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We characterized a complete uniform space by the lattice of uniform cover-
ings satisfying some two conditions in the previous paper.!> But for simplicity
of the theory it is desirable to use a lattice consist of finite uniform coverings only.
In the case of a totally bounded space the possibility of such a restriction is obvious.

In the case of a metric space the totality of finite uniform coverings are
not uniform basis generally, but then we can use a lattice of finite uniform
coverings for characterizing its uniform topology. In this paper we shall show
that a lattice of finite uniform coverings of a complete metric space charac-
terizes the uniform topology and that in the case of a general metric space the
lattice characterizes the completion of the space.

We concern ourselves with a lattice L(R) consist of open finite uniform
coverings of a complete metric space R satisfying the following conditions,

1) f U,Be L(R), ther UV Ve L(R),

2) if U,V aresomeopen seis such that U~V = ¢, V == ¢, then there exists
Me L(R) such that UM, V €M,

3) L(R) is a basis of the totallity of finite uniform coverings of R.2

Remarks. The order 1 < B between elements of L(R) is the relation that
U is refiner than B. We denote by UV®B the uniform covering {W|W ¢l or
We®B}. In L(R) we regard two equivalent coverings® as the same element.
Hence the notation U ¢ I means the fact that for some U’ D U, U’ € M holds.
In condition 2) we assume implicitly that R has no isolated points.

Definition. We denote by U<V the fact that V € WM € L(R) implies U € M.

Definition. We mean by a max. family for U( € L(R)) a subset z of L(R)
k
having the property that B; € p (Z =1--- k) imply U< _\/IEB,- and for every u' 2 p

this condition does not hold.

1) On Uniform Homeomorphism between two Uniform Spaces, this journal Vol. 3, No. 1-2,
1952.

2) 1If for every element 9[ of a family A of coverings of R there exists [l € L(R) such that
N <A, then we call L(R) a basis of A.

3) If 1<B, B<1U hold, then we say that 1] and 9§ are equivalent.
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Lemma 1. Iz order that a subset p of L(R) is a max. family for W it is
necessary and sufficient that p = {M|-UeMe L(R)} for some UcWN such that
VelW,V >U imply U>V.

Proof. Let u={MUcM},Ucll,and let Vcll, V>U imply U>V. If PBienu
(¢=1,--,k), then from U$¢\Z/1S'B‘ we get u{i/lﬂSi .

Next if N ¢z, then there exists N € i such that N D U. We denote by V;
(2=1,---.7) all the elements of . If V;>}U (¢ =1---1), then there exists
B, € L(R) such that V;eWB;, U¢PB;; hence V;ep (=1---1). If V; >U, then
from the property of U, U > V; holds. Since U€ R, we get V;€N. Therefore
we get W< (\/BVR, By€p (G =1--1), i.e. uis a max. family.

In the cc;rItlrary, let # be a max. family for 11, then there exists U €1l such
that U ¢ B, for all P, € p. Since U is a finite covering, there exists some V €Ul
such that V >U; U3V’ >V implies V >V’. Since U, for all «, V&P,
holds for all «, too. Hence we get x C {M|V ¢M}. Therefore from the max-
imum property of 2 we get 2 = {M|V ¢ M}.

Definition. We mean by a ckawuchy sequence of L(R) a sequence
{#a|?=1,2,---} of max. families of ZL(R) such that u, D #ty+1, and for every
e L(R) and for some u,, U€& u, holds.

Remarks. By lemma 1 let us assume that p, = {M|U,¢M} (n=1,2,---).
In order that u, D ps+1 it is necessary and sufficient that U, > U,+;. We note
that the last formula implies U,+; C U,. For in the contrary case we get from
the condition 2) of Z(R) an element U of L(R) such that U,€l, U+ —U, <€,
and accordingly U,+; € 1. This consequence contradicts the fact that Uy, < U,.

Lemma 2. If pu,= MU, e¢M} (®=1,2,---), then in order that
{tm|m =1,2,---} is @ chauchy sequence of L(R) it is necessary and sufficient
that {U,\n=1,2,---} is a chauchy sequence® of R.

Proof. Since U, € Il implies U ¢ 4, , the sufficiency of the condition is obvious.

Now assume that {U,|n =1,2,---} is no chauchy sequence of R, and assume
that U, S,(x) for all #z and for all x€ R, where S,(x) = {y]|o(x.y) <1/2" ;
o is the distance between x and y. Then there exist %, y, €U, = U,; such
that y1¢ S,(%1). If S,a(%1)~U,==¢ for all »n, then for the uniform covering
M = {(Sne1(%1))°, Sn(%1)}5> we can take a refinement 11 € L(R) of "M by condition
3) of L(R). Since U,¢M for all n, U,¢Ul hold for all #; hence U€ u,, and

4) We mean by a chauchy sequence of R a sequence U,(nz =1,2,...) of open sets of R
such that U, > Upy+y, and the diameters of U, tend to zero.

5) We denote by A¢ the complement of A. Since {Sp.(x)|x€ R} <IN, IN is a uniform
covering of R.
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hence {u,} is no chauchy sequence of L(R). In the case that S,,+1(y1)~Un==9¢
for all #, we see analogously that {u,|# =1,2,---} is no chauchy sequence of
L(R).

If Spei(%)~Ux =@, Sus1(301)~Un” = ¢, then for n=max (#,n'’) =ny
from U,C Uy, U, CUyr we get Spu(51)~Un=¢ and S,+1(y1)~Us=¢.
Then we can take %3, y2€ Uy, such that S,(%2)3ys. If Spai(%)~Un=F¢ for
all # or S,+1(¥2)~U,==¢ for all n, then we can conclude that {u,|n=1,2,---}
is no chauchy sequence of L(R) as in the previous manner. In the contrary
case Sp+1(%2) ~Usn = ¢, Sps1(¥2)~Un = ¢ hold for some 73 and for all > n;.
Then we take x3, y3€ U,, such ‘éhat y3€ Sn(x3). By an inductive consideration
we get the conclusion that {u,|72 =1,2,---} is no chauchy sequence of L(R) or
the conclusion that there exists a sequence %;, ¥; (7 =1,2,---) of points of R such
that %, ¥:€ Un; 5 9:¢ Su(%0), Sns1(%)AUn; = ¢, Susr(¥i)~AUny = ¢ (5 =2+1).

In the last case we get a finite uniform covering M = {C)o Spe1(%:), R— U %},
for which U, &M hold for all i. For x¢U,, implies Un, ¢R~i©1x¢i,=1and
9:€ U Spaa(x,) combining with ;€ U,, implies U, <[glsm+1<xi>. By the con-
dition 3) of Z(R), we take Il such that W >>1¢c L(R). Then for an arbitrary
U,, ny,z=n implies U,, < U,; hence from U,, ¢l we conclude that U,¢U
Therefore € u, for all », i.e. {u,|7n=1,2,---} is no chauchy sequerce of L(R)

also in this case.

Definition. We denote by {u,|2=1,2,---} ~ {vu|2=1,2,---} the relation
between two chauchy sequences of L(R) such that for every W€ L(R) there
exist two elements u,, v, of the sequence and some max. family 1 such that
2D u~y, NEL

Lemma 3. 72 order that {u,lq=1,2,---} ~ {v,\n=1,2,---} it is necessary
and sufficient that {U,\n=1,2,---} and {V,|n=1,2,---} are equivalent chauchy
sequences of R, where p, = {M|U, ¢ M}, v, = M|V, € M}.

Proof. The sufficiency of the condition is obvious.

If {U,} and {V,} are not equivalent in R, then for some m U,"“V, d_ S,(x)
hold for all # and for all x¢ R. Hence in the same way as in the previous proof
we get Wec L(R) such that U,“V,¢U for all . Take Be L(R) such that
P={VIVeB} <U If Vi for some max. family 1= {M|W &M}, and if
2D Y vs, then U, < W, V,,< W; hence from We®B, U,“V, CWC Ucl, but
this is impossible. Therefore the negation of {¢, |72 =1,2,--} ~ {y,|n=1,2,---}
holds.

From lemma 3 we can classify all the chauchy sequences of L(R) by the
relation ~. We denote by Q(R) the set of all such classes. From this lemma
and the completeness of R we get a one-to-one correspondence between R and
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2(R); hence we denote by 2(A) the image of a subset A of R in 8(R) by this
correspondence.

Definition. We mean by a wumiform covering of ¥(R) a covering
{QUDac A} of {(R) such that there exists a definite covering {E(U,)}:
{QUU D2 < {8UL}® and for an arbitrary binary covering {&(U), (V)i
> {8(U,)}, there exists Ue€IL(R) such that p,€ {m|n=1,2,--}&8U),
V€ pln=1,2,---} ¢ AV) imply U< W VV"’ for some W€ p, and B’ € vy

Lemma 4. In order that {¥(U,)} is a uniform covering of L{L(R) it is
necessary and sufficient that {U,} is a uniform covering of R.

Proof. Sufficiency. Let {U,} be a uniform covering of R, then there
exists a uniform covering {U,} of R such that {U,}2* < {U,}, i.e. {8(U)}>*
AU If {8U), ¥V)} is an arbitrary binary covering of 2(R) such that
{Q), &V} > {&(UL}, then since {U,} < {U,V} in R, {U,V} is a binary
uniform covering of R. Hence from condition 3) of L(R) there exists 1€ L(R)
such that < {U,V}. If uy, € {a} € QCU), v € {vp} € (V) and if p, = {M| U &M},
Vo = {M|V, ¢ M}, then {U,} converges to a¢U and {V,} converges to b&V.
Let U’€ll, then from N< {U,V}, U'CU or U'CV holds. If U’ C U, then
from a¢ U and from a€ U, we get U’ DU,. Hence from condition 2) of L(R)
there exists W(U’)€ L(R) such that U’ cWU’), U, ¢ WU’). If U’ CV, then
analogously there exists W(U’) such that U’ ¢ WU’), V, ¢ W(U’). Hence Y {(U")
U CU} =W €, VIMUN|T CV} =B €v,, and ULW VY. Therefore
{&U,D} is a uniform covering of Q(R) by the above definition.

Necessity. Assume that {U,’} is no uniform convering of R and that
{QUU DY < {WU DY, then {Uy2* < {U,}. We denote by &, the uniform
covering {S,(x)|x€ R} of R. Putting A = {U,’}, for every # we get S,€&,
(n=1,2,---) such that S,¢A**. For this S; we take x;, y1€S; such that
y1€S2%(xy, WP, If S(%1, WSk, ¢ hold for an infinite number of x,
(i =1,2,--) then for %n, € S(%1, W~ Su, G =1,2, ), W = {S2(x;, W), R—lew}
is a binary covering of R such that A< W. Since &,;2S,, ¢W (1 =1,2 ),
A is no uniform covering of R® If S(y1, A ~Sy, ==¢ hold for an infinite
number of #;, then analogously there exsists a binary non-uniform covering A/
of R such that A < W.

If n =9, implies S(%;, W ~S» = ¢ and S(y1, N)~S» = ¢ for some 7,5, then

6) This notation is due to J. W. Tukey, Convergence and Uniformity in topology, 1940.

7y Sxp, W = Y{Alx e AeN}, S2(xy, W = S(S (%, W, W = Y{A|A~S (= W =9,
AeYN}. See J.W. Tukey, loc. cit. -

8) For S,¢A4* implies S, ¢C S2(x;, N), and xy,; € Sy, impliesS,, R-—th_)lx,7z .
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we take %3, Y2 € Sy, such that y, & S2(x,, A). For these %2, y2; Sy, in the same
way as for %1, y1, S,,2 :=S;, we get a binary non-uniform covering % of R such
that A <W or %3, 33 Sny (M3 >my) such that %3, ¥3€ Spy; S(X2, WSk = ¢,
S(y2, WASn=0¢ (B >n3), 3¢ S2(x3, ). By such an argument we get a binary
non-uniform covering % of R such that A< W or points x;, y; (¢ =1,2,:--) of
R such that x;, ¥:€ Sa;; %:¢€S(y;, W), y:¢S(x;, A). In the latter case, we get
a binary covering W — {§15<xi 2A), R—iLijlx,-}. For this % AW 1is obvious.
Since aze Sa; SniC[R—gla;i. From yieéni and from ;¢ S(%;, A) for all j,
Su, c[i\;JlS(xi ) holds. Hence &,, < % . Since this formula holds for every 7, %’
is no uniform covering of R. Therefore in every case we get a binary non-
uniform covering A/ such that {(A) < LQA).

Let I be an arbitrary uniform covering in L(R), then U< A’ holds for this
N/, 7.e. there exists Ucll such that U A,B for both elements A, B of .
Take %,y so that x€U~ A% yeU~B°, and let L(x) = {um|n=1,2,---}, L(»)
={unlm=1,2,--}; o= MU M}, vy = M|V M}, then since {U,}, {Va}
converge to x, y respectively in R, there exist U,, V, such that U, CU V,CU.
For every W€ u,, B’ €y, we get U,el, V,€B’. Combining these formulas
with the above U,“V, C U, we get U¢1l/, B’. Hence UL W VY for such W
B’. Therefore {¥U, )} is no uniform covering of ¥(R) by the above definition.

By this lemma R and f(R), the uniform space having the above defined
uniform coverings are uniformly homeomorphic. Since points and uniform cover-
ings of ¥(R) are defined by elements of L(R) and by relations < between
elements of L(R), we get the following theorem:.

Theorem 1. In order that two complete metric spaces R, and R, are uni-
Sformly homeomor phic it is necessary and sufficient that L(R,) and L(R.) are
lattice-isomor phic, where L(R,), L(R;) are lattices of finite uniform coverings
of Ry, R, respectively and satz's}’y conditions 1), 2), 3),

Next we concern ourselves with a metric space having no completeness
property. We denote by L.R) the lattice of all finite uniform coverings of R.
We define max. family of L,(R) as in the above proof of Theorem 1, and we
mean by chauchy sequence of LR) a sequence of max. families of L,(R),
{#a|n =1,2, ...} satisfying besides the above conditions the condition that there
exists a max. family px such that g D u, for all #, and v =2z is not valid but
v={M|R¢M}. Thus we can characterize a converging chauchy sequence of
R by such a chauchy sequence of L(R) and by an analogous argument to the
case of complete metric space we get the following,

Corollary. In order that two metric spaces R,, R, are uniformly homeo-
mor phic it is necessary and sufficient that lattices L.(R,), LRy) of all finite
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uni form coverings of R,, R, respeciively are lattice-isomor phic.

This corollary is obvious for totally bounded uniform spaces R;, K., too.
—~
Next let us consider relations between L(R) and the completion R of R.

Theorem 2. I/ R,, R, are metric spaces and if E; s f@; are the completions
of R, R, respectively, then in order that '1—2/1 and ’E; are uni formly homeomor -
Dhic it is mecessary and sufficient that latlices of finite uniform coverings,
L(R,), L(Ry) satisfying conditions 1), 2), 3) are lattice-isomor phic.9’

Proof For each U={U,} € L(R,) we denote by ’lf the uniform covering
{(U S| U, Ell} of R1 R Where Ue, U U mean complement in R;, com-
plement in R1 , closure in R1 respectively. Putting LEE:) = {muEL(RI)},
we see easily that L(R;) and 5(7{-;) are isomorphic. For EBU CVeB
implies (’IF)’“ C (I’;)’“; herce N <V implies 1T<§ If f<§, then for all
Ucll there exists V ¢8 such that (’l—/’;)’“ (V“)’c hence (TJT’)’“le—UCV
= (T’;)’“an Therefore 11<% Since TV % = 11V B is obvious and since L(Rl)
satisfies condition 1), L(Rl) satisfies condition 1). If U’, V/ are open sets in R1
such that V’/==¢, U'~ V'’ = ¢, then denoting U/~ R, =U, V'~ R, =V, we get
UYV = ¢, V ==¢. Hence there exists 1€ L(R,), for which U C U, for some
Ugell and V LU, for every U,cU. Then from Ui C U* C U’ we get 275; C U’%,
and hence U’ C(E%)’“Eﬁ. V/q:@ for every ﬁefﬁ is obvious from V ¢ U,.
Thus I,:(Ti’?) satisfies condition 2) in R;.

Next we shall show that L’(Ti’-;) satisfies condition 3) in FIE; . Let {U;]i =1,

-, Rk} be an arbitrary finite uniform covering of i’: , then taking a unifortn
covering & of E such that &< {U;}, we get open sets G, = “Y{S|S'~ R
=S D F¢g for some S’€¢& and for some ¥, F such that FeFeUs of Ry,
where ¥ is a maximum chauchy filter of closed sets of R;, and $ is also a
point of 'E; For example, F € ¥ means that the filter § of R, contains the
subset F of Ry, and § €U means that the point § of E{ is contained in the
subset U of ﬁ Now we show that 1 = {G}} >> & in R;, where 1 is not an
open covering generally. Assume the contrary and assume that S¢ &,
S’ =S~ R, S’"~Gi==¢ (i =1,---,k), then there exist open sets S; of 'I_QI and
maximum chauchy filters &; of Ry such that S~ (S;~AR)=F¢, ©3S; D S;~ R
D F; e cU%. For these §; taking S,/ € € such that §;€ S;/, we see easily that
Si~Si==¢. For S;C S{¥ combining with S; D F;€g; implies %, EE C S%®
which contradicts the fact that §;€S,/. Therefore S,/ C S%S,&) from

9) The completion E of R consists of all the max1mum chauchy filters of closed sets of R.
The topology of R is defined by the closed basis {F]F {HIF> F}, F is closed subset
of R}. The uniform topology of R is defined by the uniform coverings U= {(UC)"'U uz
for uniform coverings 11 of R.
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S~ S;=4=¢. Therefore F; ¢U;, F:i€ S,/ C S2S,S); hence S¥S,&)q U; (¢ =1,
, k), but this contradicts the fact that €% < {U;}. This contradiction proofs

the validity of &< Ul in R;. Hence U is a finite uniform covering of R; and
hence we can take B¢ L(Ry) such that BN, Let VeV and let V C GS€l.
If § is a maximum chauchy filter of R, or a point of E such that FeU¥% in
fe-l , then taking S€ & such that S D F<§ for some F, from the definition of G;
we get RS CG; CV° Hence %Eﬁ, and hence U% CT’/_J i.e. U;D (’17;)"’
Since V is an arbitrary element of 9, %<{Ui} for %62(72/1) Tth we see
that L(Rl) is a basis of all the finite uniform coverings of R1 , L. e. L(Rl) satisfies
3), too. — _—

If L(R,) and L(R;) are isomorphic, then L(R;) and L(R;) are isomorphic;
hence from the above conclusion and from Theorem 1 we get Theorem 2.

For completions of non-metric spaces we get the following propositions by
the theorem of my previous paperl? and by analogous arguements.

Corollary. If we denote by FR:, k: the completions of totally bounded uni-
Sform spaces R,, R, respectively, then in order that El and E are uniformly
homeomor phic it is necessary and sufficient that lattices L(Ry) and L(R;) of
finite uniform coverings satisfying conditions 1), 2), 3) are lattice-isomor phic.

Corollary. I1f we denote by ﬁ, 1'?2 the completions of uniform spaces R, ,
R, respectively, then in order that ’la and E; are unt formly homeomor phic it is
necessary and sufficient that L(R.) and L(R.) are lattice-isomor phic, where
L(R)) and L(R:) are lattices of uniform coverings of R, and R, respectively
and satisfy the following conditions.

1) U€eL(R), Be L(R,) imply UV V€ L(R,),

2 if WeL(R) and if U==¢ is an open sef of R,, then there exists
Me L(R;) such that U&IM; U DU el implies U’ €M,

3") L(R)) is a basis of the totality of uniform coverings of R;.

10) Loc. cit.



