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The arithmetical ideal theory in rings may be regarded as that in semi­

groups, which can be treated as a generalization of the former. The arithmetical 

ideal theory in commutative semigroups was investigated for the firat time by 

Clifford ([4]) and then by Lorenzen ([8]). Sorne of the result of Clifford was 

extended to the noncommutative case by Kawada and Kondo ([7]). In the 

present paper we shall develop the arithmetical ideal theory in (noncommutative) 
semigroups, which is a generalization of that in noncommutative rings (cf. [1], 

[2] and [6]). 

As preliminaries we deal in § 1 with the factorization of integral elements 

in a lattice-ordered group and in § 2 we give an abstract foundation of Artin­

Hencke's ideal theory ([5]). Let S be a semigroup with unity quantity. The 

concepts of orders, maximal orders, ideals etc. in S are defined similarly as in 

rings. By using the results of § 1, 2 we discus in § 4 the theory of two-sided 

ideals with respect to a maximal order of S. We consider closed ideals 

(Lorenzen's r-ideals), i.e. ideals closed with respect to a given closure operation, 

by which a mapping of the set of all two-sided ideals in itself is defined. In 

order that the set of all closed two-sided o-ideals, o a given regular order, forms 

an abelian group, which is a direct product of infinite cyclic groups, it is neces­

sary and sufficient that Noether's axioms hold for o. Let o be a regular arder 

of S, for which Noether's axioms hold. The closure operation defined over two­

sided o-ideals can be extended over o-sets containing regular elements. (A subset 

A of S is called a o-set if oA = Ao = A.) A closed sub-semigroup of S containing 

ois called a o-semigroup. We determine in ~5 all o-semigroups. They form a 

Boolian algebra with respect to inclusion relation. In ~ 7 we shall consider the 

Brandt's gruppoid of normal ideals. The factorlzation of integral normal ideals 

may be regarded as the factorization of integral elements in a lattice-ordered 

gruppoid, which will be treated in § 6. 

§ 1. Faetorization of integral elements in a lattiee-ordered group. 

Let G be a lattice-ordered group Cl-group) with unity quantity e. Elements 

of G will be denoted by smallletters with or without suffices. W e do not assume 

the multiplication to be commutative, except when we mention it particularly. 



10 Keizo ASANO and Kentaro MORATA 

Definition. An element a of G is called integral if a< e. 

If a< b th en there exist two integral elements c and d such that a = be 

= db. Putting c = b-la we get c < b-lb = e and be =a: Similarly we obtain 

a= bd, d<e. 
Let x be any element of G. Th en a = x ne is integral, bence there exist 

two integral elements c and d st·.ch Uat a = xc = dx. x is, therefore, repre­

sented by a form of a right ar:d a left quotients of two integral elements of 

G: x= ac-1 = d-la. 

Let a and b be coprime. Then aux= aubx = auxb for any integral 

element x in G. Because, aux=(aub)(aux)=a2uaxubaubx<auauaubx 

=aubx<aux. If a; and b~c are coprime (i=l,···,m; k=l, .. ·,n), then so 

are Il'l'~ 1 a; and II~~1 b~c • 

If we assume that there exists sup X for a non-void subset X of G, then 

there exist sup(Xa), sup(aX) for any a in G, and sup(Xa)=(supX)a, 

sup (aX) = a(sup X). If there exists sup A for any non-void set A of integral 

elements of G, then G forms a conditionally complete lattice-ordered group 

(cl-group). By the well-known theorem G forms a commutative group under 

multiplication. (c/. [3]). 

In the following, we assume that G forms a commutative group. 

Lemma 1.1. Il two lattice-quotient afa' and b/b' are projective, then 

a-1a1 = b-1b1• 

Proof. Suppose that afa' is transposable to b/b' and b<a. Put c =a-la1, 

d = b-lb1• Then they are both integral and bu ac= a, bnac =bd. Take an 

integral element t such that b =at, then bd= atd. Her:ce tuc= e, tnc = td 

and ejc is transposable to tjtd. Being t and c are coprime, we get td = tnc 

=tc, c = d. If a/a' is projective to b/b', then by induction we complete our 

pro of. 

Definition. Let a be an integral. element of G, and a= a1 ... ar a factoriza­

tion with integral elements a; in G. A factorization of a of the form 

a=Il~=1II]'-= 1 a;1 , a;=Il]~laiJ (i=l,···,r) is called a refinement of the above 

factorization. 

Theorem 1.1. (Refinement theorem) Any two /actorizations of an integral 
element a in G have the same refinement. 

Proof. Let a= a 1 ···ar= b1 · ·· bs be two factorizations of a. .Putting A; = a 1 

· · · a; , B~e = b1 • .. b~e , we get two chains such that e = Ao > A1 > .. · >Ar = a, 

e = B 0 > B 1 > ... > B, =a. By Jordan-Hôlder-Schreier's theorem in a modular 

lattice, we get two refinements of the same length: e = Ao' >A/> ... > An' 

= a, e = Bo' > B/ > · · · > Bn' = a such that A~-d A/ is projective to B,_If B/ 
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in pairs. Renee by lemma 1.1. a/= A~=tA/ = B[,=lB,/ = b,/ and a= a/··· ar.' 

= b/ ··· bn'· 

Definition. A prime element is an integral element p such that P is =Fe 

and ab< p implies a< P or b < p for integral elements a, b of G. A maximal 
element is an element covered by the unity quantity e. An irreducible element 

is an integral element p such that p is =\cc e and not decomposed as a product 

of two .integral elements other than e. 
In a commutative /-group the following conditions are equivalent to one 

another. 

( 1 ) P is an irreducible element. 

( 2 ) P is a maximal element. 

( 3 ) p is a prime element. 

Proof. (1) --4 (2) : If p is not maximal, then there exists an element a such 

that p <a< e. Renee p =ab, b < e. (2) --4 (3) : If ab< p for integral ele­

ments a,b and a$p, then b=(aup)b=abupb<pup=p. (3)--4(1): If 

P = ab for integral elements a, b and a::; p, th en p =ab< a, p = a, b = e. 

In the following we assume the ascending chain condition for integral 

elements of G. 

Corollary. Any integral element of a commutative !-group may be unique/y 

represented as a product of jinite prime elements. 

A non-integral elements in G can be represented as a quotient of two integral 

elements of G. Renee we have 

Theorem 1. 2. G is a direct product of infinite cyclic groups with prime 

elements as its generators. 

~ 3. Abstract foundation of Artin-Hencke's ideal theory in a maximal 

order of a ring. 

Let L be a complete lattice-ordered semigroup (cl-semigroup), (cf. [3]) 

such that there exists a mapping of L into itself a --4 a-1 with the following 

properties : 

( 1 ) aa-1a < a, 

( 2 ) axa< a implies x< a-1 . 

Definition. An element a of L is called integral if a2 <a. 

For example, an element a satisfying a< e is integral, where e is a unity 

quantity of L. 
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Lemma 2.1. Let e be maximal! y integral, i.e. il e < c and c2 < c then 

c = e. Then the /ollowing conditions are equivalent: 

1. ax< e, 

2. axa<a, 
3. xa< e. 

Proof. If b is integral, then b < e, for putting c =bue we obtain e < c and 

c2=b2ubue<bue=c, bence e=c and b<e. Let axa<a. Since axax<ax 

we obtain ax < e. The converse is evident. Renee we get (1) ~ (2), similarly 

(2) ~ (3). 

ln particular we have aa-1 < e and a-1a < e. 

Theorem 2.1. The !ollowing conditions are equivalent to one another. 

1 ) e is maximally integral. 

2 ) 11 a is integral, then a< e. 

3) Il a'"< c (n = 1, 2, · ·· ), then a< e. 
4 ) Il ax <a then x< e. 

5 ) 11 xa < a then x < e . 

Proof. (1)--. (2) bas already been shown in the proof of Lemma 2.1. Since 

(2) --. (1) is evident we have (1) ~ (2). (2) --. (3) : Putting b = U::'~ 1 a'", we get 

a<b<c and b2 =U::'~2 a"<U::'~1 a'"=b. Renee a<b<e. (3)-(4): If 

ax <a, th en ax"' <a (n = 1, 2, · ·· ) and a-lax"a-la <a-laa-la< a-la. Renee 

x"< (a-1a)-1 (n = 1, 2, ··· ), x< e. (4)--. (2) is evident. Similarly we obtain 

(3) --. (5) and (5) --. (2). 

In the following we assume that e is maximally integral. Every integral 

element is therefore < e. 

Theorem 2. 2. L !orms a residuated lattice. 

Proof. If ax < b, then b-lax < b-lb < e, b-laxb-la < b-la; x< (b-la)-1, 

i. e. X = {x 1 xE L, ax < b} is bounded. Renee there exists c = sup X and 

ac~ sup (aX) <b. c is a left-residual (b: a)1 of b by a. Similarly there exists 

a right-residual (b: a),.= sup Y, where Y= {y 1 y EL, ya < b}. 

W e have the following : 

1 ) e = (a: a),. = (a: a ) 1 • 

2) a-1 =(e:a),.=(e:a)1 • Ifa=ethene-l=e. 

3) ((c:a),.:b)1 =((c:b)1 :a),.. If c=e then (a-l:b)1 =(b-l:a),.. 

4 ) If a < b th en ( c : a),. > ( c : b),. and ( c : a )1 > ( c : b )1 • If c = e th en a < b 
implies a-l > b-1. 

5) If b<c then (b:a),.<(c:a),. and (b:a)1 <(c:a)1 • 
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6) (a: bc)r =((a: c)r: b)r, (a: bc)1 =((a: b)1 : c)1 • 

7) (a:bvc)r=(a:b)rn(a:b)r, (a:buc)1 =(a:b)1n(a:c)1 • If a=ethen 

(buc)-1 = b-lnc-1. 

8) (anb:c)r=(a:c)rn(b:c)r, (anb:c)z=(a:c)1n(b:c)z. 

9) (ab;c)r>a(b:c)r, (ab:c)1 >(a:c)1 b. 

Since aa-1 < e, a-1aa-1 < a-1, we get a< (a-l )-1. If we define a*= (a-1 )-1, 

then a< a*. If a< b then a-1 > b-1. Hence a* <b*. From a-1 > (a*)-1 

=(a-l)* and a-l< ca-l)* we get a-l= (a*)-1 =ca-l)*= ((a-1)-1)-1. 

W e obtain the following: 

(1) a<a* 

(2) a**=a* 

(3) a<b implies a*<b*. 

(4) a*b*<(ab)* 

Being ab(ab)-1 < e, we have b(ab)-l<a-1 = (a*)-1, b(ab)-la*<Ca*)-1a*<e. 

Hence (ab)-la*<b-1 =(b*)-1 and (ab)-la*b*<e. Hence a*b*<(ab)*. 

W e have also the following : 

(ab)*= (a*b)* =(ab*)*= (a*b*)*, 
(aub)* = (a*ub)* = (aub*) = (a*ub*)*, 

(a* nb*)*= a* nb*. 

Definition. Two elements a and b of L are called quasi-equal if a*= b*. 

Symbol: a-b. 

Since a-1 = (a*)-1, a-b is equivalent to a-1 = b-1. It is evident that this 

relation fulfils the equivalence relation. 

a-a* is evident by (2). Since (aa-l)-1=(e:aa-1)1 =((e:a)1 :a-1)1 

= (a-1: a-1 )1 = e = e-1, we have aa-1-e. Similarly a-la-e. If a is integral, 

a* is so. Because, (a*)2 < (a2)* <a*. a-b implies b <a*. If a-b and a is 

integral, then b is so. If a< c < b and a-b, then a*< c* < b*, a* = b*, bence 

a-c. If a< b* then there exist two integral elements c and d such that 

a-cb-bd. For, putting c = ab-1, we have c < b*b-1 = b*(b*)-1 < e and 

cb = ab-1b-ae =a. (cf. the following.) Similarly we obtain a-bd. If a-b then 

there exist two elements u and v such that au= vb and u-v-e. For, since 

a*= b*, i.e. a-1 = b-1, we get ab-lb= aa-1b, u = b-1b-e and v= aa-1-e. 

From a-b and c-d, it follows that 

Proof. (ac)-1 = (e:ac)r = ((e:c)r:a)r = (c-1:a)r = (d-l:a)r = (a-l:d)1 

= (b-1: d)z = ((e: b)1 : d)1 =Ce: bd)1 = (bd)-1, i.e. ac-bd. (auc)-1 = a-1nc-1 

= b-1nd-1 = (bud)-1, i.e. auc-bud. bb-1(anc) < bb-1anbb-1c <ba-lanec 
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<bene= bnc. Renee aa-1bb-1(anc) < aa-1(bnc) <a ne. Since aa-1-bb-1-e, 

we get anc-bnc. Similarly bnc-bnd. 

If we classify L by the quasi-equal relation, then the set G of all classes 

E, A, B, · · · forms a partly ordered set wh en we define A< B by a*< b* 

(a E A, bE B) in L. Moreover G forms a lattice with respect to this order. 

AuB and AnB are the classes containing (a*ub*)* and (a*nb*)*=a*nb* 

(a E A, bE B) respectively. And moreover G forms a /-semlgroup when we 
define AB by the class containing (a*b*)* (a E A, bE B). Since the inverse of 

A is the class containing a-1(a E A), G forms a group. As above mentioned 

aub,anbandab(aEA,bEB)arecontainedin AuB, AnB and AB respectively 

If a subset {B.,} of G is bounded, then the subset {b.,*} (b., E B.,) of L is 

bounded, and it is easily verified that U., B., is the class containing ( U., b.,*)* 

and (a(U., b.,*))*= (U.,abro*)* = (U.,(ab.,*)*)* = (U., (ab.,)*)*. Renee G forms 

a cl-group. We state this in 

Theorem 2. 3. 11 we classi/y L by the quasi -equal relation, then the set G 

of all classes Jorms a cl-group. G is, therefore, commutative as a group and 

distributive as a lattice. 

Corollary. Multiplication of L is commutative in the sence of quasi­

equality, i.e. ab-ba for any a and b in L. 

Let a be an integral element of L. We caU a-II~~1 ai a /actorizafion of a 

in the sense of quasi-equality, where a1 is integral (i = 1, ···, r). 

By theorem 2. 3 and Theorem 1. 1 we have 

Theorem 2. 4. Two !actorizations of an integral element of L in the sense 

of quasi-equality have the same refinement. 

Definition. A prime element is an integral element p of L such tbat P is 

=Fe and ab< p implies a< p or b < p for integral elements a and b in L. 

If p is prime and not quasi-equal to e, then P* =p. For, since P-P*, there 

exist u and v such that up = P*v, u-v-e. Renee P*v <p. Assume v< p, 

th en p -e, a contradiction. Renee P* < p, P* = p. 

Theorem 2. 5. If we assume the ascending chain condition /or integral 

elements of L in the sense of quasi-equality, -then any integral element in L is 

quasi-equal to a product of finite prime elements of L, and this /actorization 

is uniquely determined apart from its quasi-equality. 

Theorem 2. 6. Assume the /ollowing conditions for integral elements of L. 

1) Ascending chain condition holds for integral elements of L. 

2) Any prime element is maximal. 
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3) Any prime element contains such an element a*= a. 

Then quasi-equality implies equality. Hence L forms a commutative cl-group, 

which is a direct product of infinite cyclic groups generated by prime elements. 

Proof. Any prime element p in L is not quasi-equal to e. For, if we take 

an element a su ch that a =a*< p, and decompose it as a~ p1 · ·· p,, where 

Pt is prime element not quasi-equal to e c.,_i = 1, ···, n), then p1 ··· Pn <a* 

= a< p. Renee there exists sorne P; such that Pi < p. Renee P = Pt. If 

u~e th en u = e. For, if we assume u 4 e and take a maximal element p such 

that u < P < e, th en P is a prime element and we get p~e. This is a con­

tradiction. Finally, if a~b then there exist u and v such that au= vb, u~v~e, 

Since u = v = e, we obtain a = b. Q. E. D. 

Let L be a cl-semigroup such that there exists a mapping of L into itself 

a~ a with the following properties: 

(1) a<a, 

(2) a=a, 

( 3 ) a< b implies a< b' 

(4) ab<ab. 

We have the following: ;;;.b = anb, ab= ;{f) =ab= ab, a0 b = aub = aub 

a'Jb and, more generally, if there exists U..,a.., then O .. a .. = u .. a ... 
Definition. An elements a of L is called equivalent to b if a= /j. Symbol: 

a~b. 

It is evidedt that this relation fulfils the equivalence relation. 

If a~b and c~d, then ac=;;·(;= bd= bd and aue= :zuc = b0 d =bu d. 
Renee ac~bd and auc~bud. But anc~bnd does not hold in general. 

If we classify L by the equivalence relation, then the set H of all classes 

A, B, ... forms a partly ordered set when we define A< B if a< b (a E A, bE B). 

Moreover H forms a cl-semigroup with respect to this order. 

W e can easily verify th at the classification mentioned ab ove is characterized 

by the following properties: 

1 ) Every class contains the greatest element. 

2) Let A, B be two classes. Th en the class containing ab and the class 

containing au b(a E A, bE B) are determined by A and B only not depending 

upon the choice of a and b. 

In the following we suppose that the unity quantity e is maximally integral 

in L. Th en e = e, since e < i, (e)2 < ee = i. 

Theorem 2. 7. If in L the mapping a_,.a-1 is defined, then a<a<a* 
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= (a-1 )-1, (a)*= a*. a= b implies a*= b*. Il H /orms a group then a= a*. 

Pro of. From a a-1 <a a-1 <a a-1 < e = e, we have .a-1 < a-1. Renee 

a-1 = a-1. Since a a-1 < e we get a< a< (a-=1 )-1 = a*, (a)* = a*. Now let H 

form a group. Let E be the unit y quar.tity of H and A -1 the inverse of A in 

H: AA-1 = A-1A = E. Then the unity quantity e of Lis contained in E. For 

if e E A then A 2 =A, A= E. Let a be an element cf A and A' be a class 

contruning a-1. If we take x in A-l, then axEAA-l=E, ax<e. Renee 

x<a-1 , ax < aa-1 < e, aa-1 E E, AA' = E, A'= A-1. Therefore if a E A then 

a-1 E A-1, a*= (a-l )-1 E A, a*< a, bence a*= a. 

Theorem 2.8. Suppose that H /orms a group under multiplication. Then 
there exists a mapping of L into itsel! a->- a-1 with the /ollowing properties: 

( 1 ) aa-la < a , 

( 2) axa< a implies x< a-1. 

Proof. Let a be any element in A EH and t in A -1, th en tE A-l, at< e. 
If we define a-l = t th en aa-1 < e. Renee we get aa-1a <a. If axa< a th en 

ax < e by maximality of e. And x< x = ex = a-la x < (i-lax <a-le = {i-1 

= t = t = a-1 ; i.e. axa< a implies x< a-1• 

Theorem 2. 9. Let in L the map ping a_,. a-1 be defined. The classification 

of L by quasi·equality is the only one in order that a set G' of all classes by 

some partitions of L, such that the class E' containing e consists of integral 

elements of L and a< x< e (a E E') implies xE E', /orms a group und er 
multiplication. 

Proof. E' is the unity quantity of the group G'. As in the proof of 

theorem 2. 7, aa-1 E E', a-la E E' for any element a of L. If a* = b*, i.e. 

a-1 = b-1 then A' = B', a E A', bE B'(A', B' E G'), because c =ab-lb= aa-1b, 
cE A' E' =A', cE E'B' = B'. G' is, therefore, obtained by sorne classification 

of G modulo a subgroup H, and G' is isomorphic to G/H. E' is the set-sum 

of all classes E, A, B, · ·· in H. If E' =FE th en there exists an element A =FE 
of H, bence if a E A then a< e, a-1 =Fe, a-1 > e, but a-1 E A -1 EH, a-1 < e. 
This is a contradiction. W e have E' = E. 

~ 3. Orders, ideals in a semigroup. 

In this section we shall consider orders and ideals in a semigroup. Since 

the theory is similar to that of K. Asano, ([2]) we shall only state the main 

results omitting the proof . 

. Let o be a semigroup, and M the semigroup consisting of all À in o such 
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that al. = bl. implies a = b and l.a = l.b implies a = b. Let further M 1 be a 

subsemigrou.p of M. A semigroup S is called left quotient semigrou.p of o by 

M' when 1) S contains o and. bas a unity quantity 1, 2) any element r1. in M' 

bas an inverse a-1 in S: (J.(J.-1 = (J.-1(/. = 1, and 3) for any x in S there exists r1. 

in M' such that r;.x is contained in o. Any element in S is, therefore, expressible 

in the form (J.-1a where (J. E M' and a E o. 

In arder that there exists a left quotient semigroup of o by M', it is neces­

sary and sufficient that for any a in o and any (J. in M' there exist a' in o and 

(1.1 in M' satisfying a' (J. = (1.1 a ([9]). And this quotient semigroup is u.niquely 

determined by o and M' apart from its isomorphism. If S is a left quotient 

semigroup of o by M', then for any r1.1 (i = 1, ···, n) in M' there exists 

Ct (i = 1, ... 'n) in 0 su.ch that r = ClrJ.l = ... = Cnfl.n E M 1, therefore for any fini te 

set of elements x1 , .. · , x,. in S we can take an element r in M' such that 

rxi E o (i = 1, ... , n). If M'= M we call S a left quotient semigroup of o. We 

can analogously consider a right quotient semigroup of o by M'. If S is a 

left and a right quotient semigroup of o, then S is called a quotient semigroup 

of o. 

Let S be a given semigroup with unity quantity 1. An element of S is 

called regular if it bas a left and a right inverse. The subset S* consisting of 

all regular elements of S forms a group under multiplication. 

Definition. A subset o of S is called an arder of S when 

1 ) o forms a subsemigroup with 1, 

2) S is a quotient semigroup of o by S*10o. 

Let o be an arder of S and o' a subsemigroup of S with 1. If there exist 

two regular elements l., p.. su.ch that l.op.. C o', then o' is also an arder of S. 

Definition. Let o be an arder of S. A subset A of S is called a le!t (right) 

o·set when oA C A(Ao CA). A left and a right o-set is called a two-sided o-set 

or in short o-set of S. A left (right) o-set a is called a le!t (right) o-ideal of 

S, if a contains a regu.lar Element of S and there exists a regu.lar element l. 

such that al. C o ( l.a Co). a is called an o-o'-ideal if it forms a left o-ideal and a 

right o' -ideal. An o-o-ideal is called a two-sided o-ideal or in short o-ideal. 

Let a and b be two left (right) o-ideals of S. Then auo (set-su.m) and a,.o 
(intersection) are also left ( right) o-ideals. 

Let a be an o-o' -ideal and b an o' -o"-ideal, th en ab = {ab 1 a E a, bE o} is an 

o-o"-ideal. Particularly a produ.ct of two o-ideals is also an o-ideal. 

Definition. Two su.b-set M and N of S are called equivalent if there exist 

regu.lar elements l., p.., l.', p..' sncb that l.N p. CM and l.'Mp..' C N. 
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Two orders o and o' are called equivalent, when they are equivalent as 

subsets of S. In this case, )., p. satisfying }.o' p. C o may be taken as elements of 

o, and similarly }/, p.' satisfying ).1 op.' C o' as elements of o'. In order that two 

orders o and o' arè equivalent it is necessary and sufficient that there exists an 

o-o' -ideal of S. 

If a is a left (right) o-ideal of S, then the set Oz co:c.sistirg of all x such that 

xa Ca, xE S, forms an order of S and is equivalent to o. The set o,- consisting 

of ali .Y such that a y Ca, y ES, forms also an order equivalent to o. o1(o,-) is, 

moreover, a left (right) o-ideal containing o. And a is an Oz-Or-ideal of S. 

Definition. Oz and o,. are called a le!t arder and a right arder of a 

respectively. 

Definition. An one-sided o-ideal a is called integral if it forms a semigroup, 

i.e. a2 ca. 
It is easily verified that the following conditions are equivalent : 

Definition. An order o of S is called maximal when there exists no order 

which is equivalent to o and contains o properly. 

Let o be an order of S. Then the following conditions on o are equivalent. 

1) o is a maximal order (in the set of all orders equivalent to o). 

2 ) There exists no integral left and no integral right o-ideal containing o. 

3 ) o is a left order of any left o-ideal, and also a right order of any right 

o-ideal. 

4) o is a left and a right order of any two-sided o-ideal. 

Let o be a maximal order of S. A left or a right o-ideal is integral if and 

only if it is contained in o. A left (right) o-set equivalent to o is a left (right) 

o-ideal o( S. 

If o is an order of S, and if a is a left or a right o-îdeal and Oz , o.- the 

left, right orders of a respectively, then we have a-1 =}clac COz, cES} 

= {cJacaCa, cES}= {c\caCo,., cES}. a-1 forms an o.--Oz-ideal of S. 

Definition. a-1 is called the inverse ideal of a. 

If a and o have the same left or right order, then ac li implies u-1 :=:::> o-1. 

Let o be a maximal order and a a left o-ideal. Then the left order of a-l 

is maximal. If m is a subsemigroup of S such that J.mp. Co ().,p. E S*no), then 

there exists a maximal order which contains m and is equivalent to o, namely 

the left order o' of the inverse ideal of a left o-ideal a= o).uo).m. For any 

order o' equivalent to o, there exists therefore a maximal order which contains 

o' and is equivalent to o. 
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Defintiton. An order o of S is called regular when for any x in S there 

exist two regular elements r;. and {3 in o such that xoa C o and {3ox C o. 

Let o be an order of S. Then the following conditions are equivalent. 

1. o is regular. 

2. For any x in S .there exists a two-sided o-ideal which contains x. 
3. For any p. in S*, 0110 forms a two-sided o-ideal. 

4. If M is a subset of S such that ).Mt-t C o ().,p. E S*), then there exist 

regular elements a, {3 in o such that aM S:: o, M{3 S:: o. 

5. For any regular element r1. in o there exist regular elements a', o.'' in o 

such that or;.~ r;.1o, ao ~ Of/.11• 

6. Any one-sided o-ideal contains a two-sided o-ideal. 

If a subsemigroup o' containing unity quantity 1 is equivalent to a regular 

order o of S, then o' is a regular order of S. 

The intersection of two equivalent regular orders o, o' is also a regular 

order equivalent to o and o'. 

A regular order of S is a maximal order, if and only if there exists no 

integral two-sided o-ideal containing o properly. 

~ 4. Two-sided o-ideals. 

In this section we shall denote by o a fixed maximal order of a semigroup 

S. A two-sided o-ideal will be called briefly an "ideal ". 

Let L be a set of all ideals o, a, li, c, · · · in S. If a subset X of L be bounded, 

i.e. av Cc for any av in X, then it is easily verified that the set-union Uv av of 

all av in X forms an ideal and sup X= Uv av, a(sup X) = sup (aX), (sup X)a 
= sup (X a). Hence L forma a cl-semigroup under multiplication and inclusion 

relation. A mapping of L into itself a~ a-1 has the following properties 1. 

aa-1a ç: a and 2. a~;a Ca implies 1; ç: a-1. We may, therefore, apply the results 

of !!;2. 

Theorem 4. 1. L /orms a residuated lattice. 

If a and li are two ideals of S, then (li: a)1 ((Ii: a)r) is nothing but the ideal 

consisting of all c E S such that ac C:: li (ca C:: li). 

If we define a*= (a-1)-1, then 

aC a* 

a**= a* 
a C li implies a* C li*, 

n*li* S::: (ali)*. 

Definition. Two ideals a and li are called quasi-equal if they are quasi-equal 
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as elements of cl-semigroup L, i.e. a*= f,* or a-l =5-1. 

Definition. An ideal a is called v-ideal if a= a*. 

For example u-1 and a* are v-ideal for any ideal a. o is evidently v-ideal. 

Also a prime ideal p not equivalent to o is a v-ideal. 

We have immediately the following: a~a*; aa-l~o-la~o; if a-b and a is 

integral, then b is also integral; if a-b and aC cC b, then a-c; if aC li* then 

a-cb-bb, where c and b are integral; if a-b then au = tJli, u-o-o; if a-b and 

c-b thenac-lib, auc-bub and a,.,c-b,.,b. 

If we classify the set of all two-sided o-ideals, then the set G of ali classes 

forms a c/-~roup. This group is, therefore, abelian as a group and distributive 

as a lattice. 

Theorem 4. 2. The set G' of all v-ideals a, b, ·· · for ms a cl-group un der 

multiplication: (ab)*, join: (aub)* and meet; a,.,b. And G' is isomorphic to 

Gas a cl- group. Herzce G' is abelian as a group and distributive as a lattice. 

Moreover if we assume the ascending chain condition for integral v-ideals, 

then G' is a direct product of infinite cyclic groups with prime v-ideals as 

their generators. 

The multiplication of ideals is therefore commutative in the sense of quasi­

equality and we get the Artin's Refinement theorem. 

Theorem 4. 3. If L forms a group under multiplication, then it is a cyclic 

group generated by a maximal integral ideal p. 

Pro of. Let a1 C a2 C · · · be any ascending chain of integral ideals 

a,, i = 1, 2, ···. And let further a be an integral ideal of set-sum of all Ot. Then 

we get a1a-1 c a2u-1 c · .. C aa-1 = o. Since aa-1 is the set-sum of all aiu-r, 

i = 1, 2, ... , there exists a finite Jiumber n such that ono-1 31, bence Onu-1 = o, 

a = On , a = On+! , i = 1, 2, ·.. . Let p ot~ o be a maximal integral ideal. Th en 1-1 is 

not quasi-equal to o. For if not, then p-o, p-l = o-1 = o, o = pp-1 = po = p, a 

contradiction. Let a be any integral ideal in L. Then aup = o or =p. If 

aup = o then a 31, a= o. If aup = p then aS:: p, i.e. p is a divisor of any integral 

ideal in L. Renee p is one and only one maximal (of course prime) ideal in L. 

If a is =\=: o and integral th en a = pa1. If a1 is =\=: o th en a1 = pa2 • Th us we get 

a chain a C a1 C et2 C · · · . Renee there exists a positive integer such th at a = pn. 

Any ideal in L is represented as a quotient of two integral ideals. Q. E. D. 

Let us suppose that there exists a mapping of L into itself a___,. a with the 

following properties: 

1) aS::a, 

2) a=a, 
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3 ) ac fl implies a ç b' 
4) aîlc01. 
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For example the mapping a~ a*= (a-1)-1 bas such properties. By 

Theorem 2. 7 a c a*. 

We get the foliowing: tlnll=anil, <ili=Ob=tili=ail, auli=auli=auil 

= aufi and more generaliy if there exists U.,a., then U.,a,. = U,.a.,. 

Definition. An ideal a is calied a closed ideal or briefly a c-ideal if a= a. 

Definition. An ideal a is calied equivalent to li if a= il. Symbol: a-li. 

If a-li and c-b then we get ac-lib and auc-liub. But anc-linb does not 

hold in general. 

If we classify L by the equivalence relation, then the set H of ali dosses 

A, B, ··· forms a partly ordered set when we define A< B by ac il where a E A 

and liE B. Moreover H forms a cl-semigroup with respect to this order. The 

set H 1 of ali c-ideals a, li,··· forms a cl-semigroup under multiplication Ofi, join 

aUfi and meet anli· And H' is isomorphic to H as a cl-semigroup. If H(H') 

forms a group then by Theorem 2. 7 a= a*. If we classify H' by quasi-equal 

relation, then the set H 11 of ali classes forms a cl-group isomorphic to G. 

Theorem 4. 4. Let us assume the /ollowing conditions: 

1) The ascending chain cond:tion holds for integral c-ideals. 

2) Any prime c-i deal is maximal. 
3) Any prime c-ideal contains a v-ideal. 

Then quasi-equality implies equality. Renee the c-ideals /orms a cl-group, 

hence a= a*. Moreover il o is regular, then the condition 3 is a/ways satisfied. 

For any integral ideal a and any regular element a in a, there exists an 

ideal c such that OrJ =::1 c, bence (oa)-1 = rr1o C c-1, oa = (a-Io)-1 =::1 c*, and we get 

a =::1 c*. 

We get easily: 

Theorem 4. 5. Let o be a regular arder. In arder that the set of al! closed 
two-sided o-ideals /orms an abelian gronp which is a dired product of infinite 

cyclic gronps, it is necessary and sufficient that the /ollowing conditions hold 
for o. 

A 1 : o is maximal. 

A 2 : Ascending chain condition holds /or integral c-ideals. 

A3: A Prime c-ideal is a maximal two-sided c-ideal. 

§ 5. Closed o--semigroups 

Let S be a semigroup with unity quantlty 1, and o a maximal order of S. 
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An "ideal" means a "two-sided o-ideals" in S. In this section we assume th at 

the set L of all ideals bas a mapping into itself a~ a' with followir.g cœditions: 

1) aCa' 2) a"= a' 3 ) a C li im plies a' ~ li' 4) a'l/ ~(ali)'. 

An ideal a is called a closed ideal or in short c-ideal if a' = a. 
In the following we shall assume 

A 1 : o is a regular maximal order. 

A 2 : Ascending chain condition holds for integral c-ideals. 

A 3 : A prime c-ideal is maximal. 

Therefore the c-ideals form an abelian group under the multiplication 

a·li =(ali)' and the c-ideals coïncide with the v-ideals: a'= a*= ca-l)-1. 

Lemma 5.1. Ascending chain condition holds for c-ideals which are con­

tained in a fixed c-iideals c. 

Proof. Let N be any set of c-ideals contained in c. If a EN then c-1 ·a Ç o, 

bence of all e-La there exists a maximal c-ideal li. Obviovsly a0 = c·li is a 

maximal ideal in N. 

Lemma 5. 2. 1 f a is an ideal then there exist fini te elements c1 , · · · , c, in a 

such that a' is a c-ideal generated by c1 , · ·· , c,: 

Proof. Let c1 , ···,Cm be m elements in a and c1 be regular. If there e:xists 

an element Cm+l E a and Cm+l $ (c1 , ···,Cm), then we make (c1 , ···,Cm, Cm+ 1). 

Since the chain (c1 ) C (c1 , c2 ) C ···Ca' does not continue infihitely, there exists a 

number n sùch that (c1 , ···, c,) ::_:::)a. Hence (c1 , ···, Cn) ::_:::)a' and a' = (c1 , ... , Cn). 

Definition. Let A be an o-set of S containg regular elements of S. The 

set-sum A of all c-ideals genesated by finite elements in A is called the closure 

of A, and A is called closed if A = A. 

If a is a c-ideal, th en by lemma 5. 2 we get a= a'. A c-ideal is closed in 

the sense of this definition. 

The closure of an o-set bas the following properties: 

1. ACA, 

2 . .A= A, 
3. A c B lm plies Ac B. 
4. ABCAB 

By Definition, 1 and 3 are evident. Let a be an element in A, then there 

e:xists a c-ideal (a1 , ···,ar) containing a, generated by at in A, i = 1, ···, r. 
There exists a c-ideal ( b; 1 , • · • , b;si) containing a 1 , where b13 E A, j = 1, · · · , St; 
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i=1,···,r. Let b1 ,···,···,bn be the set of all b11 • Then a;E(bl,···,bn), 

i = 1, ···, r, and (b1 , ···, bn) ç: A, a E A. Renee we get AC A, A= A. 

Let A and B be two o-sets of S. If a E A, bE B, th en there exist c-ideals 

( a 1 , · · · , ar), ( b1 , .. · , bs) such th at a E ( a 1 , · · · , ar), bE ( b1 , · · · , bs ), a; E A, bk E B. 

Renee abE (a1 , ···, a,.)·(bl, ···, b,) = {(U; oa;o) (U~: ob~:o)}* =(cl,···, Ct) where 

Cj E cui oa;o) (Uk obko)CAB, j = 1, ... 't. Renee abE AB, i.e. AB ç: AB. 

Lemma 5. 3. Let A and B be o-sets and M be a subset of S. If AM ç: B 

and AÀ <;:::; B for a regular element À, then AM ç: B. Parti cul arly if a, li are 

ideals then aM c fi implies aM c ii. 

Proof. AM c A(oMouoXo) ç:if(OMî.i0 oÀo) ç: B. 

Lemma 5.4. Let a, fi and c bec-ideals. If aMCli then (c·a)MS::c·fi. Il, 

particularly, ac ç: li then cE a-I.{i. 

Proof. Since caM Ccli, we get caM C Cfl, i.e. (c·a) MC c·li. 

Let P be a set of prime c-ideals. For a c-ideal a, let ap be the set of ali 

S-elements c such that nec Ca, where ne is a suitable integral c-ideal coprime to 

P, i.e. coprime to ali p in P. neC a implies en Ca and conversely. In fact, 

from neC a we get cE n-1·a = a·n-1, en Ca. It is easy to see that ap is the 

set-union of ali n-l.a with n coprime to P. 

Definition. Op is called the P-component of a. If P consists of a single 

prime ideal p, tben we denote ap by Op. 

Lemma 5. 5. For any P Op /orms an or der containing o. 

Pro of. If c, c1 E oP , i. e. ne ç: o, n' c' C o, t ben n'nec' ç: rt' oc' = n' c' ç: o. Renee 

by ·Lemma 5. 4 (n' ·n) (cc') Co. Since n' ·n is obviously coprime to P, cc' E Op. 

Lemma 5. 6. If a a11d fi are c-ideals such that ax ç: fi( xE S) then a px C bp .• 

Proof. Since axÇfi, (n-La)xCn-l.li, (Un-La)x=U(n-I.a)xÇUn-1·6, 

bence apx ç: bp . 

Lemma 5. 7. ap is an orideal. 

Proof. If a E ap and cE Op, i.e. tbere exist n and n' such that na Ca and 

n'cC o, tben nn'ca Ca; bence (n·n') (ca) Ca, ca E ap. Similarly acE ap. Sir:ce 

tbere exists a regular element À such tbat aÀ Co, we get arÀ C Op; and similarly 

tbere exists a regular element p. such that t~aP ç: Op. 

Lemma 5. 8. Op is a regular arder of S. 

Proof. For any x in S there exists a regular element r1. in o sucb tbat 

ort.OX Co, bence oril:lx ç: o, rJ.OpX ç:; (or1.0)p x Ç Op. Similarly tbere exists a regular 
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element {3 in o sueb tbat XOp{3 c Op . 

Lemma 5. 9. If a is a c-i deal, then ap = ap. Parficularly Op= Op. 

Proof. Let a be any element in ap. Tben tbere exist finite elements 

a 1 , - • · , ar in ap su eh tb at a is eontained in ( a 1 , • · · , a,.) generated by a1 , • · · , ar . 

Since a; E nj1 ·a (i = 1, ···, r), there exists an n satisfying aiE n-La (i = 1, ···, r). 

Renee a E (a1 , ···,ar) C n-I.a Cap, i.e. ap Cap. Sir:ee evidently ap Ç ap, we 

get ap = ap. 

Lemma 5. 10. If a is a c-i deal, then 

ap = Opa = aOp = OpaOp • 

Proof. ap = U n-1 ·a c U n-1 a = ( U n-1 ) a = OpaC ap = ap Rer:ee ap = Opa. 

Similarly we get ap = aop = OpaOp . 

Theorem 5.1. The closure ~1 of an orideal 1)1 is also an orideal. 

Proof. Let a be any element of ~ ar:d c any elemer.t of Op. Tbere exists 

a c-ideal (a1 , ... , ar), aiE 1)1, eontaining a, ar:d n-I eontaining c. Tb en ca E n-1 • 

(a1 , ···,ar)= [Ji n-1oa;o = (b1 , ... , b8 ), where bJ EU; n-1oa;o C l)l. Renee ca E ~f; 

similarly ac E ~1. Sir:ee there exists a regular elemer.t J. sueb tbat l)lJ. Ç Op , we 

get by Lemma 5. 3 ~À Ç Op = Op . 

Theorem 5. 2. If 1)1 is an Op·ideal contained in Op, then a= l)l,.o is an o-ideal 

and m = (a)p. 

Proof. Sinee 1)1 ::::J a, we get 1)1 ::::J n-Ia, ~ ::::J n-I.ër. Henee l)l ::::J (a)p. Let a be 

any element of l)l. Th en a E ( a 1 , · · · , a,.), a; E 1)1 ( i = 1, · · · , r ). There exists an 

n sueb th at na; Co and C 1)1, tberefore, na; Ca ( i = 1, ... , r ). Renee a; E n-1 ·a, 
aE(a1 ,---,a,.)Cn-l.aC(êï)p, i.e. mc(a)p. 

. . Corollary. If 1)1 is a c-orideal (closed orideal) in Op, then there exists a 

c-ideal a such that l)l=ap. 

Theorem 5. 3. The c-orideals 1)1, !8, Œ, ... form a group Gp with respect to 

the product 1)1·!8 = l)l!B. Gp is homomorphie to the group G of ali c-ideals 

a, li, c, .... 

Proof. We sball show first ap•Dp = apbp = (a·li)p. apbp = Opa bop= Opabop 

= oP(a·li)Op = (a·li)p The mapping a__,_ ap is a homomorphism of G into GP. 

If l)l C Op tben there exists a such that l)l = ap • If Œ is not contained in Op , 

then there exists ap such tbat ap·ŒCoP, tberefore, ap·~ = h and Œ = a:p1·h 
= (a-I.o)p. Renee any element of Gp is an image of an element of G. 

W e bave easily. 
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Theorem 5. 4. If the three axioms A 1 , A 2 and A 3 hold for c-ideals then 

thaf is so for the c-orideals. 

Theorem 5. 5. Let a be an integral c-ideal. Then ap = Op if and only if a 

is coprime fo P. 

Proof. If ais coprime to P, then a-l c Op Op = Opa ::::::J a=-la = o, her:ce Op ::::::J Op 

and ap = Op. If, conversely, ap = Op, then 1 E ap , nl Ca with an n coprime to 

P. This means a is coprime to P. 

Theorem 5.6. If an integral c-ideal a contains a product c = IIv·Pv of 

prime ideals contained in P, then Op nO= a. 

Proof. It is obvions that apnO ::::::J a. Let a be any element of apnO· Then 

there exists an n coprime toP such that na S:: a. Since n and c have no common 

divisor, (n,c)=nuc=o. From caCa, naS::a and (cun)aS::â, it follows that 

a E oa C ii = a, i. e. ap no C a. 

Theorem 5. 7. The P-component 'pp of 'p in P is a prime c-op·ideal, and 

any prime c-orideal is the P-component of some p in P. 

Proof. If 'p E P th en 'pp =F Op . If there exists a c-orideal ~l such that 

'pp C ~l C Op, then ~l = ap with a = ~ln o, therefore, 'pC hnO CaC o, 'p =Fa, and 

a = o. Renee ~l = Op. Thus 'pp is maximal and therefore prime. Since the 

group Cp of all the c-orideals is generated by all the 'pp('p E P), it is clear that 

the set of pp('p E P) is the totality of prime c-orideals. 

Theorem 5. 8. Let a be a c-i deal. T hen a= np ap, where 'p runs over all 

the prime C-ideals of o. More general/y, ap = nPEP ap. 

Proof. It is evident that ap c nPEP ap. Let a be any element of nPEP Op' 

th en there exists n(p) coprime to 'p su ch that n('p) aC a. Since from maS:: a, 
m'aC a it follows that (m, m') aS:: a, there exists the greatest ideal mo such that 

moa Ca. Being mo ::::::J n(p), mo is coprime to 'p, bence to P, therefore, a E Op, i.e. 

nPEPaP Cap. 

Definition. A subsemigroup S' of S is called an o-semigroup when it is a 

closed o-set containing o. 

A subsemigroup S' is an o-semigroup if and only if for any finite elements 

C1, ···, Cn in S' the c-ideal (1, c1 , ···, Cn) generated by 1, c1 , ···, Cn is contained 

in S'. 

For example Op is an o-semigroup in S. 

Lemma 5.11. Let S' be an o-semigroup. If S' is not contained in Op, then 
S' ::::::J p-1, 
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Proof. There exists an element c contained in S' but not in Op. (1, c)-1 is 

integral and contained in p, if not n = (1, c)-1 is coprime to p, bence Op=:> n-1 3 c, 

a contradiction. We get, therefore, S'=:> (1, c) =:> p-1. 

Theorem 5.9. Op is a maximal o-semigroup in S. And any o-semigrouP=i=S 

is contained in some Op. 

Proof. If there exists an o-semigroup S' =lee Op cor:tainirg Op, th en by 

Lemma 5.11 S'=:> p-1, bence S'=:> ~-1 where \]:\ = iJp. S' contai:r.s all the powers 

of ~. i.e. all the C·Op·ideals, therefore all the ovideals. Si:r.ce any element of S 
is contained in sorne Op·ideal, S'= S. Any o-semigroup S'( 4 S) is contained in 

sorne Op: S' C Op, for if r.ot, by Lemma 5. 11 S' contair:s all the !J-I, hence all the 

o-ideals, and it follows that S' = S. 

Theorem 5.10. Any o-semigronp S'('* S) coincides with some Op. 

Proof. Let P be the set of all p's such that Op=:> S'. We shall show that 

S' = Op. If S'cl' Op then Op =:J S', and there exists an element a contained in 

Op, but not in S'. Obviously Op=:> (1, a) ::Jo and (1, a)-1 Co. Let (1, a)-1 

= q1· ··· ·qr be the prime factorization of (1, a)-1. Sir.ce (1, a)= q11· ··· ·q;:-1 is not 

contained in S', for sorne prime factor q of (1, a)-1, q-1 is not contained in S'. 

Since q-1 Ç (1, a) S: Op S:: Op(p E P) and q-1 ;j; Oq, q is not contained in P. There­

fore, S' is not contained in Oq, bence by Lemma 5. 11 S'=:> q-1. This is a 

contradiction. 

It is easily seen that all the o-semigrovps, i.e. all the Op form a lattice with 

respect to inclusion relation. In fact 

From this we have the following 

Theorem 5.11. The set of all o-semigroups forms a Boolian algehra which 

is dual isomorpbic to the Boolian algebra consisting of all subsets of the set 

of all Prim c-ideals in o. 

~ 6. Factorization of integral elements in a lattice-ordered gruppoid 

Let G be a gruppoid with units e1 , ek , · · ·• Elements of G will be denoted by 

small letters with or without suffices. 

Definition. A gruppoid G is called lattice-ordered when for any index 

i and k, 

1) Li = {x 1 eix =x, xE G} forms a lattice, 

2) Rk = {y Jyek =y, y E G} forms a lattice, 

3) Ni"= LinRk forms a sublattice of both Li and R". 
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In the following a = a;~c will denote that a E N;~c. 

Definition. An element a =ail, is called integral if a< e; and < e". 

In this section we shall study on factorization of integral elements in a 

lattice-ordered gruppoid G with following conditions: 

P 1 : a;"< e1 implies au,< e", and conversely. 

P 2 : L 1 and R~c are modular lattices. 

P 3 : If a< b (a, bE LJ, cE R1 , then ca< cb, and if a< b (a, bE R~c),c E L~c, 

thenac< be. 

P 4 : There exists sup A for any non-void set A consisting of integral elements 

in Li , and similarly for R~c. 

If there exists sup A for a subset A of L1 , then: there exists sup (aA) for 

any a E R 1 , and a(sup A)= sup (aA). Analogously, if there exists sup B for a 

subset B of R~c , th en there exists sup (Bb) for any bE Lk , and sup ( Bb) 

= (sup B) b. Because, since a(sup A)> ax(a = a 1;) for any xE A, a(sup A) 

> sup (aA), therefore a-1 sup (aA) > sup (a-1aA) = sup A, sup (aA) > a(sup A). 

Renee sup (aA) = a(sup A). The other is analogously obtained. 

If a subset A of L; is bounded th en there exists sup A, and analogously for 

Rk. Because, there exists an element c = C;~c EL; satisfying x< c (xE A), 

c-lx<c-lc=e~c. Renee there exists sup(c-lA) in Lk, and c(supc-1A)) 

= sup (cc-1A) = sup A. By this fact, N;; forms a cl-group. N;1 is therefore a 

commutative group under multiplication. 

If a< b (a =ai;, b = b1 ~c), th en b-1a < b-1b = e~c, b-1a EN ~c;, by the con­

dition P 1 b-la < e1 , therefore b-1 = b-laa-1 < e1a-l = a-l. Hence L1 is anti­

isomorphic to R 1 by the mapping a->a-1 (aEL;, a-l ER;). It is easy to see 

that if a< b, a, bEL;, (a, bE R~c), then these exists an integral element c such 

that a= be (a= cb). 

Theorem 6.1. By a mapping a-> c-1ac (c = C;;, a E N;1) N;; and N 11 are 

grou p-isomor Phic und er mufti pli caton and lattice-isomor Phic und er ordering. 

And this mapping is unique! y determined inde pendent! y of the choice of cE NiJ. 

Proof. The first part of this theorem is obvions. Let c' be any element of 

N;;. Tb en c'c-1 E N;i. Since N;1 is a commutative group, we have c' e-la 

= ac'c-1, c-1ac = c'-1ac1• 

Definition. An element a' in N 11 is called conjunctive to an element a in 

Nii when there exists c = ci; satisfying a' = c-1ac. 

Definition. An integral element a= aiJ is called transposable to an integral 

element b = b~c 1 if there exists an integral element c = c1 ~c such that 

b = c-1(cna), cu a= e1 • 
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This relation is reftexsive and transitive, but not symmetric. 

Definition. An integral element ais called projective to an integral element 

b when there exists a sequence of integral elements a = Co, c1, ··· , c,., Cn+l = b 
in which for any two successive elements c;, ci+ 1 one is transposable to the 

other. 

Lemma 6.1. If two lattice-quotients a/a1 and b/b' of L; are projective, then 

integral elements c = a-1a1 and d = b-1b1 are projective in the sense of above 

definition. 

Proof. If ajac is transposable to b /bd and b < a, th en bu ac = a, b n ac = bd. 

Since there exists an integral element 1 such that b =al, bd= ald, we have 

luc= e, 1 nC =Id, d = /-1(/ nC). Renee c is transposable to d. By induction 

we complete the proof. 

A factorization of an integral element and its refinement are defined as in § 1. 

Theorem 6. 2. (Refinement theorem) Two !actorizations of an integral 

element in G have such two refinements that there is a one-to-one correspondence 
between their factors, and the paired factors are projective to each other. 

Proof. Let a = a 1 · ·• ar = b1 · · · b, be two factorizations of an integral element 

a E L, . Put A,. = a 1 · · · a,. , B. = b1 · · · bv . Since A,. and B. are contained in L; , 
we get two chains in L; such that e; = Ao > A1 > · · · >Ar = a and e; = B 0 > B 1 

> ... > B, =a. By Jordan-Rëilder-Schreier theorem in a modular lattice, we get 

two refinements of the same length e1 = Ao' > A11 > · · · >A,.' = a, e; = Bo' > 
B/ > · · · > B,.' = a such th at A~-d A/ is projective to B~-d B/ in pairs. Renee 

by Lemma 6.1 a/= A~:lA/ is projective to b/ = B~:lB/, and a= IJ~=l a/ 

= IJ~=l b/. 
If we assume the ascending chain condition for integral elements in R~c, then 

the descending chain condition holds in L1 for integral elements that contain any 

fixed integral element. Let a=a1 ~c be any fixed integral element of L; and 

a 1 > a2 > ... >a (a1 < eJ infinite descending chain in L;. Since a11a < a21a < 
···<a-la= e; is an ascending chain in R~c, we get a;1a = a;J.a, bence a,.= an+v 
(J,i = 1, 2, ... ). 

Definitiun. An integral element of G is called reducible if it is equal to a 

product of two integral elements not equal to units of G. An integral element 

of G, which is not redvcible, is called irreducible. 
From the refinement theorem we get: 

Theorem 6. 3. Suppose that the ascending chain condition holds lor integral 

elements in all L; and R~c. Then any integral element in G is decomposed 

into a product of finite irreducible elements of G. Moreover such a factoriza-
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tian is uniquely determined apart from the projectivity of their factors. 

In the following we shall assume : 

P 5 : N 1/(, contains an integral element. 

P 6 : There exists for any element a E N 1k an element cE N 11 such that c <a. 

(It follows from this c' = a-1ca <a, c' EN ~c~c) 

Lemma 6. 2. Let q = q;1 be an irreducible element of G. 11 a is a maximal 

element in N 11 such that a< q, then a is a prime element of N;1 • 

Proof. Put a= be, where b and c are both integral in N 11 and not equal to 
e; . Since cuq = e1 we have q > be u bq = b > a. This is a contradiction. 

Definition. The element a in Lemma 6. 2 is called a prime element cor­

responding to q. 

Definition. Let p = Pii and P' = P~1 be two prime elements corresponding 

to irreducible elements q = qt 1 and q' = qjk respectively. Then q is called 

si mi !ar to q' when p is conjonctive to P'· Symbol: q ~ q'. 

Lemma 6. 3. Let an irreducible element q = qiJ be transposable ta an 

irreducible element q' = q~ 1 , i.e. cuq= e; (c = C;k), q' = c-1(cflq). Then 

p' = c-1 pc EN kk is a prime element corresponding ta q', where p =Ptt is a 

prime element corresponding to q. 

Proof. cq' = c(\q > c(\p >pc= cp', and q' > p'. 

Lemma 6. 4. Two projective irreducible elements are similar. 

Theorem 6. 4. Il p E Nu and q E N1~c are irreducible elements, then pq = 

q'p' where P=P', q~q'. q'ENtl, P'ENlk· 

Proof. If p ~ q then we may take q' = P and P' = q. We now suppose p 

is not similar to q. Let P and Q be prime elements corresponding to p and 

q respectively. We have pq < pQ = Q' P where Q' = pQ p-1 • Evidently 

pq < pq u Q' < e; . Now we shall show that pq < pq u Q' < e; . First if 

pq = pquQ' then Q' < pq, Q' <p. Rer:ce P> pu Q' = e;. This is a con­

tradiction. Next, if pquQ' = e;, then by modularity of L1 we have p = e;t~P 
= (pquQ')t~P = pqu(Q' flp). If Q' = PnQ' then P > Q', a contradiction. 

Since Q' > PnQ' > Q' p we get PnQ' = Q' p. Renee p = pquQ' p = pqu pQ 

= pq. This is a contradiction. Renee q' = pquQ' is irreducible. And we have 

pq = Pt~q' = q'p', where puq' = e;. 

Lemma 6. 5. If the ascending chain condition holds for integral elements 

in one fixed L1 , then it holds in any L". 

Proof. Let a 1 < a 2 < ··· be an ascending chain in Lk and c = C;~c an integral 
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element. Tt en ca>< cc~ = c < ei (v = 1, 2, ·· · ), ar,d ca1 < ca2 < · ·· is an ascend­

ing chain of integral elements in Li . Renee there exists an n such that 

Can = Can+v , On = On+v , v = 1, 2, · · · . 

Theorem 6. 5. 11 we assume the asccndi11g chain condition lor integral 

elements in one fixed Ii and one jixcd R~c,, thcn àny integral element in G is 

decomposed into a product of jinite irreducible elcmnts is G, And this lactori­

zation is uniquely determined a tart from its si mi larity. Moreover the factors 

in this product is commutative within their similarity. 

~ 7. Gruppoid of normal ideals 

Let S be a semigroup with unity quantity 1, and o0 be a fixed order of S. 

ln this section we sJ~ all take out a system of orders which are equivalent to o0 • 

The term an " order " will denote an " or der equivalent to o0 ". Renee two 

orders are equivalent to each other. 

Definition. Let o and o' be two orders of S, and a be an ideal such that 

the left and the right orders of a are o and o' respectively. a is called normal, 

if both o and o' are maximal. 

If o is a maximal order and a is a left (or right) o-ideal, then the inverse 

ideal a-l of a is normal. 

Definition. Let a and b be two normal ideals. A product ab is called proper 

if and only if the right order of a coïncides with the left order of b. 

In what follows the term " product " of normal ideals is used only in this 

sense. 

Definition. Let o be a maximal order. A left or a right o-ideal is called a 

v-ideal, if a*= ca-1)-1 =a. 
For example the inverse ideal a-1 of a is a v-ideal. A v-ideal is normal. 

The mapping a ....... a* bas the following properties: 

aC a*, a**=a*, 

ac b implies a* c b*, if a and b have the same left or right order. 

If a and b are left (or right) o-ideals, then the meet (intersection) and the 

join (set-union) are also. And it is easily verified that 

(a* nb*)*= a*nb-1<, 

(aub)* = (a*ub)* = (aub*)* = (a*ub*)*. 

If ab is a proper product of two normal ideals, then 

a*!J* Ç (ab)* 
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Let a, li be o-o'-ideal, o' -o"-ideal respectively. Then 

ali(ali)-1 co, li(ali)-1 s a-1 = a*-1, 

li(ali)-1a* c a*-1a* co', (ali)-la* c li-1 = li*-1 , 

bence (ali)-la*li* c o11 , a*li* c ((nli)-1 )-1 =(ali)*. 

W e get easily 

(ali)*= (n*li)* =(ali*)*= (a*li*)* 

Lemma 7.1. Let o be a maximal order and a be a lelt o-ideals. Then 

(aa-1)* =o. 

Proof. Since (aa-1) (aa-1)-1 co, a-1(aa-l)-1 ca-l and by maximality of o 

(aa-1)-1 co, we get 

o = o*:::> (aa-1)* = ((aa-1)-1)-1 ::::> o-1 = o, (aa-1)* =o. 

Theorem 7.1. The set of all u-ideals in S /orms a lattice-ordered group­

poid with respect to product: (ali)*, join: (nuli)* and meet: a11 li, where the 

product ali is proper and a and li have the same lelt or right order lor join 

and meet. 

Let Ot, o;, ok,··· be the maximal orders of S and ~' be the set of ail left 

o,-ideals, !Rrc the set of ali right Ore-ideals and IR,k = ~, 11 m~:. Let us suppose that 

there exists a mapping of ~i into itself for ail i and a mapping of mi; into itself 

for ali k with the following properties: 

1) ac ii (ii, image of a) 

2) a= a 

3 ) If a, liE ~' or a, liE m~c, th en a c li implies ii c iJ. 

We suppose further that the mapping of 2t and the mapping of ffirc induce the 

same mapping of IRt~c into itself, and 

4 ) a 6 c (if,, if ali is a proper product of normal ideals. 

Lemma 7. 2. Let a be a lelt (or right) o,-ideal. Then 

Proof. Let a E ~', a-1 E IR;;, From 

aa-1 c no; a-l c ao;a-1 = aa-1 c 1\ = Ot 

we get a-1 C a-1, bence a-l = a-1. Since iia-1 Cao; a-1 Co, we get aC aC (a-l )-1. 

Definition. An ideal a in ~i or mie is called a closed ideal Cc-ideal) if a= a. 

Lemma 7.3. Suppose that il aEaüfi (a,liO\) then there exists bE fi such 

that auoa =au ob. The set L, of all closed ideals in ~' /orms a modular lattice 

under join au li and meet a11 li (a, liE~,). 
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Proof. L, forms evidently a lattice. Now assume that 

a ::J Il, 

Let a be an element contained in a, but not in Il. Since a E aC Il u c, there exists 

an element c such that 

Renee cE IJUoa cIl ua= a= a, C$ Il, and therefore we get anc ::J llnc, i.e. L, is 

modular. 

In the foliowing we shali assume: 

1) The maximal orders are regular. 

2) Ascending chain condition holds for integral closed left ocideals (or right 

0~-ideals). 

3) A prime c-ideal of o1 is maximal (as a two-sided c-ideal). 

4 ) Any c-ideal is normal. 

5) The lattice L1(R,) of ali closed left (right) o.-ideals is modular. 

Then the set Ntt = Lir.Ri of ali closed two-sided o,-ideals forms a cl-group. 

aa-1 = Ot, 

Proof. aa-1 is a closed two-sided o.-ideal, and 

bence aa-1 = o1 , because the closed two-sided o1-ideals form a group. Similarly 

we have a-1a = o~ . 

Lemma 7. 5. Every c-ideal is a v-ideal. 

Proof. Let a= aik be a c-ideal. Then 

a* = aa-1a* = aa-1a* = aa-1(a-1 )-1 = a 

Lemma 7. 6. There exists an integral Oï-0~:-ideal. 

Proof. c = Co:to.)-1 is integral, since 010:t ::J o,. 

Theorem 7. 2. The set G of all c-ideals in S forms a lattice-ordered grup­

poid withthe properties P1-P6 in §6 with respecttoaproduct: ai:t"ll:t1 =a1~:ll:t11 
join: (a1 ~:, llJ1) = aik ullJt and meet a1~nllJ1 , where i = j or k = l for join and meet. 

From the resu.lts obtained in § 6 we get the foliowing theorems : 

Theorem 7. 3. By a mapping a'~ c-1ac (cE N,~:, a E N;1 , a' EN~:~:) two lattice­

ordered groups Nit and N~:~c are group-isomorphic and lattice-isomorphic. And 
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this mapping is uni quel y determined independenty of the choice of c in Nil,. 

Theorem 7. 4. Any integral c-i deal is decomposed into a product of fini te 

irreducible c-ideals. And this factorization is uniquely determined apart from 

its similarity. Moreover the factors in this product is commutative within their 

similarity. 
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