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W e characterized a complete uniform space by the lattice of uniform cover­

ings satisfying sorne two conditions in the previous paper.n But for simplicity 

of the theory it is desirable to use a lattice consist of finite uniform coverings only. 

In the case of a totally bounded space the possibility of such a restriction is obvions. 

In the case of a metric space the totality of finite uniform coverings are 

not uniform basis generally, but then we can use a lattice of finite uniform 

coverings for characterizing its uniform topology. In this paper we shall show 

that a lattice of finite uniform coverings of a complete metric space charac­

terizes the uniform topology and that in the case of a general metric space the 

lattice characterizes the completion of the space. 

W e concern ourselves with a lattice L(R) consist of open finite uniform 

coverings of a complete metric space R satisfying the following conditions, 

1) if U, !ilE L(R), then Uv !ilE L(R), 

2) if U, V are some open sets such that Un V = <;, V =F <;, then there exists 

m1EL(R) such that UEm1, V$m1, 

3) L(R) is a basis of the totallity of finite uniform coverings of R.z> 

Remarks. The order U <!il between elements of L(R) is the relation that 

U is refiner th an !B. W e denote by Uv !il the uniform covering {W 1 W E U or 

W E !il}. In L(R) we regard two equivalent coverings3> as the same element. 

Renee the notation U E ~m means the fact that for sorne U' :=J U, U' E m1 holds. 

In condition 2) we assume implicitly that R has no isolated points. 

Definition. We denote by U <V the fact that V E m1 E L(R) implies U E m. 

Definition. We mean by a max. !ami/y for U( E L(R)) a subset p. of L(R) 
le 

having the property that ~tE p. (i = 1 · ·· k) imply U <:V \l3t and for every p.'~ p. 
i=l 

this condition does not hold. 

1) On Uniform Homeomorphism between two Uniform Spaces, this journal Vol. 3, No. 1-2, 
1952. 

2) If for every element ~l of a family A of coverings of R there exists U E L(R) such that 
U < ~I. then we call L(R) a basis of A. 

3) If u <m. m < u hold, then we say that u and m are equivalent. 
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Lemma 1. In order that a subset p. of LCR) is a max. family for U it is 

necessary and sufficient that p. = {Wll· V$ ml E LCR)} for some V EU such that 

VEll, V >V imply V>V. 

Proof. Let p.= {ml!V$ ml}, VE U, and let V EU, V>V imply V>V. If \13, E p. 
~ k 

Ci= 1, ···, k), then from V$ V \13, we get U<t V~. 
t=l 1~1 

Next if m $p., th en there exists NE m such that N ::J V. We denote by V. 

Ci= 1, ··· .l) all the elements of U. If V.)- V Ci = 1 ··· l), then there exists 

m, E LCR) such that V. E m,, V$ m,; bence m, E p. Ci = 1 ··· 1). If V.> U, th en 

from the property of V, V > V. holds. Since V E m, we get V. E m. Therefore 
! 

we get U<(Vm,)vm, m,Ep. (i=l···l), i.e. p. is a max. family. 
1=1 

In the contrary, let p. be a max. family for ll, th en there exists U E ll such 

that V$ \13., for all \13., E p.. Since U is a finite covering, there exists sorne V E U 

such that V >V; U 3 V' >V implies V >V'. Since V$ \13., for all a, V$ \13., 
holds for all a, too. Renee we get p. C {ml!V $ml}. Therefore from the max­

imum property of p. we get p.= {ml !V$ ml}. 

Definition. W e mean by a ckauchy sequence of LCR) a sequence 

{p.,.! n = 1, 2, · · · } of max. families of LCR) such th at p.,. ::J fl.n+l , and for every 

ll E LCR) and for sorne fln, U $p.,. holds. 

Remarks. By lemma 1 let us assume that p.,. = {ml 1 U,. $ W1} Cn = 1, 2, ··· ). 

In order that p.,. ::J f1.n+1 it is necessary and sufficient that V,.> Vn+l· We note 

that the last formula implies V,.+1 CV,.. For in the contrary case we get from 

the condition 2) of LCR) an element U of LCR) such that V,.EU, V,.+1-V,.$U, 

and accordingly V,.+l $ U. This consequence contradicts the fact that V,.+ 1 <V,.. 

Lemma 2. If p.,. = {ml 1 V,.$ ~J1} C n = 1, 2, · · · ), then in or der that 

{p.,.! n = 1, 2, ··· } is a chauchy sequence of LCR) it is necessary and sujjlcient 

that {V ,.1 n = 1, 2, · · · } is a chauchy sequence4' of R. 

Proof. Since V,. E U implies U $p.,. , the sufficiency of the condition is obvious. 

Now assume that {V,. ln= 1, 2, ···} is no chauchy sequence of R, and assume 

that V,.<tS,.Cx) for all n and for all xER, where S,.Cx) = {y!pCx.y)<l/2"'}; 

p is the distance between x and y. Tben there exist X1, y1 E !11 = V,.1 such 

that Y1 $ S,.Cx1). If S,.+1Cx1)n V,. =F çb for all n, then for the uniform covering 

Wl = {(S,.+1Cx1))", S,.Cx1)} 5' we can take a refinement U E LCR) of Wl by condition 

3) of LCR). Si nee V,. HJ1 for all n, V,.$ U hold for all n; bence ll E p.,., and 

4) We mean by a chauchy sequence of R a sequence U,.(n = 1, 2, ... ) of open sets of R 
such that Uu > Un+l, and the diameters of U,. tend to zero. 

5) We denote by AC the complement of A. Since {Sm+2(x) lx ER}< m. Wl is a uniform 
covering of R. 
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bence {,u,.} is no chauchy sequence of L(R). In the case that Sm+1(y1)nU,. =F if; 
for all n, we see analogously that {p,.j n = 1, 2, · ·. } is no chauchy sequence of 

L(R). 

If Sm+I(XI)n Un' =if;, Sm+I(YI)n U,., = rp, th en for n ?_max (n', n") = n2 

from U,. C D,,t, U,. CD,., we get Sm+I(XI)r.Un = rp and Sm+I(YI)r.Un = rp. 
Thenwecantakex2.Y2EU,.2 such that SmCX2):lJY2· IfSm+I(x2)nU,.=f;if; for 

all n or Sm+ 1(y2)n U,. =tif; for all n, then we can conclude that {p,.jn = 1, 2, ···} 
is no chauchy sequence of L(R) as in the previous manner. In the contrary 

case Sm+I(X2)r.Un = rp, Sm+1(y 2 )r.U,. = rp hold for sorne na and for all n?>:na. 

Th en we take Xa, y 3 E U,.3 such that Ys$ Sm(Xa). By an inductive consideration 

we get the conclusion th at {.u .. l n = 1, 2, ··· } is no chauchy sequence of L(R) or 

the conclusion that there exists a sequence x,, Y• (i = 1, 2, ···)of points of R such 

that x,, Yt EU,.,; y,$ Sm(X1), Sm+1(Xt)n U,.1 = rp, Sm+l(y1)n U,.1 =if; (j ?_ i + 1). 

In the last case we geta finite uniform covering Wl = {Ü Sm+1(x1), R- Ü x1}, 
!=1 = !=1 

for which u ... $ m hold for all i. For X; Eu .. , implies u .. , ct R-u x,' and 
00 'l=l 

y, El: U Sm+l(x1) combining with Yt EU,., implies U,., ct U Sm+1(x1). By the con-
i=l 

dition 3) of L(R), we take U such that Wl > U E L(R). Th en for an arbitrary 

U,., n1 ? n implies U,., < U,.; bence from V,.,$ U we conclude that V,. E!: U 

Therefore U E p.,. for all n, i. e. {p., 1 n = 1, 2, · · · } is no chauchy sequer..ce of L(R) 

also in this case. 

Definition. W e denote by {p, 1 n = 1, 2, .. · } - {11, 1 n = 1, 2, .. · } the relation 

between two chauchy sequences of L(R) such that for every U E L(R) there 

exist two elements p,, 11, of the sequence and sorne max. family ). such that 
).::J,uull, U$).. 

Lemma 3. In or der that {p,. 1 q = 1, 2, ... } - {11,. 1 n = 1, 2, ... } it is nec essar y 

and su fficient that { U ,.1 n = 1, 2, ... } and {V,.! n = 1, 2, .. · } are equivalent chauchy 

sequences of R, where p,. = {Wll V,.$ Wl}, 11,. = {Wl \V .. $1JJ1}. 

Proof. The sufficiency of the condition is obvious. 

If {U,.} and {V,.} are not equivalent in R, then for sorne m V,. uv,. ct Sm(X) 

hold for all n and for all xE R. Hence in the same way as in the previous proof 

we get U E L(R) such that U,. uv,.$ U for all n. Take mE L(R) such that 

!E= fVIVEI.lS}<U. If \.lS(j:). for sorne max. family J..= {W1\W$1JJ1}, and if 

J..::Jp,.ull,., then U,.<W, V .. <W; bence from WEI.lS, u,uV,.CWCUEU, but 

this is impossible. Therefore the negation of {p,. 1 n = 1, 2, ... } - {11,.! n = 1, 2, ... } 

holds. 

From lemma 3 we can classify all the chauchy sequences of L(R) by the 

relation -. We denote by 53(R) the set of all such classes. From this lemma 

and the completeness of R we get a one-to-one correspondence between R and 
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53(R); bence we denote by 53( A) the image of a subset A of R in 53(R) by this 

correspondence. 

Definition. W e mean by a uniform covering of 53(R) a covering 

{53( V~) 1 a E A} of 53(R) such th at there exists a defini te covering {53( V"')} : 

{53(V "')} "'* < {5.J(V~)}6) and for an arbitrary binary covering {53( V), 53(V)} 

>{l.J(V"')}, there exists UEL(R) Sl1.ch that fl,E{fl,\n=1,2,···}$5.J(V), 

Vm E {v, \n = 1, 2, ... } $ l.J(V) imply U < U' VV' for sorne U' E fln and SE' E vm. 

Lemma 4. In arder that {l.J(V/)} is a uniform covering of 53(R) it is 

necessary and sufficient that {V~} is a uniform covering of R. 

Proof. Sufficiency. Let {V~} be a uniform covering of R, then there 

exists a uniform covering {V"'} of R such that {V"'}"'*< {V"''}, i.e. {l.J(V"')}"'* 

<{53(V,/)}. If {l.J(V), 2(V)} isanarbitrarybinary covering of 2(R) such that 

{53(V), .\.?(V)}> {2(V"')}, then since {V"'}< {V, V} in R, {V, V} is a binary 

uniform covering of R. Renee from condition 3) of L(R) there exists U E L(R) 

such th at fi< {V, V}. If fln E {fl,} $53( V), Vm E {vn} $ 53(V) and if fln = {IJJ1 1 V.,$ IJJ1}, 

Vm = {IJJê \Vm $ 1))1}, th en {V.,} converges to a$ V and {V,} converges to b $V. 

Let V' EU, then from fi< {V, V}, 1]' CV or V' CV holds. If V' CV, then 

from a$ V and from a EV, we get Ü' J; V,. Renee from condition 2) of L(R) 

there exists U(V') E L(R) such that V' E U(V'), V.,$ U(V'). If Ü' CV, then 

analogously there exists U(V') such that V' E U(V'), Vm $ U(V'). Renee v {U(V') 

\Ü'CV} =U'Efln, V{U(V')\Ü'CV} =IE'Evm and U<U'VSE'. Therefore 

{53( V"'')} is a uniform covering of 53(R) by the above definition. 

N ecessity. Assume th at {V il is no uniform convering of R and that 

{53(V"')}"'*< {53(Vi)}, then {V"'}"'*< {V"''}. We denote by ®, the uniform 

covering {S,(x)\xER} of R. Putting ~l= {V"''}, for every n we get S.,E®, 

(n = 1, 2, ... ) such that S, $ ~l"'*. For this S1 we take X1 , Y1 E S1 such th at 

Y1 $ S 2(x1 , ~l) 7). If S(x1, ~OnS.,, =F ifJ hold for an infinite number of ni 

(i = 1, 2, ... ) then for Xn, E S(x1 , ~X)nS,, (i = 1, 2, ... ), ~l'= {S 2(XI, ~l), R- Ü x,J 
t~l 

is a binary covering of R such that ~l <m'. Since ®,, 3 S,, $~l' ( i = 1, 2, ... ), 

~l' is no uniform covering of R.8 ) If S(y1 , ~OnS,,* ifJ hold for an infinite 

number of n1 , then analogously there exsists a binary non-uniform covering ~l' 

of R such that ~l < ~l'. 
If n::?.~2 implies S(x1 , ~OnSn=ifJ and S(y1, ~OnSn=ifJ forsome n2 , then 

6) This notation is due to ]. W. Tukey, Convergence and Uniformity in topology, 1940. 
7) S(x1 , ~Ü = U{A!x1 EAE~l}, S2(xl, ~ü = S(S(xl, ~l), ~l) = u{AIAnS(xl,~O =f=51', 

A E ~!}. See ]. W. Tukey, loc. cit. 
8) For S,$~l"'* implies Snict:S2(x1 , ~0, and xn,ESn, impliesSnlct:R-Uxni' 

'1.=1 



On relations between lattices of finite uniform coverings of 39 
a metric space and the uniform topo/ogy of the space 

we take X2 , y 2 E S.,2 such that y2 $ S 2(x2 , IJ!). For these X2 , Y2; S.,2 in the same 

way as for X1 , Y1 , S.,2 := S1 , we get a binary non-uniform covering IJ{ of R such 

that IJ{ < IJ!' or Xs' Ys; s .. s (ns > n2) such that Xs' Ys E s .. s; S(x2' ~OnS .. = ifJ, 
S(yz, IJ!) nS., = ifJ (n > ns), Ys$ S 2(Xs, IJ!). By such an argument we get a binary 

non-uniform covering IJ1 of R such th at IJ{ < IJ!' or points x1 , y, ( i = 1, 2, · · · ) of 

R such that x1 , y 1 Es .. ,; x,$ S(y3 , ~l). y1 El: S(x3 , IJ!). In the latter case, we get 

a binary covering IJ!' = {Ü S(x1 ~O. R- Ü xt}. For this IJ!' IJ{ < IJ!' is obvions. 
00!=1 !=l 

Since x1 ES,." S,.,ctR-Ux •. From y,ES,., and from y1 $S(x3 , ~l) for ail j, 
00 i=l 

S,.1 ct U S(x1 IJ!) holds. Hence 15,.1 <t W. Since this formula holds for every i, IJ!' 
i=l 

is no uniform covering of R. Therefore in every case we get a binary non· 

uniform covering IJ!' such that ~(~l) < ~ (IJ!'). 

Let U be an arbitrary uniform covering in L(R), th en U <t IJ!' holds for this 

~l', i.e. there exists V EU such that V ct A, B for both elements A, B of ~l'. 

Take x, y so that XE V nN, y EV nY, and let L(x) = {,u,.!n = 1, 2, ··· }, 2(y) 

= {J.im!m=1,2,···}; ,u,.= {lffi!V,.$\ffi}, J.lm= {lffi!V,.$\ffi}, then since {V,.}, {V,.} 

converge tox, y respectively in R, there exist V,., V,. such that V,. CV V,. CV. 

For every U' E ,u,., ~V E J.ln we get V,.$ U', V,.$ ~Y. Combining these formulas 

with the above v., uv, CV, we get V$U1 , lW. Hence U<tU'V~V for such U' 

I.B'. Therefore {2(V .,')} is no uniform covering of ~(R) by the above definition. 

By this lemma R and ~(R), the uniform space having the above defined 

uniform coverings are uniformly homeomorphic. Since points and uniform cover­

ings of ~(R) are defi.ned by elements of L(R) and by relations < between 

elements of L(R), we get the following theorem. 

Theorem 1. In order that two complete metric spaces R1 and R 2 are uni­

formly homeomorphic it is necessary and sufficient that L(R1 ) and L(R2 ) are 

lattice-isomorphic, where L(R1 ), L(R2 ) are lattices of finite uniform coverings 

of R1, R 2 respective/y and satisfy conditions 1), 2), 3), 

Next we concern ourselves with a metric space having no completeness 

property. W e denote by Lr(R) the lattice of all fini te uniform coverings of R. 

We define max. family of L:r(R) as in the above proof of Theorem 1, and we 

mean by chauchy sequence of Lr(R) a sequence of max. families of L:r(R), 

{.u .. !n = 1, 2, ···} satisfying besicles the above conditions the condition that there 

exists a max. family ,u such that ,u ::p ,u,. for ail n, and J.l ::> .u is not valid but 

J.l = {IJJ1!R $1JJ1}. Thus we can characterize a converging chauchy sequence of 

R by such a chauchy sequence of L(R) and by an analogons argument to the 

case of complete metric space we get the following, 

Corollary. In order that two metric spaces R 1 , R 2 are uniformly homeo­

morphic it is necessary and sufficient that lattices L:r(R1 ), Lr(R2 ) of al! finite 
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uniform coverings of R 1 , R 2 respective/y are lattice-isomorphic. 

This corollary is obvious for totally bounded uniform spaces R1 , R2 , too. 
,-" 

Next let us consider relations between L(R) and the completion R of R. 

,.....-' ,.....-' 

Theorem 2. If R1 , R2 are metric spaces and if R1 , R 2 are the completions 
,.....-' ,.....-' 

of R 1 , R 2 respective/y, then in order that R1 and R 2 are uniformly homeomor-

Phic it is necessary and sufficient that lattices of finite uni/orm coverings, 
L(R1 ), L(R2 ) satisfying conditions 1), 2), 3) are lattice-isomorphic.9) 

,-" 

Proof. For each U = {U ,.} E L(R1 ) we denote by U the uniform covering 
~ ,.....-' ,-" 

{(U,.<)"IV,.E U} of R1 , where ue, u•, U mean complement in R 1 , corn-
,-- .- ,..........__.. -" 

plement in R1, closure in R1 respectively. Putting L( R1) = {U 1 U E L(R1)}, ____, ,--' 

we see easily that L(R1 ) and L(R1 ) are isomorphic. For U 3 U C V E lB 
,---' r--' __... ,.- ,.- ,_., 

implies ( uc)k c CV?; her..ce U <lB implies U <lB. If U <lB, th en for all 
,_- ,_- ,_-

u EU there exists V E sn such that (Ue)• C (Ve)k; hence (Uc)• nRl = U CV .- ,--' ,--' ,.__, 
= (Vc)• nR1 • Therefore U <sn. Since Uv lB= Uv lB is obvious and since L(R1) 

~ ,....-
satisfies condition 1), L(R1 ) satisfies condition 1). If U', V' are open sets in R1 

such that V' =F rp, U' n V'= rp, then denoting V' nR1 = U, V' nR1 =V, we get 

uuv = rp, V oi= rp. Hence there exists U E L(R1 ), for which U C Uo for sorne 
,.....-' 

Uo EU and V ct U,. for every U,. EU. Then from Ug C uc C U'k we get Ug C un', 
,.........,- l'-' ~ ,..--"" r-' 

and hence V' C (Ug)k EU. V' ct U,. for every U,. EU is obvious from V ct U,.. 
~ 

Thus L(R1 ) satisfies condition 2) in R1 • ,__, ,.._, 
Next we shall show that L(R1 ) satisfies condition 3) in R1 • Let {Ut li= 1, 

,.....-' 

· · · , k} be an arbitrary fini te uniform covering of R 1 , th en taking a unifortn 
'--

covering ® of R 1 such that ®** < {Vi}, we get open sets G; = u {S 1 S' nR1 

= S :1 FE ir for sorne S' E ® and for sorne ir, F such that FE irE VH of R1 , 

where ir is a maximum chauchy filter of closed sets of R1 , and ir is also a 
,.....-' 

point of R1 . For ex ample, FE ir means that the filter ~ of R1 contains the 
,.....-' 

subset F of R1 , and ir E U means that the point ~ of R1 is contained in the 
,.....-' 

subset U of R1• Now we show that U = {Gi} > ® in R1, where U is not an 

open coverlng generally. Assume the contrary and assume that SE®, 
,.....-' 

S'=SnRl, S'nGt=f"'r/1 (i=1,···,k), then there exist open sets S; of R 1 and 

maximum chauchy filters iri of R1 such that Sn(SinRl) rp, ® 3 Si :1 SinRl 

:1 F; E iri E U7. For these iri taking S/ E ® such that iri E S/, we see easily that 

SinS/ oT- rp. For SiC S? combining wlth Si :1 FiE iri implles iri E 5; C s~•, 
which contradicts the fact that iri ES/. Therefore S/ C S 2(S, ®) from 

,...., 
9) The completion R of R consists of ail the maximum chauchy filters of closed sets of R. 

The topology of Ris defined by the closed basis fFI F = rm ~ 3 F}, F is closed subset 

of R}. The uniform topology of Ris defined by the uniform coverings U = {(Uc)!'iU EU} 

for uniform coverings U of R. 
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S nSi ~i-~ if;. Therefore i)'i $Vi, Ui ES/ C S2(S, \0); bence S 2(S, \0) c( Vi (i = 1, 

· · · , k ), but this contradicts the fa ct th at €** < {Vi}. This contradiction proofs 

the validity of \0 < U in R 1 • Renee U is a finite uniform covering of R1 and 

bence we can take mE L(R1) such that j)j < U. Let V E j)j and let V CG~ EU. 
,....-

If ir is a maximum chauchy filter of R1 or a point of R 1 such that u E U~ in 

R;_, then taking SE \0 such that S ::J FEu for sorne F, from the definition of Gi ,....... ,....... ,....... 
we get R1nS C Gi CV". Renee u EV", and bence V~ CV", i.e. V; ::J (V")k. 

,- ,- .,..._/ 

Since V is an arbitrary element of m, m < {V;} for mE L(R1). Thus we see ,..._ ,....... ,_.._., 
that L(R1) is a basis of all the finite uniform coverings of R1, i.e. L(R1) satisfies 

3), too. _..._., ,_.._., 
If L(R1) and L(R2 ) are isomorphic, then L(R1) and L(R2 ) are isomorphic; 

bence from the above conclusion and from Theorem 1 we get Theorem 2. 

For completions of non-metric spaces we get the following propositions by 

the theorem of my previous paper10) and by analogous arguements. 
,....... ,....... 

Corollary. 11 we denote by R1 , R 2 the completions of total! y bounded uni-
,..--- ,....... 

/orm spaces R1 , R 2 respective/y, then in arder that R 1 and R 2 are uni/ormly 
homeomorphic it is necessary and sufficient that lattices L(R1 ) and L(R2 ) of 

finite uni!orm coverings satis!ying conditions 1), 2), 3) are lattice-isomorphic. 
,....... ,....... 

Corollary. 11 we denote by R 1 , R 2 the completions of uni/orm spaces R 1 , ,....... ,....... 
R 2 respectively, then in arder that R 1 and R 2 are uni/ormly homeomorphic it is 

necessary and sufficient that L(R1) and L(R2 ) are lattice-isomorphic, where 
L(R1) and L(R2 ) are lattices of uni/orm coverings of R1 and R 2 respective/y 

and satis!y the /ollowing conditions. 

11) U E L(Ri), s,g E L(Rt) imply Uv j)j E L(Ri), 

2') il U E L(Rt) and if V =Frf; is an open set of R1 , then there exists 

IJJ1 E L(Ri) such that V $1JJl; V" ::J V' EU implies V' E IJJè, 

3') L(Rt) is a basis of the totality of uni!orm coverings of Rt. 

10) Loc. cit. 


