_n = 0, x \neq 0\}$$

and the set of points P on $L_j^i \cup P_j^i$ at which $c \leq f(P) \leq f(P_j^i)$ is written as

$$L_j^i(c) = \{x | x_{i+1} = \dots = x_n = 0, c \leq f(x) \leq f(P_j^i)\}$$

3. Uhe transformation $\tau_{U,\delta}$ and the varieties $\tau_U L(c)$.

By a regular cell in M we mean the image of the open unit ball B_1^n under a regular imbedding of $B_{1+\delta}^n$ into $M(\delta > 0)$. Denote by $V_{c,c'}$ the subset of points P at which $c \leq f(P) \leq c'$. Then we have

LEMMA 1. Assume that all critical points in $V_{c,c'}$ are of index *i* and that $\sum_{j} L_{j}^{i}(c) \cup V_{c}$ is contained in a regular cell. Then $V_{c'}$ is also contained in a regular cell.

Proof. For simplicity we assume that $f(P_j^i)=0$, $c=-\varepsilon$ and $c'=\varepsilon$. Then, in terms of a certain coordinates x in a neighborhood $U(P_j^i)$ of P_j^i , f is written as

$$f = -x_1^2 - \cdots - x_i^2 + x_{i+1}^2 + \cdots + x_n^2$$
 ,

Hence in $U(P_j^i)$ we have

$$V_{\pm\varepsilon} = \{x \mid -x_1^2 - \dots - x_i^2 + x_{i+1}^2 + \dots + x_n^2 \leq \pm\varepsilon\},\$$

$$L_j^i(-\varepsilon) = \{x \mid x_{i+1} = \dots = x_n = 0, -\varepsilon \leq f(x) \leq 0\}$$

Let $\varphi(r)$ be a function of one variable r such that

$$\varphi(r) = \varepsilon + \frac{\delta}{2} \quad \text{for} \quad 0 \leq r \leq \varepsilon$$
$$= r \quad \text{for} \quad r \geq \varepsilon + \delta ,$$
$$0 \leq \frac{d\varphi(r)}{dr} \leq 1 ,$$

,

where $\delta > 0$ is sufficiently small in comparison with $\varepsilon > 0$. Consider the set $\tilde{V}_{-\varepsilon,\delta}$ defined as follows:

$$\begin{split} \widetilde{V}_{-\varepsilon,\delta\cap}(M-\sum U(P_j^i)) &= V_{-\varepsilon\cap}(M-\sum U(P_j^i)) \text{,} \\ \widetilde{V}_{-\varepsilon,\delta\cap}U(P_j^i) &= \{(x_1,\cdots,x_n) \mid -\varphi(x_1^2+\cdots+x_i^2)+x_{i+1}^2+\cdots+x_n^2 \leqq -\varepsilon\} \text{.} \end{split}$$

Then $\partial \widetilde{V}_{-\varepsilon,\delta} \cap U(P_j^i)$ is represented as

(1)
$$-\varphi(x_1^2 + \cdots + x_i^2) + x_{i+1}^2 + \cdots + x_n^2 = -\varepsilon,$$

and we have $\tilde{V}_{-\varepsilon,\delta} \subset V$. As we have already seen, the ortho-*f*-arc passing through a given point Q on $\partial V_{\varepsilon} \cap U(P_{j}^{i})$ is given by

(2)
$$x_k = a_k e^{\epsilon_k t}, \quad k = 1, \cdots, n,$$

where x(Q) = a. Hence the intersection of the ortho-*f*-arc with $\partial \tilde{V}_{-\epsilon,\delta} \cap U(P_{J}^{i})$ is obtained by solving the equations (1) and (2). From (1) and (2) we have

$$(3) \qquad -\varphi((a_1^2+\cdots+a_i^2)e^{-2t})+(a_{i+1}^2+\cdots+a_n^2)e^{2t}=-\varepsilon$$

Put

$$g(t) = -\varphi((a_1^2 + \cdots + a_i^2)e^{-2t}) + (a_{i+1}^2 + \cdots + a_n^2)e^{2t}$$

The we have

$$g(0) = -\varphi(a_1^2 + \dots + a_i^2) + a_{i+1}^2 + \dots + a_n^2$$

$$\geq -a_1^2 - \dots - a_i^2 + a_{i+1}^2 + \dots + a_n^2 = \varepsilon$$

If t < 0 is sufficiently small we have

$$\begin{split} g(t) &= -(a_1^2 + \cdots + a_i^2)e^{-2t} + (a_{i+1}^2 + \cdots + a_n^2)e^{2t} \\ &\leq (a_{i+1}^2 + \cdots + a_n^2)e^{2t} < \varepsilon \,. \end{split}$$

Since $\frac{d}{dt}g(t) > 0$ the equation (3) has the unique solution t=t(a) < 0. Therefore, for a given $Q \in \partial V_{\mathfrak{e}} \cap \sum U(P_j^{\mathfrak{e}})$ the intersection of (1) and (2) is a unique point which we denote by \tilde{Q} . Furthermore, for $Q \in \partial V_{\mathfrak{e}} - \sum U(P_j^{\mathfrak{e}})$ the ortho-*f*-are passing through Q intersects with $\partial V_{-\mathfrak{e}}$ at a unique point which we denote by \tilde{Q} . Now we have a correspondence $\partial V_{\mathfrak{e}} \rightarrow \partial \tilde{V}$ given by $Q \rightarrow \tilde{Q}$. This is regular 1-1.

Let κ_Q be the ortho-*f*-arc connecting two points Q and \tilde{Q} , and let d(Q, Q') denote the length of κ_Q between Q and $Q'(Q' \in \kappa_Q)$.

Take a C^{∞} -function $\psi(r)$ such that

$$\begin{split} \psi(r) &= \frac{\delta'}{1-\delta'}r \quad \text{for } 0 \leq r \leq 1-\delta', \\ &= 1 \quad \text{for } r \geq 1, \\ \frac{d\psi(r)}{dr} \geq 0. \quad \text{for } r \geq 0. \end{split}$$

Define a C^{∞} -transformation $\sigma_{\delta'}: Q' \to Q''$ as follows:

$$\begin{split} \sigma_{\delta'} &= \text{identity} & \text{for } M - (V_{\mathfrak{e}} - \tilde{V}_{-\mathfrak{e},\delta}) \text{,} \\ \frac{d(Q'', \tilde{Q})}{d(Q, \tilde{Q})} &= \psi \frac{d(Q', \tilde{Q})}{d(Q, \tilde{Q})} & \text{for } V_{\mathfrak{e}} - \tilde{V}_{-\mathfrak{e},\delta} \text{.} \end{split}$$

From the definition of φ and (1) we see that the point $x \in \tilde{V}_{-\varepsilon,\delta} \cap U(P_j^{\varepsilon})$ always satisfy

$$x_{i+1}^2 + \cdots + x_n^2 \leq \delta$$

or

$$x_{i+1}^2+\cdots+x_n^2=-x-\cdots-x_i^2+\varepsilon$$
 .

On the other hand, since $\sum_{i} L_{j}^{i}(-\varepsilon) \cup V_{-\varepsilon}$ is contained in a regular cell U, we have

 $\tilde{V}_{-\varepsilon,\delta} \subset U$ for sufficiently small $\delta > 0$.

Furthermore, since $\lim_{\delta' \to 0} \sigma_{\delta'} V_{\epsilon/2} = V_{-\epsilon,\delta}$, if $\delta' > 0$ is sufficiently small we have $\sigma_{\delta'} V_{\epsilon/2} \subset U$ and hence $V_{\epsilon/2} \subset \sigma_{\delta}^{-1} U$. Thus the lemma is proved.

LEMMA 2. Suppose that $\eta_{i-1} < c < \eta_i$ and V_c is contained in a regular cell. Then we can choose a regular cell U such that $V_c \subset U$ and $\sum_i L_j^i(c)$ is transversal to ∂U .

Proof. Let f be a regular imbedding map of $B_{1+\delta}^n$ ($\delta > 0$) into M such that $fB_1^n = U$. Let $\{W_\mu\}, \{W'_\mu\}$ be two sufficiently fine open coverings of ∂B_1^n such that $W_\mu \supset \overline{W'_\mu}$. Consider all sets W_μ such that $\sum L_j^i(c)$ is transversal to ∂U in $f \overline{W'_\mu}$; we arrange these in a sequence $\overline{W'_1}, \overline{W'_2}, \cdots, \overline{W'_\nu}$. We shall say that a map $f': W_\mu \rightarrow M$ is an approximation of (f, W_μ, ζ) if the following is satisfied: For any $u \in W_\mu$

$$|f_p(u) - f'_p(u)| < \zeta \text{ and } \left| \frac{\partial f_p(u)}{\partial u_k} - \frac{\partial f'_p(u)}{\partial u_k} \right| < \zeta$$

 $p, k = 1, \dots, n,$

where (f_1, \dots, f_n) , (f'_1, \dots, f'_n) are representations of f, f' in terms of local coordinates x_1, \dots, x_n in M. Let f' be an approximation of $(f, W_{\nu+1}, \zeta)$. Put $g(x_1, \dots, x_n) = |f'^{-1}(x)|^2$. Then, from $|u|^2 = u_1^2 + \dots + u_n^2 = 1$ and x = f'(u), we have

$$(4) g(x_1, \cdots, x_n) = 1.$$

The tangent space of (4) at x=a is

On Poincaré conjecture for M⁵

$$\sum_{k} \left(\frac{\partial g}{\partial x_k} \right)_{x=a} (x-a) = 0.$$

Now we choose a system of local coordinates x so that $L_j^i(c)$ is represented as $x_{i+1} = \cdots = x_n = 0$. If $L_j^i(c)$ is not transversal in $f'(W_{\nu+1})$ to the submanifold defined by (4), there is a point $x = a = (a_1, \dots, a_i, 0, \dots, 0)$ such that g(a) = 0 and the tangent space of $L_j^i(c)$ at a is contained in that of (4) at a. Since the tangent space of $L_j^i(c)$ at a contains i vectors $(\alpha, 0, \dots, 0), (0, \alpha, 0, \dots, 0), \dots, (0, \dots, 0, \alpha, \dots, 0)$ for an arbitrary real number α , we have

$$g(a) = 1, \quad a = (a_1, \cdots, a_i, 0, \cdots, 0),$$
$$\left(\frac{\partial g}{\partial x_p}\right)_{x=a} (\alpha - a_j) - \sum_{p \neq q} \left(\frac{\partial g}{\partial x_p}\right)_{x=a} a_p = 0, \qquad j = 1, \cdots, i.$$

Since α is a variable, it follows that

(5)
$$g(a_{1}, \dots, a_{i}, 0, \dots, 0) = 1,$$
$$\frac{\partial g}{\partial x_{j}}(a_{1}, \dots, a_{i}, 0, \dots, 0) = 0, \qquad j = 1, \dots, i.$$

Obviously for a given $\zeta > 0$ there is an approximation f' of $(f, W_{\nu+1}, \zeta)$ for which the equations (5) have not solution. Let $\lambda(u)$ be a C^{∞} -function which takes 1 on $W'_{\nu+1}$ and 0 on $B^{n}_{1+\delta} - W_{\nu+1}$. Put

$$f_p'' = f_p + \lambda(f_p' - f_p),$$

and take a map F such that

$$F=f'' ext{ on } \overline{W}'_{
u+1}, \ =f ext{ on } B^n_{1+\delta}-W_{
u+1}.$$

For a given $\zeta' > 0$ we choose δ so that F approximates $(f, B_{1+\delta}^n, \zeta')$. If ζ' is sufficiently small it holds that F is regular imbedding of $B_{1+\delta}^n$ into M and $\sum_j L_j^i(c)$ is transversal to $F(\partial B_1^n)$ in $F(\bigcup_{\mu=1}^{\nu} \overline{W}_{\mu}^{\prime})$ and further $F(B_n^1) \supset V_c$. Hence $\sum_j L_j^i(c)$ is transversal to $F(\partial B_{1\cap}^n(\bigcup_{\mu=1}^{\nu+1} W_{\mu}^{\prime}))$. By repreating this process we have the required result.

THEOREM 1. Let U be a regular cell such that $\sum_{j} \partial L_{j}^{i}(c) \subset U$ and $\sum_{j} L_{j}^{i}(c)$ is is transversal to ∂U . Let τ_{U} be a C^{∞} -map of M into itself such that τ_{U} is a diffeomorphism on $M-\overline{U}$ and $\tau_{U}(\overline{U})$ is a point. Assume that every $\tau_{U}L_{j}^{i}(c)$, $i \leq [n/2]$, is contained in a regular cell. Then M is a sphere.

Proof. Suppose that $\eta_{i-1} < c_{i-1} < \eta_i < c_i < \eta_{i+1}$, and that $V_{c_{i-1}}$ is contained in a regular cell U. Then by lemma 2 we may suppose that $\sum_k L_k^i(c_{i-1})$ is transversal to ∂U . Let f be a regular imbedding of B_2^n into M such as $fB_i^n = U$. Take a C^{∞} -function $\varphi(r)$ such that

$$arphi(r) = \delta \quad ext{ for } 0 \leq r \leq 1,$$

= 1 for $r \geq 3/2,$

ç

Hiroshi YAMASUGE

$$rac{darphi(r)}{dr}\!\ge\! 0$$
 for $0\!\le\!r\!\le\!3/2$,

and define a C^{∞} -transformation τ'_{δ} on B_2^n by

$$\tau'_{\delta}u = \varphi(|u|)u.$$

Define a map τ_{δ} of M into itself as follows:

$$\begin{split} \tau_{\delta} &= f \tau_{\delta}' f^{-1} & \text{ on } f(B^{n}_{3/2}) , \\ &= 1 & \text{ on } M - f(B^{n}_{3/2}) . \end{split}$$

Then we see that τ_{δ} ($\delta > 0$) are C^{∞} -transformations on M. Put $\tau_0 = \tau_U$, then τ_U is a diffeomorphism on $M - \overline{U}$ and $\tau_U \overline{U}$ is a point. By the hypothesis there is a regular cell U' which contains $\tau_U(\sum_k L_k^i(c_{i-1}) \cup V_{c_{i-1}}) \subset \tau_U(\sum_k L_k^i(c_{i-1}) \cup U) = \tau_U(\sum_k L_k^i(c_{i-1}))$. Since $\lim_{\delta \to 0} \tau_{\delta} = \tau_U$, if $\delta > 0$ is sufficiently small we have

$$au_{\delta}(\sum_{k}L_{k}^{i}(c_{i-1})\cup V_{c_{i-1}})\subset U'$$
 ,

and so

$$\sum_{k} L_k^i(c_{i-1}) \cup V_{c_{i-1}} \subset \tau_{\delta}^{-1} U'.$$

Hence, by lemma 1, V_{c_i} is contained in a regular cell. Obviously V_{c_0} is a regular cell and so induction proves that $V_{c_{(n/2)}}$ is contained in a regular cell.

Now consider the function -f(P) instead of f(P). Then it is obvious that P_j^{n-i} are the critical points of -f(P) with index *i*. Hence, putting $P_j^{n-i}=P'_j^i$ and $-\eta_{n-i}=\eta'_i$, we see that $-f(P'_j^{n-i})=\eta'_j$ and $\eta'_0 < \eta'_1 < \cdots < \eta'_n$. Hence -f(P) is also a canonical polar function on *M*. Furthermore, putting $-c_{n-i-1}=c'_{i-1}$, we have

$$\begin{aligned} V'_{c_{(n/2)}} &= \{P | f(P) \ge c_{(n/2)}\} = \{P | -f(P) \le -c_{(n/2)}\} \\ &= \{P | -f(P) \le c'_{n-(n/2)-1}\} \subset \{P | -f(P) \le c'_{(n/2)}\} \end{aligned}$$

Therefore $V'_{c_{(n/2)}}$ is also contained in a regular cell. Thus M is the sum of two cells. Thus M is the sum of two cells, and according to [1] it is homeomorphic with a sphere.

By a singular k-sphere in M we shall mean the image under a C^{0} -map of S^{k} into M, where S^{k} is the unit k-sphere in \mathbb{R}^{k+1} .

THEOREM 2. If any singular k-sphere $(k \le [n/2])$ in M is contained in a cell then M is a sphere.

Proof. We can modify the canonical polar function f so that $f(P_j^i) < f(P_k^{i+1})$ for $j=1, \dots, n_i$, $k=1, \dots, n_{i+1}$, and $f(P_j^i) < f(P_{j+1}^i)$ for $j=1, \dots, n_i-1$. We arrange $f(P_j^i)$ in the sequence $\zeta_1 < \zeta_2 < \cdots$, and we put $P_j^i = P_\mu$, $L_j^i(c) = L_\mu(c)$ if $f(P_j^i) = \zeta_\mu$. Suppose that $\zeta_{\mu-1} < c_\mu < \zeta_\mu < c_{\mu+1} < \zeta_{\mu+1}$ and V_{c_μ} is contained in a cell. Then there are two cells U', U'' and real number $c(\eta_{\mu-1} < c < c_\mu)$ such that $V_{c_\mu} \subset U'$, $\bar{U}' \subset U''$ and $\partial L_\mu(c) \subset U'$. Let φ be a homeomorphism of U'' onto B_1^n . Then we have On Poincaré conjecture for M^5

$$arphi \partial L_{\mu}(c) \subset arphi U' \subset arphi ar U' \subset B^n_1$$
 ,

so that there is B_r^n (r < 1) which contains $\varphi U'$. Denote by $(0, \varphi \partial L_\mu(c))$ the set of all points which are on segments connecting the origin 0 to points of $\varphi \partial L_\mu(c)$. This is a cone in *B*, and is a continuous image of a ball whose dimension is equal to dim $L_\mu(c)$. Hence $L_\mu(c) \cup \varphi^{-1}(0, \varphi \partial L_\mu(c))$ is a simgular sphere in *M*. Define a transformation α_{δ} on B_1^n as follows:

(6)
$$\alpha_{\delta}(u) = \left(\frac{\delta - 1}{r - 1}(|u| - 1) + 1\right)u \quad \text{for } r \leq |u| \leq 1,$$
$$= \delta u \quad \text{for } 0 \leq |u| \leq r.$$

 α_0 is not a transformation in B_1^n , but it is a continuous map of B_1^n onto itself. From $L_{\mu}(c_{\mu}) \subset L_{\mu}(c)$ and $V_{c_{\mu}} \subset U'$, we have

$$L_{\mu}(c_{\mu}) \cup V_{c_{\mu}} \subset L_{\mu}(c) \cup U'$$

Since α_{δ} =identity on ∂B_1 , it follows that $\varphi^{-1}\alpha_{\delta}\varphi$ =identity on $\partial U''$. Hence we may consider that $\varphi^{-1}\alpha_{\delta}\varphi$ ($\delta \neq 0$) is a transformation on M and that $\varphi^{-1}\alpha_{0}\varphi$ is a continuous map of M into itself. Now we see

$$egin{aligned} &arphi^{-1}lpha_0arphi(L_\mu(c_\mu) \cup V_{c_\mu}) \subset arphi^{-1}lpha_0arphi(L_\mu(c) \cup U') \ &= arphi^{-1}lpha_0arphi L_\mu(c) \cup arphi^{-1}lpha_0arphi U' \ &\subset arphi^{-1}lpha_0arphi L_\mu(c) \cup arphi^{-1}lpha_0B_r \ &= arphi^{-1}lpha_0arphi L_\mu(c) \cup arphi^{-1}(0) \ , \end{aligned}$$

and

$$\begin{split} \varphi^{-1} \alpha_0 \varphi(L_{\mu}(c) \cup \varphi^{-1}(0, \varphi \partial L_{\mu}(c))) \\ &= \varphi^{-1} \alpha_0 \varphi L_{\mu}(c) \cup \varphi^{-1} \alpha_0(0, \partial L_{\mu}(c)) \\ &= \varphi^{-1} \alpha_0 \varphi L_{\mu}(c) \cup \varphi^{-1}(0) , \end{split}$$

so that

(7)
$$\varphi^{-1}\alpha_0\varphi(L_{\mu}(c_{\mu}) \cup V_{c_{\mu}}) \subset \varphi^{-1}\alpha_0\varphi(L_{\mu}(c) \cup \varphi^{-1}(0, \varphi\partial L_{\mu}(c))).$$

By the hypothesis, if $\dim L_{\mu}(c_{\mu}) \leq \left[\frac{n}{2}\right]$, the singular sphere $\varphi^{-1}\alpha_{0}\varphi(L_{\mu}(c) \cup \varphi^{-1}(0,\varphi\partial L_{\mu}(c)))$ is contained in a cell. Hence it follows from (6) and (7) that if $\delta > 0$ is sufficiently small $\varphi^{-1}\alpha_{\delta}\varphi(L_{\mu}(c_{\mu}) \cup V_{c_{\mu}})$ is contained in in a cell and so $L_{\mu}(c_{\mu}) \cup V_{c_{\mu}}$, is in a cell. Therefore, by Lemma 1, $V_{c_{\mu+1}}$ is in a cell. Clearly $V_{c_{1}}$ is in a cell, and hence induction proves that $V_{c_{\nu}}$ is in a cell, where P_{ν} is the critical point of index $\left[\frac{n}{2}\right]$ and $P_{\nu+1}$ is that of index $\left[\frac{n}{2}\right] + 1$. If we consider -f instead of f, the same way as in the proof of Theorem 1 proves that $V'_{c_{\nu}} = \langle P | f(P) \geq c_{\nu} \rangle$ is also in a cell. Thus M is the sum of two cells, and consequently M is a sphere.

4. Diffeomorphical deformations

Let N_0 be a closed C^{∞} -submanifold of M, and let $N' = N_0 \times I$ be the product of

 N_0 and I, where I denote the closed interval [0,1]. N' is a C^{∞} -manifold. Let f be a C^{∞} -map of N' into M such that each ϕ_t is a regular 1-1 map of N_0 into M and $N_0 = \phi_0(N_0)$, where we put $\phi_t(P) = f(P, t)$ for $P \in N_0$ and $t \in I$. Then $N_1 = \phi_1(N_0)$ is a C^{∞} -submanifold in M. In this section we say that the set of maps ϕ_t , $t \in I$, forms a diffeomorphical deformation of N_0 onto N_1 . We say also that ϕ_t is a diffeomorphical deformation of N_0 to the points P_{μ} ($\mu = 1, \dots, k$) if each ϕ_t ($0 \leq t < 1$) is a regular 1-1 and $\sum P_{\mu} = \phi_1(N_0)$ is a finite sum of points.

LEMMA 3. If ϕ_t is a diffeomorphical deformation of N_0 to N_1 , then there is a C^{∞} -transformation on M which maps N_0 onto N_1 .

Proof. To prove this lemma it is sufficient to show that there is a C^{∞} -transformation which maps N_a onto N_b when b-a>0 is sufficiently small.

Choose two coverings $\{W_i\}$ and $\{U_i\}$ of $N_a \cup N_b$ and a system of local coordinates x^i in a neighborhood of \overline{U}_i so that $\overline{W}_i \subset U_i$ and N_a is represented as $x_{p+1}^i = \cdots = x_n^i = 0$. Then N_b is written as

$$egin{aligned} x^i_\mu &= f_\mu(x^i_j, \cdots, x^i_p, b), & \mu &= p+1, \cdots, n\,, \ f_\mu(x^i_1, \cdots, x^i_p, b) & o 0 & (b o a)\,. \end{aligned}$$

We suppose that

$$\overline{W}_i = \{x^i \,|\, |x^i| \leq 1\}$$
 and $\overline{U}_i = \{x^i \,|\, |x^i| \leq 2\}$.

Take a C^{∞}-function $\psi(x^i)$ such that $\psi(x^i)=0$ for $|x^i| \leq 1$, and =1 for $|x^i| \geq 2$. Put

(8)
$$y^1_{\mu} = x^1_{\mu} + f_{\mu}(x^1_1 \cdots x^1_p, b) \psi(x^1), \ \mu = 1, \cdots, n.$$

Then we see that if $|f_{\mu}|$ are sufficiently small then the map defined by (8) is a C^{∞} -transformation on U_1 which is the identity on ∂U_1 . Denote it by τ_1 , and extend it over M by setting τ_1 =identity for $M-U_1$. Then we have

$$\tau_1 N_b = N_a \text{ in } W_1$$

Clearly $\tau_1 N_a$ is represented as

$$x^{i}_{\mu} = f^{1}_{\mu} \ (x^{i}_{1}, \cdots, x^{i}_{\nu}; b), \quad \text{for } \mu = p+1, \cdots, n$$

where

and

$$f^{1}_{\mu}(x_{1}^{i}, \cdots, x_{p}^{i}; b) \rightarrow 0 \ (b \rightarrow a)$$

$$f^1_\mu(x_1^i,\cdots,x_p^i;b)=0$$
 for $(x_1^i,\cdots,x_p^i)\in W_1$.

Let τ_2 be a map represented by

$$y_{\mu}^2 = x_{\mu}^2$$
, for $\mu = 1, \dots, p$
= $x_{\mu}^2 + f_{\mu}^1(x_1^2, \dots, x_p^2, b)\psi(x)$, for $\mu = p+1, \dots, n$.

Then τ_2 is a C^{∞} -transformation such as

$$\tau_2 N_b = N_a$$
 in $W_1 \cup W_2$.

By applying the above process for W_1, W_2, \dots, W_m , we have

$$\tau_m N_b = N_a$$

Thus the lemma is proved.

5. Regular sphares S^k in M.

LEMMA 4. Suppose that $\pi_k(M) = 0$ and 2k+1 < n. Then for given regular spheres S^k there is a diffeomorphical deformation ϕ_t of S^k to the sum of points.

Proof. We shall divide the proof into the following three parts.

a) Let φ be the regular 1-1 map of ∂B_1^{k+1} onto S^k , and π be the projection of $B_1^{k+1}-0$ onto ∂B_1^{k+1} by the radii of B_1^{k+1} . For an arbitrary point P in $B_1^{k+1}_{1/4,1}$ we define φP to be $\varphi \pi P$. Then it follows from the hypothesis that there is a continuous extension of φ over B_1^{k+1} . We denote it by the same notation φ . We choose two coverings $\{U_i\}, \{U'_i\}$ $(i=1, \dots, \mu)$ of $B_{i+1/4}$ such that $U_i \supset \overline{U}'_i$, $\bigcup U_i \subset B_{i+1/2}^{k+1}$ and each φU_i is contained in neighborhood for which a system of local coordinates is defined. Let $u_1^2 + \dots + u_{k+1}^2 = 1$ and t(P) be the distance between P and the origin. Then we can take $u_1(\pi P), \dots, u_k(\pi P), t(P)$ as coordinates of Pin U_1 . Let $x_1 \cdots x_n$ be a system of coordinates in a neighborhood of φU_1 . Then φ is written in U_1 as

$$x_j = f_j(u, t), \ u = (u_1, \cdots, u_k); \ j = 1, \cdots, n.$$

Let $f'_{j}(u, t)$ be a C^{∞} -functions which approximates (f, U_{1}, ζ) where $\zeta > 0$ is sufficiently small. Let $\lambda(u, t)$ be a C^{∞} -function which takes 1 on \overline{U}'_{1} and 0 on $U_{1}-U'_{1}$, where $U_{1}\supset U'_{1}$, $U'_{1}'\supset \overline{U}'_{1}$. Put

$$f_{j}^{\prime\prime} = f_{j} + \lambda(f_{j}^{\prime} - f_{j})$$

and define φ' as

$$egin{array}{ll} arphi^1 &= f'' & ext{ on } U_1 \ &= arphi & ext{ on } B_1^{k+1} {-} U_1 \,. \end{array}$$

where f'' is the map defined by

$$x_j = f_j'(u, t) .$$

Then φ^1 is a C^{∞} -map in \overline{U}_1' and $\varphi^1 = \varphi$ on $B_1^{k+1} - U_1$. Applying the above process to φ^1 , U_2 and U_2' instead of φ , U_1 and U_1' , we have φ^2 such that φ^2 is a C^{∞} -map in $U_1' \cup U_2'$ and $\varphi^2 = \varphi$ on $B_1^{k+1} - (U_1 \cup U_2)$. By repeating these, we have $\varphi^1, \varphi^2, \cdots, \varphi^{\mu}$; φ^{μ} is a C^{∞} -map of B_1^{k+1} into M such that $\varphi^{\mu} = \varphi$ in $B^{k+1}_{1/2,1}$. Thus the map φ of $B^{k+1}_{1/2,1}$ is extended to a C^{∞} -map of B_1^{k+1} into M. The extended map will be denoted by the same notation φ . It is written in U as

$$x_j = g_j(u, t)$$

where g_j are C^{∞} -functions of u, t. We remark that φ^{μ} is regular 1-1 on every ∂B_t^{k+1} $(1/2 \leq t \leq 1)$ (see the construction of φ^{μ}). We write simply φ instead of φ^{μ} .

b) Consider the equations

$$\frac{\partial(x_1, \cdots, x_{k-1}, x_p)}{\partial(u_1, \cdots, u_{k-1}, u_k)} = 0,$$

$$(p = 1, 2, \cdots, n-k+1).$$

Since n-k+1 > k+1 it follows that the number of the the equations is greater than that of the unknowns. Hence, for an arbitrary $\zeta > 0$, we can take $g'_j(u, t)$ so that $|g_j - g'_j| < \zeta$ and there is p_0 satisfying

$$\frac{\partial(g_1', \cdots, g_{k-1}', g_{p_0}')}{\partial(u_1, \cdots, u_{k-1}, u_k)} \neq 0.$$

Let $\lambda(u, t)$ be a C^{∞} -function in U_1 which takes 1 on \overline{U}_1' and 0 on $U_1 - U_1''$, where $U_1 \supset \overline{U}_1'', U_1'' \supset \overline{U}_1'$. Put

$$g'_j = g'_j + \lambda(g'_j - g_j);$$

and define φ^1 by

$$arphi^1 = g^{\prime\prime}$$
 in U_1 ,
= $arphi$ in $B_1^{k+1} - U_1$,

where g'' is the map defined by

$$x_j = g_j^{\prime\prime}(u,t) .$$

Then φ^1 is regular on every $\partial B_t^{1+1} \cap U_1$. Applying the above process to ζ^1, φ^1 and U_2 , we have φ^2 such that φ^2 is regular on $\partial B_t^{k+1} \cap (U_1' \cup U_2')$ and $\varphi^2 = \varphi$ on $B_1^{k+1}-(U_1 \cup U_2)$. By repeating this process we have $\varphi^1, \varphi^2, \cdots, \varphi^{\mu}; \varphi^{\mu}$ is regular on every ∂B_t^{k+1} and is equal to φ on $B_{t-1/2,1}^{k+1}$. For an arbitrary $\zeta^1 > 0$ we can choose ζ , ζ^1 , ζ^2 , \cdots so that φ^{μ} approximates $(\varphi, B_1^{k+1}, \zeta')$ and hence from the fact that φ is regular 1-1 on every $\partial B_t^{k+1}\left(\frac{1}{2} \leq t \leq 1\right)$, if ζ' is sufficiently small it is hold that φ^{μ} is regular 1-1 on every $\partial B_t^{k+1}\left(\frac{1}{2} \leq t \leq 1\right)$. This is shown as follows. Suppose that for $\zeta' > \zeta'' > \cdots \to 0$ there is a sequence φ', φ'' , which approximate $(\varphi, B^{k+1}_{1/2,1}, \zeta'), \ (\varphi, B^{k+1}_{1/2,1}, \zeta''), \cdots$ and are not regular 1-1 on some ∂B_t^{k+1} $\left(\frac{1}{2} \leq t \leq 1\right)$. Then there is a sequence $t_1, t_2, \dots \rightarrow a$ $\left(\frac{1}{2} \leq t_i \leq 1, \frac{1}{2} \leq a \leq 1\right)$ such that $\varphi', \varphi'', \cdots$ are not regular 1-1 on $\partial B_{t_1}^{k+1}, \partial B_{t_2}^{k+1}, \cdots$, respectively. By π_m denote the projection of ∂B_a^{k+1} on $\partial B_{i_m}^{k+1}$ by radii of B_1^{k+1} . Then, in terms of the local coordinates u_1, \dots, u_k, π_m is written as $u'_i = u_i, i = 1, \dots, k$. Hence $\varphi' \pi_1, \varphi'' \pi_2, \dots$ approximate $(\varphi, \partial B_1^{k+1}, \zeta')$, $(\varphi, \partial B_1^{k+1}, \zeta'')$, \cdots respectively and they are not regular 1-1 on ∂B_a^{k+1} . On the other hand φ is regular 1-1 on ∂B_a^{k+1} , and hence it follows that $\varphi^{(m)}\pi_m$ is regular 1-1 on ∂B_a^{k+1} if $\zeta^{(m)}$ is sufficiently small. We write simply φ instead of φ^{μ} .

c) Let $\{U_i\}, \{U'_i\}$ be two open coverings of $B^{k+1}_{1/2}$; we choose them so that $U_i \supset \overline{U}'_i, \ \cup \overline{U}_i \subset B^{k+1}_{3/4}$ and if \overline{U}_i and \overline{U}_k have common points then φ is 1-1 on $\partial B_i^{k+1} \cap (U_i \cup U_k)$. Consider all sets $U_i \cup U_k$ with $\overline{U}_i \cap \overline{U}_k = 0$, and arrange them in a sequence W_1, W_2, \cdots . Take ζ so small that any approximation map φ' of (φ, φ) .

10

 B_1^{k+1}, ζ is regular and 1-1 on each $\partial B_t^{k+1} \cap (\bar{U}_i \cup \bar{U}_k)$ for which $\bar{U}_i \cap \bar{U}_k \neq 0$. Let u, t and u', t be coordinates in U_i and in U_k respectively, and let $x_1 \cdots x_n$ be coordinates in a neighborhood containing $\varphi(\bar{U}_i \cup \bar{U}_k)$. Then $\varphi(\partial B_t^{k+1} \cap U_i)$ and $\varphi(\partial B_t^{k+1} \cap U_k)$ are written as

$$x_j = f_j(u, t), \ x_j = g_j(u', t)$$

respectively. Consider the equations

(9)
$$f_j(u,t) = g_j(u',t), \quad j = 1, \dots, n.$$

Since n > 2k+1, it follows that the number of the equations is greater than that of the unknowns. Hence, for a given $\zeta', 0 < \zeta' < \zeta$ there are C^{∞} -functions f'_j, g'_j such that f'_j approximates (f_j, W_1, ζ') and g'_j approximates (g_j, W_1, ζ') , and $f'_r(u, t) = g'_j(u', t)$ have no solution. Let $\lambda(u, t)$ be a C^{∞} -function which takes 1 on \overline{U}'_i and 0 on $U_i - U'_i$, where $U_i \supset \overline{U}'_i$, $\overline{U}'_i \supset \overline{U}'_i$. Let $\lambda'(u', t)$ be a C^{∞} -function which takes 1 on \overline{U}'_k and 0 on $U_k - U'_k$, where $U_k \supset \overline{U}'_k$, $U'_k \supset \overline{U}'_k$. Suppose $W_1 = U_i \cup U_k$, and put

$$\begin{split} \overline{W}'_1 &= \overline{U}'_i \cup \overline{U}'_k, \\ f'_j' &= f_j + \lambda(f'_j - f_j), \\ g''_j &= g_j + \lambda'(g'_j - g_j). \end{split}$$

Define φ^1 by

$$\begin{array}{ll} =f^{\prime\prime} & \text{ in } U_i \,, \\ =g^{\prime\prime} & \text{ in } U_k \,, \\ =\varphi & \text{ in } B_1^{k+1} - U_i - U_k \,, \end{array}$$

where f'' and g'' are the maps defined by $x_j = f_j(u, t)$ and $x_j = g_j(u, t)$ respectively. Then φ^1 is regular 1-1 on every $\partial B_t^{k+1} \cap \overline{W}_1$ and

$$\varphi^1 = \varphi$$
 on $B_1^{k+1} - W_1$

Applying this process to φ^1 , W_2 instead of φ , W_1 , we have φ^2 which is regular 1-1 on every $\partial B_t^{k+1} \cap (\overline{W}'_1 \cup \overline{W}'_2)$ and satisfies

$$\varphi^2 = \varphi$$
 in $B_1^{k+1} - W_1 - W_2$.

By repeating such process, we have an approximation φ^{ν} of $(\varphi, B_1^{k+1}, \zeta')$ which is regular 1-1 on every ∂B_t^{k+1} , $0 \leq t \leq \frac{2}{3}$, and $=\varphi$ on $B^{k+1}_{3/4,1}$. Since φ is regular 1-1 on every ∂B_t^{k+1} , $\frac{2}{3} \leq t \leq 1$, and φ^{ν} approximates $(\varphi, B_t^{k+1}, \zeta')$, it follows that φ^{ν} is regular 1-1 on every $\partial B_t^{k+1}, 0 \leq t \leq 1$.

Put $\phi_t = \varphi^{\nu} \pi_t \partial B_t^{k+1}$, where π_t is the projection of ∂B_1^{k+1} onto ∂B_t^{k+1} by the radii of the ball B_1^{k+1} . Then ϕ_t is the required deformation.

LEMMA 5. If $\pi_k(M^n) = 0$ (2k+1<n), then for given disjoint regular spheres S^k_{μ} ($\mu = 1, \dots, \nu$) there is a diffeomorphical deformation of $\sum S^k_{\mu}$ to the sum of points $\sum P_{\mu}$.

Proof. In virtue of lemma 4, for every S^k_{μ} there is a diffeomorphical deformation $\phi_{\mu,t}$ of S^k_{μ} to P_{μ} . Let $S^k = \{u | u_1^2 + \cdots + u_{k+1}^2 = 1\}$ be the unit sphere in \mathbb{R}^{k+1} , and let ψ_{μ} be a diffeomorphism of S^k onto S^k_{μ} . Let $\{U_i\}$ be a sufficiently fine open coverings of S^k . If $\phi_{\mu,t}S^k_{\mu} \cap \phi_{\mu't}S^k_{\mu'} \neq 0$ the equation

$$\phi_{\mu,t}\psi_{\mu}(u) = \phi_{\mu',t}\psi_{\mu'}(u')$$
, $u \in U_i$, $u' \in U_k$

has a solution for some i and k. In therms of local coordinates x in M, the above equation is written as

(10)
$$f_j(u, t) = g_j(u', t), \quad j = 1, \cdots, n$$
$$|u| = |u'| = 1.$$

It follows from the hypothesis that the equations (10) have no solution when t $(t\geq 0)$ is sufficiently small. Since the number of these equations is greater than that of unknowns, by the similar way to (c) in the proof of lemma 4 we can modify $\phi_{\mu,t}$ so that $\phi_{\mu,t}S^{k}_{\mu} \circ \phi_{\mu',t}S^{k'}_{\mu'}=0$ if $\mu \neq \mu'$. Put $\phi_t = \phi(tx), x \in \partial B_1^{k+1}$. Then ϕ_t is a desired diffeomorphical deformation.

By making use of lemma 3 we have immediately

LEMMA 6. If $\pi_k(M^n) = 0$ $(n \ge 2k+1)$, then arbitrary disjoint regular spheres $S^k_{\mu}(\mu=1, \dots, \nu)$ in M are contained in a regular cell in M.

LEMMA 7. Suppose that $\pi_1(M^n) = 0$ and that $n \ge 5$. Then, for a given regular cell U and disjoint arcs α_{μ} ($\mu = 1, \dots, \nu$) such that every α_{μ} is transversal to ∂U and $\partial \alpha_{\mu} \subset U$, there is a regular cell containing $U^{\cup}(\bigcup_{\mu=1}^{\nu} \alpha_{\mu})$.

Proof. Put $\sum \alpha_{\mu} - U = \sum \beta_i$, every β_i being a connected component of $\sum \alpha_{\mu} - U$. Take a point P in U, and connect the two points $\partial \beta_i$ by a certain regular arc γ_i such that $\gamma_i \subset U$, $P \in \gamma_i$. We can take γ_i so that $\beta_i \cup \gamma_i$ is a regular circle in M and $(\beta_i \cup \gamma_i) \quad (\beta_k \cup \gamma_k) = P$ if $i \neq k$. Moreover we see that for a given neighborhood W of $\cup \gamma_i$ there is a transformation σ in M such that $\sigma U \subset W$ and $\sigma \sum_i (\beta_i \cup \gamma_i) = \sum_i (\beta_i \cup \gamma_i)$. Hence if there is a cell U' which contains $\sum_i (\beta_i \cup \gamma_i)$, then we have

$$\sigma(\sum_{i} \alpha_{i} \cup U) = \sigma(\sum_{i} \beta_{i} \cup U) \subset \sum_{i} \beta_{i} \quad W \subset U$$

and hence

$$\sum \alpha_i \cup U \subset \sigma^{-1}U'$$

The existence of the cell containing $\sum_{i} (\beta_i \cup \gamma_i)$ is shown as follows. According to lemma 6, every $\beta_i \cup \gamma_i$ is in a regular cell. Hence there is a regular disk D such as $\partial D = \beta_i \cup \gamma_i$. Since $n \ge 5$, it is easy to see that D_i has no self-intersection and that $D_i \quad D_k = P \quad (i = k)$ if $\sum_{i} D_i$ is in a general position. Then for a given cell U' containing P there is a transformation τ such that $\tau \sum_{i} D_i \subset U'$. Hence $\sum_{i} D \subset \tau^{-1}U'$ and it follows that $\sum_{i} (\beta_i \cup \gamma_i) \subset \tau^{-1}U'$. Thus the lemma is proved. LEMMA 8. If dim $M \ge 5$ and if $c < \eta_2$, then V_c is contained in a regular cell.

Proof. Consider $L_{\mathcal{I}}^{1}(c_{0}) \cup V_{c_{0}}$, $\eta_{0} < c_{0} < \eta_{1}$. Then, since $V_{c_{0}}$ is in a regular cell, it follows from lemma 6 that $\sum L(c_{0}) \cup V_{c_{0}}$ is in a regular cell. Hence by lemma 1 we get the required result.

LEMMA 9. Suppose that n=2k+1 and that $\pi_k(M^n)=0$. Then for given disjoint regular spheres S^k_{μ} ($\mu=1, \dots, \nu$) there is a deformation ϕ_t of $\sum_{\mu} S^k_{\mu}$ to the sum of points $\sum P_{\mu}$ such that

- 1) $\phi_t(\sum_{\mu} S_{\mu}^k)$ has no self-intersection if $t \neq t_i$ $(i = 1, \dots, m)$,
- 2) for every t_i , $\phi_{t_i}(\sum_{\mu} S_{\mu}^k)$ has only one self-intersection point.

PROOF. This is proved in the same way as in the proof of lemmas 4 and 5. Clearly (a) and (b) hold in this case. Now the equations (9) and (10) in (c) becomes

(11)
$$f_j(u,t) = g_j(u',t), \quad j = 1, \cdots, 2k+1$$
$$u = (u_1, \cdots, u_k), \qquad u' = (u, \cdots, u).$$

Since in (11) the number of the equations is equal to that of the unknowns, it follows that for a given $\zeta > 0$ there are approximations f'_j and g'_j of (f_j, W_1, ζ) and (g_j, W_1, ζ) such that the number of the solutions of the equations $f'_j(u, t) = g(u', t)$ are finite in W_1 . Now the same way as in (c) proves the required result.

LEMMA 10. If n=2k+1, $\pi_1(M^n)=0$ and $\pi_k(M^n)=0$, then arbitrary disjoint regular spheres S^k_{μ} ($\mu=1, \dots, \nu$) in M are contained in a regular cell.

Proof. According to lemma 8, there is a deformation ϕ_t of $\sum_{\mu} S^k_{\mu}$ to $\sum_{\mu} P_{\mu}$ such that $\phi_t \sum_{\mu} S^k_{\mu}$ is regular except for $t=t_1, \dots, t_l$, and $\phi_{t_i} \sum S^k_{\mu}$ has only one self-intersection point P_i . Hence, in virtue of lemma 1, in order to prove lemma 9 it is sufficient to verify that if $\phi_t \sum_{\mu} S^k_{\mu}$ is contained in a regular cell for every $t < t_i$, then $\phi_{t_i} \sum_{\mu} S^k_{\mu}$ is also contained in a regular cell. Choose local coordinates x such that $x(P_i)=0$ in a neighborhood of P. Then we may consider that in this neighborhood $\phi_t \sum_{\mu} S^k_{\mu}$ is the sum of the following two k-planes:

(12)
$$x_{j} = a_{j}(t-t_{i}) + \sum_{p=1}^{k} b_{j}^{p} x_{p},$$
$$x_{j} = c_{j}(t-t_{i}) + \sum_{p=1}^{k} d_{j}^{p} x_{p},$$

where $j=k+1, \cdots, n$ and the determinant of the matrix of the coefficients in the equations

$$\sum_{p=1}^{k} (b_{j}^{p} - d_{j}^{p}) x_{p} = (c_{j} - a_{j})(t - t_{i})$$
$$j = 1, 2, \cdots, n$$

is not 0. Choose coordinates axis y_1, \dots, y_n so that y_1, \dots, y_k are on the plane

 $x_i = \sum_{p=1}^k b_j^p x_p$ $(j=k+1, \dots, n)$ and y_{k+1}, \dots, y_{2k} are on the plane $x_j = \sum_{p=1}^k d_j^p x_p$ $(j=k+1, \dots, n)$. Then (12) becomes

$$y_n = a(t-t_i), \quad y_{k+1} = \cdots = y_{2k} = 0,$$

 $y_n = c(t-t_i), \quad y_1 = \cdots = y_k = 0.$

Suppose that |a| < |c|, and consider a segment defined by $y_j = 0$ $(j=1, \dots, n-1)$ and $|y_n| < \delta |c|$. By lemma 7 there is a regular cell U containing $\phi_{t_i-\delta} \sum S_{\mu}^k$ and the segment. Therefore if $\zeta > 0$ is sufficiently small the set W of point y for which $y_1^2 + \cdots + y_{n-1}^2 \leq \zeta$ and $|y_n| \leq \delta |c|$ is contained in U. Now take a function $\psi(r)$ such that

$$\psi(r) = -a + c \quad \text{for } 0 \leq r \leq \frac{\zeta}{2},$$

= 0 for $r \geq \zeta$
$$0 \leq \psi(r) \leq -a + c \quad (\text{or } 0 \geq \psi(r) \geq -a + c)$$

Consider the set of varieties N, $t_i - \delta \leq t \leq t_i$, which coincides with $\phi_t \sum S^k_{\mu}$ in M - W and is the sum of two submanifolds

$$y_n = a(t-t_i) + (t-t_i)\psi(y_1^2 + \dots + y_{n-1}^2),$$

$$y_{k+1} = \dots = y_{2k} = 0$$

and

$$y_n = c(t-t_i), \quad y_1 = \cdots = y_k = 0$$

in W. Obviously every N_t has only one self-intersection point y=0, and in the neighborhood $W' = \{y_1 | y_1^2 + \dots + y_{n-1}^2 < \frac{\zeta}{2}, |y_n| < \delta | c |\}$ we have $N_t \cap W' = N_{t_i} \cap W'$. Hence by the same way as in the proof of lemma 3, we see that there is a transformation τ such as $\tau N_{t_i-\delta} = N_{t_i}$. On the other hand, since $\phi_{t_i} \sum_{\mu} S_{\mu}^k = N_{t_i}$ and $N_{t_i-\delta} \subset (\phi_{t_i-\delta} \sum_{\mu} S_{\mu}^k) \cup W \subset U$, we have $\phi_{t_i} \sum S_{\mu}^k \subset \tau U$.

6. Poincaré conjecture for M.

LEMMA 11. For given circles α_i , β_i $(i=1, 2, \dots, p)$ on ∂B_1^5 which do not intersect each others, there is a transformation τ on $B_{1-\delta,1+\delta}^5$ such that $\tau \alpha_i = \beta_i$, $\tau \partial B_1^5 = \partial B_1^5$ and $\tau = identity$ on $\partial B_{1-\delta,1+\delta}^5$.

Proof. Obviously there is a deformation ϕ_t of $\sum \alpha_i$ to $\sum \beta_i$ such as $\phi_t \sum \alpha_i \subset \partial B_1^5$. Hence by the same way as in the proof of lemma 5, we can modify ϕ_t so that ϕ_t is a diffeomorphical deformation of $\sum_i \alpha_i$ to $\sum \beta_i$ and $\phi_t \sum \alpha_i \subset \partial B_1^5$. To prove the lemma it is sufficient to show that there is a transformation τ such that $\tau \phi_b \sum \alpha_i = \phi_a \sum \alpha_i$ where $a, b \in I$ and b-a > 0 is sufficiently small. Choose a covering $\{W_k\}$ of $\phi_a \sum \alpha_i \subseteq \phi_b \sum \alpha_i$ in $B_{1-\delta,1+\delta}^5$ and coordinates x^k so that $W_k = \{x^k \mid |x^k| < 2\}$. Suppose that $\phi_a \sum \alpha_i$ and ∂B_1^5 are written in W_k as $\phi_a \sum \alpha_i = \{x^k \mid x_2^k = x_3^k = x_4^k = x_5^k = 0\}$ and $\partial B_1^5 = \{x^k \mid x_5^k = 0\}$ respectively. Then $\phi_b \sum \alpha_i$ is written in W_1 as

$$egin{aligned} x_j^1 &= f_j^1(x_1^1,b), & j = 2, 3, 4, \ & x_5^1 &= 0, \ & f_j^1(x,b) &
ightarrow 0(b
ightarrow a) \,. \end{aligned}$$

Put

$$y_j^1 = x_j^1$$
 for $j = 1, 5$,
= $x_j^1 + f_j^1(x_1^1, b)\psi(x^1)$, for $j = 2, 3, 4$,

where $\psi(x^1)$ is a C^{∞} -function which takes 0 on W_1 and 1 on $W'_1 = \{x^1 | |x^1| < 1\}$. Then it induces a C^{∞} -transformation in $B^{5}_{1-\delta,1+\delta}$ when b-a > 0 is sufficiently small. Denoting it by τ_1 we see that τ_1 =identity of $B^{5}_{1-\delta,1+\delta} - W_1$ and $\tau_1 \phi_b \sum_i \alpha_i = \phi_a \sum_i \alpha_i$ on W'_1 . We suppose that $\{W'_k\}$ is an open covering of $\phi_a \sum \alpha_i$ where $W'_k = \{x^k | |x^k| \le 1\}$. Similarly to the proof in lemma 3, repeating of the above process for W_2 , W'_2 , W_3 , W'_3 , \cdots , yield the required transformation.

THEOREM 3. If we have $\pi_1(M^5) = \pi_2(M^5) = 0$ for a compact C¹-manifold M, then M is homeomorphic with a sphere S⁵.

Proof. Since any C^r -manifold $(r \ge 1)$ is C^r -homeomorphic with a analytic manifold, we may assume that M^5 is C^{∞} -manifold.

In virtue of lemma 2 we can choose a regular cell U such that $V_c \subset U$ ($\eta_1 < c < \eta_2$) and $\sum L_j^2(c)$ is transversal to ∂U . Then $\sum L_j^2(c) \cap \partial U$ is 1-dimensional submanifold, and it consists of finite regular circles which are denoted by α_{μ} ($\mu = 1, \dots, \nu$). Hence $\sum L_j^2(c) - U$ is the sum of 2-dimensional domains whose boundaries are circles α_{μ} .

Let σ_t and τ_t be maps of M into itself such that

1) σ_t and τ_t are C^{∞} -transformations if t > 0,

2) $\lim_{t \to 0} \sigma_t = \sigma_0$ and $\lim_{t \to 0} \tau_t = \tau_0$ are regular 1-1 in $M - \vec{U}$,

3) $\tau_0 \sigma_0 \alpha_\mu = P_\mu$ and $\tau_0 \sigma_0 \overline{U} = \sum_\mu O P_\mu$, where $P_\mu \ (\mu = 1, \dots, \nu)$ are points on ∂U and 0 is a point in U.

Then the boundaries of every domain are mapped to points by $\tau_0\sigma_0$. Hence $\tau_0\sigma_0(\sum_j L_j^2 - U)$ is the sum of spheres which are regular except for points $\sum P_{\mu}$. We suppose that

4) $\tau_0 \sigma_0(\sum_i L - U)$ is the sum of disjoint regular spheres.

For the moment we shall assume the existence of such maps σ_t and τ_t .

Then it follows from lemma 9 that there is a regular cell W containing these spheres and point 0. Apply lemma 7 for W and $\sum_{\mu} OP_{\mu}$. Then we get a cell W' containing $W \cup \sum_{\mu} OP_{\mu}$, and it follows

 $\tau_0\sigma_0(\sum L_j^2 \cup V_c) \subset \tau_0\sigma_0(\sum L_j^2 - U) \cup \tau_0\sigma_0 U \subset W'.$

Hence if t < 0 is sufficiently small we have

$$\tau_t \sigma_t (\sum L_j^2 \cup V_c) \subset W',$$

namely

$$\sum L_j^2 \cup V_c \subset \sigma_t^{-1} \tau_t^{-1} W'$$
.

Consequintly, according to theorem 1, M^5 is a sphere.

Now we shall show the existence of such σ_t and τ_t .

Let φ be a regular 1-1 map of the ball \overline{B}_2^5 into M such as $\varphi \overline{B}_1^5 = \overline{U}$. We can consider that u is a coordinate system in $\varphi \overline{B}_2^5$, and that U is a ball of radius 1 and center 0. From now on, we put $U_{\gamma} = \{u \mid |u| < r\}, U_{r,r'} = \{u \mid r \leq |u| \leq r'\}$.

Take distinct points P_{μ} ($\mu=1, \dots, \nu$) on ∂U and coordinates u^{μ} in φB_1 such as $u^{\mu} = T_{\mu}u$, where T_{μ} is an element of rotation group in R^5 such as $t(0, 0, 0, 0, 1) = T_{\mu}t_u(P_{\mu})$ where t(0, 0, 0, 0, 1) and $t_u(P_{\mu})$ are transposed vectors of (0, 0, 0, 0, 1) and $u(P_{\mu})$ respectively. Put

$$A_{\mu}(\zeta) = \{ u^{\mu}\,;\, |u^{\mu}_{\mu}|/|u^{\mu}| \leq 2 \zeta\,,\, 1=1,\,2,\,3,\,4 \}.$$

If $\zeta > 0$ is sufficiently small we have

$$A_{\mu}(\zeta) \cap A_{\mu'}(\zeta) = 0 \qquad (\mu \neq \mu').$$

By lemma 10 we may suppose $\alpha_{\mu} \subset A_{\mu}(\zeta/2)$. Furthermore if $\delta(\delta > 0)$ is sufficiently small we have

$$\sum L_j^2(c) \cap \overline{U}_{1-\delta,1+\delta} \subset \sum A_{\mu} \cap \overline{U}_{1-\delta,1+\delta}$$

Take a C^{∞} -function $\psi_{\delta}(y)$ of one variable auch thrt

$$egin{aligned} & \psi_\delta(y) = 1 & ext{for } y \ge 1\,, \ &= \delta & ext{for } 0 \le y \le 1{-}\delta\,, \ &rac{d}{dy}\psi_\delta(y) \ge 0\,, \end{aligned}$$

and define a C^{∞} -map σ_{δ} of U into itself by

$$\sigma_{\delta} u = \psi_{\delta}(|u|) u.$$

Clearly σ_{δ} is a C^{∞} -transformation in U for $\delta > 0$. Furthermore, take three C^{∞} -functions f(y), g(y) and h(y) satisfying following conditions:

$$f(y) = \begin{cases} -\frac{1}{\log y} & \text{if } 0 < y < 1, \\ 0 & \text{if } y \le 0, \end{cases}$$
$$g(y) = \begin{cases} 1 & \text{if } y \le 1 + \varepsilon, \\ 0 & \text{if } y \ge 1 + 2\varepsilon, \end{cases} \quad \frac{dg}{dy} \le 0,$$
$$h(y) = \begin{cases} 1 & \text{if } y \ge \zeta, \\ 0 & \text{if } y \ge 3/2 \cdot \zeta, \end{cases} \quad \frac{dh}{dy} \le 0,$$

where ε is a sufficiently small positive number. For simplicity, we write u instead of u^{μ} . Now we use $u_1, u_2, u_3, u_4, |u|$ as coordinates in U-0. Consider a C^{∞} -map $\tau_t; u \to (u'_t), t \ge 0$, of A_{μ} into itself defined by

16

On Poincaré conjecture for M^5

(13)
$$u'_{i} = (f(|u|-1+t)-1)g(|u|)h(\sum_{i=1}^{4} u/|u|^{2})u_{i}+u_{i}, \quad (i=1, 2, 3, 4)$$
$$|u'| = |u|.$$

Obviously if t>0 is sufficiently small then τ_t is C^{∞} -transformations. If $\sum_{i=1}^{4} u_i^2 / |u|^2 \le \zeta$ and $|u| < 1+\varepsilon$, (13) is written as

(14)
$$u'_{i} = -\frac{u_{i}}{\log(|u|-1+t)}, \quad (i = 1, 2, 3, 4).$$
$$|u'| = |u|.$$

By lemma 11 we may assume that α_{μ} is written as $u_1^2+u_2^2=\zeta^2$, $u_3=u_4=0$, |u|=1. Then $\sum L_{j}^2 A_{\mu}$ is represented as

(15)
$$u_{3} = (|u|-1)f_{3}(u_{1}, u_{2}, |u|), \\ u_{4} = (|u|-1)f_{4}(u_{1}, u_{2}, |u|),$$

where $u_1^2 + u_2^2 = \zeta^2$ and f_3 , f_4 are C^{∞} -functions with respect to $u_1, u_2, |u|$. From $u_1^2 + u_2^2 = \zeta^2$ and (14) we have

(16)
$$|u| - 1 + t = \exp\left(-\zeta/\sqrt{u_1'^2 + u_2'^2}\right).$$

Hence $\tau_0(\sum L_{j}^2 A_{\mu})$ is represented as

Hence u'_4 , u'_4 and |u| are C^{∞} -functions of u'_1 and u'_2 . Thus $\tau_0(\sum L_j^2(c) - U)$ is the sum of regular spheres S_p^2 which do not intersect each other. Hence σ_t and τ_t satisfy (1), (2), (3) and (4). This completes the proof of Theorem 3.

References

- [1] J. Milnor: Sommes de variétes différentiables et structures différentiables des sphères, Bull. Soc. Math. France, 87 (1959), 439-444.
- M. Morse: The existence of polar non-degenerate functions on differntiable manifolds, Ann. of Math. 71 (1960), 352-383.
- [3] H. Yamasuge: On embedding of level manifalds and sphere bundles, Jour. of the Inst. of Polytechnics, Osako City Univ., 11 (1960), 15-30.