Exact Sequences $\sum_{n}(K, L)$ and their Applications

By Minoru Nakaoka

(Received September 15, 1952)

§ 0. Introduction

Homotopy classifications of mappings of an n dimensional finite cell complex K^n into an n-sphere S^n or an (n-1)-sphere S^{n-1} and the corresponding extension theorems were solved by H. Hopf and N. E. Steenrod [5] respectively. Introducing the cohomotopy group, E. Spanier [4] unified these results in an exact sequence, while J. H. C. Whitehead [9] gave a general and constructive method to obtain an exact sequence, starting with a certain sequence of homomorphisms.

In this paper, we shall define exact sequences $\sum_{p}(K)$ by applying Whitehead's method to the cohomotopy group of a complex K (§1). It is proved that $\sum_{p}(K)$ are invariances of homotopy type of complex K (§2), and that, as its special case, $\sum_{0}(K)$ may be regarded as a generalization of Spanier's sequence (§3,4,5). $\sum_{p}(K)$ are also utilized to obtain a homotopy classification theorem and a corresponding extension theorem concerning mappings of a certain kind of an (n+2)-dimensional complex into S^{n} (§6). Furthermore we determine the n-th cohomotopy group of an A_{n}^{2} -polyhedron in terms of its cohomology system (§7). At the end of this paper it is shown that two A_{n}^{2} -polyhedra are of the same homotopy type if and only if their Spanier's sequences are properly isomorphic.

I am deeply grateful to Prof. A. Komatu and Mr. H. Uehara for their kind advices during the preparation of this paper.

\S 1. Exact sequences $\sum_{p}(K, L)$

In the first place, let us define an exact sequence Σ abstractly, following J. H. C. Whitehead [9].

Let r be an arbitrary fixed integer, and let (C,A) be the following sequence of groups and homomorphisms;

$$(1,1) \quad C^{r-1} \xrightarrow{\beta^{r-1}} A^r \xrightarrow{j^r} C^r \xrightarrow{\cdots} \cdots \xrightarrow{} A^q \xrightarrow{j^q} C^q \xrightarrow{\beta^q} A^{q+1} \xrightarrow{} C^{q+1} \xrightarrow{} \cdots \cdots$$

where C^q , A^q are arbitrary abelian groups and q is an integer such that $q \ge r$. In this sequence it is assumed that $j^q A^q = \beta^{q-1}(0)$ for any $q \ge r$, but $\beta^{q-1} C^{q-1} = j^{q-1}(0)$ is not always assumed. If we denote $d^q = j^{q+1}\beta^q : C^q \to C^{q+1}$, we have

 $d^{q+1}d^q=0$. Let Z^q be $d^{q-1}(0)$, then we have $d^{q-1}C^{q-1}\subset Z^q$. Now we define three groups Γ^q , Π^q , Π^q with homomorphisms as follows:

(1.2)
$$\Gamma^q = j^{q-1}(0), \quad \Pi^q = A^q/\beta^{q-1}C^{q-1}, \quad H^q = Z^q/d^{q-1}C^{q-1}$$

As to homomorphisms we define

- i) $\mathfrak{b}^q \colon H^q \to \Gamma^{r-1}$. Let $z \in Z^q$ be a representative of a class of H^q , then $d^q z = j^{q+1} \beta^q z = 0$, so that $\beta^q z \in j^{q+1} (0) = \Gamma^{q+1}$. Since $\beta^q (d^{q-1} C^{q-1}) = \beta^q j^q \beta^{q-1} C^{q-1} = 0$, a mapping $z \to \beta^q z$ induces a homomorphism $\mathfrak{b}^q \colon H^q \to \Gamma^{q+1}$.
- ii) $i^q: \Gamma^q \to \Pi^q$. If $\gamma \in \Gamma^q$, γ is an element of A^q . Thus we define i^q such that γ corresponds to a class of Π^q containing γ .
- iii) j^q : $\Pi^q \rightarrow H^q$. Let $a \in A^q$ be a representative of $\bar{a} \in \Pi^q$, then $d^q j^q a = j^{q+1}\beta^q j^q a = 0$, so that $j^q a \in Z^q$. Since $j^q \beta^{q-1} C^{q-1} = d^{q-1} C^{q-1}$, a correspondence $\bar{a} \rightarrow \{j^q a\}$, a class of H^q containing $j^q a$, induces a homomorphism j^q : $\Pi^q \rightarrow H^q$.

As a direct consequence of our definition we have, as is shown in [9],

Lemma 1. The sequence

$$(1.3) \quad \Sigma \colon \Gamma^r \overset{\mathfrak{i}^r}{\longrightarrow} \Pi^r \overset{}{\longrightarrow} \cdots \cdots \overset{}{\longrightarrow} \Gamma^q \overset{\mathfrak{i}^q}{\longrightarrow} \Pi^q \overset{\mathfrak{f}^q}{\longrightarrow} H^q \overset{\mathfrak{h}^q}{\longrightarrow} \Gamma^{q+1} \overset{}{\longrightarrow} \cdots \cdots$$

$$is \ exact.$$

Next, we shall apply the above result to the cohomotopy group.

Let K be a complex, the subcomplex of which is denoted by L, and let y be a fixed point of a k-sphere S^k . If $\dim(K-L) \leq n$ and if $n \leq 2k-2$, we can define an addition among all the homotopy classes of mappings $f: (K, L) \to (S^k, y)$, following Borsuk-Spanier. Thus we have the k-dimensional cohomotopy group, which is designated by $\pi^k(K, L)$. Refer to E. Spanier [4] for detailed account. From now on we shall use terminologies and notations in [4], and it is assumed in §§ 1-6 that (K, L) is a complex pair with $\dim(K-L) \leq n$.

Let p be an arbitrary fixed integer, and let r(p) be the smallest integer satisfying

$$(1.4) r = r(p) \ge \operatorname{Max} \left\{ \frac{n}{2} + 1 - p, 3 - 2p \right\}.$$

Let us define C^q , A^q , β^q , j^q in (1.1) as follows:

$$\begin{array}{ll} C^q = C^q_p\left(K,L\right) = \pi^{p+q}(\bar{K}^q,\bar{K}^{q-1}) & (q \geq r(p) - 1)\,, \\ A^q = A^q_p\left(K,L\right) = \pi^{p+q}(K,\bar{K}^{q-1}) & (q \geq r(p))\,, \\ \beta^q = \beta^q_p\left(K,L\right) = \mathcal{A}\colon \pi^{p+q}(\bar{K}^q,\bar{K}^{q-1}) \to \pi^{p+q+1}(K,\bar{K}^q) & (q \geq r(p) - 1)\,, \\ j^q = j^q_p\left(K,L\right) = i^\#\colon \pi^{p+q}(K,\bar{K}^{q-1}) \to \pi^{p+q}(\bar{K}^q,\bar{K}^{q-1}) & (q \geq r(p))\,, \end{array}$$

where $\bar{K}^q = K^q \cup L$, and Δ is the usual coboundary operator of the cohomotopy group and i^* is the homomorphism induced by the inclusion map $i: (\bar{K}^q, \bar{K}^{q-1}) \to (K, \bar{K}^{q-1})^{1}$ Let us remember here that groups and homomorphismus defined

¹⁾ In the following, for the sake of brevity, we shall call a homomorphism between cohomotopy groups induced by an inclusion "inclusion homomorphism".

above are not meaningless under the restriction in dimensions, which are indicated in the round brackets.

Since the sequence

$$\pi^{p+q}(K,\bar{K}^{q-1}) \xrightarrow{i\#} \pi^{p+q}(\bar{K}^q,\bar{K}^{q-1}) \xrightarrow{\Delta} \pi^{p+q+1}(K,\bar{K}^q)$$

is exact, we have $j^q A^q = \beta^{q^{-1}}(0)$. Thus groups and homomorphisms, $\Gamma^q = \Gamma_p^q$ (K, L), $\Pi^q = \Pi_p^q (K, L)$ $\Pi^q = \Pi_p^q (K, L)$ and $\mathfrak{i}^q = \mathfrak{i}_p^q (K, L)$, $\mathfrak{j}^q = \mathfrak{j}_p^q (K, L)$, $\mathfrak{b}^q = \mathfrak{b}_p^q$ (K, L) can be defined for any $q \geq r(p)$. From Lemma 1 we have

Theorem 1. The sequence $\sum = \sum_{p} (K, L)$:

$$\begin{split} &\Gamma_p^r(K,L) \xrightarrow{\mathfrak{i}_p^r} \Pi_p^r(K,L) \longrightarrow \cdots \cdots \longrightarrow \Gamma_p^q(K,L) \xrightarrow{\mathfrak{i}_p^q} \Pi_p^q(K,L) \xrightarrow{\mathfrak{j}_p^q} \Pi_p^q(K,L) &\xrightarrow{\mathfrak{j}_p^q} \Pi_p^q(K,L) &\xrightarrow{\mathfrak{i}_p^q} \Pi_p^q(K,L$$

is exact, where $r=r(p)=Max\left(\frac{n}{2}+1-p, 3-2p\right)$.

$\S 2$. Properties of Γ , Π , H.

In this section we shall establish formal properties of $\Gamma_p^q(K, L)$, $\Pi_p^q(K, L)$ and $H_p^q(K, L)$.

I) Consider the diagram

in which the upper sequence is exact. Then from the definition of $\Gamma_{p+1}^{q-1}(K, L)$, $\Pi_p^q(K, L)$ we have immediately

for any $q \ge r(p)$, where \mathfrak{l}_p^q is the homomorphism induced by the inclusion homomorphism $\pi^{p+q}(K, \bar{K}^{q-1}) \rightarrow \pi^{p+q}(K, \bar{K}^{q-2})$.

II) Let $p \ge 1$, then $C_p^q(K, L) = \pi^{p+q}(\bar{K}^q, \bar{K}^{p-1}) = 0$, so that we have $\Gamma_p^q(K, L) = A_p^q(K, L) = \pi^{p+q}(K, \bar{K}^{q-1})$ for any $q \ge r$. Since the sequence

$$\pi^{p+q-1}(\bar{K}^{q-1},\,L) \overset{\Delta}{\longrightarrow} \pi^{p+q}(K,\bar{K}^{q-1}) \overset{j\#}{\longrightarrow} \pi^{p+q}(K,L) \overset{i\#}{\longrightarrow} \pi^{p+q}(\bar{K}^{q-1},\,L)$$

is exact and since $\pi^{p+q-1}(\bar{K}^{q-1}, L)=0$, $\pi^{p+q}(\bar{K}^{q-1}, L)=0$ for $p\geq 1$, we have $\pi^{p+q}(K, \bar{K}^{q-1})\cong \pi^{p+q}(K, L)$. Thus we have

$$(2,2)_1 \qquad \qquad \mathfrak{f}_n^q \colon \Gamma_n^q(K,L) \cong \pi^{p+q}(K,L)$$

for $p \ge 1$ and for $q \ge r(p)$, where f_p^q is the homomorphism induced by the inclusion homomorphism $\pi^{p+q}(K, \tilde{K}^{q-1}) \to \pi^{p+q}(K, L)$.

III) From (2.1) and (2.2), we have

for $p \ge 0$ and for $q \ge r(p)$.

IV) Let $q \ge n$, then we have $\pi^{p+q}(K, \bar{K}^q) = \pi^{p+q}(K, K) = 0$. From the exactness of the sequence

$$\pi^{p+q}(K, \bar{K}^q) \xrightarrow{j^{\sharp}} \pi^{p+q}(K, \bar{K}^{q-1}) \xrightarrow{i^{\sharp}} \pi^{p+q}(\bar{K}^q, \bar{K}^{q-1}),$$

it is concluded that $i^{\#}$ is isomorphic into, so that

$$(2.3)_1 \qquad \qquad \Gamma_p^{\scriptscriptstyle 7}(K,L) = 0$$

for any $q \ge \operatorname{Max}(n, r(p))$.

V) From (2.1) and $(2.3)_1$, we have

$$(2.3)_2 \qquad \qquad \Pi_p^q(K,L) = 0$$

for any $q \ge \operatorname{Max}(n+1, r(p))$.

VI) By definition $\pi^{p+q}(\bar{K}^q, \bar{K}^{q-1})$ is isomorphic onto $C^q(K, L: (p+q)^q)^{2}$, the q-dimensional cochain group, for $q \ge 2-2p$. We denote this isomorphism by $\bar{\psi}_p^q$. Then it was proved by Spanier [4] that the commutativity holds in the diagram

$$\begin{array}{ccc}
\pi^{p+q}(\bar{K}^q, \bar{K}^{q-1}) & \xrightarrow{\Delta} & \pi^{p+q+1}(\bar{K}^{q+1}, \bar{K}^q) \\
\bar{\psi} \downarrow & & \bar{\psi} \downarrow & \\
C^q(K, L; (p+q)^q) & \longrightarrow C^{q+1}(K, L; (p+q+1)^{q+1})
\end{array}$$

for $q \ge 2-2p$, where δ is the coboundary operator of the cochain group, and E is the suspension of the coefficient group. From this fact, we have easily

(2.4)
$$\psi_p^q \colon H_p^q(K, L) \cong \mathfrak{H}^q(K, L; (p+q)^q)$$

for $q \ge 3-2p$, where ψ_p^q is the homomorphism induced by the isomorphism $\overline{\psi}_p^q$.

VII) Let $n \ge r(p)$, then from Theorem 1 the sequence

$$\Gamma_p^n(K,L) \xrightarrow{\mathfrak{i}_p^n} \Pi_p^n(K,L) \xrightarrow{\mathfrak{j}_p^n} H_p^n(K,L) \xrightarrow{\mathfrak{b}_p^n} \Gamma_p^{n+1}(K,L)$$

is exact, and from $(2.3)_1$ we have $\Gamma_p^n(K,L)=0$, $\Gamma_p^{n+1}(K,L)=0$. Therefore we have

$$(2.5) j_p^n: \Pi_p^n(K, L) \cong H_p^n(K, L).$$

From (2.1), (2.4) and (2.5), it is concluded that

(2.6)
$$\psi_{n,n}^{n,n} \eta_{n}^{-1} \colon \Gamma_{n+1}^{n-1}(K,L) \simeq \mathfrak{H}^{n}(K,L;(n+p)^{n})$$

for $n \ge 3 - 2p$.

Thus we have proved

Lemma 2.

$$\begin{split} & \P_p^q \colon \Pi_p^q(K,L) \cong \Gamma_{p+1}^{q-1}(K,L) & \text{ for } q \geq r(p), \\ & \P_p^q \colon \Pi_p^q(K,L) \cong \pi^{p+q}(K,L) & \text{ for } p \geq 1 & \text{ and } q \geq r(p), \\ & \P_p^{q-1} \Pi_p^q(K,L) \cong \pi^{p+q}(K,L) & \text{ for } p \geq 0 & \text{ and } q \geq r(p), \\ & & \Pi_p^q(K,L) \cong 0 & \text{ for } q \geq Max(n,r(p)), \\ & & & \Pi_p^q(K,L) = 0 & \text{ for } q \geq Max(n+1,r(p)), \end{split}$$

²⁾ We denote by q^p the **p**-th homotopy group $\pi_p(S^q)$ of a q-sphere S^q .

$$\psi_p^q : \quad \mathbf{H}_p^q(K, L) \simeq \mathfrak{H}^q(K, L; (p+q)^q) \quad \text{for} \quad q \ge 3 - 2p$$

$$\psi_p^n \mid_p^n \mid_p^{n-1} : \Gamma_{p+1}^{n-1}(K, L) \simeq \mathfrak{H}^n(K, L; (n+p)^n) \quad \text{for} \quad n \ge 3 - 2p$$

§ 3. Invariance of $\sum_{p} (K, L)$

Let (K, L) and (K', L') be complex pairs with $\dim(K-L) \leq n$ and with $\dim(K'-L') \leq n$ respectively. Let us consider a cellular map $f: (K', L') \rightarrow (K, L)$, then f induces homomorphisms

$$_{c}\mathbf{f}_{p}^{q\#}\colon C_{p}^{q}(K,L) \longrightarrow C_{p}^{q}(K',L'),$$
 $_{A}\mathbf{f}_{p}^{q\#}\colon A_{p}^{q}(K,L) \longrightarrow A_{p}^{q}(K',L')$

for each $q \ge r(p)$, in virtue of $f(\bar{K}^{\prime q}) \subset \bar{K}^q$. And we have³⁾

$$eta_{p'}^{q\prime} {}_{c} f_{p}^{q \#} = {}_{A} f_{p}^{q \#} eta_{p}^{q}, \\ j_{p'}^{q\prime} {}_{A} f_{p}^{q \#} = {}_{C} f_{p}^{q \#} j_{p}^{q},$$

so that ${}_{A}f_{p}^{q}$ induces homomorphisms ${}_{\Gamma}f_{p}^{q}:\Gamma_{p}^{q}(K,L)\to\Gamma_{p}^{q}(K',L')$ and ${}_{\Pi}f_{p}^{q}:\Pi_{p}^{q}(K,L)\to\Pi_{p}^{q}(K',L')$, and ${}_{G}f_{p}^{q}$ induces a homomorphism ${}_{H}f_{p}^{q}:H_{p}^{q}(K,L)\to H_{p}^{q}(K',L')$. Then it is seen that

$$\begin{aligned}
 & i_{p}^{q\prime} \Gamma_{p}^{q} = \Pi_{p}^{q} i_{p}^{q}, \\
 & i_{p}^{q\prime} \Pi_{p}^{q} = \Pi_{p}^{q} i_{p}^{q}, \\
 & i_{p}^{q\prime} \Pi_{p}^{q} = \Pi_{p}^{q} i_{p}^{q}, \\
 & i_{p}^{q\prime} \Pi_{p}^{q} = \Pi_{p}^{q} i_{p}^{q}, \end{aligned}$$

Lemma 3. If $f, g: (K', L') \rightarrow (K, L)$ are homotopical maps, we have $\prod_{p=1}^{q} = \prod_{p=1}^{q} \prod_{p=1}^{q} \prod_{p=1}^{q} g_p^q$, and $\prod_{p=1}^{q} \prod_{p=1}^{q} g_p^q$.

Proof. In virtue of the assumption there exists a map $F:(K'\times I, L'\times I)\to (K,L)$ such that

$$F_0 = F \mid K' \times 0 = f$$
,
 $F_1 = F \mid K' \times 1 = g$,

where I denotes the interval between 0 and 1. Further it may be assumed without loss of generality that F is cellular (i. e. $F(K'^{q-1} \times I) \subset K^q$ for any q) [8].

i) $_{\Gamma}\mathfrak{f}=_{\Gamma}\mathfrak{g}$. If $\gamma\in\Gamma_{p}^{\gamma}(K,L)$, we have $\gamma\in\pi^{p+q}(K,\bar{K}^{\gamma-1})$ and $i^{\sharp}\gamma=0$. Since the sequence

$$\pi^{p+q}(\,K,\,\bar{K}^q) {\overset{j\#}{\longrightarrow}} \, \pi^{p+q}(\,K,\,\bar{K}^{q-1}) {\overset{i\#}{\longrightarrow}} \, \pi^{p+q}(\,\bar{K}^q\,,\,\bar{K}^{q-1})$$

is exact, γ belongs to $j^{\sharp}\pi^{p+q}(K, \bar{K}^q)$, so that a map $t: (K, \bar{K}^q) \to (S^{p+q}, y)$ can be taken as a representative of γ . Since $F: (K' \times I, \bar{K}^{(q-1} \times I) \to (K, K^q)$, we have

$$tF: (K'\times I, \bar{K}^{\prime q-1}\times I) \longrightarrow (S^{p+q}, y).$$

Therefore $\{tF_0\} = f^{\sharp}\gamma$ and $\{tF_1\} = g^{\sharp}\gamma$ represent the same element of $\pi^{p+q}(K', \bar{K}'^{q-1})$. This proves $\Gamma^{\dagger} = \Gamma^{\mathfrak{g}}$.

ii) $_{\Pi}f = _{\Pi}g$. The commutativity holds in the diagram

³⁾ We agree that i, j, β, i, j, b in the complex pair (K', L') are denoted by $i', j', \beta', i, j', b'$.

$$\pi^{p+q}(K', \bar{K}'^{q-1}) \xrightarrow{j\sharp} \pi^{p+q}(K', \bar{K}'^{q-2})$$
 $\downarrow^{\Lambda f_p^{q\sharp}} \qquad j'\sharp \qquad \downarrow^{\Lambda f_{p+1}^{q-1\sharp\sharp}}$
 $\pi^{p+q}(K, \bar{K}^{q-1}) \xrightarrow{\to} \pi^{p+q}(K, K^{q-2}),$

where j^{\sharp} , j'^{\sharp} are the inclusion homomorphisms. Therefore, if $\mathfrak{l}_p^q:\Pi_p^q(K,L)\to \Gamma_{p+1}^{r-1}(K,L)$, $\mathfrak{l}_p^{q'}:\Pi_p^q(K',L')\to \Gamma_{p+1}^{q-1}(K',L')$ are the homomorphisms induced by j^{\sharp} , j'^{\sharp} respectively, we have

By the same process with respect to g we have

$$\mathfrak{l}_{d}^{q\prime} {}_{\Pi}\mathfrak{g}_{p}^{q} = {}_{\Gamma}\mathfrak{g}_{p+1}^{q-1}\mathfrak{l}_{p}^{q}$$
.

From these, together with i), we have

$$\mathfrak{l}_{p}^{q\prime} {}_{\Pi} \mathfrak{f}_{p}^{q} = \mathfrak{l}_{p}^{q\prime} {}_{\Pi} \mathfrak{g}_{p}^{q} {}^{4)}$$
.

As $f_p^{q'}$ is an isomorphism⁴⁾ from (2.1), we have

$$_{\Pi}\mathfrak{f}_{\mathfrak{p}}^{q}=_{\Pi}\mathfrak{g}_{\mathfrak{p}}^{q}$$
 .

iii) $_{\mathbf{H}}\mathbf{f} =_{\mathbf{H}}\mathfrak{g}$. Let $\{a\} \in \pi^{p+q-1}(\bar{K}'^{q-1}, \bar{K}'^{q-2})$ and let $a: (\bar{K}'^{q-1}, \bar{K}'^{q-2}) \to (S^{p+q-1}, y)$ be a representative of $\{a\}$. Then we shall define a map $E_p^q(a): (\bar{K}'^{q-1} \times I, (\bar{K}'^{q-1} \times I)^{q-1}) \to (S^{p+q}, y)$ by

$$E_p^q(a)(x,t)=\varphi(a(x),t)$$
 for $x\in \bar{K}^{(q-1)}$, $t\in I$,

where $\varphi \colon S^{p+q-1} \times I \to S^{p+q}$ maps $(y \times I) \cup (S^{p+q-1} \times 0) \cup (S^{p+q-1} \times 1)$ into a point y and elsewhere topologically onto $S^{p+q-1} - y$. If $E_p^{q \pm} \colon \pi^{p+q-1}(\bar{K}^{\prime q-1}, \bar{K}^{\prime q-2}) \to \pi^{p+q}(\bar{K}^{\prime q-1} \times I, (\bar{K}^{q-1} \times I)^{q-1})$ is a homomorphism such that $\{a\}$ corresponds to $\{E_p^q(a)\} \in \pi^{p+q}(\bar{K}^{\prime q-1} \times I, (\bar{K}^{\prime q-1} \times I)^{q-1}), E_p^{q \pm}$ is evidently an isomorphism for $q \ge 3-2p$ in virtue of Freudenthal's suspension theorem. Moreover $F \mid \bar{K}^{\prime q-1} \times I$ maps $\bar{K}^{\prime q-1} \times I, (\bar{K}^{\prime q-1} \times I)^{q-1}$ into \bar{K}^q , \bar{K}^{q-1} respectively, so that it induces a homomorphism

$$F_n^{q\sharp}: \pi^{p+q}(\bar{K}^q, \bar{K}^{q-1}) \longrightarrow \pi^{p+q}(\bar{K}'^{q-1} \times I, (\bar{K}'^{q-1} \times I)^{q-1}).$$

If we put $\xi_p^q = E_p^{q \neq -1} F_p^{q \neq}$, ξ_p^q is a homomorphism $\pi^{p+q}(\bar{K}^q, \bar{K}^{q-1}) \rightarrow \pi^{p+q-1}$ (K'^{q-1}, K'^{q-2}) . Namely we have the homomorphism $\xi_p^q : C_p^q(K, L) \rightarrow C_p^{q-1}(K', L')$. Then it can be proved as in the classical chain homotopy theory that ξ_p^q has a property:50

$$_{G}f_{p}^{q\#}-_{G}g_{p}^{q\#}=\xi_{p}^{q+1}d_{p}^{q}+d_{p}^{\prime q-1}\xi_{p}^{q}$$
 ,

so that $_{H}f_{p}^{q} = _{H}g_{p}^{q}$. This completes the proof of Lemma 3.

Theorem 2. If two complex pairs (K,L), (K',L') with $dim(K-L) \le n$ and $dim(K'-L') \le n$ are of the same homotopy type, $\sum_{p} (K,L)$ and $\sum_{p} (K',L')$ are isomorphic. Namely, there exists a family of isomorphisms $\mathfrak{f} = \{\Gamma_p^q, \Gamma_p^q, \Gamma_p^q\}$ such that the commutativity holds in each rectangle of the diagram

⁴⁾ An isomorphism, without quolification, will always mean an isomorphism onto.

⁵⁾ Such a homorphism ξ is called a homotopy operator for $f^{\#}$ and $g^{\#}$ in the classical theory of chain homotopy (cf. S. Lefschetz: Algebraic Topology (1942))

$$(3.2) \qquad \Gamma_{p}^{r}(K,L) \xrightarrow{i} \Pi_{p}^{r}(K,L) \xrightarrow{\longrightarrow} \cdots \xrightarrow{\longrightarrow} \Gamma_{p}^{q}(K,L) \xrightarrow{i} \\ \downarrow_{\Gamma_{p}^{\dagger}} \downarrow_{\Gamma_{p$$

where $r=r(p)\geq \operatorname{Max}\left(\frac{n}{2}+1-p, 3-2p\right)$.

Proof. As was shown in [8], homotopy equivalences $f: (K', L') \rightarrow (K, L)$ and $g: (K, L) \rightarrow (K', L')$ can be assumed to be cellular. If $\Gamma_p^{\dagger q}: \Gamma_p^q(K, L) \rightarrow \Gamma_p^q(K', L')$, $\Pi_p^{\dagger q}: \Pi_p^q(K, L) \rightarrow \Pi_p^q(K', L')$, $\Pi_p^{\dagger q}: \Pi_p^q(K, L) \rightarrow \Pi_p^q(K', L')$ are isomorphisms induced by f, it is seen from (3.1) that the commutativity holds in each rectangle of (3.2).

Let $_{\Gamma}q_{p}^{q}: \Gamma_{p}^{q}(K', L') \rightarrow \Gamma_{p}^{q}(K, L)$, $_{\Pi}q_{p}^{q}: \Pi_{p}^{q}(K', L') \rightarrow \Pi_{p}^{q}(K, L)$, $_{\Pi}q_{p}^{q}: H_{p}^{q}(K', L') \rightarrow H_{p}^{q}(K, L)$ be homomorphisms induced by g and let $_{\Gamma}(\mathfrak{f}\mathfrak{g})_{p}^{q}: \Gamma_{p}^{q}(K, L) \rightarrow \Gamma_{p}^{q}(K, L)$, $_{\Pi}(\mathfrak{f}\mathfrak{g})_{p}^{q}: \Pi_{p}^{q}(K, L) \rightarrow \Pi_{p}^{q}(K, L)$, $_{\Pi}(\mathfrak{f}\mathfrak{g})_{p}^{q}: H_{p}^{q}(K, L) \rightarrow H_{p}^{q}(K, L)$, $_{\Pi}(\mathfrak{f}\mathfrak{g})_{p}^{q}: H_{p}^{q}(K, L) \rightarrow H_{p}^{q}(K, L)$, $_{\Pi}(\mathfrak{f}\mathfrak{g})_{p}^{q}: H_{p}^{q}(K, L)$ be homomorphisms induced by $fg:(K, L) \rightarrow (K, L)$. Then, since fg is homotopic to the identity, it follows from Lemma 3 that the homomorphisms $_{\Gamma}(\mathfrak{f}\mathfrak{g})_{p}^{q}$, $_{\Pi}(\mathfrak{f}\mathfrak{g})_{p}^{q}$, $_{\Pi}(\mathfrak{f}\mathfrak{g})_{p}^{q}$ are all the identities. As is easily seen, we have $_{\Gamma}(\mathfrak{f}\mathfrak{g})_{p}^{q}$ are $_{\Pi}(\mathfrak{f}\mathfrak{g})_{p}^{q} = _{\Pi}\mathfrak{g}_{p}^{q} = _{\Pi}\mathfrak{g}_{p$

$\S 4$. Properties of i, j, b.

In this section we shall prove several properties of i, j, b.

Lemma 4. In the diagram

$$\Gamma_0^{l-1}(K,L) \xrightarrow{\mathfrak{f}} \Pi_0^{n-1}(K,L)$$

$$\downarrow \downarrow \psi \mathfrak{f}^{l-1} \qquad \qquad \downarrow \downarrow \mathfrak{f} \mathfrak{f}$$

$$\mathfrak{S}^n(K,L,(n-1)^n) \xrightarrow{} \pi^{n-1}(K,L)$$

the commutativity holds, where $n \ge 5$ and Λ is the homomorphism which was given by E. Spanier [4, § 20].

Proof. $[i^{-1}, i]$ and if are induced by the inclusion homomorphisms, $\pi^{n-1}(K, \bar{K}^{n-1}) \to \pi^{n-1}(K, \bar{K}^{n-2})$, $\pi^{n-1}(K, \bar{K}^{n-2}) \to \pi^{n-1}(K, \bar{K}^{n-2})$ and $\pi^{n-1}(K, \bar{K}^{n-2}) \to \pi^{n-1}(K, \bar{K}^{n-2})$ and $\pi^{n-1}(K, \bar{K}^{n-2}) \to \pi^{n-1}(K, \bar{K})$ respectively. So fifi[-1] is induced by the inclusion homomorphism: $\pi^{n-1}(K, \bar{K}^{n-1}) \to \pi^{n-1}(K, \bar{L})$. Thus $\Lambda' = \text{ifi}(\psi j i^{-1})^{-1}$ is a homomorphism such that we describe below. $\{z\} \in \mathfrak{F}^n(K, L, (n-1)^n)$ is represented by a cocycle z such that for an n-cell σ^n , $z(\sigma^n)$ is an element of $\pi_n(S^{n-1})$. Let $\alpha: K \to S^{n-1}$ be a map such that $\alpha: K^{n-2} = y$, and $\alpha: K^{n-1} = x$. Then $\{z\}$ corresponds to $\{\alpha\} \in \pi^{n-1}(K, L)$ by Λ' . This is the definition of Λ . Thus $\Lambda' = \Lambda$, and so Lemma 4 is proved,

Lemma 5. In the diagram

$$egin{array}{ccc} \Pi^q_0\left(K,L
ight) & \stackrel{\dot{\mathfrak{f}}}{\longrightarrow} H^q_0\left(K,L
ight) \ & & & & & & & & & \downarrow \downarrow \psi \ \pi^q\left(K,L
ight) & \stackrel{ar{g}}{\longrightarrow} \mathfrak{F}^q\left(K,L;\,oldsymbol{q}^q
ight), \end{array}$$

the commutativity holds, where $q \ge \operatorname{Max}\left(\frac{n}{2}+1,3\right)$, and $\overline{\phi}$ is the natural homomorphism of the cohomotopy group into the cohomology group [4, §17],

Proof. Since $\mathfrak{f}(\mathfrak{g})$ is induced by the inclusion homomorphism: $\pi^q(K, \overline{K}^{q-1}) \to \pi^q(K, L)$ and since $\mathfrak{f}(\mathfrak{g})$ is induced by the inclusion homomorphism: $\pi^q(K, \overline{K}^{q-1}) \to \pi_q(\overline{K}^q, \overline{K}^{q-1})$, $\varphi \mathfrak{f}(\mathfrak{f}(\mathfrak{f})^{-1})$ is a homomorphism, by which $a \in \pi^q(K, L)$ corresponds to an element of $\mathfrak{F}^q(K, L, q^q)$ containing $\overline{\psi} \mathfrak{f}^{\sharp}(lk)^{\sharp -1}$ a. This correspondence is nothing else but the definition of $\overline{\phi}$. This proves Lemma 5.

Lemma 6. In the diagram

$$(3.2) \quad \begin{array}{c} \operatorname{H}_{0}^{i}(K,L) & \stackrel{\mathfrak{h}_{0}^{q}}{\longrightarrow} \Gamma_{0}^{i+1}(K,L) & \stackrel{\mathfrak{f}_{-1}^{q+2}}{\longleftarrow} \Pi_{-1}^{q+2}(K,L) & \stackrel{\dot{\mathfrak{f}}_{-1}^{q+2}}{\longrightarrow} \operatorname{H}_{-1}^{q+2}(K,L) \\ & & & & & & & & & & & & & \\ \operatorname{\mathfrak{f}}_{q}^{i}(K,L) & & & & & & & & & & \\ \operatorname{\mathfrak{f}}_{q}^{i}(K,L) & & & & & & & & & \\ \operatorname{\mathfrak{f}}_{q}^{i+2}(K,L) & & & & & & & & \\ \operatorname{\mathfrak{f}}_{q+2}^{i+2}(K,L) & & & & & & & \\ \operatorname{\mathfrak{f}}_{q+2}^{i+2}(K,L) & & & & & & & \\ \operatorname{\mathfrak{f}}_{q+2}^{i+2}(K,L) & & & & & & \\ \operatorname{\mathfrak{f}}_{q+2}^{i+2}(K,L) & & & \\ \operatorname{\mathfrak{f}}_{q+2}^{i+2}(K,L) & & & & \\ \operatorname{\mathfrak{f}}_{q+2}^{i+2}(K,L) & & & & \\ \operatorname{\mathfrak{f}}_{q+2}^{i+2}(K,L) & & & & \\ \operatorname{\mathfrak{f}}_{q+2}^{i+2}(K,L) & & & \\ \operatorname{\mathfrak{f}_{q+2}^{i+2}(K,L) & & \\ \operatorname{\mathfrak{f}}_{q+2}^{i+2}(K,L) & & \\ \operatorname{\mathfrak{f}}_{q+2}^{i+2}(K,L) & &$$

the commutativity

$$\psi_{-1}^{q+2} j_{-1}^{q+2} i_{-1}^{q+1-1} \mathfrak{h}_0^q = \operatorname{Sq}^2 \psi_0^q$$

holds true, where $q \ge \operatorname{Max}\left(\frac{n}{2}, 3\right).69$

Lemma 7. In the diagram

the commutativity

$$\psi_{-2}^{q+2}i_{-2}^{q+2}i_{-2}^{q+2}i_{-1}^{q} = \operatorname{Sq}^{2}\psi_{0}^{q}$$

holds true, where $q \ge \operatorname{Max}\left(\frac{n}{2} + 1, 5\right)$.

Before we prove Lemmas 6 and 7, let us consider more generally $\tilde{s}_p^q = \tilde{i}_{p-1}^{q+2} \tilde{i}_{p-1}^{q+2-1} \tilde{b}_p^q : H_p^q(K, L) \rightarrow H_{p+1}^{q+2}(K, L)$.

In the diagram

$$(4.1) \qquad \pi^{p+q}(\bar{K}^{q+1}, \bar{K}^{q-1}) \xrightarrow{j_1 \sharp} \pi^{p+q}(\bar{K}^q, \bar{K}^{q-1})$$

$$\downarrow^{\Delta_2'} \qquad \downarrow^{\Delta_1'} \qquad \downarrow^{\Delta_1'} \qquad \downarrow^{\Delta_1'} \qquad \downarrow^{i_2 \sharp} \qquad \downarrow^{\Delta_1'} \qquad \downarrow^{i_2 \sharp} \qquad \downarrow$$

⁶⁾ In the following, the group multiplication with respect to squaring operation Sq² is always defined such that the product of the generator and itself is the generator.

let Δ' , Δ_1 , Δ_1' , Δ_2 , Δ_2' be the coboundary operators, and let i^{\sharp} , i_2^{\sharp} , j_1^{\sharp} , j_2^{\sharp} be the inclusion homomorphisms. Then the commutativity holds in a rectangle and two triangles in (4.1). If $\{a\}$ is an element of H^p_q which is represented by $a \in \pi^{p+q}$ (\bar{K}^q , \bar{K}^{q-1}), we have $\Delta_{1a}=0$, and $\S^q_p\{a\} \in H^{q+2}_{p-1}(K,L)$ is represented by $i^{\sharp}j_2^{\sharp-1}\Delta_1'a$. In virtue of the exactness of j_1^{\sharp} , Δ_1 , there exists an element $b \in \pi^{p+q}$ (\bar{K}^{q+1} , \bar{K}^{q-1}) such that $j_1^{\sharp}b=a$. And we have

$$j_2^{\sharp} (\Delta' b - j_2^{\sharp^{-1}} \Delta_1' a) = j_2^{\sharp} \Delta' b - \Delta'_1 a = \Delta'_1 j_1^{\sharp} b - \Delta'_1 a
 = \Delta'_1 a - \Delta'_1 a = 0.$$

From the exactness of Δ'_2 , j_2^{\sharp} , there exists an element $c \in \pi^{p+q}(\check{K}^{q+1},\check{K}^q)$ such that $\Delta' b - j_2^{\sharp + 1} \Delta'_1 a = \Delta'_2 c$. And we have

$$i^{\sharp} \Delta' b - i^{\sharp} j_2^{\sharp^{-1}} \Delta'_1 a = i^{\sharp} \Delta'_2 c = \Delta_2 c$$

Therefore we have $\{\Delta b\} = \{i^{\sharp}j_2^{\sharp^{-1}}\Delta'_1a\} = \S_p^q \{a\}$, where $\Delta = i^{\sharp}\Delta'$: $\pi^{p+q}(\bar{K}^{q+1}, \bar{K}^{q-1}) \rightarrow \pi^{p+q+1}(\bar{K}^{q+2}, \bar{K}^{q+1})$. Thus we establish

$$\mathfrak{S}_{p}^{q}\left\{ a\right\} =\left\{ \Delta j_{1}^{\#^{-1}}a\right\} .$$

Proof of Lemma 6. Let M^{q+2} be a complex $S^q \cup e^{q+2}$, where e^{q+2} is attached to S^q by an essential map: $\dot{E}^{q+2} \to S^q$. In this complex, it is easily seen from (4.2) and from $[5, \S 20]$ that \S_0^q corresponds to Sq^2 by ψ . A proof for a general complex is given as follows.

Let $\{a\} \in H_0^q(K, L)$ be an element which is represented by $a \in \pi^q(\bar{K}^q, \bar{K}^{q-1})$ and let a be represented by a map $f: (\bar{K}^q, \bar{K}^{q-1}) \to (S^q, y)$. Using the notations in (4.1) we have $\Delta_1 a = 0$, so that a belongs to the image of j_1^{\sharp} . Thus f can be extended to a map $\bar{f}: (\bar{K}^{q+1}, \bar{K}^{q-1}) \to (S^q, y)$. Since $\pi_{q+1}(M^{q+2}) = 0$, \bar{f} can be extended again to a map $\bar{f}: (\bar{K}^{q+2}, \bar{K}^{q+1}) \to (M^{q+2}, S^q)$. Then we have a diagram

$$\pi^{q}\left(ar{K}^{q},ar{K}^{q-1}
ight) \stackrel{j_{1}\#}{\longleftarrow} \pi^{q}\left(ar{K}^{q+1},ar{K}^{q-1}
ight) \stackrel{\Delta}{\longrightarrow} \pi^{q-1}\left(ar{K}^{q+2},ar{K}^{q+1}
ight) \\ \uparrow^{\#} \qquad \uparrow^{\#} \qquad$$

where the commutativity holds in each rectangle. If $\{a_0\}$ is an element of $H_0^q(M^{q+2})$ which is represented by the generator a_0 of $\pi^q(M^q, M^{q-1})$, we have

$$\operatorname{Sq}^{2}\psi \left\{ a_{0}\right\} =\psi \mathfrak{S}_{0}^{q}\left\{ a_{0}\right\}$$
 ,

from the fact that Lemma 6 holds in M^{q+2} . Therefore we have

$$\bar{f} * \operatorname{Sq}_{2} \psi \{a_{0}\} = f^{\overline{*}} \psi \mathfrak{S}_{0}^{q} \{a_{0}\}.$$

Moreover we have
$$\bar{f}^* \operatorname{Sq}^2 \psi \{a\} = \operatorname{Sq}^2 \bar{f}^* \psi \{a_0\}$$

 $= \operatorname{Sq}^2 \psi \{f^{\#} a_0\} = \operatorname{Sq}^2 \psi \{a\}$, and $\bar{f}^* \psi \tilde{g}_0^q \{a_0\} = \bar{f}^* \psi \{4j_1^{\#^{-1}} a_0\} = \psi \{\bar{f}^{\#} 4j_1^{\#^{-1}} a_0\}$
 $= \psi \{4j_1^{\#^{-1}} a\} = \psi \tilde{g}_0^q \{a\}$.

Therefore we have

$$\operatorname{Sq}^2 \psi = \psi \mathfrak{S}_0^q$$
.

This proves Lemma 6.

Proof of Lemma 7. It is easily verified that Lemma 7 holds in a special complex $N^{q+2} = M^{q+2} \cup e^{q+1}$, where e^{q+1} is attached to $S^q \subset M^{q+2}$ by a map $\dot{E}^{q+1} \to S^q$ of degree 2. Now, let K be an arbitrary complex. $\{a\} \in H^q_{-1}(K, L)$ is represented by an element $a \in \pi^{q-1}(\bar{K}^q, \bar{K}^{q-1})$, which is represented by a map $f' : (\bar{K}^q, \bar{K}^{q-1}) \to (S^{q-1}, y)$. Then it may be assumed that $f' = \eta \cdot f$, where f is a map $(\bar{K}^q, \bar{K}^{q-1}) \to (S^q, y)$ and η is an essential map $(S^q, y) \to (S^{q-1}, y)$. Since $d_1a=0$, f' can be extended to a map $\bar{f}' : (\bar{K}^{q+1}, \bar{K}^{q-1}) \to (S^{q-1}, y)$. Thus for a (q+1)-cell σ^{q+1} , $f \mid \dot{\sigma}^{q+1}$ is a map $\dot{\sigma}^{q+1} \to S^q$ of even degree. If we consider S^q as the q-sphere of N^{q+1} , f can be extended to a map $\bar{f} : (\bar{K}^{q+1}, \bar{K}^{q-1}) \to (N^{q+1}, N^{q-1})$. Since $\pi_{q+1}(N^{q+2})=0$, \bar{f} can be extended to a map $\bar{f} : (\bar{K}^{q+1}, \bar{K}^{q-1}) \to (N^{q+1}, \bar{K}^{q+1}) \to (N^{q+2}, N^{q+1})$. Then in the diagram

$$\pi^{q-1}(ar{K}^q,ar{K}^{q-1}) \xrightarrow{j_1^\#} \pi^{q-1}(ar{K}^{q+1},ar{K}^{q-1}) \xrightarrow{\Delta} \pi^q(ar{K}^{q+2},ar{K}^{q+1})$$

$$\uparrow f^\# \qquad \uparrow f^\# \qquad \downarrow \bar{f}^\# \qquad \Delta \qquad \downarrow \bar{f}^\# \qquad \downarrow \bar{f}^\# \qquad \Lambda \qquad \downarrow \bar{f}^\# \qquad \Lambda \qquad \downarrow \bar{f}^\# \qquad \Lambda \qquad \uparrow f^{q-1}(N^{q+1},N^{q-1}) \xrightarrow{\Delta} \pi^q(N^{q+2},N^{q+1}),$$

the commutativity holds in each rectangle. If $\{a_0\}$ is an element of $\mathrm{H}^q_{-1}(N^{q+2})$ which is represented by the generator a_0 of $\pi^{q-1}(N^q,N^{q-1})$, we have $a=f^{\#}a_0$. From the consideration that Lemma 7 holds in N^{q+2} , Lemma 7 can be easily deduced in a general complex through an analogous way as Lemma 6, by the aids of (4.2) and of $a=f^{\#}a_0$.

§5. Exact sequence of E. Spanier

Let $n \ge 6$ and let us consider the diagram

This diagram has the following properties:

- i) The upper sequence $\sum_{0} (K, L)$ is exact by Theorem 1,
- ii) the vertical homomorphisms are all isomorphisms in virtue of Lemma 2,
- iii) the commutativity holds in each rectancele by Lemmas 4, 5 and 6.

Therefore the lower sequence of (5.1) is also exact. Thus we have

Theorem 3. (E. Spanier) Let (K, L) be a complex pair with $dim(K-L) \le n$ $(n \ge 6)$. Then we have the exact sequence

$$\pi^{n-2}(K,L) \xrightarrow{\overline{\phi}} \delta^{n-2}(K,L;(n-2)^{n-2}) \xrightarrow{\operatorname{Sq}^2} \delta^n(K,L;(n-1)^n) \xrightarrow{\Lambda} \pi^{n-1}(K,L)$$

$$\xrightarrow{\overline{\phi}} \delta^{n-1}(K,L;(n-1)^{n-1}) \longrightarrow 0 \longrightarrow \pi^n(K,L) \xrightarrow{\overline{\phi}} \delta^n(K,L;n^n) \longrightarrow 0$$

Remark. We see that this theorem is proved for $n \ge 5$, if $\pi^{n-1}(K, L)$ is discarded.

 \S 6. Homotopy classification of mappings of certain complex K into an (n-2)-sphere S^{n-2} .

Let $n \ge 7$. Applying Lemmas 2 and 7 to the exact sequence $\sum_{-1} (K, L)$, we have a diagram

in which the commutativity holds. From this we see that $\Pi_{-1}^{n-1}(K,L)$ is a group extension⁷⁾ of $\mathfrak{F}^n(K,L;(n-2)^n)/\operatorname{Sq}^2\mathfrak{F}^{n-2}(K,L;(n-3)^{n-2})$ by $\mathfrak{F}^{n-1}(K,L;(n-2)^{n-1})$. And we have $\mathfrak{f}:\Pi_{-1}^{n-1}(K,L)\cong\Gamma_0^{n-2}(K,L)$

(6.1) $\Gamma_0^{i-2}(K,L)$ is a group extension of $\mathfrak{H}^n(K,L;(n-2)^n)/\operatorname{Sq}^2\mathfrak{H}^{n-2}(K,L;(n-3)^{n-2})$ by $\mathfrak{H}^{n-1}(K,L;(n-2)^{n-1})$.

Now, let us assume (K, L) to be a complex pair such that Sq^2 : $\mathfrak{h}^{n-2}(K, L; (n-2)^{n-1}) \to \mathfrak{H}^n(K, L; (n-2)^n)$ is onto. Then from (6.1), we have

(6,2)
$$\psi_{i}^{n-1}: \Gamma_0^{n-2}(K,L) \cong \mathfrak{F}^{n-1}(K,L; (n-2)^{n-1}).$$

Consider the diagram

$$\begin{split} &\Pi_{0}^{n-3}\left(K,L\right) \overset{\dot{\mathsf{j}}}{\longrightarrow} H_{0}^{n-3}\left(K,L\right) \overset{\dot{\mathsf{b}}}{\longrightarrow} \Gamma_{0}^{n-2}\left(K,L\right) \\ &(6.3) \quad \text{if} \quad \bar{\phi} \quad \text{if} \quad \psi \quad \text{sq}^{2} \quad \text{if} \quad \psi \, \dot{\mathsf{j}} \, (^{-1}) \\ &\pi^{n-3}\left(K,L\right) \overset{\dot{\mathsf{b}}}{\longrightarrow} \mathfrak{H}^{n-3}\left(K,L; \, (n-3)^{n-3}\right) \overset{\dot{\mathsf{b}}}{\longrightarrow} \mathfrak{H}^{n-1}\left(K,L; \, (n-2)^{n-1}\right) \\ &\overset{\dot{\mathsf{l}}}{\longrightarrow} \Pi_{0}^{n-2}\left(K,L\right) \overset{\dot{\mathsf{j}}}{\longrightarrow} H_{0}^{n-2}\left(K,L\right) \overset{\dot{\mathsf{b}}}{\longrightarrow} \Gamma_{0}^{i-1}\left(K,L\right) \\ &\text{if} \quad \bar{\phi} \quad \text{if} \quad \bar{\phi} \quad \text{if} \quad \mathcal{J} \psi \, \dot{\mathsf{j}} \, (^{-1}) \\ &\longrightarrow \pi^{n-2}\left(K,L\right) \overset{\dot{\mathsf{b}}}{\longrightarrow} \mathfrak{H}^{n-2}\left(K,L; \, (n-2)^{n-2}\right) \overset{\dot{\mathsf{b}}}{\longrightarrow} \mathfrak{H}^{n}\left(K,L; \, (n-1)^{n}\right). \end{split}$$

This diagram has the following properties:

- i) The upper sequence $\sum_{0} (K, L)$ is exact by Theorem 1,
- ii) the vertical homomorphisms are all isomorphisms in virtue of Lemma 2 and (6.2). It should be noted that for n=7 the first vertical homomorphism is meaningless,

⁷⁾ Let A, C be groups and let B be a subgroup of A. If there exists a homomorphism of A onto C with kernel B, we call that A is a group extension of B by C.

iii) the commutativity holds in each rectangle by Lemmas 4, 5 and 6. Therefore the lower sequence of (6.3) is exact, so that we have

Theorem 4. Let $n \ge 7$ and let K be a complex pair with $dim(K-L) \le n$ such that $\operatorname{Sq}^2: \S^{n-2}(K, L, I_2) \to \S^n(K, L; I_2)^{\otimes 0}$ is onto. Then $\pi^{n-2}(K, L)$ has a subgroup isomorphic to $\S^{n-1}(K, L; I_2)/\operatorname{Sq}^2\S^{n-3}(K, L; I)$ and the factor group by this subgroup is isomorphic to the kernel of $\operatorname{Sq}^2: \S^{n-2}(K, L; I) \to \S^n(K, L; I_2)$.

Furthermore we have the corresponding extension theorem;

Theorem 5. Let $n \ge 8$. Let K be an n-dimensional complex such that $\operatorname{Sq}^2 \colon \mathfrak{H}^{n-2}(K,I_2) \to \mathfrak{H}^n(K,I_2)$ is onto and let L be its (n-3)-dimensional subcomplex. In order that a map $f \colon L \to S^{n-3}$ is extendable to K, it is necessary and sufficient that there exists $u \in \mathfrak{H}^{n-3}(K;I)$ such that

$$f^* \{s^{n-3}\} = i^* \{u\}$$
, $Sq^2 \{u\} = 0$,

and

where $\{s^{n-3}\}$ is the generator of $\mathfrak{F}^{n-3}(S^{n-3};I)$, $f^*: \mathfrak{F}^{n-3}(S^{n-3};I) \to \mathfrak{F}^{n-3}(L;I)$, $i^*: \mathfrak{F}^{n-3}(K;I) \to \mathfrak{F}^{n-3}(L;I)$ are the homomorphisms induced by f and the injection $i: L \to K$ respectively, and Sq^2 is the homomorphism of $\mathfrak{F}^{n-3}(K;I)$ to $\mathfrak{F}^{n-1}(K,I_2)$.

Proof. Necessity. Let $\tilde{f}: K \to S^{n-3}$ be an extension of f, and let $\{u\} = \tilde{f}^* \{s^{n-3}\}$. Then we have

$$i^* \{u\} = i^* \bar{f}^* \{s^{n-3}\} = (\bar{f}i)^* \{s^{n-3}\} = f^* \{s^{n-3}\}.$$

As from (6.3) the sequence

$$\pi^{n-3}(K) \xrightarrow{\overline{\phi}} \mathfrak{G}^{n-3}(K;I) \xrightarrow{\operatorname{Sq}^{?}} \mathfrak{G}^{n-1}(K;I_2)$$

is exact, we have

$$\mathrm{Sq^2}\left\{ u
ight\} = \mathrm{Sq^2} ar{f} * \left\{ s^{n-3}
ight\} = \mathrm{Sq^2} ar{\phi} \left\{ ar{f}
ight\} = 0$$
 ,

Sufficiency. As we have $\operatorname{Sq}^2\{u\}=0$, from (6.3) there exists $\{g\}\in\pi^{n-3}(K)$ such that $\overline{\phi}\{g\}=\{u\}$. Since the commutativity holds in the diagram

$$\pi^{n-3}(K) \xrightarrow{\overline{\phi}} \mathfrak{D}^{n-3}(K; I)$$
 $\downarrow i^{\sharp} \qquad \qquad \downarrow i^{*} \qquad \qquad \downarrow i^{*}$
 $\pi^{n-3}(L) \longrightarrow \mathfrak{D}^{n-3}(L; I)$,

we have

$$\bar{\phi} \{f\} = f^* \{s^{n-3}\} = i^* \{u\} = i^* \bar{\phi} \{g\}$$

= $\bar{\phi}i^* \{g\} = \bar{\phi} \{gi\}$.

As L is (n-3)-dimensional, $\overline{\phi}$ is an isomorphism from Theorem 3, so that we have $\{f\} = \{gi\}$. Namely we have

$$f \simeq gi \simeq g|L$$
.

⁸⁾ I_h denotes a cyclic group of order h, and I denotes a free cyclic group.

Since g|L has an extension $g: K \rightarrow S^{n-3}$, f can be also extended to K in virtue of the homotopy extension property.

§ 7. The *n*-th cohomotopy group of an A_n^2 -polyhedron

Let K be an (n+2)-dimensional complex with $\pi_i(K)=0$ for $i \leq n-1$. According to J. H. C, Whitehead, we refer to such a complex as an A_n^2 -polyhedron [7]. In this section, we shall calculate the n-th cohomotopy group of an A_n^2 -polyhedron in terms of its cohomology system.

First we prove

Lemma 8. Let $n \ge 5$. Let K be an A_n^2 -polyhedron, then we have

$$\pi^n(K) \cong \Gamma_0^n(K) \oplus \mathfrak{P}^n(K;I)^{9}$$

where $\Gamma^{i}(K)$ is a group extension of $\mathfrak{H}^{n+2}(K;I_2)/\operatorname{Sq}^2\mathfrak{H}^n(K;I_2)$ by $\mathfrak{H}^{n+1}(K;I_2)$.

Proof. Consider the diagram

This diagram has the following properties:

- i) The upper sequence is exact by Theorem 1,
- ii) the vertical homomorphisms are all isomorphisms by Lemma 2,
- iii) the commutativity holds in each rectangle by Lemmas 5 and 6,
- iv) as K is (n-1)-connected, $\mathfrak{H}^{n-1}(K;I)=0$ so that i is isomorphism into,
- v) $\mathfrak{G}^n(K;I)$ is free abelian because K is (n-1)-connected, and $\mathfrak{G}^{n+2}(K;I_2)$ is finite, so that the kernel of Sq^2 is isomorphic to $\mathfrak{G}^n(K;I)$.

From these facts and from (6.1) we have immediately Lemma 8.

We shall determine $\pi^n(K)$ more precisely.

Let (a_1, \dots, a_m) be a system of independent generators of $\mathfrak{S}^{n+2}(K; I)$, where a_i is of order σ_i if $i \leq t$ and a_i is of infinite order if $t+1 \leq j \leq m$. Further let σ_i be a power of a prime $\neq 2$ if $i \leq s (\leq t)$ and let σ_i be a power of 2 if $s+1 \leq i \leq t$. Then $_2(\mathfrak{S}^{n-2}(K; I))$ is generated by $\left(\frac{1}{2}\sigma_{s+1}a_{s+1}, \dots, \frac{1}{2}\sigma_t a_t\right)$ and $\mathfrak{S}^{n+2}(K; I_2) = (\mathfrak{S}^{n+2}(K; I))_2$ is generated by $(\bar{a}_{s+1}, \dots, \bar{a}_m)$, where \bar{a}_i is the class of a_i^{10} . Let A(K) be a group extension of $\mathfrak{S}^{n+2}(K; I_2)/\operatorname{Sq}^2\mathfrak{S}^n(K; I_2)$ by $_2(\mathfrak{S}^{n+2}(K; I))$ determined by the relations:

$$\left\{ \begin{array}{ll} 2a_i = \mu \bar{a}_i \,, & \text{if } \sigma_i = 2 \,, \\ 2a_i = 0 \,, & \text{otherwise} \,, \end{array} \right.$$

⁹⁾ If A, B are any abelian groups, $A \oplus B$ will always denote their direct sum.

¹⁰⁾ Let G be an abelian group, then $G_2 = G/2G$, and ${}_2G$ is the subgroup of G which consists of all the element g such that 2g=0.

for $i=s+1, \dots, t$, where (a_{s+1}, \dots, a_t) are representatives in A for $(\frac{1}{2}, \sigma_{s+1}a_{s+1}, \dots, \frac{1}{2}, \sigma_t a_t)$ and μ is the natural homomorphism $\mathfrak{F}^{n+2}(K; I_2) \rightarrow \mathfrak{F}^{n+2}(K; I_2)/\operatorname{Sq}^2 \mathfrak{F}^n(K; I_2)$. Then we have

Theorem 6. Let $n \ge 5$ and let K be an A_n^2 -polyhedron. Then the n-th cohomotopy group $\pi^n(K)$ is given in terms of its cohomology system as f ollows:

$$(7.1) \qquad \pi^n(K) \cong \mathfrak{H}^n(K; I) \oplus (\mathfrak{H}^{n+1}(K; I))_2 \oplus A(K).$$

Before we proceed to prove this theorem, we shall remember two following definitions.

- 1) An elementary A_n^2 -polyhedron. This is one of the following kinds [2], [6]:
 - i) $B_1^r = S^r$ (r=n, n+1, n+2),
 - ii) $B_2(\sigma)=S^n\cup e^{n+1}$, where e^{n+1} is attached to S^n by a map $\dot{E^{n+1}}\to S^n$ of degree σ , a power of a prime,
 - iii) $B_3(\tau) = S^{n+1} \cup e^{n+2}$, where e^{n+2} is attached to S^{n+1} by a map $\dot{E}^{n+2} \to S^{n+1}$ of degree τ , a power of a prime,
 - iv) $B_4 = S^n \cup e^{n+2}$, where e^{n+2} is attached to S^n by an essential map $\dot{E}^{n+2} \rightarrow S^n$,
 - v) $B_5(2^p)=S^n\cup e^{n+1}\cup e^{n+2}$, where e^{n+1} is attached to S^n by a map $\dot{E}^{n+1}\longrightarrow S^n$ of degree 2^p and e^{n+2} is attached to S^n by an essential map $\dot{E}^{n+2}\longrightarrow S^n$,
 - vi) $B_6(2^q) = (S^n \vee S^{n+1}) \cup e^{n+2 \cdot 11}$, where e^{n+2} is attached to $S^n \vee S^{n+1}$ by a map $\dot{E}^{n+2} \to S^n \vee S^{n+1}$ of the form a+b; a is an essential map $\dot{E}^{n+2} \to S^n$ and b is a map $\dot{E}^{n+2} \to S^{n+1}$ of degree 2^q .
 - vii) $B_7(2^p, 2^q) = B_6(2^q) \cup e^{n+1}$, where e^{n+1} is attached to S^n in $B_6(2^q)$ by a map $E^{n+1} \rightarrow S^n$ of degree 2^p .
- 2) A normal A_n^2 -polyhedron. We mean by this a polyhedron which consists of a collection of elementary A_n^2 -polyhedra with a single point in common.

Proof of Theorem 6. Note that there exists a normal A_n^2 -polyhedron which is of the same homotopy type as K [2] [6], and for two elementary A_n^2 -polyhedra B, B' we have

$$\pi^n(B ee B') \cong \pi^n(B) \oplus \pi^n(B')$$
, $\mathfrak{F}^{n+1}(B ee B'; I))_2 \cong (\mathfrak{F}^{n+1}(B; I))_2 \oplus (\mathfrak{F}^{n+1}(B'; I))_2$, $\mathfrak{F}^n(B ee B'; I) \cong \mathfrak{F}^n(B; I) \oplus \mathfrak{F}^n(B'; I)$, and $A(B ee B') \cong A(B) \oplus A(B')$,

Then we see that it is sufficient to prove Theorem 6 for each A_n^2 -polyhedron.

First we shall calculate the left hand of (7.1), the *n*-th cohomotopy group, for each elementary A_n^2 -polyhedron. It follows from cohomological computation that

¹¹⁾ We denote by $A \lor B$ the union of two spaces A and B with a single point in common,

i)
$$\pi^n(B_1^n) \simeq I$$
, $\pi^n(B_1^{n+1}) \simeq I_2$, $\pi^n(B_1^{n+2}) \simeq I_2$,

ii)
$$\pi^n(B_2(\sigma)) = 0$$
 if σ is a power of a prime $\neq 2$,

$$\cong I_2$$
 if σ is a power of 2,

iii) $\pi^n(B_3(\tau)) = 0$ if τ is a power of a prime $\neq 2$, $\pi^n(B_3(\tau))/I_2 \cong I_2$ if τ is a power of 2,

iv)
$$\pi^n(B_4) \cong I$$
, v) $\pi^n(B_5(2^p)) \cong I_2$,

vi)
$$\pi^n(B_6(2^q)) \cong I_2 \oplus I_4$$
 vii) $\pi^n(B_7(2^p, 2^q)) \cong I_2 \oplus I_2$.

Moreover as for the group extension of iii), we have

iii
$$I_1 = \pi^n(B_3(\tau)) \cong I_2 \oplus I_2$$
 if τ is $2^p(p>1)$,

iii);
$$\simeq I_4$$
 if τ is 2.

iii)'₁ follows from arguments similar to those used in the proof of Lemma 3.6 in P. J. Hilton [3], and iii)'₂ is the result due to M. G. Barratt and G. F. Paetcher [1].

Second, if we calculate the right hand of (7.1) for each elementary A_n^2 -polyhedron, we shall easily find the same group as the above. Thus Theorem 6 is true.

Remark. Compare Theorem 6 with the one due to Hilton [3] with respect to the determination of the (n+2)-nd homotopy group of an A_n^2 -polyhedron in terms of its homology system.

§8. Homotopy type of an A_n^2 -polyhedron

J. H. C. Whitehead explained how the homotopy type of an A_n^2 -polyhedron can be described in terms of cohomology [7]. We shall again deal with this problem in this section.

Let $n \ge 3$, and let K be an A_n^2 -polyhedron. Let $\sum^n (K)$ be the part of $\sum_0 (K)$ which begins with $H^n(K)$:

$$\mathrm{H}^n_0(K) \overset{\mathfrak{h}}{\longrightarrow} \Gamma^{n+1}_0(K) \overset{\mathfrak{f}}{\longrightarrow} \Pi^{n+1}_0(K) \overset{\mathfrak{f}}{\longrightarrow} \mathrm{H}^{n+1}_0(K) \overset{\mathfrak{f}}{\longrightarrow} \cdots \cdots .$$

Then it follows from Lemma 2 that

$$\Gamma_0^{n+1}(K) \simeq (\mathrm{H}_0^{n+2}(K))_2$$
 , $\Gamma_0^{n+2}(K) = 0$

and $\Gamma_0^i(K)$, $\Pi_0^i(K)$, $H_0^i(K)$ are all zero for any i>n+2. On the other hand, let $\Sigma(K)$ be the exact sequence of J.H.C. Whitehead which is defined by his using the homotopy group (cf. [9] Chap III), and let $\Sigma_{n+2}(K)$ be the part of $\Sigma(K)$ which begins with $H_{n+2}(K)$:

$$\mathrm{H}_{n+2}(K) \overset{\mathfrak{h}}{\longrightarrow} \Gamma_{u+1}(K) \overset{\dot{\mathfrak{l}}}{\longrightarrow} \Pi_{n+1}(K) \overset{\dot{\mathfrak{j}}}{\longrightarrow} \mathrm{H}_{n+1}(K) \overset{\cdots}{\longrightarrow} \cdots$$

It is known that

$$\Gamma_{n+1}(K) \cong (\mathrm{H}_n(K))_2$$
 , $\Gamma_n = 0$

and $\Gamma_i(K)$, $\Pi_i(K)$, $H_i(K)$ are all zero for i < n.

Assume that K' is also an A_n^2 -polyhedron. We shall then define proper isomorphisms of $\sum^{n}(K)$ to $\sum^{n}(K')$, $\sum_{n+2}(K)$ to $\sum_{n+2}(K')$, $\sum_{n+2}(K)$ to $\sum^{n}(K')$ and $\sum^{n}(K)$ to $\sum_{n+2}(K')$. Since all of these can be defined in the same manner, we shall here denote only the definition of a proper isomorphism of the last one. $\sum_{n=1}^{\infty} (K)$ is called to be properly isomorphic to $\sum_{n=1}^{\infty} (K')$ if and only if there exists a family of isomorphisms $\rho = \{_{\Gamma} \rho$, $_{\Pi} \rho$, $_{\Theta} \rho \}$ such that the commutativity holds in each rectangle of the diagram

and such that ${}_{\Gamma}\rho^{n+1}$ is identified to the homomorphism induced by ${}_{\rm H}\rho^{n+2}$ if we make the identification $\Gamma_0^{n+1}(K) = (H_0^{n+1}(K))_2$ and $\Gamma_{n+1}(K') = (H_n(K'))_2$. Then we denote $\sum_{n=1}^{\infty} (K) \approx \sum_{n=1}^{\infty} (K')$ and call that ρ is a proper isomorphism of $\sum_{n=1}^{\infty} (K)$ to $\sum_{n+2} (K')$. The following Lemma 9 is proved by the arguments similar to those used in the proof of Theorem 16 in [9].

Lemma 9. Two A_n^2 -polyhedra K and K' are of the same homotopy type if and only if $\sum_{n+2} (K) \approx \sum_{n+2} (K')$.

Now we shall define a "co-polyhedron" P^* of a normal A_n^2 -polyhedron P as follows. As for elementary one, we define:

- i) $B_1^{n*}=B_1^{n+2}$, $B_1^{n+1*}=B_1^{n+1}$, $B_1^{n+2*}=B_1^n$,

- $\begin{array}{lll} \text{ii)} & B_2\left(\sigma\right)^* = B_3\left(\sigma\right), & \text{iii)} & B_3\left(\tau\right)^* = B_2\left(\tau\right), \\ \text{iv)} & B_4^* = B_4, & \text{v)} & B_5\left(2^p\right)^* = B_6\left(2^p\right), \\ \text{vi)} & B_6\left(2^q\right)^* = B_5\left(2^q\right), & \text{vii)} & B_7\left(2^p, 2^q\right) = B_7\left(2^q, 2^q\right). \end{array}$

When P is a normal A_n^2 -polyhedron, the "co-polyhedron" P^* of P is the one which is obtained by replacing each elementary A_n^2 -polyhedron B of with its "co-polyhedron" B^* . Then P^* is also a normal A_n^* -polyhedron which is $\dim P^* = 2n - \dim P + 2$, and we have $P^{**} = P$. Furthermore we have

Lemma 10. For any normal A_n^2 -polyhedron P and its "co-polyhedron" P^* , $\sum^n(P)$ is properly isomorphic to $\sum_{n+2}(P^*)$. (If $n \ge 4$, we have $\sum^{n-1}(P)$ $\approx \sum_{n+3} (P)$ more strongly.)

Proof. As for elementary A_n^2 -polyhedra, we assert this Lemma by inspectation, This can be shown easily, so that we will merely list the following table of homotopy groups and cohomotopy groups.

π^i	B_1^n	B_1^{n+1}	B_1^{n+2}	$B_2(\sigma)$	$B_3\left(au ight)$	B_4	$B_5(2^p)$	$B_6\left(2^{\eta}\right)$	$B_{7}\left(2^{p}$, $2^{q} ight)$	
π^n	I	I_2	I_2	$\begin{matrix} 0^{\dagger} \\ I_2 \end{matrix}$	$egin{bmatrix} 0 & \dagger \dagger \ I_2 & \oplus I_2 \ I_4 \end{bmatrix}$	I	I_2	$I_2 \oplus I$	$I_2 \oplus I_2$	π_{n+2}
π^{n+1}	0	I	I_2	I_{σ}	I_2	0	$I_{2^{p+1}}$	0	$I_{2^{p+1}}$	π_{n+1}
π^{u+2}	0	0	I	0	$I_{ au}$	I	I	I_{2^q}	I_{2}^{q}	π_n
	B_1^{n*}	B_1^{n+1*}	B_1^{n+2*}	B ₂ (o)*	$B_3(au)^*$	B_4*	$B_5(2^p)^*$	$B_6(2^q)^*$	$B_7(2^p, 2^q)^*$	B^*

$$\begin{array}{lll} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Generally, as for a normal A_n^2 -polyhedron, Lemma 10 follows from that it is true for elementary A_n^2 -polyhedra, and from the following fact: If B_1 , B_2 be elementary A_n^2 -polyhedra, the following theorems hold for Γ_0^i , Π_0^i , H_0^i ; Γ_i , Π_i , H_i ; i, j, b (i=n, n+1, n+2) [2] [3]:

$$egin{aligned} \Gamma_0\left(B_1ee B_2
ight)&\cong \Gamma_0^i\left(B_1
ight)\oplus \Gamma_0^i\left(B_2
ight),\ \Pi_i\left(B_1ee B_2
ight)&\cong \Pi_i\left(B_1
ight)\oplus \Pi_i\left(B_2
ight),\ &\ldots,\ ec{\mathfrak{i}}&=\mathfrak{i}_1+\mathfrak{i}_2\,,\quad \mathfrak{b}&=\mathfrak{b}_1+\mathfrak{b}_2\,,\ \ldots\dots \end{aligned} ,$$

where i_1 , b_2 , are the homomorphisms i, b, for B_1 , B_2 , respectively. Finary corresponding to Lemma 9, we have

Lemma 11. Two A_n^2 -polyhedra K and K' are of the same homotopy type if and only if $\sum_{i=1}^{n} (K) \approx \sum_{i=1}^{n} (K')$.

Proof. Necessity. Let K and K' are of the same homotopy type, and let $f: K' \to K$ be a homotopy equivalence of K and K'. Then if $\Gamma_0^{i_0}: \Gamma_0^i(K) \to \Gamma_0^i(K')$, $\Gamma_0^{i_0}: \Pi_0^i(K') \to \Pi_0^i(K')$, $\Gamma_0^{i_0}: \Pi_0^i(K') \to \Pi_0^i(K')$ are homomorphisms induced by f, it follows from Theorem 2 that $f = \{\Gamma_0^i, \Gamma_0^i, \Gamma_0^i\}$ is an isomorphism of $\sum_{i=1}^n (K)$ onto $\sum_{i=1}^n (K')$. Therefore it is sufficient to prove that $\Gamma_0^{i_0+1}$ is identified with the homomorphism induced by $\Gamma_0^{i_0+2}$ when we make the identification $\theta: \Gamma_0^{i_0+1}(K) = (H_0^{i_0+2}(K))_2$ and $\theta': \Gamma_0^{i_0+1}(K') = (H_0^{i_0+2}(K'))_2$. Let $\lambda: \mathfrak{D}^{n+2}(K; I) \to \mathfrak{D}^{n+2}(K; I_2)$, $\lambda': \mathfrak{D}^{n+2}(K'; I) \to \mathfrak{D}^{n+2}(K'; I_2)$ be the natural homomorphisms, then λ and λ' are onto and we have

$$\theta = \psi_0^{n+2^{-1}} \lambda^{-1} \psi_{-1}^{n+2} \dot{\mathbf{j}}_{-1}^{n+2} (\mathbf{j}_{-1}^{n+2} \;, \quad \theta' = \psi'_0^{n+2^{-1}} \lambda' \psi'_{-1}^{n+2} \dot{\mathbf{j}}_{-1}'^{n+2} (\mathbf{j}_{-1}'^{n+2} \;.$$

Since the commutativities:

$$_{\Pi}$$
f $\mathfrak{l}=\mathfrak{l'}_{\Gamma}$ f, $_{H}$ f $\mathfrak{j}=\mathfrak{j'}_{\Pi}$ f, $f^*\psi=\psi'_{H}$ f, $f^*\lambda=\lambda'\cdot f^*$

hold, we have easily

$$\theta'_{\Gamma} \mathfrak{f}_{0}^{n+} = \mathfrak{f}_{0}^{n+2} \theta$$
.

Thus f is a proper isomorphism.

Sufficiency. Let P and P' be normal A_n^2 -polyhedra which are of the same homotopy type as K and K' respectively. Then we have

$$\sum^{n} (K) \approx \sum^{n} (P), \quad \sum^{n} (K') \approx \sum^{n} (P').$$

Thus we have

(8.1)
$$\sum^{n} (P) \approx \sum^{n} (P')$$

by the assumption of the sufficiency.

Let P^* and P'^* be "co-polyhedra" of P and P' respectively. Then it follows from Lemma 10 that

(8.2)
$$\sum_{n=2}^{n} (P) \approx \sum_{n+2} (P^*), \sum_{n=2}^{n} (P') \approx \sum_{n+2} (P'^*).$$

From (8.1) and (8.2), we have

$$\sum_{n+2} (P^*) \approx \sum_{n+2} (P^{q*})$$

so that P^* and P'^* are of the same homotopy type in virtue of Lemma 9.

Since P^* and P'^* are normal, we see $P^*=P'^*$. Thus we have $P=P^{**}=P'^{**}=P'$. Therefore K and K' are of the same homotopy type.

Let $S^n(K)$ denote the part of Spanier's exact sequence which begins with $\mathfrak{H}^n(K;I)$:

Theorem 7. Let $n \ge 3.^{12}$ Two A_n^2 -polyhedra K and K' are of the same homotopy type if and only if their Spanier's sequence $S^n(K)$, $S^n(K')$ are properly isomorphic.

References

- 1) M.G. Barratt and G.F. Paetcher: A note on $\pi_r(V_n, m)$, Proc. Nat. Acad. of Sci. U.S.A., 38 (1952).
- Su-Cheng Chang: Homotopy invariants and continuous mappings, Proc. Roy. Soc. London, 202 (1950).
- 3) P.J. Hilton: Calulation of the homotopy groups of A_n^2 -polyhedra II Quart. J. Math. Oxford (2), 2, (1951).
- 4) E. Spanier; Borsuk's cohomotopy groups, Ann. of Math., 50 (1949).
- 5) N. E. Steenrod: Products of cocycles and extensions of mappings, Ann. of Math., 48
- H. Uehara: On homotopy type problems of a special kinds of polyhedra I, II, Csaka Math. J.. (forthcoming)
- J.H.C. Whitehead: The homotopy type of a special kind of polyhedron, Annals de la Soc. Polon. de Math., 21 (1948).
- 8) J.H.C. Whitehead: Combinational homotopy I, II, Bull. Amer. Math. Soc., 55 (1949).
- 9) J.H.C. Whitehead: A certain exact sequence, Ann. of Math., 52 (1950)

Added in proof. The following papers were published recently.

- W. S. Massey: Exact couples in Algebraic Topology (Parts I and II), Ann. of Math., Vol. 56, No. 2 (1952).
- J. Adem: The iteration of the Steenrod squares in algebraic Topolopy, Proc. Nat. Acad. of Sci., U. S. A., 38 (1952).

¹²⁾ cf. Remarks of § 5.