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The arithmetical ideal theory in rings may be regarded as that in semi-
groups, which can be treated as a generalization of the former. The arithmetical
ideal theory in commutative semigroups was investigated for the firat time by
Clifford ([4]) and then by Lorenzen ([8]). Some of the result of Clifford was
extended to the noncommutative case by Kawada and Kondo ([7]). In the
present paper we shall develop the arithmetical ideal theory in (noncommutative)
semigroups, which is a generalization of that in noncommutative rings (cf. [1],
[2] and [6]).

As preliminaries we deal in §1 with the factorization of integral elements
in a lattice-ordered group and in §2 we give an abstract foundation of Artin-
Hencke’s ideal theory ([5]). Let S be a semigroup with unity quantity. The
concepts of orders, maximal orders, ideals etc. in S are defined similarly as in
rings. By using the results of §1,2 we discus in §4 the theory of two-sided
ideals with respect to a maximal order of S. We consider closed ideals
(Lorenzen’s r-ideals), i. e. ideals closed with respect to a given closure operation,
by which a mapping of the set of all two-sided ideals in itself is defined. In
order that the set of all closed two-sided p-ideals, 0 a given regular order, forms
an abelian group, which is a direct product of infinite cyclic groups, it is neces-
sary and sufficient that Noether’s axioms hold for o. Let o be a regular order
of S, for which Noether’s axioms hold. The closure operation defined over two-
sided o-ideals can be extended over o-sets containing regular elements. (A subset
A of S is called a o-set if pA = Ao = A.) A closed sub-semigroup of S containing
o is called a o-semigroup. We determine in §5 all o-semigroups. They form a
Boolian algebra with respect to inclusion relation. In §7 we shall consider the
Brandt’s gruppoid of normal ideals. The factorization of integral normal ideals
may be regarded as the factorization of integral elements in a lattice-ordered
gruppoid, which will be treated in §6.

§$1. Factorization of integral elements in a lattice-ordered group.

Let G be a lattice-ordered group (J-group) with unity quantity e. Elements
of G will be denoted by small letters with or without suffices. We do not assume
the multiplication to be commutative, except when we mention it particularly.
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Definition. An element a of G is called integral if a<e.

If @< b then there exist two integral elements ¢ and d such that @ = bc
=db. Putting ¢ =8t-1a we get c<t-b=¢ and bc iai Similarly we obtain
a=0bd,d<e.

Let x be any element of G. Then @ = x~ e is integral, hence there exist
two integral elements ¢ and d svch ttat @ = xc =dx. x is, therefore, repre-
sented by a form of a right ard a left quotients of two integral elements of
G: x=ac™! =da.

Let a and b be coprime. Then a“x =a“bx —a“xb for any integral
element x in G. Because, ¢“Yx = (a“b) (a“x) = a2 ax“ba~bx < a“a“a“bx
=a“bx<a“x. If @; and b, are coprime (G =1,---,m; k=1,---,%), then so
are II",a; and 1%, by, .

If we assume that there exists sup X for a non-void subset X of G, then
there exist sup(Xa), sup(aX) for any e in G, and sup(Xa) = (supX)a,
sup (aX) = a(sup X ). If there exists sup A for any non-void set A of integral
elements of G, then G forms a conditionally complete lattice-ordered group
(cl-group). By the well-known theorem G forms a commutative group under
multiplication. (cf. [3]).

In the following, we assume that G forms a commutative group.

Lemma 1.1. If two lattice-quotient a/a’ and b/b’ are projective, then
a-la’ = bW,

Proof. Suppose that a/a’ is transposable to b/d’ and b < a. Put ¢ =a-1a/,
d = b-10’. Then they are both integral and b“ac =a, b~ac = bd. Take an
integral element { such that b =af, then bd = aid. Herce {“c=e, t~c=1d
and e/c is transposable to ?/¢d. Being ¢ and ¢ are coprime, we get td = {~c
=1, c =d. If a/a’ is projective to b/b’, then by induction we complete .our

proof.

Definition. Let a be an integral element of G, and a = @, --- ar a factoriza-
tion with integral elements «; in G. A factorization of @ of the form
a=I % ay, a; =15 a (i =1,---,7) is called a refinement of the above

factorization.

Theorem 1.1. (Refinement theorem) Any two factorizations of an integral
element a in G have the same refinement.

Proof. Let @ =a,; --- a» = b --- bs be two factorizations of @. Putting A; = a,
-a;, By=">0,-b,, we get two chains such that e=Ay >4, > --> A, =a,
e=DBy>B,>--->B;, =a. By Jordan-Holder-Schreier’s theorem in a modular
lattice, we get two refinements of the same length: e = A4 > A, > - > A,/
=a, e=By’ > By’ >--->B, =a such that A}{_;/A; is projective to B}_,/B:’
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in pairs. Hence by lemma 1.1. ¢ = AZ1A,/ = BiZI1B,’ = b’ and a = a" -+~ @’
= bl, s bn/.

Definition. A prime element is an integral element p such that p is ==e
and ab < p implies a<< p or b< p for integral elements a,b of G. A maximal
element is an element covered by the unity quantity e. An Zrreducible element
is an integral element p such that p is ==e and not decomposed as a product
of two integral elements other than e.

In a commutative /-group the following conditions are equivalent to one
another.

(1) 2 is an irreducible element.
(2) pis a maximal element.
(3) p is a prime element.

Proof. (1)— (2): If p is not maximal, then there exists an element @ such
that p<la<e. Hence p=ab, ble. (2)—(3): If ab<p for integral ele-
ments ¢,b and aX p, then b =(a“p)b=ab“pb<p“Yp=p. @) — D: If
p = ab for integral elements a,b and a< p, then p =ab<a, p =a, b=e.

In the following we assume the ascending chain condition for integral
elements of G.

Corollary. Any integral element of a commutative I-group may be uniquely
represented. as a product of finite prime elements.

A non-integral elements in G can be represented as a quotient of two integral
elements of G. Hence we have

Theorem 1.2. G is a direct product of infinite cyclic groups with prime
elements as its generators.

$3. Abstract foundation of Artin-Hencke’s ideal theory in a maximal
order of a ring.

Let L be a complete lattice-ordered semigroup (c¢/-semigroup), (¢f. [3])
such that there exists a mapping of L into itself ¢— a~! with the following
properties :

(1) asa<a,
(2) axa<a implies x <a-l.

Definition. An element a of L is called integral if a® < a.
For example, an element « satisfying ¢ << e is integral, where ¢ is ¢ unity
quantity of L.
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Lemma 2.1. Let e be maximally integral, i.e. if e<c and c2< c then
¢ =e. Then the following conditions are equivalent :

1. ax<e,
2. axa<a,
3. xa<le.

Proof. If b isintegral, then b< e, for putting ¢ = b~ e we obtain ¢<< ¢ and
€2 = b2YpYe < bYe =c, hence e =c and b<<e. Let axa<a. Since axax < ax
we obtain ax<<e. The converse is evident. Hence we get (1) = (2), similarly
@ = 3.

In particular we have aa~1 << e and e¢~la <e.
Theorem 2.1. The following conditions are equivalent to one another.

1) e is maximally integral.

2) If ais integral, then a<e.

3) Ifar<c n=12-.), then a<e.
4) Ifax<a then x<e.

5) If xa<a then x<e.

Proof. (1)— (2) has already been shown in the proof of Lemma 2.1. Since
(2)— (1) is evident we have (1) 2 (2). (2)— (3): Putting b = U, a", we get
a<b<c and b =Ujp.a"<U;a"=b. Hence a<b<e B)—@: If
ax <a, then ax"<a (#=1,2,---) and ae-lax"a"la<a 'aa~'e <ala. Hence
*<(ala)! (n=1,2,---), x<e. (4)— (2) is evident. Similarly we obtain
(3= (5) and (5) — (2.

In the following we assume that e is maximally integral. Every integral
element is therefore <e.

Theorem 2.2. L forms a residuated lattice.

Proof. If ax<b, then b-lax <b-1b<e, b-laxb~la<b-la; x < (b~la)-l,
i.e. X ={x|x€L, ax<<b} is bounded. Hence there exists ¢ =supX and
ac = sup (@X)<b. cis aleft-residual (b:a), of b by a. Similarly there exists
a right-residual (b:a)r =sup Y, where Y = {y|y€ L, ya<b}.

We have the following :

1) e=(a:a)=(a:a),.

2) al=(e:a)r=(e:a),. If a=ethenel=e.

3) ((c:a):b),=((c:b):a)r. If c =e then (a1:b), = (b~1:a),.

4) If a<b then (c:a),>(c:b), and (c:a),>(c:b),. If c=¢ then a <<b
implies a~1 > b-1.

5) If b<c then (b:a),<(c:a)r and (b:a),<(c:a),.
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6) (a:bc)r=((a:6)r:b)r, (a:bc), =((@:b),:¢),.

7) (a:bYc)r=(a:b)r~(a:b)r, (a:0%c),=(a:b),~(a:c),. If a=e then
(bYe)1 = b1 ¢l

8) (@rb:c)r=(a:00r~(b:¢), (@arb:C),=(a:c),~(b:C),.

9) (ab:c)r=alb:c), (ab:c),>(a:c),b.

Since aa~! < e, a~laa~! < a"l, we get a < (a~1)-1. If we define a* = (a~1)7},
then a<<a*. If a<b then a-1>b-1. Hence a*<bt From a!>(a*)"!
= (@~1)* and a1 < (a~1)* we get a1 = (a¥)! = (a1 )* = ((¢~1)"1)~L

We obtain the following:

(1) e<a*

(2) a**=ga*

(3) a<bimplies a* < b*.
(4) a*bx<(ab)*

Being ab(ab)-! <e, we have b(ab)~1<a~! = (a*)-1, b(ab)~la*<(a¥)tat<e.
Hence (ab)-la* < b~ = (b*%)~1 and (ab)~la*b* < e. Hence a*b* < (ab)*.
We have also the following :

(ab)* = (a*b)* = (ab*)* = (a*b*)*’
(@VBYs = (a5 = (aVbY) = (@F B,
(@ S BEY* = a* - b,

De finition. Two elements a and b of L are called quasi-equal if a* = b*.
Symbol : a~b.

Since a-! = (a¥)-1, a~b is equivalent to a~! = b-1l. It is evident that this
relation fulfils the equivalence relation.

a~a* is evident by (2). Since (¢a~1)-! =(e:aa1), =((e:a),:a™1),
=(al:a1),=e=e"!, we have aa~'~e. Similarly a~la~e. If @ is integral,
a* is so. Because, (a*)2 << (a2)*<a*. a~>b implies b<a*. If a~b and ¢ is
integral, then b is so. If e <<c¢<b and a~b, then a* < c*x<b¥, a* = b¥, hence
a~c. If a<<b¥ then there exist two integral elements ¢ and d such that
a~cb~bd. For, putting ¢ =ab~!, we have c¢<brb-1=0b¥b¥*)-1<e and
¢b = ab-b~ae = a. (cf.the following.) Similarly we obtain a~bd. If a~b then
there exist two elements # and v such that au = vb and u~v~e. For, sirce
a* =b* i.e. a=l = b-1, we get ab~lb = aa~'b, u = b~lb~e and v = aa~l~e.

From a~b and c~d, it follows that

ac~bd, aYc~bYd, a~c=b-d

Proof. (ac)~! = (e:ac)r = ((e:¢)r:a)r = (c71:a)r = (d™1:a)r = (a™1:d),
=(1:d), =((e:b),:d), = (e:bd), = (bd)™, i.e. ac~bd. (a“c)"! =a-1 c!
=b1~d-t =(bYd)Y, i.e. aYc~bYd. bb-1(a~c) < bb-la~bb~lc < ba-laec
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< be~c =b~c. Hence aa~1bb-1(a~c)<aa"2(b~c)<a~c. Since aa~l~bb-l~e,
we get a~c~b~c. Similarly bc~b~d.

If we classify L by the quasi-equal relation, then the set G of all classes
E,A,B,---forms a partly ordered set when we define A<B by a*<b¥
(a€ A, beB) in L. Moreover G forms a lattice with respect to this order.
A%YB and A~B are the classes containing (a*“b*)* and (@¥~b*)* = @ b*
(a€ A, be B) respectively., And moreover G forms a [-semigroup when we
define AB by the class containing (@¥b*)* (a€ A, b€ B). Since the inverse of
A is the class containing a~1(a€ A), G forms a group. As above mentioned
a“b,a~band ab (a€ A, be B) are containedin A~YB, A~ B and AB respectively

If a subset {B,} of G is bounded, then the subset {b,*} (b,€ B,) of L is
bounded, and it is easily verified that U, B, is the class containing (b *)*
and (a(Ug b)) = (Ugabg*)¥ = (U, (ab X% = (U (aby)¥)*. Hence G forms
a cl-group. We state this in

Theorem 2.3. 1f we classify L by the quasi-equal relation, then the set G
of all classes forms a cl-group. G is, therefore, commuiative as a group and
distributive as a lattice.

Corollary. Multi plication of L is commutative in the sence of quasi-
equality, i.e. ab~ba for any a and b in L.

Let @ be an integral element of L. We call a~Il.,a; a factorization of a
in the sense of quasi-equality, where a; is integral (i =1, ---,7).
By theorem 2.3 and Theorem 1.1 we have

Theorem 2.4. Two factorizations of an integral element of L in the sense
of quasi-equality have the same refinement.

Definition. A prime element is an integral element p of L such that p is
==e and ab < p implies a<< p or b < p for integral elements ¢ and b in L.

If p is prime and not quasi-equal to e, then p* = p. For, since p~ p*, there
exist # and » such that #p = p*v, u~v~e. Hence prv < p. Assume v < p,
then p~e, a contradiction. Hence p* < p, p* = p.

Theorem 2.5. 1f we assume the ascending chain condition for integral
elements of L in the sense of quasi-equalily, thern any integral element in L is
quasi-equal to a product of finite prime elements of L, and this factorization
is uniquely determined apart from its quasi-equality.

Theorem 2.6. Assume the following conditions for integral elements of L.

1) Ascending chain condition holds for integral elements of L.
2) Any prime element is maximal.
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3) Any prime element contains such an element a* = a.

Then quasi-equality implies equality. Hence L forms a commultative cl-group,
which is a direct product of infinite cyclic groups generated by prime elements.

Proof. Any prime element p in L is not quasi-equal to e. For, if we take
an element @ such that @ =a*<< p, and decompose it as a~p; --- Du, Where
Ds is prime element not quasi-equal to e¢ (/=1,---,%), then ;- p, < a¥
=a<p. Hence there exists some p; such that p,<< p. Hence p=p;. If
u~e then # = e. For, if we assume # =+e and take a maximal element p such
that # < p < e, then p is a prime element and we get p~e. This is a con-
tradiction. Finally, if @~b then there exist # and v such that au = vb, u~v~e,
Since # = v = e, we obtain a =b. Q.E.D.

Let L be a cl-semigroup such that there exists a mapping of L into itself
a— g with the following properties:

(L ¢<a,

(2) a=a,

(3) a<bimplies g<p,
(4) adb<ab.

We have the following: g~b = a~b, ab=ab=ab=ab, a°b=a"b=a"b

a“ b and, more generally, if there exists U, @, then U, gs = Usas-

Definition. An elements a of L is called equivalent to b if g =p. Symbol:
a~>b.

It is evidedt that this relation fulfils the equivalence relation.

If a~b and c~d, then gc =gc=bd =bd and a“¢c =¢"¢c =p"d =b"4.
Hence ac~bd and a“c~b“Yd. But a~c~b~d does not hold in general.

If we classify L by the equivalence relation, then the set H of all classes
A, B, --- forms a partly ordered set when we define A<<B if a<p (@€ A, b¢ B).
Moreover H forms a cl-semigroup with respect to this order.

We can easily verify that the classification mentioned above is characterized

by the following properties:

1) Every class contains the greatest element.

2) Let A,B be two classes. Then the class containing @b and the class
containing a“b(ac A, bc B) are determined by A and B only not depending
upon the choice of @ and b.

In the following we suppose that the unity quantity e is maximally integral
in L. Then e = e, since e<<e, (e)2<<ee = e.

Theorem 2.7. 1f in L the mapping a—a~' is defined, then a<a<a*
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= (a1, (@)Y =a*. a=">impliesa*=b% If H forms a group then a = a*.

Proof. From aa1<aa'l<aa'<e=e we have al<a-l. Hence
@l =a-1. Since aa-'1<e we get a<<a<(a1)! =a* (a)* =a*. Nowlet H
form a group. Let E be the unity quartity of H and A-! the inverse of A in
H:AA-' = A-'A = E. Then the unity quantity e of L is contained in E. For
if e€ A then A? =A, A=E. Let a be an element of A and A’ be a class
containing a-!'. If we take x in A-!, then ax€ AA-1=E, ax<e. Hence
x<a, ax<aa'<e aa € E, AA’ = E, A’ = A-1. Therefore if a¢ A then
a"l¢ A1, a* = (a"1)-1€ A, a*<a, hence a* = a.

Theorem 2.8. Sup pose that H forms a group under multi plication. T hen
there exists a mapping of L into itself a — a=t with the following properties:

(L) Vaa—la_<_a,
(2) axa<a implies x a1,

Proof. Let @ be any element in A€ H and ¢ in A-1, then f€ A1, af<e.
If we define ¢~! = { then aa~! <e. Hence we get aa—la<a. If axa<a then
ax<e by maximality of e. And x<x —=ex =a-lax <alax<ale=a"l
=t=IF=a"; i.e. axa<a implies x <a-l.

Theorem 2.9. Letin L the mapping a— a=' be defined. The classification
of L by quasi-equality is the only one in order that a set G’ of all classes by
some partitions of L, such that the class E’ containing e consists of integral
elements of L and a<x<e (a€E’) implies xc E/, forms a group under
multi plication.

Proof. E’ is the unity quantity of the group G’. As in the proof of
theorem 2.7, aa=l¢ E’, a-lac E’ for any element ¢ of L. If a*=0>b% i.e.
a~! =b~' then A’ =B/,acA’, be B'(A’, B’€¢G’), because ¢ = ab~'b = aa™'b,
c€A’E’ = A’, cc E'B’ =B’. G’ is, therefore, obtained by some classification
of G modulo a subgroup H, and G’ is isomorphic to G/H. E’ is the set-sum
of all classes E,A,B,---in H. If E/==E then there exists an element A-=E
of H, hence if a€ A then a<e, al==e, a1 >e, but a 1€ A-1c H, a1 e.
This is a contradiction. We have E/ = E.

§3. Orders, ideals in a semigroup.

In this section we shall consider orders and ideals in a semigroup. Since
the theory is simijlar to that of K. Asano, ([2]) we shall only state the main
results omitting the proof.

. Let 0 be a semigroup, and M the semigroup consisting of all 4 in o such
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that @l = b1 implies @ =b and Aie = Ab implies @ = b. Let further M’ be a
subsemigroup of M. A semigroup S is called left quotient semigroup of o by
M’ when 1) S contains o and has a unity quantity 1, 2) any element « in M/
has an inverse «~! in S: au™! = q~l¢ =1, and 3) for any % in S there exists «
in M’ such that «x is contained in 0. Any element in S is, therefore, expressible
in the form «~la where « € M’ and a€o.

In order that there exists a left quotient semigroup of o by M/, it is neces-
sary and sufficient that for any @ in 0 and any « in M’ there exist @’ in o and
o« in M’ satisfying @’a = d’a ([9]). And this quotient semigroup is uniquely
determined by o and M’ apart from its isomorphism. If S is a left quotient
semigroup of o by M/, then for any «; (¢ =1,.--,2#) in M’ there exists
¢i (=1,--,m) in o such that 7 = ciuxy = --- = Cna, € M/, therefore for any finite
set of elements x;,---,%, in S we can take an element 7 in M’ such that
7% €0 (2 =1,---,m). If M’=M we call S a left quotient semigroup of 0. We
can analogously consider a right quotient semigroup of o by M’. If S is a
left and a right quotient semigroup of o, then S is called a quotient semigroup
of o.

Let S be a given semigroup with unity quantity 1. An element of S is
called regular if it has a left and a right inverse. The subset S¥ consisting of
all regular elements of S forms a group under multiplication.

Definition. A subset o of S is called an order of S when

1) » forms a subsemigroup with 1,
2) S is a quotient semigroup of o by S¥~p.

Let o be an order of S and o’ a subsemigroup of S with 1. If there exist
two regular elements 4, # such that Aop < o, then o/ is also an order of S.

Definition. Let o be an order of S. A subset A of S is called a left (right)
o-set when pA " A(A0Z A). A left and a right o-set is called a fwo-sided o-set
or in short o-sef of S. A left (right) o-set a is called a left (right) o-ideal of
S, if a contains a regular Element of S and there exists a regular element 1
such that aA To (Aa o). ais called an p-o'-¢deal if it forms a left p-ideal and a
right o’-ideal. An p-p-ideal is called a fwo-sided o-ideal or in short p-ideal.

Let a and b be two left (right) o-ideals of S. Then a“b (set-sum) and a~b
(intersection) are also left (right) o-ideals.

Let a be an p-0/-ideal and b an o-o’/-ideal, then ab = {abla€a, b€ b} is an
o-0//-ideal. Particularly a product of two o-ideals is also an p-ideal.

Definition. Two sub-set M and N of S are called equivalent if there exist
regular elements 4, #, A/, o/ snch that ANy M and My’ < N.
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Two orders o and o are called equivalent, when they are equivalent as
subsets of S. In this case, 4, ¢ satisfying 10’# C o may be taken as elements of
o, and similarly A/, p/ satisfying A/op’ < o’ as elements of o/. In order that two
orders p and o’ are equivalent it is necessary and sufficient that there exists an
p-o’-ideal of S.

If ais a left (right) o-ideal of S, then the set o, corsistirg of all x such that
xa<a, x€S, forms an order of S and is equivalent to o. The set or consisting
of all ¥ such that ay Ta, €S, forms also an order equivalent to o. o0,(0r) is,
moreover, a left (right) o-ideal containing 0. And a is an o,-o-ideal of S.

Definition. v, and o, are called a left order and a right order of a

respectively.

Definition. An one-sided p-ideal a is called integral if it forms a semigroup,
i.e. a2l a.
It is easily verified that the following conditions are equivalent:

(1) aly,, (2) alor, (3) a2<a.

Definition. An order o of S is called maximal when there exists no order
which is equivalent to o and contains o properly.
Let o be an order of S. Then the following conditions on o are equivalent.

1) o is a maximal order (in the set of all orders equivalent to o).

2) There exists no integral left and no integral right o-ideal containing o.

3) o is a left order of any left o-ideal, and also a right order of any right
p-ideal.

4) o is a left and a right order of any two-sided p-ideal.

Let o be a maximal order of S. A left or a right o-ideal is integral if and
only if it is contained in 0. A left (right) o-set equivalent to o is a left (right)
o-ideal of'S.

If pis an order of S, and if a is a left or a right o-ideal and o, o the
left, right orders of a respectively, then we have a~l=}clac Co,, c€ S}
= {clacaZa, c€S} = {clcalor, c€S}. a1 forms an oro,-ideal of S.

Definition. a-! is called the inverse ideal of a.

If a and b have the same left or right order, then ¢ < b implies a~1 2 51,

Let o be a maximal order and a a left o-ideal. Then the left order of a-!
is maximal. If m is a subsemigroup of S such that imp To (4, #€ S¥~0), then
there exists a maximal order which contains m and is equivalent to o, namely
the left order o’ of the inverse ideal of a left p-ideal a = opi“Yoim. For any
order o/ equivalent to o, there exists therefore a maximal order which contains

o and is equivalent to o.
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Defintiton. An order o of S is called regular when for any % in S there
exist two regular elements « and 8 in o such that xox < 0 and Pox < o.
Let p be an order of S. Then the following conditions are equivalent.

1. o is regular.

2. For any x in S there exists a two-sided p-ideal which contains x.

3. For any u in S¥*, ouo forms a two-sided p-ideal.

4. If M is a subset of S such that AMpu T o (2, #€ S%), then there exist
regular elements «, 8 in o such that «aM <o, M3 < o. i

5. For any regular element « in o there exist regular elements «/,«’/ in o
such that oz 2 «’v, o = ou’’.

6. Any one-sided o-ideal contains a two-sided o-ideal.

If a subsemigroup o/ containing unity quantity 1 is equivalent to a regular
order p of S, then o/ is a regular order of S.

The intersection of two equivalent regular orders o, o/ is also a regular
order equivalent to o and v'.

A regular order of S is a maximal order, if and only if there exists no
integral two-sided o-ideal containing o properly.

$4. Two-sided p-ideals.

In this section we shall denote by o a fixed maximal order of a semigroup
S. A two-sided o-ideal will be called briefly an “ideal ”.

Let L be a set of all ideals o,a,5,¢,---in S. If a subset X of L be bounded,
i.e. a, ¢ for any q, in X, then it is easily verified that the set-union U, a, of
all a, in X forms an ideal and sup X = U,qa,, a(sup X) = sup (aX), (sup X )a
= sup (Xa). Hence L forma a c¢l-semigroup under multiplication and inclusion
relation. A mapping of L into itself a— a~! has the following properties 1.
aa~laTa and 2. ara T a implies ¥ Ca~l. We may, therefore, apply the results
of §2.

Theorem 4.1. L forms a residuated lattice.
If a and b are two ideals of S, then (6:a), ((6:a)») is nothing but the ideal

consisting of all ¢€ S such that ac <6 (ca < h).
If we define o* = (a~1)-1, then
alo*
ok = ¥
a b implies o* T Bk

@Bk < (ab ).

Definition. Two ideals a and b are called quasi-equal if they are quasi-equal
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as elements of cl-semigroup L, i.e. a* = t% or a~1 = b1

Definition. An ideal a is called v-ideal if a = o*.

For example a~! and o* are v-ideal for any ideal a. o is evidently v-ideal.
Also a prime ideal p not equivalent to o is a v-ideal.

We have immediately the following: a~a¥; aa~l~a~la~o0; if a~b and a is
integral, then b is also integral; if a~b% and a < ¢ < 5, then a~c; if a < b* then
a~cb~0b, where ¢ and b are integral; if a~b then au = vp, u~p~p; if a~b and
¢~b then ac~bb, a~¢~bYd and a~c~b~D.

If we classify the set of all two-sided o-ideals, then the set G of all classes
forms a cl-group. This group is, therefore, abelian as a group and distributive
as a lattice.

Theorem 4.2. The set G' of all v-ideals a,b,--- forms a cl-group under
multiplication: (ab)¥, join: (a“b)* and meet: a~b. And G’ is isomor phic to
G as a cl-group. Hence G’ is abelian as a group and distribuiive as a laltice.
Moreover if we assume the ascending chain condition for integral v-ideals,
then G’ is a direct product of infinite cyclic groups with prime v-ideals as
their generators.

The multiplication of ideals is therefore commutative in the sense of quasi-
equality and we get the Artin’s Refinement theorem.

Theorem 4.3. I1f L forms a group under multiplication, then it is a cyclic
group generated by a maximal integral ideal y.

Proof. Let ay Tas -~ be any ascending chain of integral ideals
a,2=1,2---. And let further a be anintegral ideal of set-sum of all a;. Then
we get ma~! T e~ - Caa~! =p. Since aa~! is the set-sum of all aa?,
i=1,2,-.-, there exists a finite number # such that 0,021, hence a,a~! =0y,
A=0p, 0 =0ues, 2 =1,2,---. Let p=Fo0 be a maximal integral ideal. Then p is
not quasi-equal to o. For if not, then p~no, p~l=p~1 =p, 0 =pp~l=po=1p, a
contradiction. Let a be any integral ideal in L. Then a“p=o0 or =p. If
a¥p=othen adl, a=o. If aYp=pthen a Ty, i.e. p is a divisor of any integral
ideal in L. Hence p is one and only one maximal (of course prime) ideal in L.
If a is =<0 and integral then a = pay. If a; is =0 then a; = pa,. Thus we get
a chain a Cay Cay C ---. Hence there exists a positive integer such that a = ",
Any ideal in L is represented as a quotient of two integral ideals. Q.E.D.

Let us suppose that there exists a mapping of L into itself a— a with the
following properties:

1) aZa,
2) a=u,
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3) a< ¥ implies a < ¥,

4) abZab.

For example the mapping a-— o* = (a~1)-1 has such properties. By
Theorem 2.7 a C a*.

We get the following: a~b=a~b ab=ab=ab=ab, a”b=a" b=a
= a%b and more generally if there exists U a, then Uy ay = Up g«

o5

Definition. An ideal a is called a closed ideal or briefly a c-ideal if a =a.

Definition. An ideal a is called equivalent to b if a =5 Symbol: a~b.

If a~% and c~b then we get ac~bd and aYc~b“Dd. But a~c~b~d does not
hold in general.

If we classify L by the equivalence relation, then the set H of all closses
A, B, --- forms a partly ordered set when we define A<<B by a < b where ac 4
and b€ B. Moreover H forms a cl-semigroup with respect to this order. The
set H’/ of all c-ideals q,5,--- forms a cl-semigroup under multiplication ab, join
a“b and meet a~b% And H’ is isomorphic to H as a cl-semigroup. If H(H’)
forms a group then by Theorem 2.7 a = o*. If we classify H’ by quasi-equal
relation, then the set H’/ of all classes forms a cl-group isomorphic to G.

Theorem 4.4. Let us assume the following conditions:

1) The ascending chain cond. tion holds for integral c-ideals.

2) Any prime c-ideal is maximal.

3) Amny prime c-ideal contains a v-ideal.

Then quasi-equality implies equality. Hence the c-ideals forms a cl-group,
hence a = o*. Moreover if o is regular, then the condition 3 is always satisfied.

For any integral ideal a and any regular element « in a, there exists an
ideal ¢ such that ovx D¢, hence (pu)~! = a~lp < ¢, ou = («~1p)~1 2 ¢*, and we get
a2k

We get easily:

Theorem 4.5. Let o be a regular order. In order that the sei of all closed
two-sided v-ideals forms an abelian gronp which is a direct product of infinite
cyclic gronps, it is necessary and sufficient that the following conditions hold
Sfor o.

Ay o is maximal.

Ay Ascending chain condition holds for integral c-ideals.

As: A prime c-ideal is a maximal two-sided c-ideal.

§5. Closed p--semigroups

Let S be a semigroup with unity quantity 1, and o a maximal order of S.
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An “ideal ” means a “two-sided p-ideals” in S. In this section we assume that
the set L of allideals has a mapping into itself a— o/ with following conditions:

1) aldo 2) o’ =a" - 3) albimplies o/ T B 4) o' < (ab).

An ideal a is called a closed ideal or in short c-ideal if o/ = a.
In the following we shall assume

A;: 0 is a regular maximal order.
A, : Ascending chain condition holds for integral c-ideals.
Asz: A prime c-ideal is maximal.

Therefore the c-ideals form an abelian group under the multiplication
a-b = (ab)’ and the c-ideals coincide with the v-ideals: o/ = o* = (a~1)-L

Lemma 5.1. Ascending chain condition holds for c-ideals which are con-
tained in a fixed c-iideals c.

Proof. Let IV be any set of c-ideals contaired inc. If € IV then ¢~l-a o,
hence of all ¢~l-a there exists a maximal c-ideal 6. Obviously ao =c-b is a
maximal ideal in V.

Lemma 5.2. If ais an ideal then there exist finite elements ¢y, -+ ,C, i1 Q
such that o’ is a c-ideal generated by ¢,, - ,cy:

o =(c1, -, ) = (0c10™ --- Yoc0 K.

Proof. Let ¢y,---,c, be m elements in a and ¢; be regular. If there exists
an element cnp+1€a and cpe1€(C1, -,Cn), then we make (€1, ,Cm, Cnt1):
Since the chain (¢;) C (¢, ¢2) C --- < o’ does not continue infinitely, there exists a
number 2 stich that (¢;,--,¢,) 2a. Hence (¢1,:-,¢,) 20 and o/ = (€1, ...,Cp).

Definition. Let A be an v-set of S containg regular elements of S. The
set-sum A of all c-ideals genesated by finite elements in A is called the closure
of A, and A is called closed if A = A.

If a is a c-ideal, then by lemma 5.2 we get a =a’. A c-ideal is closed in
the sense of this definition.

The closure of an o-set has the following properties:

1. ACA,
2. A=A,
3. AC B implies ACB.

4. ABZAB

By Definition, 1 and 3 are evident. lLet @ be an element in Z, then there

exists a c-ideal (a;,---,@r) containing a, generated by a@; in A4,¢{=1,---,7.
There exists a c-ideal (b;,,---,bis,) containing a;, where b;;€ A, j =1,---,5;;
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i=1,---,7. Let by,---,--,bn be the set of all &;. Then a;€(by, -,bn),
i=1-,r, and (by,,b) A, ac A. Hence we get ACA, A=A.

Let A and B be two o-sets of S. If a€ A, b¢ B, then there exist c-ideals
(ar,-,ar), (b1,-+,bs) such that a€(a,-,ar), bE(b1, - ,bs), a; €A, by€B.
Hence abé(ar, - ,ar)-(br, -, bs) = {(Uivai) (Upobp)}* =(c1,--,¢:) where
c;€(Ujoa0) (Upobd) =AB, j=1,---,¢. Hence abc AB, i.e. ABZ AB.

Lemma 5.3. Let A and B be o-sets and M be a subset of S. If AMCTB
and AX< B for a regular element 1, then AM T B. Particularly if a,b are
ideals then aM Z b implies aM Z b.

Lemma 5.4. Let a,% and ¢ be c-ideals. 1f aM < 6 then (c-a) M T c¢-b. If,
particularly, ac — b then c€a-1-5.

Proof. Since caM < b, we get caM < ¢b, i.e. (c-a) M Z¢-h.

Let P be a set of prime c-ideals. For a c-ideal a, let ap be the set of all
S-elements ¢ such that n.c < a, where n. is a suitable integral c-ideal coprime to
P, i.e. coprime to all p in P. ncZa implies ecn & a and conversely. In fact,
from nc Za we get cen~t-a=qa-n"l, ecn"a. It is easy to see that ap is the
set-union of all n~l-a with n coprime to P.

Definition. ap is called the P-component of a. If P consists of a single
prime ideal p, then we denote ap by a,.

Lemma 5.5. For any P op forms an order containing o.

Proof. If ¢,¢’€0p, i.e. nc o, n’c’ o, then n'nec’ < rioc’ = n’¢’ Zo. Hence
by Lemma 5.4 (n/-n)(ec’) 0. Since n’-n is obviously coprime to P,cc¢’ €op.

Lemma 5.6. If a and % are c-ideals such that ax " 6(x € S) then apx < bp..

Proof. Since ax &6, (n~l-a)x Tn-1-b, (Unl-a)x =Umt-a)xs & Un-1-5,
hence apx < 6p .

Lemma 5.7. ap is an op-ideal.

Proof. If ac€apr and c€pp, i.e. there exist n and n’ such that na <a and
n’c To, then nn’ca T a; hence (n-n’)(ca)Za, ca€ap. Similarly ac€ap. Since
there exists a regular element A such that al o, we get apd T op; and similarly
there exists a regular element u such that uap T op . ‘

Lemma 5.8. vp is a regular order of S.

Proof. For any x in S there exists a regular element « in p such that
oaox <o, hence ouox <o, wopx < (0w)px Cop. Similarly there exists a regular
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element 8 in o such that %08 T op.
Lemma 5.9. 1f ais a c-ideal, then ap =ap. Particularly op=op.

Proof. Let @ be any element in ap. Then there exist finite elements
a, - ,ar in ap such that e is contained in (a;, ---,ar) generated by a;,-,ar.
Since a; € n7t-a (£ =1,-.-,7), there exists an n satisfying a;€n-1-a G =1,--,7).
Hence ac(ay,,ar) Tnt-alap, i.e. ap Tap. Since evidently ap Cap, we

get ap = ap.

Lemma 5.10. If a is a c-ideal, then

ap = 0p0l = Q0p = DpO0p .

Proof. ap=Un1-aCUnla=(UnDa=0,0C0ap =0ar Herce ap=opa

Similarly we get ap = op = 0p00p .

Theorem 5.1. The closure N of an vp-ideal N is also an op-ideal.

Proof. Let a be any element of % and ¢ any elemert of op. There exists
a cdideal (a;, - ,ar), a; €%, containing @, and n~! containing ¢. Then ca€n-l.
(@1, ,ar) = Usn~Toap = (by, -, bs), where b;€ U;n"loa,0 A Hence cac;
similarly ac € 9. Sirce there exists a regular elemert A such that A1 T o0p, we
get by Lemma 5.3 %A T op = 0p.

Theorem 5.2. 1f U is an op-ideal contained in oy, then a = W ~0 is an o-ideal
and S)i = ((_I)p .

Proof. Since A2q, we get A2 n~lg, A2 n~1.0. Hence A2(a)r. Let a be
any element of . Then a€(ay,-,ar), @ €N (i =1,---,7). There exists an
n such that na; To and <9, therefore, na; Ta (2 =1,---,7). Hence a;€n-1-q,
acay,,a)Tn1-aZ(Dp, i.e. AT (@D)p.

. .Corollary. 1fWis a cop-ideal (closed op-ideal) in vp, then there exists a
c-ideal a such that A=aqp.

Theorem 5.3. The c-vp-ideals N, B, 6, --- form a group Gy with respect to
the product -B =UB. G, is homomorphic to the group G of all c-ideals
a, b,

Proof. We shall show first ap+bp = apbp = (a-B)p. Upbp = 0pa bop = 0pabopy
=0,(a-b)0p = (a-b)» The mapping a— ap is a homomorphism of G into Gp.
If A op then there exists a such that A =ap. If € is not contained in op,
then there exists ap such that ap-€ Cop, therefore, ap-® =5, and € = az;!-6p
= (a~1-5)p. Hence any element of Gp is an image of an element of G.

We have easily.
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Theorem 5.4. If the three axioms A,, Ay and As hold for c-ideals then
that is so for the c-op-ideals.

Theorem 5.5. Let a be an integral c-ideal. Then ap =0p if and only if a
is coprime fo P.

Proof. If ais coprime to P, then a~1 T pp ap = 0pa 2 a~la = 0, hence ap 2 0p
and ap = 0p. If, conversely, ap = 0p, then 1€ap, n1 Ca with an n coprime to
P. This means a is coprime to P.

Theorem 5.6. 1f an integral c-ideal a contains a product ¢ =II,-p, of
Drime ideals contained in P, then ap~0=a.

Proof. It is obvious that ap~0=0a. Let @ be any element of ap~0. Then
there exists an n coprime to P such that ne Ca. Since n and ¢ have no common

divisor, (n,¢) =n“c=o0. From ¢ q, neZa and (¢“n)aa, it follows that

acala=aq, ie. ap~0a

Theorem 5.7. The P-component pp of p in P is a prime c-vp-ideal, and
any prime c-op-ideal is the P-component of some v in P.

Proof. If pe P then pp-=top. If there exists a c-op-ideal A such that
pp CUAZ 0p, then A = ap with a = A ~ o, therefore, p “pp~0 a0, p==a, and
a=09. Hence A =p,. Thus pp, is maximal and therefore prime. Since the
group G, of all the c-op-ideals is generated by all the pp(p€ P), it is clear that
the set of pp(p€ P) is the totality of prime c-op-ideals.

Theorem 5.8. Let a be a c-ideal. Then a= N\pap, where p runs over all
the prime c—ideals of 0. More generally, ap = (\pepQp .

Proof. It is evident that ap & Npecra». Let @ be any element of Nyep 0y,
then there exists n(p) coprime to p such that n(p)e < a. Since from mae Ta,
m’a T a it follows that (m, m’)e < q, there exists the greatest ideal m, such that
moe & a. Being mo =2 n(p), me is coprime to p, hence to P, therefore, a€ap, i.e€.

npep ﬂp;ap .

Definition. A subsemigroup S’ of S is called an o-semigroup when it is a
closed p-set containing o.

A subsemigroup S/ is an o-semigroup if and only if for any finite elements
€1,+,C, in S’ the c-ideal (1,¢;,--+,¢,) generated by 1,¢,,---,c¢, is contained
in S’.

For example 0, is an o-semigroup in S.

Lemma 5.11. Let S’ be an o-semigroup. 1F S’ is not contained in o,, then
S 2p1,
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Proof. There exists an element ¢ contained in S’ but not in vp. (1,¢)"1 is
integral and contained in p, if not n = (1,¢)~1 is coprime to p, hence p, =2n-13¢,
a contradiction. We get, therefore, S’ 2 (1, ¢) 2 p-L.

Theorem 5.9. 0p is @ maximal v-semigroup in S. And any v-semigroup=F S
is contained in some oy .

Proof. If there exists an op-semigroup S’=Fpp cortainirg oy, then by
Lemma 5.11 S’ 2 p-1, hence S’ 2 -1 where P = p,. S’ contairs all the powers
of B, i e. all the c-op-ideals, therefore all the py-ideals. Since any element of S
is contained in some opideal, S’ =S. Any o-semigroup S’(==S) is contained in
seme 0p: S’ T op, forif rot, by Lemma 5.11 S’ contains zll the p~!, hence all the
o-ideals, and it follows that S’ = S.

Theorem 5.10. Any o-semigronp S’(==S) coincides with some op .

Proof. Let P be the set of all p’s such that 0, 2 S’. We shall show that
S =op. If S’-0, then op D S/, and there exists an element ¢ contained in
0p, but not in S’ Obviously o0p 2(1,@) Do and (1, @)1 Co. Let (1,a)!
= qy- --- -qr be the prime factorization of (1,a)~!. Sirce (1,a) = q7!- --- -q7* is not
contained in S/, for some prime factor q of (1,a@)-1, q~! is not contained in S’.
Since "' < (1,a) “op Co(p€ P) and g1 £ oq, q is not contained in P. There-
fore, S’ is not contained in 0,, hence by Lemma 5.11 S’ 2>¢-1. This is a
contradiction.

It is easily seen that all the p-semigroups, i.e. all the o, form a lattice with
respect to inclusion relation. In fact

0p~0p’ =0p~p!, 0p~0p/ =Dpup/
From this we have the following

Theorem 5.11. The set of all v-semigroups forms a Boolian algehra which
is dual isomor pbic to the Beolian algebra consisting of all subsets of the set
of all prim c-ideals in o.

§6. Factorization of integral elements in a lattice-ordered gruppoid

Let G be a gruppoid with units ¢;, e, ---. Elements of G will be denoted by
small letters with or without suffices.

Definition. A gruppoid G is called lattice-ordered when for any index
7 and &,

1) L, = {x|ex = x,x¢G} forms a lattice,
2) Ry={ylye, =»,y€G} forms a lattice,
3) N =L;~R; forms a sublattice of both L; and R,.
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In the following @ = a;;, will denote that @€ Ny .

Definition. An element @ = ay, is called infegral if @ <e; and < e¢g,.
In this section we shall study on factorization of integral elements in a
lattice-ordered gruppoid G with following conditions:

P;: ay < e implies a; < ¢, and conversely.

P,: L; and R, are modular lattices.

Ps: If a<b (a,bcL,)), c€R;, then ca<ch, and if a<<b (a,bE Ry),c€ L,
then ac < bc.

P,: There exists sup A for any non-void set A consisting of integral elements

in L;, and similarly for R;.

If there exists sup A for a subset A of L;, then there exists sup (¢A) for
any a¢ R;, and a(sup A) = sup (@¢A). Analogously, if there exists sup B for a
subset B of R,, then there exists sup (Bb) for any b¢L,, and sup(Bb)
= (sup B) b. Because, since a(supA)>ax(a=ay;) for any x€A, a(supA)
> sup (@A), therefore a~! sup (a¢A) > sup (a~laA) = sup A, sup (¢A) > a(sup A).
Hence sup (@A) = a(sup A). The other is analogously obtained.

If a subset A of L; is bounded then there exists sup A, and analogously for
R,. Because, there exists an element ¢ =c;¢L; satisfying x<c (x€A),
c~lx<<c"l¢c =¢,. Hence there exists sup (¢c!A) in L;, and c(supc~tA4))
= sup (cc~'A) = sup A. By this fact, V;; forms a cl-group. N;; is therefore a
commutative group under multiplication.

If ea<b (a=ay, b =>by), then b-la<b"b=e¢,, b~'a€ Ny;, by the con-
dition P, b~'a<e;, therefore b-1 =b-laa~l<e;a~! =a~l. Hence L; is anti-
isomorphic to R; by the mapping a—a~! (a€L;, a~1€ R;). It is easy to see
that if a<<b, @, b€ L;, (a, b€ R,), then these exists an integral element ¢ such
that @ = bc (a = cb).

Theorem 6.1. By a mapping a— c~tac (¢ =c;;, a€ Nyy) Ny and Nj; are
group-isomor phic under multi plicaton and laitice-isomor phic under ordering.
And this map ping is uniquely determined independently of the choice of c€ Ny;.

Proof. The first part of this theorem is obvious. Let ¢/ be any element of
N;;. Then c¢c-1¢ N,;;. Since N, is a commutative group, we have c¢c-la
=ac’c, ¢c~lac = ¢’~lac’.

Definition. An element a’ in Nj; is called conjunctive to an element @ in
N;; when there exists ¢ = ¢, satisfying @’ = c~lac.

Definition. An integral element a = a;; is called ¢ransposable to an integral
element b =25, if there exists an integral element ¢ =c¢; such that
b=c"1(c~a), c¥a =¢e;.
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This relation is reflexsive and transitive, but not symmetric.

Definition. An integral element e« is called projective to an integral element
b when there exists a sequence of integral elements @ =¢Co, C1,**sCn, Che1=2D>D
in which for any two successive elements c¢;, ¢;+; one is transposable to the

other.

Lemma 6.1. 1f two laitice-quotients ala’ and b]b’ of L; are projective, then
integral elements ¢ =a'a’ and d =b-b’ are projective in the sense of above

definition.

Proof. If @/ac is transposable to b/bd and b < a, then b“ac = a, b~ ac = bd.
Since there exists an integral element f such that b = af, bd = afd, we have
fYc=e, fmc=/fd,d =f-1(f~c). Hence c is transposable to d. By induction
we complete the proof.

A factorization of an integral element and its refinement are defined as in §1.

Theorem 6.2. (Refinement theorem) Two factorizations of an integral
element in G have such two refinements that there is a one-to-one correspondence
between their factors, and the paired factors are projective to each other.

Proof. Let a = a, - @, = b, --- by be two factorizations of an integral element
acLl;. Put Ap.=a,---a., B,=0b,---b,. Since A, and B, are contained in L,,
we get two chains in Z; such that ¢, = A¢ > A, >-- >A,=a and ¢, =By > B,
> ...>B; =a. By Jordan-Hélder-Schreier theorem in a modular lattice, we get
two refinements of the same length e = A > A, > - > A =a, ¢, = By >
B, > .- > B, = a such that A/._,/A, is projective to B]_;/B,’ in pairs. Hence
by Lemma 6.1 a.’ = A["}A. is projective to b, = B/_{B,, and @ = I} a.
=I7%.b,/.

If we assume the ascending chain condition for integral elements in R, , then
the descending chain condition holds in Z; for integral elements that contain any
fixed integral element. Let a=a; be any fixed integral element of I, and
a1 >ay > - >a (a;<e¢) infinite descending chain in L;. Since ai'a < azla <
-.<a'a =g¢; is an ascending chain in Ry, we get a;'a = a;},a, hence a, = an.,
(v=12,--).

Definitiun. An integral element of G is called reducible if it is equal to a
product of two integral elements not equal to units of G. An integral element
of G, which is not reducible, is called irreducible.

From the refinement theorem we get:

Theorem 6.3. Suppose that the ascending chain condition holds for integral
elements in all L, and R,. Then any integral element in G is decomposed
into a product of finite irreducible elements of G. Moreover such a factoriza-
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tion is uniquely determined apart from the projectivity of their factors.
In the following we shall assume:

P;: N,, contains an integral element,
Ps: There exists for any element @ € N;; an element ¢ € V;; such that ¢ <a.
(It follows from this ¢/ = a~lca<a, ¢’ € Ny,)

Lemma 6.2. Let g = q;; be an irreducible element of G. 1S ais a maximal
element in N, such that a < q, then a is a prime element of Ny, .

Proof. Put a = bc, where b and c¢ are both integral in N;; and not equal to
¢;. Since ¢-Yg =e; we have q_>bc~bqg = b>a. This is a contradiction.

Definition. The element ¢ in Lemma 6.2 is called a prime element cor-
responding to q.

Definition. Let p = py; and p’ = p; be two prime elements corresponding
to irreducible elements ¢ =g¢;; and ¢’ = ¢/, respectively. Then ¢ is called
similar to @’ when p is conjunctive to p’. Symbol: g=¢’.

Lemma 6.3. Let an irreducible element q = q;; be transposable to an
irreducible element @ =ay, i.e. cPqg=¢ (c=ci), @ =c W c~q). Then
P =c1pc€ Ny, is a prime element corresponding to q’, where p = p;; is a
prime element corresponding to q.

Proof. ¢q¢’ =c~q=>c~p=>pc=cP’, and ¢’ > P'.
Lemma 6.4. Two projective irreducible elements are similar.

Theorem 6.4. If pe N,;; and q€ Ny, are irreducible elements, then pq =
q’'p’ where p=2', a=q'. ¢’ €N, p'€Ny.

Proof. If p=q then we may take ¢’ = p and p’ =q. We now suppose p
is not similar to q. Let P and & be prime elements corresponding to p and
q respectively. We have pgq<< pQ =Q'p where @ = pQp-l. Evidently
Pa < pg- Q" <e;. Now we shall show that pg< pg-@Q’ <e¢;. First if
Pq = pq~ Q" then @ < pq, @ < p. Hence p>p“Y @ =e¢;,. This is a con-
tradiction. Next, if pg- Q" =e¢;, then by modularity of Z; we have p =e¢;~p
=(Pa- QD = pq~(Q ~P). If @ =p~Q° then p>@’, a contradiction.
Since @ > p~ Q" > QP we get p~Q =@Q'p. Hence p = pg~- Q' p = pq“ pQ
= pq. Thisis a contradiction. Hence ¢’ = pg- @’ is irreducible. And we have
Pa =P~ =q'p’, where p-q =e;.

Lemma 6.5. 1f the ascending chain condition holds for integral elemenis
in one fixed L;, then it holds in any L;.

Proof. Let a; <<a;<<--- be an ascending chain in Z; and ¢ = ¢y an integral
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element. Tten ca, <ce=c<e (v=1,2,---), and ca; < ca, < --- is an ascend-
ing chain of integral elements in Z;,. Hence there exists an # such that

Cap = CApty s Au = Qpty, V = 1’ 2; Tt

Theorem 6.5. 1f we assume the ascending chain condition for infegral
elements in onme fixed L, and one fixed Ry, then any integral element in G is
decom posed into a product of finite irreducible elemnts is G, And this factori-
2ation is uniquely deteymined atpart from its similarity. Moreover the factors
in this product is commutative within their similarity.

§7. Gruppoid of normal ideals

Let S be a semigroup with unity quantity 1, and oo be a fixed order of S.
In this section we stall take out a system of orders which are equivalent to 0g.
The term an “order” will denote an *“order equivalent to p0,”’. Hence two

orders are equivalent to each other.

Definition. Let b and o/ be two orders of S, and a be an ideal such that
the left and the right orders of a are o and o’ respectively. a is called normal,
if both o and o’ are maximal.

If o is a maximal order and a is a left (or right) o-ideal, then the inverse

ideal a~! of a is normal.

Definition. Let a and b be two normal ideals. A product ab is called proper
if and only if the right order of a coincides with the left order of 5.
In what follows the term “ product” of normal ideals is used only in this

sense.

Definition. Let p be a maximal order. A left or a right p-ideal is called a
v-ideal, if ¢* = (a~1)"1 =aq.

For example the inverse ideal a-! of a is a »-ideal. A w-ideal is normal.

The mapping a— a* has the following properties:

a o, oK = ok |

a < b implies ok < b*, if ¢ and b have the same left or right order.
If a« and b are left (or right) o-ideals, then the meet (intersection) and the
join (set-union) are also. And it is easily verified that

(@F A BFF = a¥ L bF,
(aBYF = (axUB)* = (aYFE)k = (a¥“YBk)*,

If ab is a proper product of two normal ideals, then

akpk & (ap)*
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Let a,5 be o-0/-ideal, o’-0’/-ideal respectively. Then
ab(ab)-1 o, b(ab)t Tt = g¥-1,
b(ab)—lak & gk-lok T of, (abp) =1k S 1 = GF-1,
hence (ab)~la¥t* < o//, o6+ & ((ab)~1)~1 = (ab)*.
We get easily
(ab)* = (@*p)* = (abk)* = (a*kpF)*

Lemma 7.1. Let o be a maximal order and a be a left v-ideals. Then
(aa=1)* =p.

Proof. Since (aa~t) (aa~1)-1Typ, a(aa~1)~? T a-! and by maximality of o
(aa~1)-1 T o, we get

0 =0¥2 (a1 )* = ((aa™)1)"12p"t =p, (aa~)k=op.

Theorem 7.1. The set of all v-ideals in S forms a lattice-ordered group-
poid with respect to product: (ab)¥, join: (aY0)* and meet: a5, where the
product ab is proper and a and b have the same left or right order for join
and meet.

Let o;, 0, 04, -~ be the maximal orders of S and £; be the set of all left
p;-ideals, R, the set of all right og-ideals and N, = &~ M. Let us suppose that
there exists a mapping of &; into itself for all 7 and a mapping of R, into itself
for all 2 with the following properties:

1) aZa (a image of a)

2) a=a

3) If q,6€8; or a,6€R,, then a b implies a T .

We suppose further that the mapping of &; and the mapping of 9N, induce the
same mapping of N;, into itself, and

4) abZab, if ab is a proper product of normal ideals.

Lemma 7.2. Let a be a left (or right) v;-ideal. Then

el =q71, aSaZeF (0F = (a"1)"D)
Proof. Let a€ &;, a1 €N;;, From
a0~ Cao;a-l Tanjl =l o =y
we get a=! “a-1, hence a~! =g~ Since aa~! “ao;a~! To; we get a Ta < (a-1)-L

Definition. An ideal a in &; or R, is called a closed ideal (c-ideal) if a =q.

Lemma 7.3. Suppose that if aca”b (0,56 L,) then there exists beb such
that a“va = a“ob. Theset L; of all closed ideals in Q; forms a modular lattice

under join a“~b and meet a6 (a,5€ ).
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Proof. L; forms evidently a lattice. Now assume that
aDb, aYc="5b" (a,b,c€ L)

Let @ be an element contained in a, but not in 5. Since a€a < bh%Y¢, there exists

an element ¢ such that

pYoc =b6%%a==bh, ce€c

Hence c €%z T b%a =a=aq, c¢ b, and therefore we get a~cDb~c, ie. Ly is
modular.
In the following we shall assume:

1) The maximal orders are regular.
2) Ascending chain condition holds for integral closed left o;-ideals (or right

0,-ideals).
3) A prime c-ideal of p; is maximal (as a two-sided c-ideal).
4) Any c-ideal is normal.
5) The lattice L;,(R;) of all closed left (right) o;-ideals is modular.

Then the set Ny = L;~R; of all closed two-sided p;-ideals forms a cl-group.
Lemma 7.4. If a=0;€ Ny = L~ Ny then
- l=1p, oala=op
Proof. aa-! is a closed two-sided p;-ideal, and
(@) = (a1 =y,

hence aa~! = p;, because the closed two-sided p;-ideals form a group. Similarly

we have a~la =yop;.
Lemma 7.5. Every c-ideal is a v-ideal.

Proof. Let a = q; be a c-ideal. Then

o* = ga~1lg¥ = qa~lo* = aa~1(a"1)l =q
Lemma 7.6. There exists an integral o;-o,-ideal.
Proof. ¢ = (o0;) is integral, since 0,05 D ;.

Theorem 7.2. The set G of all c-ideals in S forms a lattice-ordered grup-
poid withthe properties Py—Ps in $6 with respect to a product: a;-be; = 0ixbe »
join: (ay, by,) = ai"by, and meet 0, ~b;,, where i = j or k = 1 for join and meet.

From the results obtained in §6 we get the following theorems :

Theorem 7.3. By a mapping o/ — ¢~lac (¢€ Ny, a€ Ny, of € Ny,) two lattice-
ordered groups N; and Ny, are group-isomor phic and lattice-isomor phic. And
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this mapping is uniquely determined independenty of the choice of ¢ in Ny.

Theorem 7.4. Any integral c-ideal is decomposed into a product of finite
irreducible c-ideals. And this factorization is uniquely determined apart from
its similarity. Moveover the factors in this product is commutative within their

similarity.
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