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1. Introduction

Let M be a compact, connected differentiable #-manifold of class C~, with
n>1. According to M. Morse [2] there is a non-degenerate function f on M
such that f has just one critical point of index 0 and just one critical point of
index #», which is termed the polar function. The similar way to the proof of
the existence of canonical functions proves that we can modify a polar function
f so that it satisfies the following properties (see [3]):

a) f is a polar function,

b) if P} (j=1,---,n;) are all critical points of index i,

then
2 =fPD=-=FfPL, i=0-,n,
c)
then
Do << 7.

For an arbitrary real number ¢ let V,={PEMI|f(P)<c}, Vi={PEM|f(P)=c}.
Introduce a Riemannian metric on M, ane denote by L§ the set of all ortho-f-arcs
which are stretched to P}, and denote by Li(¢) the set of all points P on Li“-P}
at which ¢<f(P) <f(P%. Then Li(c) is diffeomorphic with an i-dimensional
ball in a euclidean space R:.

By a regular cell in M we mean the image of the open unit ball under a
regular imbedding map of its closure into M.

Suppose that U is an arbitrary regular cell such that 0Li(¢c)c U and Lj(c)
is transversal to @U. Let ry be a C*—map of M into itself such that vy is regular
1-1in M—U and vy(U)=a point in M. If for every Li(c) (j=1,,n; i=1,--,
[#/2]) ruLi(c) is contained in a regular cell, we can show that V. is contained
in a regular cell. Similarly we can show that V{ is also contained in a regular
cell. Hence M is a sum of two cells and thus M is a sphere. (Theorem 1). We
see that if =, (M")=0 (n>>4) then ryL}(c) is contained in a regular cell. Fur-
thermore, when #=5, we can show that if m,(M*®) =0 for every L3(¢) and U then
there is a cell containing ryL3(c), thus we conclude that if 7, (M® =0 and
m,(M*®) =0, then M*® is homeomorphic to a sphere S° (THEOREM 3).

* Deceased Nov. 11, 1960,
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2. The sets L: and Li(c)

Let f be a canonical polar function as in §1. We choose in a neighborhood
U(PY) of Pfa system of coordinates 1, -+, x, so that f is represented in U(P}) as
f=a—23— - —xf+afnt+ -+

By the level manifold of f we mean the set of all points P at which f(P)=c,
where ¢ is an arbitrary real number. Riemann metric into M which is represented
in every U(P)) as dszz‘f_‘. dxi. Then the trajectories orthogonal to the level

k=1

manifolds of f are well defined in M—> Pj. These trajectories are called ortho-
f-arcs on M. The differential equations defining them in U(P%) are

dxp
g =epxp, 1ZE<m,

where ep,=—1 for 1<k<{{ and ¢,=1 for i< k<un. Hence the solution of these
equations is
Xp = CreXp el .

We suppose that the direction of every ortho-f-arc coincides with that of increasing
of f.

If we put ¢;41= -+ =c,=0 and make ¢{— + oo, we have x—0. Therefore, by
putting c¢;+;= -+ =¢,=0 and by considering that ¢, -, c; are variables, we get
all ortho-f-arcs stretched into the critical point Pj. Therefore the set L} of all
points which are in U(P}) and on the ortho-f-arcs stretched into the critical
point P§ is an i-dinensional space :

Li= {xlxj4y = =%,=0, =0},
and the set of points P on Lj“Pj at which ¢<f(P) < f(P}) is written as

Li(e) = &g = =2a=0, ¢ < f(x) < f(PD} .

3. Uhe transformation vy; and the varieties tyL(c).

By a regular cell in M we mean the image of the open unit ball B} under
a regular imbedding of Bf.s;into M(6>0). Denote by V.~ the subset of points
P at which ¢c<f(P)<¢. Then we have

Lemma 1. Assume that all critical points in V.o are of index i and that
Z,Lﬁ(c)UVc is contained in a regular cell. Then V. is also contained in a regular
J

cell.

Proof. For simplicity we assume that f(Pj)=0, c=—¢ and ¢’=e¢. Then, in
terms of a certain coordinates x in a neighborhood U(P}) of P}, f is written as

f=—af— o —aitaio+ o a7,
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Hence in U(P% we have
Vie= {x|—al— - —af+af+ - +2E < £e),
Li(—¢) = &t = =2,=0, —e < f(x) <0} .

Let ¢(#) be a function of one variable # such that

o) =e+% for 0<r<ce,

=y for r=e+d,
0< 20
===<

where ¢ >0 is sufficiently small in comparison with ¢>>0. Consider the set V_g;s
defined as follows: ‘

Vees n(M—3UPH) = Vee n(M—22 U (PH),
Voes AUPYH = (G, 1) | —@(d + o +aD) 42t + - +a2 < —¢) .

Then 0V_.sNU(P) is represented as
(1) =i+ o +aD) Fafat o Fan = —e,

and we have V_E,SC V. As we have already seen, the ortho-f-arc passing through
a given point @ on 9V.\U(P%) is given by

(2) =ae’d, k=1-,n,

where x(Q)=a. Hence the intersection of the ortho-f-arc with 6’17_8,50 U(P) is
obtained by solving the equations (1) and (2). From (1) and (2) we have

(3) —o((at+ - +aDe™™) + (@t - +ad)e” = —e.
Put
g®) = —¢((ai+ -+ +aDe™) + (at+ - +ade” .
The we have
g0) = —¢(at+ - +ad)+atn+ - +ai
= —ai— o —ditdiat o tan=ce.

If +<0 is sufficiently small we have

gt) = —(ai+ - +aDe ™+ (afn+ - +ape
< (@3t o Fad)ett e

Since dit g(#) >0 the equation (3) has the unique solution ¢=£(a)<0. Therefore,
for a given Q€0V. N X U(PL) the intersection of (1) and (2) is a unique point
which we denote by §. Furthermore, for Q €0V.—3 U(P%) the ortho-f-are pas-
sing through @ intersects with @V_. at a unique point which we denote by .
Now we have a correspondence 8V.—0V given by @ >§. This is regular 1—1.

Let ko be the ortho-f-arc connecting two points @ and §, and let d(Q, @)
denote the length of ko between @ and Q' (€ €kg).
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Take a C*-function ¢(r) such that

o) = = 6,7' for 0<r<1-9¢",

= for r =1,

do(r) ., for 7=>0.
dr

Define a C=-transformation o5 : @ — Q" as follows:
oy = identity for M—(Ve—V_ep),

Q9 _ 4 dQ. 9 gor y,_ 7,
d@, Q) a@, Q) ’

From the definition of ¢ and (1) we see that the point x € 17_5,3,-\ U(P%) always
satisfy
gt o 23 <0
or
ot o Fad = —x— o —afdte.

On the other hand, since X7 L{(—e)“ V_; is contained in a regular cell U, we have
J
VoesCU  for sufficiently small 6 >0.

Furthermore, since %}rrg o5’ Ver=V_e5, if 0">>0 is sufficiently small we have
>

05 Ve U and hence V¢, Co5*U. Thus the lemma is proved.

LemMmA 2. Suppose that ;1< c<%; and V. is contained in a regular cell. Then
we can choose a regular cell U such that V.CU and ZL?(C) is transversal to 0U.
J

Proof. Let f be a regular imbedding map of B7:s (6 >0) into M such that
fBT=U. Let {W.}, {W/}} be two sufficiently fine open coverings of 8B7 such that
W.DW/. Consider all sets W, such that > Li(¢) is transversal to OU in fW/};
we arrange these in a sequence Wi, Wi,--, W,. We shall say that a map
f': Wu—M is an approximation of (f, W,, &) if the following is satisfied:

For any u€ W,
o —F4w|< ¢ and |00 00D | o
pyk: 1)"')”’

where (fi, -, fn), (f{, +,f}) are representations of f, f’ in terms of local coor-
dinates x,,::,%,in M. Let f’ be an approximation of (f, Wyyy, &). Put g(xy, -,
*n)=1F"2x)|% Then, from |u|?=ud+ - +u2=1 and x=f'(u), we have

(4 &(xy, -, x0) = 1.
The tangent space of (4) at x=gq is
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2 (6—‘5) . (x—a) =0.

k ﬁxkx

Now we choose a system of local coordinates x so that Li(c) is represented as
X;e1= - =%,=0. If Li(c) is not transversal in f'(W,+,) to the submanifold defined
by (4), there is a point x=a¢=(a;, - ,a;, 0,---,0) such that g(e)=0 and the
tangent space of Lj(¢) at a is contained in that of (4) at a. Sinc the tangent
space of Li(c) at a contains ¢ vectors («,0,--,0), (0,«,0,,0),--,(0,-,0,a,
--+,0) for an arbitrary real number «, we have

g@) =1, a=(a, ,a; 0,--,0),

(%)xza (a—aj>_]§q(%%>x=adﬁ =0, j=1-,3i.

Since « is a variable, it follows that
g(aly YY) 0; )0> = 1,

08 (4 g 0 e 0) = =1, d
(5> %(al, yauo, :0)“0) ]—1, 32

Obviously for a given ¢ >0 there is an approximation f* of (f, Wy, &) for
which the equations (5) have not solution. Let 4(#) be a C*-function which takes
lon Wi and 0 on B}is— Wy Put

1/0/ = fp"‘z(f:/z_fp) 5
and take a map F such that
F=f" on Wi,
=f on Blus— Wy
For a given ¢ >0 we choose ¢ so that F approximates (f, Bi+s,¢). If ¢ is
sufficiently small it holds that F is regular imbedding of B%.; into M and 23 Lj(c)
J
is transversal to F(0BY) in F(HLUIWA) and further F(B})DV.. Hence Y Li(c)
= J
is transversal to F(0B%I~( Ul Wi)). By repreating this process we have the re-
p=1

quired result.

TueoreMm 1. Let U be a regular cell such that 220Li(c)CU and 3 Li(c) is
J J
is transversal to 0U. Let ty be a C*-map of M into itself such that Ty is a diffeo-
morphism on M—U and vu(0) is a point. Assume that every tuyLi(c), i<[n/2], is
contained in a regular cell. Then M is a sphere.

Proof. Suppose that ;< c¢;—<{%i< ;< %;+1, and that V., is contained in
a regular cell U. Then by lemma 2 we may suppose that ; L;(c;—1) is transversal
to OU. Let f be a regular imbedding of B} into M such as fB}=U. Take a
C>-function ¢(#) such that
o) =290 for 0 r<1,
=1 forr=3/2,
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@%ng for 0<r<3/2,

and define a C~-transformation t§ on B% by
tiu = ¢(luu.

Define a map 75 of M into itself as follows:

Ty = fryf on f(B"p),
=1 on M—f(B"y.) .

Then we see that 75 (6 >0) are C®-transformations on M. Put r,=ty, then

ry is a diffeomorphism on M—U and 7ryU is a point. By the hypothesis there

is a regular cell U’ which contains to( Li(c;i) Y Ve, ) Cru(X Lile;—) Y U) =
k k

tu(C] Li(c;—)). Since %11’51 ts=7y, if 0 >0 is sufficiently small we have
k ->

T8 (Zk: L;;(ci—l) g Vci—-l) iy ’
and so
D L)Y Ve, T3t
k

Hence, by lemma 1, V,; is contained in a regular cell. Obviously V., is a regular
cell and so induction proves that V.. .. is contained in a regular cell.

Now consider the function —f(P) instead of f(P). Then it is obvious that
P77 are the critical points of —f(P) with index i. Hence, putting P} i=P"}
and —7.—;=7i, we see that —f(P"7*) =7y and ;%< <yn. Hence —f(P)
is also a canonical polar function on M. Furthermore, putting —c,—;—1=c¢j—;, we
have

V/

Ctn/23

= {PIf(P) =z c,,,} = {P|—f(P) = —ccwm} .
= {P|—f(P) < Cn~(n/2)-1} C AP —f(P) < c'twrna} «

Therefore V| is also contained in a regular cell. Thus M is the sum of two

CCn/23
cells. Thus M is the sum of two cells, and according to [1] it is homeomorphic
with a sphere.

By a singular k-sphere in M we shall mean the image under a C’map of S*

into M, where S* is the unit k-sphere in R**',

TureoreM 2. If any singular k-sphere (k<[n/21) in M is contained in a cell
then M is a sphere.

Proof. We can modify the canonical polar function f so that f(P%) <f(P;*")
for j=1,-,m;, k=1, ,n;1y, and fF(P}) < f(Pj+) for j=1,---,n;—1. We arrange
f(PY in the sequence &< &< -, and we put Pj=P,, Li(¢c)=Lu(c) if fF(P})=Cu.
Suppose that &, 1< cu<&u<tpr1< Cu+1 and Ve, is contained in a cell. Then there
are two cells U”, U” and real number c(y,.< c< c,) such that Ve, U, U'C U”
and 0L.(c) T U’. Let ¢ be a homeomorphism of U” onto B}. Then we have
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¢0L.(c) T oU < U’ C B,

so that there is B} (»<{1) which contains ¢U’. Denote by (0, ¢0L.(c)) the set
of all points which are on segments connecting the origin 0 to points of ¢0L.(c).
This is a cone in B, and is a continuous image of a ball whose dimension is
equal to dim L,(c). Hence L,(c)“Y¢ %0, ¢0L.(c)) is a simgular sphere in M.
Define a transformation a; on B} as follows:

as(u) = Q:l(lul—l)—klu for r<|ul <1,
r—1
= Ou for 0 lul Zr.

(6)

«, is not a transformation in B}, but it is a continuous map of B7 onto itself.
From Lu(cw)Z Ly(c) and V., CU’, we have

Lu(ew) ¥ Ve, CLu(0) Y U .

Since a@;=identity on 0B, it follows that ¢asp=identity on 8U”. Hence we
may consider that ¢ 'asp (0==0) is a transformation on M and that ¢~'a,p is a
continuous map of M into itself. Now we see

¢ ayp(Lu(ew) Ve C ¢ aop(Lulc) Y U)
= ¢ Lu(c) ¥ ¢t alU’
C ¢ apLu(c) ¥ ¢~'ayB,
= ¢ 'apLu(c) Y ¢7(0),

and
¢l (Lu(e) ¥ ¢7(0, ¢0Lu(c)))
= ¢ aopLyu(c) ¥ ¢ (0, OLu(c))
= ¢ laopLu(c) Y 7 (0),
so that
(7) ¢t (Lu(ew) ¥ Ve,) C ¢ aop(Lu(e) Y ¢71(0, 90Lu(0))) .

By the hypothesis, if dim L.(c.) g[%], the singular sphere ¢ layp(L.(c)"
¢7*(0, ¢@L.(c))) is contained in a cell. Hence it follows from (6) and (7) that
if 6>>0 is sufficiently small ¢™'a;¢(Lu(cu) ™ Ve,) is contained in in a cell and so
Lu(cu)YVe,, isina cell. Therefore, by Lemma 1, V.,  is in a cell. Clearly V,
is in a cell, and hence induction proves that V., is in a cell, where P, is the
critical point of index [%] and P,y is that of index [%]+1. If we consider —f
instead of f, the same way as in the proof of Theorem 1 proves that V=
{Plf(P)=c¢)} is also in a cell. Thus M is the sum of two cells, and consequently

M is a sphere.

4. Diffeomorphical deformations

Let N, be a closed C~-submanifold of M, and let N'=N,xI be the product of
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N, and I, where I denote the closed interval [0,1]. N’ is a C*-manifold. Let f
be a C=-map of N’ into M such that each ¢; is a regular 1-1 map of N, into M
and Ny=¢,(N,), where we put ¢,(P)=f(P,t) for PEN, and t€I. Then N;=¢,(N,)
is a C”-submanifold in M. In this section we say that the set of maps ¢;, £€],
forms a diffeomorphical deformation of N, onto N;. We say also that ¢, is a
diffeomorphical deformation of N, to the points P, (u=1, ---, k) if each ¢, (0<¢<1)
is a regular 1-1 and X P.=%,(N,) is a finite sum of points.

LemMA 3. If ¢ is a diffeomorphical deformation of N, to Ny, then there is a
C=-transformation on M which maps N, onto N,. '

Proof. To prove this lemma it is sufficient to show that there is a C*-trans-
formation which maps N, onto N, when 6—a >0 is sufficiently small.

Choose two coverings {W;} and {U;} of N, N, and a system of local coordi-
nates x¢ in a neighborhood of U; so that W;CU; and N, is represented as
Xpei= - =x5=0. Then N, is written as

who = fu@f, o2, 0), p=p+l -, n,
Sfulal, 25,00 >0 (b—a).
We suppose that
W:= (x| <1} and U; = {x] |x¢| L2} .

Take a C»-function ¢(x?) such that ¢(x?)=0 for |x?|<1, and =1 for |x7|=2.
Put

(8) Vb= xh A fulal o xh, 009G, n=1,,n.
Then we see that if |f.| are sufficiently small then the map defined by (8) is a
C>-transformation on U, which is the identity on 0U,. Denote it by =,, and
extend it over M by setting 7,=identity for M—U,. Then we have
Ny =N, in W,.

Clearly 7,N, is represented as

xh=fL (af, - ,xk;0), for p=p+1,-,n
where

fulat, 255 0) >0 (0 —~a)
and i, % 0) =0 for (xf,-,xp) € W,.

Let 7, be a map represented by
yi=xi, forpu=1-,p
=xi+ i3, 22, 0)¢x), for p=p+1,-,n.
Then 7, is a C”-transformation such as
Ny = N, in W, Y W;.
By applying the above process for W,, W,, -, W,,, we have
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TmNb = Na .

Thus the lemma is proved.

5. Regular sphares S* in M.

LeEmMA 4. Suppose that wy(M) =0 and 2k+1<n. Then for given regular spheres
Sk there is a diffeomorphical deformation ¢; of S* to the sum of points.

Proof. We shall divide the proof into the following three parts.

a) Let ¢ be the regular 1-1 map of 0B}*' onto S¥, and = be the projection
of B{*'—0 onto &B4** by the radii of B{*. For an arbitrary point P in By,
we define ¢P to be ¢nP. Then it follows from the hypothesis that there is a
continuous extension of ¢ over B}{*'. We denote it by the same notation ¢.
We choose two coverings {(U;}, {U};} (i=1,.-,p) of B¥t',, such that U; DU},
YU;Z B¥*'};, and each ¢U; is contained in neighborhood for which a system of
local coordinates is defined. Let #}+ - +u?1,=1and £(P) be the distance between
P and the origin. Then we can take u,(wP), -+ ,ur(wP), t(P) as coordinates of P
in U,. Let x,:-x, be a system of coordinates in a neighborhood of ¢U,. Then
¢ is written in U, as

xXj ‘—‘fi(ua t)» U = (uly"':uk) 5 .7 = 1; »n.
Let fj(u,t) be a C=-functions which approximates (f; U;, ¢) where ¢ >0 is suf-
ficiently small. Let A(u,¢) be a C>-function which takes 1 on U/ and 0 on
U,—U{’, where U,DUY{’, U{!D04{. Put
f5y =fitd(fi—1i

and define ¢’ as

I

'=f"  onU
@

on Bit'*-U,.

where f” is the map defined by
xj=fi(u,t).

Then ¢! is a C=-map in U4 and ¢'=¢ on B{*'—U,. Applying the above process
to ¢!, U, and U} instead of ¢, U, and Ui, we have ¢® such that ¢? is a C*-map
in U{Y U4 and ¢*=¢ on B{"'—(U,YU,). By repeating these, we have ¢, ¢, .-,
¢*; ¢* is a C*-map of B{*' into M such that ¢*=¢ in B**%,,. Thus the map ¢
of B¥*l,, is extended to a C~-map of B{*' into M. The extended map will be
denoted by the same notation ¢. It is written in U as

xj = gi(u, t)
where g; are C”-functions of #,f. We remark that ¢* is regular 1-1 on every

0B+ (1/2<t<1) (see the construction of ¢*). We write simply ¢ instead
of ¢*.
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b) Consider the equations
@M: Xp) _ =0,
a(”l sty Up—1, uk)
(]'7 = 1, 27 :n_k+1) .

Since n—k+1>k+1 it follows that the number of the the equations is greater
than that of the unknowns. Hence, for an arbitrary ¢ >0, we can take gj(u, )
so that |g;—g}l< ¢ and there is p, satisfying

a(gly ’gla—ly gp0> 4 0.
) 0(“13 oy Up—1, uk)
Let 4(u, t) be a C™-fonction in U, which takes 1 on U{ and 0 on U,—UY’, where
U,D0{, UyDU4. Put

gi=gi+a(gi—gi);
and define ¢! by
t=g” in U,
=9 in B{*'-U,,

where g” is the map defined by

4

=g ).

Then ¢' is regular on every OBl*![YU,. Applying the above process to &, '
and U,, we have ¢? such that ¢? is regular on 9B!*'~(U{~U}%) and ¢’=¢ on
B}*'— (U,YU,). By repeating this process we have ¢!, ¢% -, ¢*; ¢* is regular
on every 0B{™ and is equal to ¢ on B¥",;. For an arbitrary £'>>0 we can
choose ¢, &', &%, --- so that ¢* approximates (¢, B{*', ¢) and hence from the fact
that ¢ is regular 1-1 on every 0B} (%gtgl), if ¢ is sufficiently smal it is

hold that ¢* is regular 1-1 on every 0B}+! (%gté 1). This is shown as follows.
Suppose that for ¢ >¢” > —0 there is a sequence ¢’, ¢”, which approximate
(¢, B¥*yp1, &), (¢, B¥Yy1,87), - and are not regular 1-1 on some OB}*!
(%_S_tgl). Then there is a sequence ¢, 4, - —>a (2 <; <1, 1 Sa<1> such
that ¢’, ¢”, -+ are not regular 1-1 on 9B}, 9B}, -, respectively. By 7, denote
the projection of 0B*' on 0B%!' by radii of B{**. Then, in terms of the local
coordinates #,, - ,%r, 7, is written as #j=u;, i=1,---, k. Hence ¢'m, ¢'m,, -
approximate (¢, 8B5™,¢), (o, 0B, ¢, --- respectively and they are not regular
1-1 on 0Bj*'. On the other hand ¢ is regular 1-1 on dB£", and hence it follows
that ¢, is regular 1-1 on OB+ if ¢ is sufficiently small. We write simply
¢ instead of ¢*.
c) Let {U;}, {U}} be two open coverings of B**',,; we choose them so that
U;,DU0;, YU, B**Y,,, and if U; and U, have common points then ¢ is 1-1 on
OB~ (U;YUy). Consider all sets U;Y U, with U; ~U,=0, and arrange them in
a sequence W,, W,, . Take ¢ so small that any approximation map ¢  of (¢,
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B ¢) is regular and 1-1 on each #Bt'~(U;YU;) for which U;~U,=+0. Let
u,t and #’,t be coordinates in U; and in U, respectively, and let x,--x, be
coordinates in a neighborhood containing ¢(U;“U,). Then ¢(0Bi*~U;) and
¢ (0B A U,) are written as

xj=filu, t), xj= gi(w,t)
respectively. Consider the equations

(9) filu, 1) = giw/, 1), j=1,-,nm.

Since »_>2k+1, it follows that the number of the equations is greater than that
of the unknowns. Hence, for a given ¢, 0< &< ¢ there are C~-functions f}, g}
such that fj approximates (fj, W,,¢) and g} approximates (g;, Wy, ¢), and
Sfi(u, t)=g5’,t) have no solution. Let A(w,¢) be a C~-function which takes 1
on U} and 0 on U;—U}’, where U; DU}, UyDU}. Let X(«,t) be a C>-function
which takes 1 on U; and 0 on U,—Uj}/, where U,DU}, UyDU,. Suppose
W,=U;“ Uy, and put

£y =fivi(fi—1,
_l._

gy =gith(gi—gi) .
Define ¢' by
=f” in U,
=g” in Upg,

=g in B{*'—U;—U,,

where f” and g” are the maps defined by x;=/;(«, t) and x;=g;(«, t) respectively.
Then ¢! is regular 1-1 on every 0B!*'~ W, and

ot =g on Biti-—W,.

Applying this process to ¢', W, instead of ¢, W,, we have ¢* which is regular
1-1 on every 0B~ (W{"“ W)) and satisfies

¢=¢ in B{i"'-W,—W,.

By repeating such process, we have an approximation ¢¥ of (¢, B}t ¢) which

is regular 1-1 on every 9B}t og_tg%, and =¢ on B*'y, ;. Since ¢ is regular

1-1 on every 0B!*, %gt_g_l, and ¢" approximates (¢, B, ¢, it follows that
¢” is regular 1-1 on every 0B/, 0<¢<1.

Put ¢,=¢'n,0B!*!, where n; is the projection of 0Bi*!' onto #B}*' by the
radii of the ball B4*'. Then ¢; is the required deformation.

LemMa 5. If m,(M™) =0 (k+1<m), then for given disjoint regular spheres
St (u=1,---,v) there is a diffeomorphical deformation of XS} to the sum of points
2P,



i2 Hiroshi YaMAsUGE

Proof. In virtue of lemma 4, for every S{ there is a diffeomorphical defor-
mation ¢, ; of S to P.. Let S*= {u|ui+ --- +uf+,=1} be the unit sphere in R**1,
and let ¢, be a diffeomorphism of S* onto Si. Let {U;} be a sufficiently fine
open coverings of Sk. If ¢, .:Si~®.:Sk=F0 the equation

Bu,ebu(@) = b ), w€U;, w €U,

has a solution for some 7 and k. In therms of local coordinates x in M, the above
equation is written as

ff(uy t) = gj(u/, t)y j = 1, L

10 lul = lu'] = 1.

It follows from the hypothesis that the equations (10) have no solution when
t (t=0) is sufficiently small. Since the number of these equations is greater
than that of unknowns, by the similar way to (c¢) in the proof of lemma 4 we
can modify @, ; so that ¢, ;S b Sir=0 if x=F4/. Put ¢;=¢(tx), x €0B4{™ . Then
¢, is a desired diffeomorphical deformation.

By making use of lemma 3 we have immediately

LEMMA 6. If mp(M™) =0 (n=2k+1), then arbitrary disjoint regular spheres
Eu=1,--,v) in M are contained in a regular cell in M.

LemMA 7. Suppose that w,(M™) =0 and that n=5. Then, for a given regular
cell U and disjoint arcs a, (u=1,---,v) such that every o, is transversal to 0U and

v
Oa, C U, there is a regular cell containing UY (Mgl R

Proof. Put X a,—U=XB;, every B3; being a connected component of 3} a— U.
Take a point P in U, and connect the two points 08; by a certain regular arc 7;
such that y;C U, P€y;. We can take 7; so that $3;Y7; is a regular circle in M
and (B;Y7,) (Br“7r)=P if i==k. Moreover we see that for a given neighborhood
W of Yr; there is a transformation ¢ in M such that sUC W and ¢ 33 (8;%7) =

; (B:“7:). Hence if there is a cell U’ which contains tZ (B:¥7), then we have
o(Xa;VU) =BV TR WU’
and hence 1 ‘ '
;Y UC U’
The existence of the cell containing ‘Z (B;~r:) is shown as follows. Accord-

ing to lemma 6, every B;“7; is in a regular cell. Hence there is a regular disk
D such as 0D=p3;Y7;. Since n>=>5, it is easy to see that D; has no self-intersection
and that D; D,=P (i-Fk) if E‘JD,- is in a general position. Then for a given
cell U’ containing P there is a transformation = such that ¢ 3 D; U’. Hence

X,] DC7'U’ and it follows that 3} (8;Y7r,)) Ct~'U’. Thus the lemma is proved.
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LemMma 8. If dim M=5 and if c< 7., then V. is contained in a regular cell.

Proof. Consider Lj(co)“~ V¢, 70<co<w:. Then, since V,, is in a regular cell,
it follows from lemma 6 that 23L(c,)~ V., is in a regular cell. Hence by lemma 1
we get the required result.

LemMMA 9. Suppose that n=2k+1 and that m,(M™)=0. Then for given disjoint
regular spherves Sk (u=1,-,v) there is a deformation ¢: of HZS,’i to the sum of
points 27 Py such that

D ¢t(ZM] SE) has no self-intersection if t==t; (i =1, -, m),

2) for every t;, ¢,i(§_; St) has only one self-intersection point.

Proor. This is proved in the same way as in the proof of lemmas 4 and 5.

Clearly (a) and (b) hold in this case. Now the equations (9) and (10) in (¢)
becomes

ff(u’ t) = gf(u/’ t)’ j = 1: a :2k+1

(11> U = (”1""’uk), W = (u,""u>'

Since in (11) the number of the equations is equal to that of the unknowns, it
follows that for a given ¢>0 there are approximations f} and g} of (f;, Wi, O
and (gj, Wi, ¢) such that the number of the solutions of the equations f}(u, )=
g, t) are finite in W,. Now the same way as in (c) proves the required result.

LemMmA 10. If #=2k+1, 7;(M") =0 and z,(M")=0, then arbitrary disjoint
regular spherves St (u=1, - ,v) in M are contained in a regular cell.

Proof. According to lemma 8, there is a deformation ¢; of Z_,‘Sﬁ to MEP,;
such that ¢,§,S{i is regular except for ¢=t,,--,#;, and ¢;, > S{ has only one

self-intersection point P;. Hence, in virtue of lemma 1, in order to prove lemma 9
it is sufficient to verify that if ¢, >  S% is contained in a regular cell for every
"

/
t<t;, then ¢,i§ St is also contained in a regular cell. Choose local coordinates

x such that x(P;)=0 in a neighborhood of P. Then we may consider that in
this neighborhood ¢; ; St is the sum of the following two k-planes:

k
xj = a;j(t—t;) +1§1b§’x1, ,

(12)
&
xj = c;j(t—1;) +Z}1d§’x1, ,
where j=k+1,-,n and the determinant of the matrix of the coefficients in the
equations

k
X B—dDx, = (cj—a) (t—t)
j = ]_, 2’ 0

is not 0. Choose coordinates axis y,,y, so that y,,--,y, are on the plane
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k k
xi=§1b§’xp (j=Fk+1,--,#n) and yg+1, -, y2r are on the plane xj=};‘1d’j’xl, (j=k+1,
--,n). Then (12) becomes

Yn=al—1t;), Ve = =¥ =0,

In=cl=t), y==m=0.
Suppose that |al<|¢], and consider a segment defined by y;=0 (j=1,-,n—1)
and |y,|<(dlcl. By lemma 7 there is a regular cell U containing ¢;,—s2 Si and
the segment. Therefore if ¢ >0 is sufficiently small the set W of point y for
which »3+ -+ +35,<¢ and |y,|<dlc| is contained in U. Now take a function
¢(r) such that

¢@r) = —a+c for 0_§_r§—g—,
=0 for r =>¢
0 9(r) L —a+te (or 0=¢(r)>=—a+c).
Consider the set of varieties N, #;—0<t<¢#;, which coincides with ¢, >} Sk
in M—W and is the sum of two submanifolds
In=al—t)+E—tDP(A+ -+,
Yerr == Y =0
and
In=cl=t), ==y =0
in W. Obviously every N; has only one self-intersection point y=0, and in the
neighborhood W= {ylly%+...+ygﬂ<%, |y21<8lcl} we have Ny W'=N;, ~ W
Hence by the same way as in the proof of lemma 3, we see that there is a trans-

formation r such as tN;_s=N;. On the other hand, since ¢ti§S[2=Nt,~ and

Ni;s © ($s,-5 ; SEY W U, we have ¢, 23 SECtU.

6. Poincaré conjecture for M.
Lemma 11. For given circles a;, 8; (i=1,2, -, p) on B3 which do not intersect
each others, there is a transformation © on B3 s .vs such that va;=B;, t0B}=0B} and
t=identity on 0B} s1s.

Proof. Obviously there is a deformation ¢; of X a; to X1 B; such as ¢; 2 «a;
C 0B}. Hence by the same way as in the proof of lemma 5, we can modify ¢;
so that ¢; is a diffeomorphical deformation of ‘Zai to 2383; and ¢, 2] a; C OB},
To prove the lemma it is sufficient to show that there is a transformation = such
that 7, 3 a;=¢, 2 @; where a, b€l aud b—ag >0 is sufficiently small. Choose a
covering {Wy} of ¢, 2 ;Y92 a; in B} 5,45 and coordinates x* so that W=
{x*| |x%|< 2}. Suppose that ¢,> «; and @B} are written in W, as ¢, > a;=
{x*|¥f=x4=xf=xt=0} and OB}= {x*|xt=0} respectively. Then ¢, Y a; is written
in W, as
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2= 1L 0, 7=28,4,
x2=0,

fi, ) = 00b—a).
Put
yi=ux5 for j=1,5
=2+ 13, D)),  for =234,

where ¢(x') is a C=-function which takes 0 on W; and 1 on Wi={x'||x'|<1}.
Then it induces a C~-transformation in B§_5,1+5 when b—a >0 is sufficiently small.
Denoting it by 7, we see that v,=identity of Bf 55— W, and 7.9, 20 a;=6¢, 2" ;
on Wi. We suppose that {W},} is an open covering of 9,2 a; where W;=

{x¥| |x%|<1}. Similarly to the proof in lemma 3, repeating of the above process
for W,, W4, W,, W4, ---, yield the required transformation.

THEOREM 3. If we have n,(M®) =m,(M®)=0 for a compact C-manifold M, then
M is homeomorphic with a sphere S°.

Proof. Since any C”-manifold (»>>1) is C’-homeomorphic with a analytic
manifold, we may assume that M?® is C*-manifold.

In virtue of lemma 2 we can choose a regular cell U such that V.C U (n<C
c< 7, and X L3%(c¢) is transversal to 0U. Then X Li(c) ~0U is 1-dimensional
submanifold, and it consists of finite regular circles which are denoted by au
(u=1,--,v). Hence X L¥c¢)—U is the sum of 2-dimensional domains whose
boundaries are circles «,.

Let o; and 7; be maps of M into itself such that

1) o; and v; are C*-transformations if #>0,

2) lt1_>n;1 =0, and }Eon 7s=1, are regular 1-1 in M—U,

3) 70u=P. and 70U =§ OP,, where P, (=1, ---,v) are points on 80U and
0 is a point in U.

Then the boundaries of every domain are mapped to points by 7.,. Hence
7000 (23 L%—U) is the sum of spheres which are regular except for points X Py.
We sjuppose that

4) 70o(23L—U) is the sum of disjoint regular spheres.

For the Ijnoment we shall assume the existence of such maps o¢; and 7;.

Then it follows from lemma 9 that there is a regular cell W containing these
spheres and point 0. Apply lemma 7 for W and MZ OP.. Then we get a cell W’

containing W“X)OP,., and it follows
o
TGO LYY Vo) Cre0e(C L3—U) ¥ ryoUC W
Hence if ¢<0 is sufficiently small we have

re (LY V) C W,
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namely
LY V.ol W
Consequintly, according to theorem 1, M® is a sphere.

Now we shall show the existence of such o¢; and ;.

Let ¢ be a regular 1-1 map of the ball Bj into M such as ¢B{=U. We can
consider that # is a coordinate system in ¢B§, and that U is a ball of radius 1
and center 0. From now on, we put Uy={u||u|<r}, U, = {ulr <lu|<7r'|.

Take distinct points P. (u=1,---,») on 8U and coordinates #* in ¢B; such
as u*= Tuu, where T, is an element of rotation group in R® such as (0,0, 0,0, 1)
= Tu'u(P.) where (0,0,0,0,1) and ‘u(P.) are transposed vectors of (0,0,0,0, 1)
and u#(P,) respectively. Put

Au(©) = (w5 lull /1w <26, 1=1,2,3, 4}.
If ¢>>0 is sufficiently small we have
A A Aw(© =0  (a==p).
By lemma 10 we may suppose &, C An(¢/2). Furthermore if 6(6>0) is suffici-
ently small we have
DL A Uis,1408 T Aw A Urs s -
Take a C=-function ¢s(y) of one variable auch thrt

¢s(p) =1 for y=1,
=§ for0<y<1-7,

%%(y)go,

and define a C*-map g5 of U into itself by
osu = gs(lulu .

Clearly o5 is a C=-transformation in U for 6 >0. Furthermore, take three C*-
functions f(»), g(») and k(y) satisfying following conditions :

1 .
—_— if 0 1,
F(y) = { Tog y <r<
0 if y<0,
1 if y<1+e,
sn={ ds <,
0 if y=>1+2:, dv
1 ify>ec,
h(y) = { dh .
0 if y=3/2.¢c, 4y

where ¢ is a sufficiently small positive number. For simplicity, we write # instead
of u*. Now we use u,, s, 43, #,, |#| as coordinates in U—0, Consider a C*-map
trsu—> (u}), t=0, of Ay into itself defined by
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) wi = (FQul =110 =DgluDhCS u/ lu|Dus+ur,  (=1,2,3,4)
lw'| = lul .
Obviously if ¢ >0 is sufficiently small then 7; is C”-transformations. If ﬁ]lu%/

lu]?<¢ and |u|<1+4e, (13) is written as

r— U; 7 —
(14 u} Tog (| =155)° (1=123,4).
lu'| =1lul.
By lemma 11 we may assume that a. is written as #2+u3=¢2, u,=u,=0, |u|=1.
Then Y L%~ A. is represented as
us = (lul =1 fs(ur, uz, ul),
uy = (Jul =D fiCuy, u, lul),

where u3+uf=¢® and f,, f, are C~-functions with respect to #., #., l#|. From
ul+u3=¢ and (14) we have

(15)

(16) lul =14+t = exp (=¢/vu3+uw3) .
Hence 7,(20 L3~ Au) is represented as
Wy =vui+u3/Cexp (—C/vV Uit u'}
X I Gl /v Wi+ u's, Cus/vui+u}, L+exp (—C¢/Vu5+u'd)
(k=23,4).

Hence i, u; and |«| are C*-functions of #{ and u3. Thus 7,(X_ L3(¢)—U) is the
sum of regular spheres S which do not intersect each other. Hence ¢; and 7;
satisfy (1), (2), (3) and (4). This completes the proof of Theorem 3.
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