Journal of Mathematics, Osaka City University, Vol. 12, No. 1-2.

On Poincaré conjecture for **M ⁵**

By Hiroshi YAMASUGE*

(Received November 5, 1961)

1. Introduction

Let M be a compact, connected differentiable n-manifold of class C^{∞} , with $n > 1$. According to M. Morse [2] there is a non-degenerate function f on M such that f has just one critical point of index 0 and just one critical point of index *n*, which is termed the *polar function*. The similar way to the proof of the existence of canonical functions proves that we can modify a polar function f so that it satisfies the following properties (see $[3]$):

- a) f is a polar function,
- b) if P_j^i ($j = 1, \dots, n_i$) are all critical points of index *i*, then

$$
\eta_i = f(P_1^i) = \cdots = f(P_{n_i}^i) , \quad i = 0, \cdots, n ,
$$

c)

then

$$
\eta_0\!<\!\eta_1\!<\!\cdots\!<\!\eta_n\,.
$$

For an arbitrary real number c let $V_c = {P \in M | f(P) \le c}, V_c' = {P \in M | f(P) \ge c}.$ Introduce a Riemannian metric on M, ane denote by L_j^i the set of all ortho-f-arcs which are stretched to P_j^i , and denote by $L_j^i(c)$ the set of all points P on $L_j^i \cup P_j^i$ at which $c \leq f(P) \leq f(P_j^t)$. Then $L_j^i(c)$ is diffeomorphic with an *i*-dimensional ball in a euclidean space $Rⁱ$.

By a *regular cell* in *M* we mean the image of the open unit bail under a regular imbedding map of its closure into M.

Suppose that U is an arbitrary regular cell such that $\partial L_j^i(c) \subset U$ and $L_j^i(c)$ is transversal to ∂U . Let τ_U be a C^{∞} -map of M into itself such that τ_U is regular 1-1 in $M-U$ and $\tau_U(\bar{U})=$ a point in M. If for every $L_j^i(c)$ $(j=1,\dots,n; i=1,\dots,$ $\lceil n/2 \rceil$) $\tau_U L_j^i(c)$ is contained in a regular cell, we can show that V_c is contained in a regular cell. Similarly we can show that V_c is also contained in a regular cell. Hence M is a sum of two cells and thus M is a sphere. (Theorem 1). We see that if $\pi_1(M^n) = 0$ $(n>4)$ then $\tau_U L^1_1(c)$ is contained in a regular cell. Furthermore, when $n=5$, we can show that if $\pi_2(M^5)=0$ for every $L_j^2(c)$ and *U* then there is a cell containing $\tau v L_1^2(c)$, thus we conclude that if $\pi_1(M^5)=0$ and $\pi_2(M^5)=0$, then M^5 is homeomorphic to a sphere S⁵ (THEOREM 3).

^{*} Deceased Nov. 11, 1960.

2 Hiroshi Y AMASUGE

2. The sets L_j^i and $L_j^i(c)$

Let f be a canonical polar function as in § 1. We choose in a neighborhood $U(P_j^i)$ of P_j^i a system of coordinates x_1, \dots, x_n so that f is represented in $U(P_j^i)$ as

$$
f = a - x_1^2 - \cdots - x_i^2 + x_{i+1}^2 + \cdots + x_n^2.
$$

By the *level manifold* of *f* we mean the set of all points *P* at which $f(P) = c$, where c is an arbitrary real number. Riemann metric into M which is represented in every $U(P_j)$ as $ds^2 = \sum_{k=1}^n dx_k^2$. Then the trajectories orthogonal to the level manifolds of *f* are well defined in $M - \sum P_j^i$. These trajectories are called *orthof-arcs* on *M*. The differential equations defining them in $U(P_j)$ are

$$
\frac{dx_k}{dt} = \varepsilon_k x_k, \quad 1 \leq k \leq n,
$$

where $\varepsilon_k=-1$ for $1\leq k\leq i$ and $\varepsilon_k=1$ for $i\leq k\leq n$. Hence the solution of these equations is

$$
x_k = c_k \exp \varepsilon_k t.
$$

We suppose that the direction of every ortho-f-arc coincides with that of increasing of f .

If we put $c_{i+1} = \cdots = c_n = 0$ and make $t \to +\infty$, we have $x \to 0$. Therefore, by putting $c_{i+1} = \cdots = c_n = 0$ and by considering that c_1, \cdots, c_i are variables, we get all ortho-f-arcs stretched into the critical point P_j^i . Therefore the set L_j^i of all points which are in $U(P_i)$ and on the ortho-f-arcs stretched into the critical point P_j^i is an *i*-dinensional space:

$$
L_j^i = \{x \mid x_{i+1} = \cdots = x_n = 0, \ x \neq 0\},
$$

and the set of points *P* on $L_j^i \cup P_j^i$ at which $c \leq f(P) \leq f(P_j^i)$ is written as

$$
L_j^i(c) = \{x \mid x_{i+1} = \dots = x_n = 0, \ c \leq f(x) \leq f(P_j^i)\}.
$$

3. Uhe transformation $\tau_{U, \delta}$ and the varieties $\tau_U L(c)$.

By a regular cell in M we mean the image of the open unit ball B_1^n under a regular imbedding of $B_{1+\delta}^n$ into $M(\delta) > 0$. Denote by $V_{c,\,c'}$ the subset of points *P* at which $c \leq f(P) \leq c'$. Then we have

LEMMA 1. Assume that all critical points in $V_{c,c'}$ are of index i and that $\sum L_j^i(c) \cup V_c$ is contained in a regular cell. Then $V_{c'}$ is also contained in a regular *cel!.*

Proof. For simplicity we assume that $f(P_j^t) = 0$, $c = -\varepsilon$ and $c' = \varepsilon$. Then, in terms of a certain coordinates *x* in a neighborhood $U(P_j^i)$ of P_j^i , *f* is written as

$$
f=-x_1^2-\cdots-x_i^2+x_{i+1}^2+\cdots+x_n^2\,,
$$

Hence in $U(P_1^i)$ we have

$$
V_{\pm \varepsilon} = \{x \mid -x_1^2 - \cdots -x_i^2 + x_{i+1}^2 + \cdots + x_n^2 \leq \pm \varepsilon\},
$$

$$
L_j^i(-\varepsilon) = \{x \mid x_{i+1} = \cdots = x_n = 0, -\varepsilon \leq f(x) \leq 0\}.
$$

Let $\varphi(r)$ be a function of one variable r such that

$$
\varphi(r) = \varepsilon + \frac{\delta}{2} \quad \text{for} \quad 0 \le r \le \varepsilon,
$$

$$
= r \quad \text{for} \quad r \ge \varepsilon + \delta,
$$

$$
0 \le \frac{d\varphi(r)}{dr} \le 1,
$$

where δ >0 is sufficiently small in comparison with ϵ >0. Consider the set $\tilde{V}_{-\epsilon,\delta}$ defined as follows :

$$
\widetilde{V}_{-\varepsilon,\delta} \cap (M-\sum U(P_j^s)) = V_{-\varepsilon} \cap (M-\sum U(P_j^s)),
$$

$$
\widetilde{V}_{-\varepsilon,\delta} \cap U(P_j^s) = \{ (x_1, \dots, x_n) | -\varphi(x_1^2 + \dots + x_i^2) + x_{i+1}^2 + \dots + x_n^2 \leq -\varepsilon \}.
$$

Then $\partial \tilde{V}_{-\epsilon,\delta} \cap U(P_j)$ is represented as

(1)
$$
-\varphi(x_1^2 + \cdots + x_i^2) + x_{i+1}^2 + \cdots + x_n^2 = -\varepsilon,
$$

and we have $\tilde{V}_{-\epsilon,\delta} \subset V$. As we have already seen, the ortho-f-arc passing through a given point Q on $\partial V_{\varepsilon} \cap U(P_{\varepsilon}^{i})$ is given by

$$
(2) \t\t x_k = a_k e^{e_k t}, \t k = 1, \cdots, n,
$$

where $x(Q) = a$. Hence the intersection of the ortho-f-arc with $\partial \tilde{V}_{-\varepsilon,\delta} \cap U(P_j)$ is obtained by solving the equations (1) and (2). From **(1)** and (2) we have

(3)
$$
-\varphi((a_1^2 + \cdots + a_i^2)e^{-2t}) + (a_{i+1}^2 + \cdots + a_n^2)e^{2t} = -\varepsilon.
$$

Put

$$
g(t) = -\varphi((a_1^2 + \cdots + a_i^2)e^{-2t}) + (a_{i+1}^2 + \cdots + a_n^2)e^{2t}.
$$

The we have

$$
g(0) = -\varphi(a_1^2 + \cdots + a_i^2) + a_{i+1}^2 + \cdots + a_n^2
$$

$$
\geq -a_1^2 - \cdots - a_i^2 + a_{i+1}^2 + \cdots + a_n^2 = \varepsilon.
$$

If $t < 0$ is sufficiently small we have

$$
\begin{aligned} g(t) & = -(a_1^2 + \, \cdots \, + a_i^2) e^{-2t} + (a_{i+1}^2 + \, \cdots \, + a_n^2) e^{2t} \\ & \leq (a_{i+1}^2 + \, \cdots \, + a_n^2) e^{2t} < \varepsilon \, . \end{aligned}
$$

Since $\frac{d}{dt} g(t) > 0$ the equation (3) has the unique solution $t = t(a) < 0$. Therefore, for a given $Q \in \partial V_{\epsilon} \cap \sum U(P_j^i)$ the intersection of (1) and (2) is a unique point which we denote by \tilde{Q} . Furthermore, for $Q \in \partial V_s - \sum U(P_i^i)$ the ortho-f-are passing through Q intersects with ∂V_{-g} at a unique point which we denote by \tilde{Q} . Now we have a correspondence $\partial V_{\varepsilon} \rightarrow \partial \tilde{V}$ given by $Q \rightarrow \tilde{Q}$. This is regular 1-1.

Let κ_Q be the ortho-f-arc connecting two points Q and \tilde{Q} , and let $d(Q, Q')$ denote the length of κ_Q between Q and $Q'(Q' \in \kappa_Q)$.

Take a C^{∞ -function $\psi(r)$ such that}

$$
\psi(r) = \frac{\delta'}{1-\delta}r \quad \text{for } 0 \le r \le 1-\delta',
$$

= 1 \quad \text{for } r \ge 1,

$$
\frac{d\psi(r)}{dr} \ge 0. \quad \text{for } r \ge 0.
$$

Define a C^{∞} -transformation $\sigma_{\delta}: Q' \rightarrow Q''$ as follows:

$$
\sigma_{\delta'} = \text{identity} \quad \text{for } M - (V_{\epsilon} - \tilde{V}_{-\epsilon,\delta}) ,
$$

$$
\frac{d(Q',\tilde{Q})}{d(Q,\tilde{Q})} = \psi \frac{d(Q',\tilde{Q})}{d(Q,\tilde{Q})} \quad \text{for } V_{\epsilon} - \tilde{V}_{-\epsilon,\delta} .
$$

From the definition of φ and (1) we see that the point $x \in \tilde{V}_{-\varepsilon,\delta} \cap U(P_j^{\varepsilon})$ always satisfy

$$
x_{i+1}^2 + \,\cdots\, + x_n^2 \leq \delta
$$

or

$$
x_{i+1}^2 + \cdots + x_n^2 = -x - \cdots - x_i^2 + \varepsilon.
$$

On the other hand, since $\sum_{j} L_j^s(-\varepsilon) \cup V_{-\varepsilon}$ is contained in a regular cell U, we have

 $\tilde{V}_{-\varepsilon,\delta} \subset U$ for sufficiently small $\delta > 0$.

Furthermore, since $\lim_{\delta\to 0} \sigma_{\delta'} V_{\epsilon/2} = V_{-\epsilon,\delta}$, if $\delta' > 0$ is sufficiently small we have $\sigma_{\delta'}V_{\epsilon/2} \subset U$ and hence $V_{\epsilon/2} \subset \sigma_{\delta'}^{-1}U$. Thus the lemma is proved.

LEMMA 2. Suppose that $\eta_{i-1} < c < \eta_i$ and V_c is contained in a regular cell. Then we can choose a regular cell U such that $V_c\subset U$ and $\sum\limits_j L^i_j(c)$ is transversal to ∂U .

Proof. Let *f* be a regular imbedding map of $B_{1+\delta}^n$ (δ) into *M* such that $fB_1^n = U$. Let $\{W_\mu\}$, $\{W_\mu\}$ be two sufficiently fine open coverings of ∂B_1^n such that $W_{\mu} \supset \overline{W}_{\mu}'$. Consider all sets W_{μ} such that $\sum L_j^i(c)$ is transversal to ∂U in $f\overline{W}_{\mu}'$; we arrange these in a sequence $\overline{W}_1, \overline{W}_2, \cdots, \overline{W}_r$. We shall say that a map $f': W_{\mu} \rightarrow M$ is an approximation of (f, W_{μ}, ζ) if the following is satisfied: For any $u \in W_\mu$

$$
|f_p(u)-f_p'(u)| < \zeta \text{ and } \left| \frac{\partial f_p(u)}{\partial u_k} - \frac{\partial f_p'(u)}{\partial u_k} \right| < \zeta
$$

$$
p, k = 1, \cdots, n,
$$

where (f_1, \dots, f_n) , (f'_1, \dots, f'_n) are representations of f, f' in terms of local coordinates x_1, \dots, x_n in M. Let f' be an approximation of $(f, W_{\nu+1}, \zeta)$. Put $g(x_1, \dots, x_n)$ x_n) = $|f^{-1}(x)|^2$. Then, from $|u|^2 = u_1^2 + \cdots + u_n^2 = 1$ and $x = f'(u)$, we have

$$
(4) \t\t\t g(x_1,\cdots,x_n)=1.
$$

The tangent space of (4) at $x=a$ is

On Poincaré conjecture for M⁵

$$
\sum_{k}\left(\frac{\partial g}{\partial x_k}\right)_{x=a}(x-a)=0.
$$

Now we choose a system of local coordinates x so that $L_j^i(c)$ is represented as $x_{i+1} = \cdots = x_n = 0$. If $L_j^i(c)$ is not transversal in $f'(W_{\nu+1})$ to the submanifold defined by (4), there is a point $x=a=(a_1,\dots,a_i, 0,\dots, 0)$ such that $g(a)=0$ and the tangent space of $L_j^i(c)$ at a is contained in that of (4) at *a*. Sinc the tangent space of $L_j^i(c)$ at *a* contains *i* vectors $(\alpha, 0, \dots, 0), (0, \alpha, 0, \dots, 0), \dots, (0, \dots, 0, \alpha,$ \cdots , 0) for an arbitrary real number α , we have

$$
g(a) = 1, \quad a = (a_1, \dots, a_i, 0, \dots, 0),
$$

$$
\left(\frac{\partial g}{\partial x_p}\right)_{x=a} (a - a_j) - \sum_{p \neq 0} \left(\frac{\partial g}{\partial x_p}\right)_{x=a} a_p = 0, \quad j = 1, \dots, i.
$$

Since α is a variable, it follows that

(5)
$$
g(a_1, ..., a_i, 0, ..., 0) = 1,
$$

$$
\frac{\partial g}{\partial x_j}(a_1, ..., a_i, 0, ..., 0) = 0, \quad j = 1, ..., i.
$$

Obviously for a given $\zeta > 0$ there is an approximation f' of $(f, W_{\nu+1}, \zeta)$ for which the equations (5) have not solution. Let $\lambda(u)$ be a C^{∞} -function which takes 1 on $W'_{\nu+1}$ and 0 on $B_{1+\delta}^{n}-W_{\nu+1}$. Put

$$
f_p'' = f_p + \lambda (f_p' - f_p) ,
$$

and take a map F such that

$$
F = f'' \text{ on } W'_{\nu+1},
$$

= f on $B_{1+\delta}^n - W_{\nu+1}$.

For a given $\zeta > 0$ we choose δ so that *F* approximates $(f, B_{1+\delta}^n, \zeta')$. If ζ' is sufficiently small it holds that F is regular imbedding of $B_{1+\delta}^n$ into M and $\sum_j L_j^i(c)$ is transversal to $F(\partial B_1^n)$ in $F(\bigcup_{\mu=1}^{\nu+1} \overline{W_{\mu}})$ and further $F(B_n^n) \supset V_c$. Hence $\sum_j L_j^i(c)$ is transversal to $F(\partial B_1^n \cap (\bigcup_{\mu=1}^{\nu+1} W_{\mu}'))$. By repreating this process we have the required result.

THEOREM 1. Let U be a regular cell such that $\sum_j \partial L_j^i(c) \subset U$ and $\sum_j L_j^i(c)$ is is transversal to ∂U . Let τ_U be a C^{∞} -map of M into itself such that τ_U is a diffeo*morphism on* $M-\overline{U}$ and $\tau_U(\overline{U})$ is a point. Assume that every $\tau_U L_3^i(c)$, $i \leq \lceil n/2 \rceil$, is *contained in a regular cel!. Then* M *is a sphere.*

Proof. Suppose that $\eta_{i-1} < c_{i-1} < \eta_i < c_i < \eta_{i+1}$, and that $V_{c_{i-1}}$ is contained in a regular cell U. Then by lemma 2 we may suppose that $\sum_{k} L_{k}^{i}(c_{i-1})$ is transversal to ∂U . Let *f* be a regular imbedding of B_2^n into M such as $fB_i^n = U$. Take a C^{∞} -function $\varphi(r)$ such that

$$
\varphi(r) = \delta \quad \text{for } 0 \leq r \leq 1,
$$

= 1 for $r \geq 3/2$,

Hiroshi YAMASUGE

$$
\frac{d\varphi(r)}{dr}\!\ge\! 0\quad\text{ for }0\!\le\!r\!\le\!3/2\,,
$$

and define a C^{oo}-transformation τ'_{δ} on B_2^n by

$$
\tau'_\delta u = \varphi(\vert u \vert) u.
$$

Define a map τ_{δ} of *M* into itself as follows:

$$
\tau_{\delta} = f \tau_{\delta}' f^{-1} \quad \text{on } f(B^{n_{3/2}}),
$$

= 1 \quad \text{on } M - f(B^{n_{3/2}}).

Then we see that τ_8 ($\delta > 0$) are C^{oo}-transformations on *M*. Put $\tau_0 = \tau_U$, then τ_U is a diffeomorphism on $M-\bar{U}$ and $\tau_U\bar{U}$ is a point. By the hypothesis there is a regular cell U' which contains $\tau_U(\sum_k L_k^i(c_{i-1})\cup V_{c_{i-1}})\subset \tau_U(\sum_k L_k^i(c_{i-1})\cup U)=$ $\tau_U(\sum_k L_k^i(c_{i-1}))$. Since $\lim_{\delta \to 0} \tau_{\delta} = \tau_U$, if $\delta > 0$ is sufficiently small we have

$$
\tau_{\delta}(\sum_{k} L_k^{i}(c_{i-1}) \cup V_{c_{i-1}}) \subset U',
$$

and so

$$
\sum_{k}L_k^i(c_{i-1})\cup V_{c_{i-1}}\subset \tau_{\delta}^{-1}U'\,.
$$

Hence, by lemma 1, V_{c_i} is contained in a regular cell. Obviously V_{c_0} is a regular cell and so induction proves that $V_{c_{n/2}}$ is contained in a regular cell.

Now consider the function $-f(P)$ instead of $f(P)$. Then it is obvious that P_j^{n-i} are the critical points of $-f(P)$ with index *i*. Hence, putting $P_j^{n-i} = P_j'$ and $-\eta_{n-i} = \eta'_i$, we see that $-f(P'^{n-i}) = \eta'_i$ and $\eta'_0 \leq \eta'_1 \leq \cdots \leq \eta'_n$. Hence $-f(P)$ is also a canonical polar function on *M*. Furthermore, putting $-c_{n-i-1} = c'_{i-1}$, we have

$$
V'_{c_{\lceil n/2 \rceil}} = \{P|f(P) \geq c_{\lceil n/2 \rceil}\} = \{P|-f(P) \leq -c_{\lceil n/2 \rceil}\}.
$$

=
$$
\{P|-f(P) \leq c'_{n-\lceil n/2 \rceil-1}\} \subset \{P|-f(P) \leq c'_{\lceil n/2 \rceil}\}.
$$

Therefore $V'_{c(n/2)}$ is also contained in a regular cell. Thus M is the sum of two cells. Thus M is the sum of two cells, and according to $[1]$ it is homeomorphic with a sphere.

By a singular k-sphere in M we shall mean the image under a C^0 -map of S^k into *M*, where S^k is the unit *k*-sphere in R^{k+1} .

THEOREM 2. If any singular k-sphere $(k \leq [n/2])$ in M is contained in a cell *then M is a sphere.*

Proof. We can modify the canonical polar function f so that $f(P_i^*) < f(P_i^{t+1})$ for $j=1, \dots, n_i$, $k=1, \dots, n_{i+1}$, and $f(P_j^i) < f(P_{j+1}^i)$ for $j=1, \dots, n_i-1$. We arrange $f(P_j^i)$ in the sequence $\zeta_1 \leq \zeta_2 \leq \cdots$, and we put $P_j^i = P_\mu$, $L_j^i(c) = L_\mu(c)$ if $f(P_j^i) = \zeta_\mu$. Suppose that $\zeta_{\mu-1} < c_{\mu} < \zeta_{\mu} < c_{\mu+1} < \zeta_{\mu+1}$ and $V_{c_{\mu}}$ is contained in a cell. Then there are two cells *U', U''* and real number $c(\eta_{\mu-1} \leq c \leq c_{\mu})$ such that $V_{c\mu} \subset U'$, $\bar{U}' \subset U''$ and $\partial L_{\mu}(c) \subset U'$. Let φ be a homeomorphism of *U''* onto B_1^n . Then we have

On Poincaré conjecture for M⁵</sup> 7

$$
\varphi \partial L_{\mu}(c) \subset \varphi U' \subset \varphi \bar U' \subset B_1^n,
$$

so that there is B_r^n $(r<1)$ which contains $\varphi U'$. Denote by $(0, \varphi \partial L_\mu(c))$ the set of all points which are on segments connecting the origin 0 to points of $\varphi \partial L_{\mu}(c)$. This is a cone in B , and is a continuous image of a ball whose dimension is equal to dim $L_{\mu}(c)$. Hence $L_{\mu}(c) \cup \varphi^{-1}(0, \varphi \partial L_{\mu}(c))$ is a simgular sphere in M. Define a transformation α_{δ} on B_{1}^{n} as follows:

(6)
$$
\alpha_{\delta}(u) = \left(\frac{\delta - 1}{r - 1}(|u| - 1) + 1\right)u \quad \text{for } r \le |u| \le 1,
$$

$$
= \delta u \quad \text{for } 0 \le |u| \le r.
$$

 α_0 is not a transformation in B_1^n , but it is a continuous map of B_1^n onto itself. From $L_{\mu}(c_{\mu})\subset L_{\mu}(c)$ and $V_{c_{\mu}}\subset U'$, we have

$$
L_{\mu}(c_{\mu})\cup V_{c_{\mu}}\subset L_{\mu}(c)\cup U'.
$$

Since $\alpha_{\delta} =$ identity on ∂B_1 , it follows that $\varphi^{-1}\alpha_{\delta}\varphi =$ identity on $\partial U''$. Hence we may consider that $\varphi^{-1}\alpha_{\delta}\varphi$ ($\delta=0$) is a transformation on M and that $\varphi^{-1}\alpha_{\delta}\varphi$ is a continuous map of M into itself. Now we see

$$
\varphi^{-1}\alpha_0\varphi(L_\mu(c_\mu) \cup V_{c_\mu}) \subset \varphi^{-1}\alpha_0\varphi(L_\mu(c) \cup U')
$$

$$
= \varphi^{-1}\alpha_0\varphi L_\mu(c) \cup \varphi^{-1}\alpha_0\varphi U'
$$

$$
\subset \varphi^{-1}\alpha_0\varphi L_\mu(c) \cup \varphi^{-1}\alpha_0 B_r
$$

$$
= \varphi^{-1}\alpha_0\varphi L_\mu(c) \cup \varphi^{-1}(0),
$$

and

$$
\varphi^{-1}\alpha_0\varphi(L_\mu(c) \cup \varphi^{-1}(0, \varphi \partial L_\mu(c)))
$$

=
$$
\varphi^{-1}\alpha_0\varphi L_\mu(c) \cup \varphi^{-1}\alpha_0(0, \partial L_\mu(c))
$$

=
$$
\varphi^{-1}\alpha_0\varphi L_\mu(c) \cup \varphi^{-1}(0),
$$

so that

(7)
$$
\varphi^{-1}\alpha_0\varphi(L_\mu(c_\mu) \cup V_{c_\mu}) \subset \varphi^{-1}\alpha_0\varphi(L_\mu(c) \cup \varphi^{-1}(0, \varphi \partial L_\mu(c))) .
$$

By the hypothesis, if $\dim L_{\mu}(c_{\mu}) \leq \left[\frac{n}{2}\right]$, the singular sphere $\varphi^{-1}\alpha_0\varphi(L_{\mu}(c))$ $\varphi^{-1}(0, \varphi \partial L_{\mu}(c))$ is contained in a cell. Hence it follows from (6) and (7) that if $\delta > 0$ is sufficiently small $\varphi^{-1}\alpha_{\delta}\varphi(L_{\mu}(c_{\mu}) \cup V_{c_{\mu}})$ is contained in in a cell and so $L_{\mu}(c_{\mu}) \cup V_{c_{\mu}}$, is in a cell. Therefore, by Lemma 1, $V_{c_{\mu+1}}$ is in a cell. Clearly V_{c_1} is in a cell, and hence induction proves that V_{c_v} is in a cell, where P_v is the critical point of index $\left\lceil \frac{n}{2} \right\rceil$ and P_{v+1} is that of index $\left\lceil \frac{n}{2} \right\rceil + 1$. If we consider $-f$ instead of f, the same way as in the proof of Theorem 1 proves that $V_{\text{c}v}$ = $\{P|f(P)\geq c_v\}$ is also in a cell. Thus *M* is the sum of two cells, and consequently M is a sphere.

4. Diffeomorphical deformations

Let N_0 be a closed C^{oo}-submanifold of *M*, and let $N' = N_0 \times I$ be the product of

 N_0 and *I*, where *I* denote the closed interval [0,1]. *N'* is a C^{∞} -manifold. Let f be a C^{∞} -map of N' into M such that each ϕ_t is a regular 1-1 map of N_0 into M and $N_0 = \phi_0(N_0)$, where we put $\phi_t(P) = f(P, t)$ for $P \in N_0$ and $t \in I$. Then $N_1 = \phi_1(N_0)$ is a C^{∞} -submanifold in M. In this section we say that the set of maps ϕ_t , $t \in I$, forms a diffeomorphical deformation of N_0 onto N_1 . We say also that ϕ_t is a diffeomorphical deformation of N_0 to the points P_μ ($\mu = 1, \dots, k$) if each ϕ_t ($0 \le t < 1$) is a regular 1-1 and $\sum P_{\mu}=\phi_1(N_0)$ is a finite sum of points.

LEMMA 3. If ϕ_t is a diffeomorphical deformation of N_0 to N_1 , then there is a *C"'-transjormation on M which maps No onto N*¹ •

Proof. To prove this lemma it is sufficient to show that there is a C^{∞} -transformation which maps N_a onto N_b when $b-a>0$ is sufficiently small.

Choose two coverings $\{W_i\}$ and $\{U_i\}$ of $N_a \cup N_b$ and a system of local coordinates x^i in a neighborhood of \bar{U}_i so that $\bar{W}_i \subset U_i$ and N_a is represented as $x_{p+1}^i = \cdots = x_n^i = 0$. Then N_b is written as

$$
x^i_\mu = f_\mu(x^i_j,\cdots,x^i_p,b),\quad \mu = p\!+\!1,\cdots,n\,,\\ f_\mu(x^i_1,\cdots,x^i_p,b) \rightarrow 0 \quad (b \rightarrow a)\ .
$$

We suppose that

$$
\overline{W}_i = \{x^i | |x^i| \leq 1\} \text{ and } \overline{U}_i = \{x^i | |x^i| \leq 2\}.
$$

Take a C^{∞} -function $\psi(x^i)$ such that $\psi(x^i)=0$ for $|x^i|\leq 1$, and $=1$ for $|x^i|\geq 2$. Put

(8)
$$
y^1_\mu = x^1_\mu + f_\mu(x^1_1 \cdots x^1_p, b) \psi(x^1), \ \mu = 1, \cdots, n.
$$

Then we see that if $|f_\mu|$ are sufficiently small then the map defined by (8) is a C^{∞} -transformation on U_1 which is the identity on ∂U_1 . Denote it by τ_1 , and extend it over M by setting τ_1 =identity for $M-U_1$. Then we have

$$
\tau_1 N_b = N_a \text{ in } W_1
$$

Clearly $\tau_1 N_a$ is represented as

$$
x^i_\mu = f^1_\mu (x^i_1, \cdots, x^i_\mu; b), \quad \text{for } \mu = p+1, \cdots, n
$$

where

$$
f^1_\mu(x_1^i,\,\cdots,x_p^i\,;\;b)\to0\;\,(b\to a)
$$

and
$$
f^1_\mu(x_1^i, \cdots, x_p^i; b) = 0
$$
 for $(x_1^i, \cdots, x_p^i) \in W_1$.

Let τ_2 be a map represented by

$$
\begin{aligned} y_\mu^2 = &x_\mu^2\,,\qquad \text{for}\ \ \mu=1,\cdots,p\\ = &x_\mu^2\!+\!f_\mu^1(x_1^2,\cdots,x_p^2,b)\psi(x),\qquad \text{for}\ \ \mu=p\!+\!1,\cdots,n\,. \end{aligned}
$$

Then τ_2 is a C^{oo}-transformation such as

$$
\tau_2 N_b = N_a \text{ in } W_1 \cup W_2.
$$

By applying the above process for W_1 , W_2 , \cdots , W_m , we have

$$
\tau_m N_b = N_a \ .
$$

Thus the lemma is proved.

5. Regular sphares S^k in M.

LEMMA 4. Suppose that $\pi_k(M) = 0$ and $2k+1 < n$. Then for given regular spheres S^k there is a diffeomorphical deformation ϕ_t of S^k to the sum of points.

Proof. We shall divide the proof into the following three parts.

a) Let φ be the regular 1-1 map of ∂B_1^{k+1} onto S^k , and π be the projection of B_1^{k+1} -0 onto ∂B_1^{k+1} by the radii of B_1^{k+1} . For an arbitrary point P in B_{k+1} _{1/4,1} we define φP to be $\varphi \pi P$. Then it follows from the hypothesis that there is a continuous extension of φ over B_1^{k+1} . We denote it by the same notation φ . We choose two coverings $\{U_i\}$, $\{U'_i\}$ $(i=1, \dots, \mu)$ of B^{k+1} _{1/4} such that $U_i \supset U'_i$, $U_{U_i \subset B^{k+1}{}_{1/2}}$ and each φU_i is contained in neighborhood for which a system of local coordinates is defined. Let $u_1^2 + \cdots + u_{k+1}^2 = 1$ and $t(P)$ be the distance between *P* and the origin. Then we can take $u_1(\pi P)$, \cdots , $u_k(\pi P)$, $t(P)$ as coordinates of *P* in U_1 . Let $x_1 \cdots x_n$ be a system of coordinates in a neighborhood of φU_1 . Then φ is written in U_1 as

$$
x_j = f_j(u, t), \quad u = (u_1, \cdots, u_k); \; j = 1, \cdots, n.
$$

Let $f_j'(u, t)$ be a C^{∞} -functions which approximates (f, U_1, ζ) where $\zeta > 0$ is sufficiently small. Let $\lambda(u, t)$ be a C^o-function which takes 1 on \overline{U}_1 and 0 on U_1-U_1' , where $U_1\supset U_1'$, $U_1'\supset \overline{U}_1'$. Put

$$
f_j^{\prime\prime} = f_j + \lambda (f_j^{\prime} - f_j)
$$

and define φ' as

$$
\varphi^1 = f'' \qquad \text{on} \ \ U_1
$$

=
$$
\varphi \qquad \text{on} \ \ B_1^{k+1} - U_1.
$$

where f'' is the map defined by

$$
x_j = f'_j(u, t).
$$

Then φ^1 is a C^{∞} -map in \bar{U}'_1 and $\varphi^1 = \varphi$ on $B_1^{k+1} - U_1$. Applying the above process to φ^1 , U_2 and U_2' instead of φ , U_1 and U_1' , we have φ^2 such that φ^2 is a C^{∞} -map in $U_1' \cup U_2'$ and $\varphi^2 = \varphi$ on $B_1^{k+1}-(U_1 \cup U_2)$. By repeating these, we have $\varphi^1, \varphi^2, \dots$, φ^{μ} ; φ^{μ} is a C^{∞} -map of B_1^{k+1} into M such that $\varphi^{\mu} = \varphi$ in B^{k+1} _{1/2,1}. Thus the map φ of B^{k+1} _{1/2,1} is extended to a C^{∞} -map of B_1^{k+1} into M. The extended map will be denoted by the same notation φ . It is written in *U* as

$$
x_j=g_j(u, t)
$$

where g_j are C^{*}-functions of *u, t.* We remark that φ^{μ} is regular 1-1 on every ∂B_t^{k+1} (1/2 $\leq t \leq 1$) (see the construction of φ^{μ}). We write simply φ instead of φ^{μ} .

b) Consider the equations

$$
\frac{\partial (x_1, \cdots, x_{k-1}, x_p)}{\partial (u_1, \cdots, u_{k-1}, u_k)} = 0,
$$

\n
$$
(p = 1, 2, \cdots, n-k+1).
$$

Since $n-k+1\geq k+1$ it follows that the number of the the equations is greater than that of the unknowns. Hence, for an arbitrary $\zeta > 0$, we can take $g'_i(u, t)$ so that $|g_j-g'_j|<\zeta$ and there is p_0 satisfying

$$
\frac{\partial(g'_1,\dots,g'_{k-1},g'_{p_0})}{\partial(u_1,\dots,u_{k-1},u_k)}\neq 0.
$$

Let $\lambda(u, t)$ be a C^o-function in U_1 which takes 1 on \bar{U}_1 and 0 on $U_1 - U_1'$, where $U_1 \supset \overline{U}_1$ '', $U_1' \supset \overline{U}_1'$. Put

$$
g'_j = g'_j + \lambda(g'_j - g_j) ;
$$

and define φ ¹ by

$$
\varphi^1=g^{\prime\prime}\quad\quad\text{in}~~U_1\,,\\=\varphi\quad\quad\text{in}~~B_1^{k+1}\!-\!U_1\,,
$$

where g'' is the map defined by

$$
x_j = g'_j(u, t) .
$$

Then φ^1 is regular on every $\partial B_t^{1+1} \cap U_1$. Applying the above process to ζ^1 , φ^1 and U_2 , we have φ^2 such that φ^2 is regular on $\partial B_t^{k+1} \cap (U_1' \cup U_2')$ and $\varphi^2 = \varphi$ on $B_1^{k+1}-(U_1\cup U_2)$. By repeating this process we have $\varphi^1, \varphi^2, \dots, \varphi^{\mu}$; φ^{μ} is regular on every ∂B_t^{k+1} and is equal to φ on B_{k+1}^{k+1} , **For an arbitrary** $\zeta^1 > 0$ we can choose $\zeta, \zeta^1, \zeta^2, \cdots$ so that φ^{μ} approximates $(\varphi, B_1^{k+1}, \zeta')$ and hence from the fact that φ is regular 1-1 on every ∂B_t^{k+1} $\left(\frac{1}{2} \le t \le 1\right)$, if ζ' is sufficiently smal it is hold that φ^{μ} is regular 1-1 on every $\partial B_{t}^{k+1} \left(\frac{1}{2} \leq t \leq 1 \right)$. This is shown as follows. Suppose that for $\zeta' > \zeta'' > \cdots \to 0$ there is a sequence φ' , φ'' , which approximate $(\varphi, B^{k+1}, \xi), (\varphi, B^{k+1}, \xi'), \cdots$ and are not regular 1-1 on some ∂B^{k+1} $\left(\frac{1}{2} \leq t \leq 1\right)$. Then there is a sequence $t_1, t_2, \dots \to a$ $\left(\frac{1}{2} \leq t_i \leq 1, \frac{1}{2} \leq a \leq 1\right)$ such that $\varphi', \varphi'', \dots$ are not regular 1-1 on $\partial B_{t_1}^{k+1}, \partial B_{t_2}^{k+1}, \dots$, respectively. By π_m denote the projection of ∂B_{a}^{k+1} on $\partial B_{t_m}^{k+1}$ by radii of B_1^{k+1} . Then, in terms of the local coordinates u_1, \dots, u_k, π_m is written as $u'_i=u_i, i=1, \dots, k$. Hence $\varphi'\pi_1, \varphi''\pi_2, \dots$ approximate $(\varphi, \partial B_1^{k+1}, \zeta')$, $(\varphi, \partial B_1^{k+1}, \zeta'')$, \cdots respectively and they are not regular **1-1** on ∂B_{a}^{k+1} . On the other hand φ is regular 1-1 on ∂B_{a}^{k+1} , and hence it follows that $\varphi^{(m)}\pi_m$ is regular 1-1 on ∂B_{a}^{k+1} if $\zeta^{(m)}$ is sufficiently small. We write simply φ instead of φ^{μ} .

c) Let $\{U_i\}$, $\{U'_i\}$ be two open coverings of B^{k+1} _{1/2}; we choose them so that $U_i\supset \bar{U}_i'$, $\bigcirc \bar{U}_i\subset B^{k+1}$ and if \bar{U}_i and \bar{U}_k have common points then φ is 1-1 on $\partial B_i^{k+1} \cap (U_i \cup U_k)$. Consider all sets $U_i \cup U_k$ with $\bar{U_i} \cap \bar{U_k} = 0$, and arrange them in a sequence W_1, W_2, \dots . Take ζ so small that any approximation map φ' of $(\varphi,$

 B^{k+1} , ζ) is regular and 1-1 on each $\partial B^{k+1}_{k}(\overline{U}_{i} \cup \overline{U}_{k})$ for which $\overline{U}_{i} \cap \overline{U}_{k}$ \neq 0. Let *u*, *t* and *u'*, *t* be coordinates in U_i and in U_k respectively, and let $x_1 \cdots x_n$ be coordinates in a neighborhood containing $\varphi(\bar{U}_i \cup \bar{U}_i)$. Then $\varphi(\partial B_i^{k+1} \cap U_i)$ and $\varphi(\partial B^{k+1}_{t} \cap U_k)$ are written as

$$
x_j = f_j(u, t), \quad x_j = g_j(u', t)
$$

respectively. Consider the equations

(9)
$$
f_j(u, t) = g_j(u', t), \quad j = 1, \dots, n.
$$

Since $n > 2k + 1$, it follows that the number of the equations is greater than that of the unknowns. Hence, for a given ζ' , $0<\zeta'<\zeta$ there are C^{∞} -functions f'_{j}, g'_{j} such that f'_j approximates (f_j, W_1, ζ') and g'_j approximates (g_j, W_1, ζ') , and $f'_r(u, t) = g'_1(u', t)$ have no solution. Let $\lambda(u, t)$ be a C^{∞} -function which takes 1 on \bar{U}'_i and 0 on $U_i-U''_i$, where $U_i\supset \bar{U}'_i'$, $\bar{U}'_i'\supset \bar{U}'_i$. Let $\lambda'(u',t)$ be a C^{∞} -function which takes 1 on \bar{U}'_k and 0 on $U_k-U''_k$, where $U_k\supset \bar{U}'_k$, $U'_k\supset \bar{U}'_k$. Suppose $W_1 = U_i \cup U_k$, and put

$$
\begin{aligned} \n\overline{W}_1' &= \overline{U}_i' \cup \overline{U}_i', \\ \nf_j' &= f_j + \lambda(f_j' - f_j) \\ \ng_j' &= g_j + \lambda'(g_j' - g_j) \, . \end{aligned}
$$

Define φ^1 by

$$
= f'' \quad \text{in } U_i, \n= g'' \quad \text{in } U_k, \n= \varphi \quad \text{in } B_1^{k+1} - U_i - U_k,
$$

where f'' and g'' are the maps defined by $x_j = f_j(u, t)$ and $x_j = g_j(u, t)$ respectively. Then φ^1 is regular 1-1 on every $\partial B^{k+1}_{t} \cap \overline{W}_1$ and

$$
\varphi^{\scriptscriptstyle{1}}=\varphi\qquad\text{on}\;\,B^{\scriptscriptstyle{k+1}}_1\!-W_{\scriptscriptstyle{1}}\,.
$$

Applying this process to φ^1 , W_2 instead of φ , W_1 , we have φ^2 which is regular 1-1 on every $\partial B_{t}^{k+1} \cap (\overline{W}_1' \cup \overline{W}_2')$ and satisfies

$$
\varphi^2 = \varphi \quad \text{in} \ B_1^{k+1} - W_1 - W_2 \, .
$$

By repeating such process, we have an approximation φ^{ν} of $(\varphi, B_1^{k+1}, \zeta')$ which is regular 1-1 on every ∂B_i^{k+1} , $0 \le t \le \frac{2}{3}$, and $=\varphi$ on B_{k+1} _{3/4,1}. Since φ is regular 1-1 on every ∂B_{t}^{k+1} , $\frac{2}{3} \leq t \leq 1$, and φ^{ν} approximates $(\varphi, B_{t}^{k+1}, \zeta')$, it follows that φ^{ν} is regular 1-1 on every $\partial B_{t}^{k+1}, 0 \leq t \leq 1$.

Put $\phi_t = \varphi^v \pi_t \partial B_t^{k+1}$, where π_t is the projection of ∂B_1^{k+1} onto ∂B_t^{k+1} by the radii of the ball B_1^{k+1} . Then ϕ_t is the required deformation.

LEMMA 5. If $\pi_k(M^n) = 0$ $(2k+1 \lt n)$, then for given disjoint regular spheres S_{μ}^{k} ($\mu=1,\cdots,\nu$) there is a diffeomorphical deformation of $\sum S_{\mu}^{k}$ to the sum of points $\sum P_{\mu}$.

Proof. In virtue of lemma 4, for every S^* there is a diffeomorphical deformation $\phi_{\mu,t}$ of S^k_{μ} to P_{μ} . Let $S^k = \{u \mid u_1^2 + \cdots + u_{k+1}^2 = 1\}$ be the unit sphere in R^{k+1} , and let ψ_{μ} be a diffeomorphism of S^k onto S^k_{μ} . Let $\{U_i\}$ be a sufficiently fine open coverings of S^k . If $\phi_{\mu,t}S^k_{\mu} \cap \phi_{\mu' t}S^k_{\mu'}=0$ the equation

$$
\phi_{\mu,t}\psi_{\mu}(u) = \phi_{\mu',t}\psi_{\mu'}(u'), \quad u \in U_i, \quad u' \in U_k
$$

has a solution for some i and k . In therms of local coordinates x in M , the above equation is written as

(10)
$$
f_j(u, t) = g_j(u', t), \quad j = 1, \dots, n
$$

$$
|u| = |u'| = 1.
$$

It follows from the hypothesis that the equations (10) have no solution when $t (t \ge 0)$ is sufficiently small. Since the number of these equations is greater than that of unknowns, by the similar way to (c) in the proof of lemma 4 we can modify $\phi_{\mu,t}$ so that $\phi_{\mu,t}S^k_{\mu} \circ \phi_{\mu',t}S^k_{\mu'}=0$ if $\mu \neq \mu'$. Put $\phi_t = \phi(tx)$, $x \in \partial B_1^{k+1}$. Then ϕ_t is a desired diffeomorphical deformation.

By making use of lemma 3 we have immediately

LEMMA 6. If $\pi_k(M^n) = 0$ ($n \geq 2k+1$), then arbitrary disjoint regular spheres $S^k_\mu(\mu=1,\dots,\nu)$ in M are contained in a regular cell in M.

LEMMA 7. Suppose that $\pi_1(M^n) = 0$ and that $n \geq 5$. Then, for a given regular *cell U and disjoint arcs* α_{μ} $(\mu=1,\dots,\nu)$ such that every α_{μ} is transversal to ∂U and $\partial \alpha_\mu \subset U$, there is a regular cell containing $U^{\cup}(\bigcup_{\mu=1}^{\nu} \alpha_\mu)$.

Proof. Put $\sum \alpha_{\mu} - U = \sum \beta_i$, every β_i being a connected component of $\sum \alpha_{\mu} - U$. Take a point P in U, and connect the two points $\partial \beta_i$ by a certain regular arc γ_i such that $\gamma_i \subset U$, $P \in \gamma_i$. We can take γ_i so that $\beta_i \cup \gamma_i$ is a regular circle in M and $({\beta_i}^{\cup}\gamma_i)$ $({\beta_k}^{\cup}\gamma_k)=P$ if $i\neq k$. Moreover we see that for a given neighborhood *W* of $\forall \gamma_i$ there is a transformation *a* in *M* such that $\sigma U \subset W$ and $\sigma \sum_i (\beta_i \vee \gamma_i) =$ $\sum_i (\beta_i \vee \gamma_i)$. Hence if there is a cell *U'* which contains $\sum_i (\beta_i \vee \gamma_i)$, then we have

$$
\sigma(\sum_i a_i \cup U) = \sigma(\sum_i \beta_i \cup U) \subset \sum_i \beta_i \quad W \subset U'
$$

and hence

$$
\sum \alpha_i \cup U \subset \sigma^{-1}U'
$$

The existence of the cell containing $\sum_i (\beta_i \vee \gamma_i)$ is shown as follows. According to lemma 6, every $\beta_i \cup \gamma_i$ is in a regular cell. Hence there is a regular disk *D* such as $\partial D = \beta_i \circ \gamma_i$. Since $n \geq 5$, it is easy to see that D_i has no self-intersection and that D_i $D_k = P$ $(i \neq k)$ if $\sum D_i$ is in a general position. Then for a given cell *U'* containing *P* there is a transformation τ such that $\tau \sum_i D_i \subset U'$. Hence $\sum D \subset \tau^{-1}U'$ and it follows that $\sum (\beta_i \vee \gamma_i) \subset \tau^{-1}U'$. Thus the lemma is proved. *' '*

LEMMA 8. If $dim M \geq 5$ and if $c < \eta_2$, then V_c is contained in a regular cell.

Proof. Consider $L_1^1(c_0) \cup V_{c_0}$, $\eta_0 \leq c_0 \leq \eta_1$. Then, since V_{c_0} is in a regular cell, it follows from lemma 6 that $\sum L(c_0) \cup V_{c_0}$ is in a regular cell. Hence by lemma 1 we get the required result.

LEMMA 9. Suppose that $n=2k+1$ and that $\pi_k(M^n)=0$. Then for given disjoint *regular spheres* S^k_μ ($\mu = 1, \dots, \nu$) *there is a deformation* ϕ_t *of* $\sum_{\mu} S^k_\mu$ *to the sum of points* $\sum P_{\mu}$ such that

- 1) $\phi_t(\sum_{\mu} S^k_{\mu})$ *has no self-intersection if t* $\neq t_i$ (*i* = 1, ···, *m*),
- 2) for every t_i , $\phi_{t_i}(\sum_{\mu} S_{\mu}^k)$ has only one self-intersection point.

PROOF. This is proved in the same way as in the proof of lemmas 4 and 5. Clearly (a) and (b) hold in this case. Now the equations (9) and (10) in (c) becomes

(11)
$$
f_j(u, t) = g_j(u', t), \quad j = 1, \dots, 2k+1 u = (u_1, \dots, u_k), \qquad u' = (u, \dots, u).
$$

Since in (11) the number of the equations is equal to that of the unknowns, it follows that for a given $\zeta > 0$ there are approximations f'_j and g'_j of (f_j, W_1, ζ) and (g_i, W_1, ζ) such that the number of the solutions of the equations $f'_i(u, t)$ = $g(u', t)$ are finite in W_1 . Now the same way as in (c) proves the required result.

LEMMA 10. If $n=2k+1$, $\pi_1(M^n)=0$ and $\pi_k(M^n)=0$, then arbitrary disjoint *regular spheres* S^k_{μ} $(\mu=1,\dots,\nu)$ *in M are contained in a regular cell.*

Proof. According to lemma 8, there is a deformation ϕ_t of $\sum_{\mu} S^k_{\mu}$ to $\sum_{\mu} P_{\mu}$ such that $\phi_t \sum_{\mu} S^k_{\mu}$ is regular except for $t = t_1, \dots, t_l$, and $\phi_{t_i} \sum S^k_{\mu}$ has only one self-intersection point P_i . Hence, in virtue of lemma 1, in order to prove lemma 9 it is sufficient to verify that if $\phi_t \sum_{\mu} S^k_{\mu}$ is contained in a regular cell for every $t < t_i$, then $\phi_{t_i} \sum_{\mu} S_{\mu}^{\mu}$ is also contained in a regular cell. Choose local coordinates x such that $x(P_i)=0$ in a neighborhood of P. Then we may consider that in this neighborhood $\phi_t \sum_{\mu} S^k_{\mu}$ is the sum of the following two k-planes:

(12)
$$
x_j = a_j(t-t_i) + \sum_{p=1}^k b_j^p x_p,
$$

$$
x_j = c_j(t-t_i) + \sum_{p=1}^k d_j^p x_p,
$$

where $j=k+1, \dots, n$ and the determinant of the matrix of the coefficients in the equations

$$
\sum_{p=1}^{k} (b_j^p - d_j^p) x_p = (c_j - a_j)(t - t_i)
$$

$$
j = 1, 2, \dots, n
$$

is not 0. Choose coordinates axis y_1, \dots, y_n so that y_1, \dots, y_k are on the plane

 $x_i = \sum_{p=1}^k b_j^p x_p$ (j=k+1, ···, *n*) and y_{k+1} , ···, y_{2k} are on the plane $x_j = \sum_{p=1}^k d_j^p x_p$ (j=k+1, \cdots , *n*). Then (12) becomes

$$
y_n = a(t-t_i)
$$
, $y_{k+1} = \cdots = y_{2k} = 0$,
\n $y_n = c(t-t_i)$, $y_1 = \cdots = y_k = 0$.

Suppose that $|a| \leq |c|$, and consider a segment defined by $y_j=0$ $(j=1, \dots, n-1)$ and $|y_n| < \delta |c|$. By lemma 7 there is a regular cell U containing $\phi_{t_i-\delta} \sum S^k_{\mu}$ and the segment. Therefore if $\zeta > 0$ is sufficiently small the set *W* of point *y* for which $y_1^2 + \cdots + y_{n-1}^2 \le \zeta$ and $|y_n| \le \delta |c|$ is contained in *U*. Now take a function $\psi(r)$ such that

$$
\psi(r) = -a + c \quad \text{for } 0 \le r \le \frac{\zeta}{2},
$$

= 0 \quad \text{for } r \ge \zeta

$$
0 \le \psi(r) \le -a + c \quad \text{(or } 0 \ge \psi(r) \ge -a + c).
$$

Consider the set of varieties *N, t_i*- $\delta \leq t \leq t_i$, which coincides with $\phi_t \sum S^k_\mu$ in $M-W$ and is the sum of two submanifolds

$$
y_n = a(t-t_i) + (t-t_i)\psi(y_1^2 + \cdots + y_{n-1}^2),
$$

$$
y_{k+1} = \cdots = y_{2k} = 0
$$

and

$$
y_n = c(t-t_i), \quad y_1 = \cdots = y_k = 0
$$

in *W*. Obviously every N_t has only one self-intersection point $y=0$, and in the neighborhood $W'={y_1 | y_1^2+\cdots+y_{n-1}^2 < \frac{\zeta}{2}, |y_n| < \delta |c|}$ we have $N_t \cap W' = N_{t_i} \cap W'$. Hence by the same way as in the proof of lemma 3, we see that there is a transformation τ such as $\tau N_{t_i-\delta}=N_{t_i}$. On the other hand, since $\phi_{t_i}\sum_{\mu}S_{\mu}^k=N_{t_i}$ and $N_{t_i-3} \subset (\phi_{t_i-3} \sum_i S^k_\mu)^{\cup} W \subset U$, we have $\phi_{t_i} \sum S^k_\mu \subset \tau U$.

6. Poincaré conjecture for M.

LEMMA 11. For given circles α_i , β_i (i=1, 2, \cdots , p) on ∂B_1^5 which do not intersect *each others, there is a transformation* τ *on* $B_{1-\delta,1+\delta}^5$ *such that* $\tau\alpha_i = \beta_i$, $\tau\partial B_1^5 = \partial B_1^5$ *and* $\tau = identity$ on $\partial B_{1-\delta,1+\delta}^5$.

Proof. Obviously there is a deformation ϕ_t of $\sum \alpha_i$ to $\sum \beta_i$ such as $\phi_t \sum \alpha_i$ $\subset \partial B_1^5$. Hence by the same way as in the proof of lemma 5, we can modify ϕ_t so that ϕ_t is a diffeomorphical deformation of $\sum \alpha_i$ to $\sum \beta_i$ and $\phi_t \sum \alpha_i \subset \partial B_1^5$. To prove the lemma it is sufficient to show that there is a transformation τ such that $\tau \phi_b \sum \alpha_i = \phi_a \sum \alpha_i$ where a, $b \in I$ and $b-a>0$ is sufficiently small. Choose a covering $\{W_k\}$ of $\phi_a \sum \alpha_i \phi_b \sum \alpha_i$ in $B_{1-\delta,1+\delta}^5$ and coordinates x^k so that $W_k=$ $\{x^k | |x^k| \leq 2\}$. Suppose that $\phi_a \sum \alpha_i$ and ∂B_1^5 are written in W_k as $\phi_a \sum \alpha_i =$ ${x^k|x_2^k=x_3^k=x_4^k=x_5^k=0}$ and $\partial B_1^5={x^k|x_5^k=0}$ respectively. Then $\phi_b \sum \alpha_i$ is written in W_1 as

On Poincaré conjecture for M⁵ 15

$$
x_j^1 = f_j^1(x_1^1, b), \quad j = 2, 3, 4, \n x_5^1 = 0, \n f_j^1(x, b) \to 0 (b \to a).
$$

Put

$$
y_j^1 = x_j^1
$$
 for $j = 1, 5$,
= $x_j^1 + f_j^1(x_1^1, b) \psi(x^1)$, for $j = 2, 3, 4$,

where $\psi(x^1)$ is a C^o-function which takes 0 on W_1 and 1 on $W'_1 = \{x^1 | |x^1| < 1\}.$ Then it induces a C^{oo}-transformation in $B_{1-\delta,1+\delta}^5$ when $b-a>0$ is sufficiently small. Denoting it by τ_1 we see that τ_1 =identity of $B_{1-\delta,1+\delta}^5 - W_1$ and $\tau_1\phi_b \sum \alpha_i = \phi_a \sum \alpha_i$ on *W*₁. We suppose that $\{W'_{k}\}\$ is an open covering of $\phi_{a} \sum_{i} a_{i}$ where $W'_{k} =$ $\{x^k | |x^k| \leq 1\}$. Similarly to the proof in lemma 3, repeating of the above process for W_2 , W_2' , W_3' , W_3' , \cdots , yield the required transformation.

THEOREM 3. If we have $\pi_1(M^5) = \pi_2(M^5) = 0$ for a compact C¹-manifold M, then *Mis homeomorphic with a sphere S'.*

Proof. Since any C^r-manifold $(r \ge 1)$ is C^r-homeomorphic with a analytic manifold, we may assume that M^5 is C^{∞} -manifold.

In virtue of lemma 2 we can choose a regular cell *U* such that $V_c \subset U$ (η_1 < $c \leq \eta_2$) and $\sum L_j^2(c)$ is transversal to ∂U . Then $\sum L_j^2(c) \cap \partial U$ is 1-dimensional submanifold, and it consists of finite regular circles which are denoted by α_{μ} $(\mu=1,\dots,\nu)$. Hence $\sum L_j^2(c)-U$ is the sum of 2-dimensional domains whose boundaries are circles α_{μ} .

Let σ_t and τ_t be maps of M into itself such that

1) σ_t and τ_t are C^o-transformations if $t>0$,

2) $\lim_{t\to 0} \sigma_t = \sigma_0$ and $\lim_{t\to 0} \tau_t = \tau_0$ are regular 1-1 in $M-\bar{U}$,

3) $\tau_0 \sigma_0 \alpha_\mu = P_\mu$ and $\tau_0 \sigma_0 \overline{U} = \sum_\mu O P_\mu$, where P_μ ($\mu = 1, \dots, \nu$) are points on ∂U and 0 is a point in U .

Then the boundaries of every domain are mapped to points by $\tau_0\sigma_0$. Hence $\tau_0\sigma_0(\sum_{i}L_i^2-U)$ is the sum of spheres which are regular except for points $\sum P_\mu$. We suppose that

4) $\tau_0 \sigma_0(\sum_i L - U)$ is the sum of disjoint regular spheres.

For the moment we shall assume the existence of such maps σ_t and τ_t .

Then it follows from lemma 9 that there is a regular cell *W* containing these spheres and point 0. Apply lemma 7 for *W* and $\sum_{\mu} OP_{\mu}$. Then we get a cell *W'* containing $W^{\cup} \sum_{\mu} OP_{\mu}$, and it follows

 $\tau_0 \sigma_0(\sum L_i^2 \cup V_c) \subset \tau_0 \sigma_0(\sum L_i^2 - U) \cup \tau_0 \sigma_0 U \subset W'$.

Hence if $t < 0$ is sufficiently small we have

$$
\tau_t \sigma_t (\sum L_j^2 \cup V_c) \subset W',
$$

namely

$$
\sum L_j^2 \cup V_c \subset \sigma_t^{-1} \tau_t^{-1} W'.
$$

Consequintly, according to theorem 1, M^5 is a sphere.

Now we shall show the existence of such σ_t and τ_t .

Let φ be a regular 1-1 map of the ball \bar{B}_{2}^{5} into *M* such as $\varphi \bar{B}_{1}^{5}=\bar{U}$. We can consider that *u* is a coordinate system in $\varphi \bar{B}_2^5$, and that *U* is a ball of radius 1 and center 0. From now on, we put $U_{\nu} = \{u \mid |u| < r\}$, $U_{r, r'} = \{u \mid r \leq |u| \leq r'\}$.

Take distinct points P_{μ} ($\mu=1, \dots, \nu$) on ∂U and coordinates u^{μ} in φB_1 such as $u^{\mu} = T_{\mu}u$, where T_{μ} is an element of rotation group in R^5 such as $t(0, 0, 0, 0, 1)$ $=T_{\mu}t_{\mu}(P_{\mu})$ where $t(0, 0, 0, 0, 1)$ and $t_{\mu}(P_{\mu})$ are transposed vectors of $(0, 0, 0, 0, 1)$ and $u(P_\mu)$ respectively. Put

$$
A_{\mu}(\zeta) = \{u^{\mu} ; |u^{\mu}_{\mu}|/|u^{\mu}| \leq 2\zeta, 1 = 1, 2, 3, 4\}.
$$

If $\zeta > 0$ is sufficiently small we have

$$
A_{\mu}(\zeta) \cap A_{\mu'}(\zeta) = 0 \qquad (\mu \neq \mu') .
$$

By lemma 10 we may suppose $\alpha_{\mu} \subset A_{\mu}(\zeta/2)$. Furthermore if $\delta(\delta > 0)$ is sufficiently small we have

$$
\sum L_j^2(c) \bigcap \bar{U}_{1-\delta,1+\delta} \subset \sum A_\mu \bigcap \bar{U}_{1-\delta,1+\delta}.
$$

Take a C^{∞} -function $\psi_{\delta}(y)$ of one variable auch thrt

$$
\psi_{\delta}(y) = 1 \quad \text{for } y \ge 1,
$$

= δ for $0 \le y \le 1-\delta$,

$$
\frac{d}{dy}\psi_{\delta}(y) \ge 0,
$$

and define a C^{∞} -map σ_{δ} of U into itself by

$$
\sigma_{\delta} u = \psi_{\delta}(|u|) u.
$$

Clearly σ_{δ} is a C^o-transformation in *U* for $\delta > 0$. Furthermore, take three C^{oo}functions $f(y)$, $g(y)$ and $h(y)$ satisfying following conditions:

$$
f(y) = \begin{cases} -\frac{1}{\log y} & \text{if } 0 < y < 1, \\ 0 & \text{if } y \le 0, \\ 0 & \text{if } y \le 1 + \varepsilon, \\ 0 & \text{if } y \ge 1 + 2\varepsilon, \end{cases} \quad \frac{dg}{dy} \le 0,
$$
\n
$$
h(y) = \begin{cases} 1 & \text{if } y \ge \zeta, \\ 0 & \text{if } y \ge 3/2, \zeta, \end{cases} \quad \frac{dh}{dy} \le 0,
$$

where ε is a sufficiently small positive number. For simplicity, we write u instead of u^{μ} . Now we use $u_1, u_2, u_3, u_4, |u|$ as coordinates in $U-0$. Consider a C^{∞} -map τ_i ; $u \rightarrow (u_i')$, $t \ge 0$, of A_μ into itself defined by

On Poincaré conjecture for M⁵ 17

(13)
$$
u'_{i} = (f(|u|-1+t)-1)g(|u|)h(\sum_{i=1}^{4} u/|u|^{2})u_{i}+u_{i}, \qquad (i=1, 2, 3, 4)
$$

$$
|u'| = |u|.
$$

Obviously if $t > 0$ is sufficiently small then τ_t is C^{∞} -transformations. If $\sum_{i=1}^{4} u_i^2$ $|u|^2 \leq \zeta$ and $|u| < 1+\epsilon$, (13) is written as

(14)
$$
u'_i = -\frac{u_i}{\log(|u|-1+t)}, \quad (i = 1, 2, 3, 4).
$$

$$
|u'| = |u|.
$$

By lemma 11 we may assume that α_{μ} is written as $u_1^2 + u_2^2 = \zeta^2$, $u_3 = u_4 = 0$, $|u| = 1$. Then $\sum L_{i,\Omega}^2 A_{\mu}$ is represented as

(15)
$$
u_3 = (|u|-1) f_3(u_1, u_2, |u|),
$$

$$
u_4 = (|u|-1) f_4(u_1, u_2, |u|),
$$

where $u_1^2 + u_2^2 = \zeta^2$ and f_3 , f_4 are C^{∞} -functions with respect to $u_1, u_2, |u|$. From $u_1^2 + u_2^2 = \zeta^2$ and (14) we have

(16)
$$
|u|-1+t=\exp\left(-\zeta/\sqrt{u_1^2+u_2^2}\right).
$$

Hence $\tau_0(\sum L_{i}^2 \Lambda_{\mu})$ is represented as

$$
u'_{k} = \sqrt{u_1^2 + u_2^2} \langle \xi \exp(-\zeta/\sqrt{u_1^2 + u_2^2})
$$

$$
\times f_k(\zeta u_1'/\sqrt{u_1^2 + u_2^2}, \zeta u_2'/\sqrt{u_1^2 + u_2^2}, 1 + \exp(-\zeta/\sqrt{u_1^2 + u_2^2}))
$$

$$
(k = 3, 4).
$$

Hence u'_4 , u'_4 and $|u|$ are C^o-functions of u'_1 and u'_2 . Thus $\tau_0(\sum L_j^2(c)-U)$ is the sum of regular spheres S_p^2 which do not intersect each other. Hence σ_t and τ_t satisfy (1) , (2) , (3) and (4) . This completes the proof of Theorem 3.

References

- [1 J J. Milnor: Sommes de variétes différentiables et structures différentiables des sphères, Bull. Soc. Math. France, 87 (1959), 439-444.
- [2] M. Morse: The existence of polar non-degenerate functions on differntiable manifolds, Ann. of Math. 71 (1960), 352-383.
- [3] H. Yamasuge: On embedding of leve! manifalds and sphere bundles, Jour. of the Inst. of Polytechnics, Osako City Univ., 11 (1960), 15-30.