Exact Sequences \sum_{n} (*K, L)* and their Applications

By Minoru NAKAOKA

(Received September 15, 1952)

§ **O. Introduction**

Homotopy classifications of mappings of an *n* dimensional finite cell complex $Kⁿ$ into an *n*-sphere $Sⁿ$ or an $(n-1)$ -sphere $Sⁿ⁻¹$ and the corresponding extension theorems were solved by H. Hopf and N. E. Steenrod [5] respectively. Introducing the cohomotopy group, E. Spanier [4] unified these results in an exact sequence, while). H. C. Whitehead [9] gave a general and constructive method to obtain an exact sequence, starting with a certain sequence of homomorphisms.

In this paper, we shall define exact sequences $\sum_{p} (K)$ by applying Whitehead's method to the cohomotopy group of a complex K (§1). It is proved that $\sum_{p} (K)$ are invariances of homotopy type of complex K (§2), and that, as its special case, $\sum_0 (K)$ may be regarded as a generalization of Spanier's sequence $(\S 3, 4, 5)$. $\sum_p (K)$ are also utilized to obtain a homotopy classification theorem and a corresponding extension theorem concerning mappings of a certain kind of an $(n+2)$ -dimensional complex into $Sⁿ$ (§6). Furthermore we determine the *n*-th cohomotopy group of an A_n^2 -polyhedron in terms of its cohomology system (§7). At the end of this paper it is shown that two A_n^2 -polyhedra are of the same homotopy type if and only if their Spanier's sequences are properly isomorphic.

I am deeply grateful to Prof. A. Komatu and Mr. H. Uehara for their kind advices during the preparation of this paper.

$\binom{8}{5}$ 1. Exact sequences $\sum_{p}(K, L)$

In the first place, let us define an exact sequence \sum abstractly, following). **H.** C. Whitehead [9].

Let r be an arbitrary fixed integer, and let (C, A) be the following sequence of groups and homomorphisms ;

$$
(1,1) \quad C^{r-1} \xrightarrow{\beta^{r-1}} A^r \xrightarrow{j^r} C^r \longrightarrow \cdots \longrightarrow A^q \xrightarrow{j^q} C^q \xrightarrow{\beta^q} A^{q+1} \xrightarrow{j^{q+1}} C^{r+1} \longrightarrow \cdots \cdots,
$$

where C^q , A^q are arbitrary abelian groups and *q* is an integer such that $q \ge r$. In this sequence it is assumed that $j^q A^q = \beta^{q-1}(0)$ for any $q \ge r$, but $\beta^{q-1} C^{q-1}$:hıs
-1 $=j^{q^{-1}}(0)$ is not always assumed. If we denote $d^q=j^{q+1}\beta^q: C^q\rightarrow C^{q+1}$, we have

 $d^{q+1}d^q=0$. Let Z^q be $d^{q-1}(0)$, then we have $d^{q-1}C^{q-1}\subset Z^q$. Now we define three groups Γ^q , Π^q , H^q with homomorphisms as follows:

 $\Gamma^{q} = i^{q^{-1}}(0)$, $\Pi^{q} = A^{q}/\beta^{q-1}C^{q-1}$, $H^{q} = Z^{q}/d^{q-1}C^{q-1}$ (1.2)

As to homomorphisms we define

i) b^q : $H^{q} \rightarrow \Gamma^{q-1}$. Let $z \in Z^q$ be a representative of a class of H^q , then $d^qz = i^{q+1}\beta^q z = 0$, so that $\beta^q z \in i^{q+1} \times \text{C}^{q-1}$. Since $\beta^q (d^{q-1}C^{q-1}) = \beta^q i^{q} \beta^{q-1} C^{q-1} = 0$, a mapping $z \rightarrow \beta^q z$ induces a homomorphism b^q : $H^q \rightarrow \Gamma^{q+1}$.

ii) $i^q: \Gamma^q \rightarrow \Pi^q$. If $\gamma \in \Gamma^q$, γ is an element of A^q . Thus we define i^q such that γ corresponds to a class of Π^q containing γ .

iii) i^q : $\Pi^q \rightarrow H^q$. Let $a \in A^q$ be a representative of $\bar{a} \in \Pi^q$, then $d^q j^q a$ $= i^{q+1}\beta^q i^q a = 0$, so that $i^q a \in Z^q$. Since $i^q \beta^{q-1} C^{q-1} = d^{q-1} C^{q-1}$, a correspondence $\overline{a} \rightarrow \{j^q a\}$, a class of H^q containing $j^q a$, induces a homomorphism \overline{i}^q : $\Pi^q \rightarrow H^q$.

As a direct consequence of our definition we have, as is shown in [9],

Lemma 1. *The sequence*

 $(1.3) \sum: \Gamma^r \longrightarrow \Pi^r \longrightarrow \cdots \longrightarrow \Gamma^q \longrightarrow \Pi^q \longrightarrow H^q \longrightarrow \Gamma^{q+1} \longrightarrow \cdots$

is exact.

Next, we shall apply the above result to the cobomotopy group.

Let K be a complex, the subcomplex of which is denoted by L , and let y be a fixed point of a k-sphere S^k . If din1 $(K-L)\leq n$ and if $n\leq 2k-2$, we can define an addition among all the homotopy classes of mappings $f: (K, L) \rightarrow (S^k, y)$, following Borsuk-Spanier. Thus we have the k -dimensional cohomotopy group, which is designated by $\pi^k(K, L)$. Refer to E. Spanier [4] for detailed account. From now on we shall use terminologies and notations in $[4]$, and it is assumed in §§1-6 that (K, L) is a complex pair with dim $(K-L) \leq n$.

Let p be an arbitrary fixed integer, and let $r(p)$ be the smallest integer satisfying

(1.4)
$$
r = r(p) \geq \text{Max} \left\{ \frac{n}{2} + 1 - p, 3 - 2p \right\}.
$$

Let us define C^q , A^q , β^q , j^q in (1.1) as follows:

$$
C^{q} = C_{p}^{q} (K, L) = \pi^{p+q} (\bar{K}^{q}, \bar{K}^{q-1}) \qquad (q \geq r(p)-1),
$$

\n
$$
A^{q} = A_{p}^{q} (K, L) = \pi^{p+q} (K, \bar{K}^{q-1}) \qquad (q \geq r(p)),
$$

\n
$$
\beta^{q} = \beta_{p}^{q} (K, L) = \beta! \pi^{p+q} (\bar{K}^{q}, \bar{K}^{q-1}) \rightarrow \pi^{p+q+1} (K, \bar{K}^{q}) \qquad (q \geq r(p)-1),
$$

\n
$$
j^{q} = j_{p}^{q} (K, L) = i^{*}: \pi^{p+q} (K, \bar{K}^{q-1}) \rightarrow \pi^{p+q} (\bar{K}^{q}, \bar{K}^{q-1}) \qquad (q \geq r(p)),
$$

where $\bar{K}^q = K^q \cup L$, and Δ is the usual coboundary operator of the cohomotopy group and i^* is the homomorphism induced by the inclusion map $i : (\bar{K}^q, \bar{K}^{q-1})$ $\rightarrow (K, \bar{K}^{q-1}).$ Let us remember here that groups and homomorphismus defined

¹⁾ In the fo!lowing, for the sake of brevity, we shall cali a homomorphism between cohomotopy groups induced by an inclusion "inclusion homomorphism ".

above are not meaningless under the restriction in dimensions, which are indicated in the round brackets.

Since the sequence

$$
\pi^{p+q}(K,\bar{K}^{q-1}) \xrightarrow{\qquad i^*} \pi^{p+q}(\bar{K}^q,\bar{K}^{q-1}) \xrightarrow{\Delta} \pi^{p+q+1}(K,\bar{K}^q)
$$

is exact, we have $j^q A^q = \beta^{q-1}(0)$. Thus groups and homomorphisms, $\Gamma^q = \Gamma^q_p$ (K, L) , $\Pi^{q} = \Pi_{p}^{q}(K, L)$ $H^{q} = H_{p}^{q}(K, L)$ and $i^{q} = i_{p}^{q}(K, L)$, $i^{q} = i_{p}^{q}(K, L)$, $i^{q} = i_{p}^{q}(K, L)$ (K, L) can be defined for any $q \ge r(p)$. From Lemma 1 we have

Theorem 1. *The sequence* $\Sigma = \sum_p (K, L)$: $\Gamma_p^r\left(K,\, L\right) {\overset{\mathfrak{if}_{p}}{\xrightarrow{\hspace*{1.5cm}}} } \Pi_p^r\left(K,\, L\right) {\overset{\dots}{\xrightarrow{\hspace*{1.5cm}}} } \cdots {\overset{\mathfrak{if}_{p}}{\xrightarrow{\hspace*{1.5cm}}} } \left(K,\, L\right) {\overset{\mathfrak{if}_{p}}{\xrightarrow{\hspace*{1.5cm}}} } \Pi_p^q\left(K,\, L\right) {\overset{\mathfrak{if}_{p}}{\xrightarrow{\hspace*{1.5cm}}} } \mathcal{H}_p^q\left(K,\, L\right)$ $\longrightarrow \Gamma_p^{q+1}(K,L) \longrightarrow \cdots$ *is exact, where* $\mathbf{r} = \mathbf{r}(p) = Max\left(\frac{n}{2} + 1 - p, 3 - 2p\right)$.

[~]2. **Properties of r, TI, H.**

In this section we shall establish formal properties of $\Gamma^q_\nu(K, L)$, $\Pi^q_\nu(K, L)$ and $H_p^q(K, L)$.

I) Consider the diagram

$$
\pi^{p+q-1}(\bar{K}^{q-1}, \bar{K}^{q-2}) \xrightarrow{\Delta} \pi^{p+q}(K, \bar{K}^{q-1}) \xrightarrow{i\#} \pi^{p+q}(K, \bar{K}^{q-2}) \xrightarrow{i\#} \pi^{p+q}(\bar{K}^{q-1}, \bar{K}^{q-2})
$$
\n
$$
\xrightarrow{\parallel} \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow
$$
\n
$$
C_p^{q-1}(K, L) \xrightarrow{\beta_p^{q-1}} A_p^q(K, L) \xrightarrow{\parallel} A_{p+1}^{q-1}(K, L) \xrightarrow{\downarrow} C_{p+1}^{q-1}(K, L)
$$

in which the upper sequence is exact. Then from the definition of $\Gamma^{q-1}_{p+1}(K, L)$, $\Pi^q_\mathfrak{p}(K,L)$ we have immediately

$$
(2.1) \t\t I_p^q: \Pi_p^q(K, L) \simeq \Gamma_{p+1}^{q-1}(K, L)
$$

for any $q \ge r(p)$, where \mathfrak{f}^q is the homomorphism induced by the inclusion homomorphism $\pi^{p+q}(K, \bar{K}^{q-1}) \rightarrow \pi^{p+q}(K, \bar{K}^{q-2}).$

II) Let $p\geq 1$, then $C^q_p(K, L)=\pi^{p+q}(\bar{K}^q, \bar{K}^{p-1})=0$, so that we have $\Gamma_n^q(K, L)=A_n^q(K, L)=\pi^{p+q}(K, \bar{K}^{q-1})$ for any $q\geq r$. Since the sequence

$$
\pi^{p+q-1}(\bar{K}^{q-1}\text{, }L)\longrightarrow\pi^{p+q}(K\text{, }\bar{K}^{q-1})\longrightarrow\pi^{p+q}(K\text{, }L)\longrightarrow\overset{i\#}{\longrightarrow}\pi^{p+q}(\bar{K}^{q-1}\text{, }L)
$$

is exact and since $\pi^{p+q-1}(\bar{K}^{q-1}, L)=0$, $\pi^{p+q}(\bar{K}^{q-1}, L)=0$ for $p\geq 1$, we have $\pi^{p+q}(K, \bar{K}^{q-1}) \cong \pi^{p+q}(K, L)$. Thus we have

$$
(2.2)_1 \t\t\t f_p^q: \Gamma_p^q(K, L) \cong \pi^{p+q}(K, L)
$$

for $p \geq 1$ and for $q \geq r(p)$, where f_p^q is the homomorphism induced by the inclusion homomorphism $\pi^{p+q}(K, \tilde{K}^{q-1}) \rightarrow \pi^{p+q}(K, L)$.

III) From (2.1) and (2.2) , we have

$$
(2.2)_2 \t\t \t\t \mathfrak{t}_{p+1}^{q-1} \mathfrak{l}_p^q: \Pi_p^q(K, L) \cong \pi^{p+q}(K, L)
$$

for $p \ge 0$ and for $q \ge r(p)$.

IV) Let $q \geq n$, then we have $\pi^{p+q}(K, \bar{K}^q) = \pi^{p+q}(K, K) = 0$. From the exactness of the sequence

$$
\pi^{p+q}(K,\bar{K}^q)\xrightarrow{j\#}\pi^{p+q}(K,\bar{K}^{q-1})\xrightarrow{i\#}\pi^{p+q}(\bar{K}^q,\bar{K}^{q-1}),
$$

it is concluded that i^* is isomorphic into, so that

 $\Gamma_n^{\scriptscriptstyle\mathcal{I}}(K,L)=0$ (2.3) ₁

for any $q \geq Max(n, r(p)).$

V) From (2.1) and $(2.3)_1$, we have

 $(\,2.3\,)_{2}$ $\Pi_{n}^{q}(K,L) = 0$

for any $q \geq Max(r+1, r(p)).$

VI) By definition $\pi^{p+q}(\bar{K}^q, \bar{K}^{q-1})$ is isomorphic onto $C^q(K, L: (p+q)^q)^{2}$. the q-dimensional cochain group, for $q \geq 2-2p$. We denote this isomorphism by $\bar{\psi}_k^g$. Then it was proved by Spanier [4] that the commutativity holds in the diagram

$$
\begin{array}{ccc}\pi^{p+q}(\bar{K}^{q},\ \bar{K}^{q-1})&\stackrel{\Delta}{\longrightarrow}&\pi^{p+q+1}(\bar{K}^{q+1},\ \bar{K}^{q})\\ \bar{\psi}\downarrow\parallel&&E_{\delta}&\bar{\psi}\downarrow\parallel\\ C^{q}(K,\ L\,;\ (\,p+q)^{q})\stackrel{E_{\delta}}{\longrightarrow}C^{q+1}(K,\ L\,;\ (\,p+q+1)^{q+1})\\ \end{array}
$$

for $q \ge 2-2p$, where δ is the coboundary operator of the cochain group, and *E* is the suspension of the coefficient group. From this fact, we have easily

 (2.4) ψ_p^q : $H_p^q(K, L) \cong \mathfrak{H}^q(K, L; (p+q)^q)$

for $q \geq 3-2p$, where ψ_p^q is the homomorphism induced by the isomorphism $\bar{\psi}_p^q$.

VII) Let $n \ge r(p)$, then from Theorem 1 the sequence

$$
\Gamma_p^{\mathfrak{n}}(K, L) \xrightarrow{\mathfrak{i}_p^{\mathfrak{n}}} \Pi_p^{\mathfrak{n}}(K, L) \xrightarrow{\mathfrak{j}_p^{\mathfrak{n}}} \mathcal{H}_p^{\mathfrak{n}}(K, L) \xrightarrow{\mathfrak{f}_p^{\mathfrak{n}}} \Gamma_p^{\mathfrak{n}+1}(K, L)
$$

is exact, and from (2.3) ₁ we have $\Gamma_n^*(K, L)=0$, $\Gamma_n^{n+1}(K, L)=0$. Therefore we have

(2.5)
$$
j_{p}^{n}: \Pi_{p}^{n}(K, L) \simeq H_{p}^{n}(K, L).
$$

From (2.1) , (2.4) and (2.5) , it is concluded that

$$
(2.6) \t\t \t\t \psi_{p1p}^{n_1n_2-1} \colon \Gamma_{p+1}^{n-1}(K,L) \simeq \mathfrak{H}^n(K,L; (n+p)^n)
$$

for $n \geq 3-2p$.

Thus we have proved

Lernma 2.

$$
\begin{array}{lll} \mathfrak{l}_p^q: \ \Pi_p^q(K, L) \simeq \Gamma_{p+1}^{q-1}(K, L) \quad \text{for} \quad q \geq r(p), \\ \mathfrak{l}_p^q: \ \Pi_p^q(K, L) \simeq \pi^{p+q}(K, L) \quad \text{for} \quad p \geq 1 \quad \text{and} \quad q \geq r(p), \\ \mathfrak{l}_p^{q-1} \mathfrak{l}_p^q: \ \Pi_p^r(K, L) \simeq \pi^{p+q}(K, L) \quad \text{for} \quad p \geq 0 \quad \text{and} \quad q \geq r(p), \\ \Gamma_p^q(K, L) = 0 \quad \text{for} \quad q \geq Max(n, r(p)), \\ \Pi_p^q(K, L) = 0 \quad \text{for} \quad q \geq Max(n+1, r(p)), \end{array}
$$

2) We denote by q^p the p-th homotopy group $\pi_p(S^q)$ of a q-sphere S^q .

$$
\psi_p^0: \quad H_p^q(K, L) \simeq \mathfrak{H}^q(K, L; (p+q)^q) \quad \text{for} \quad q \geq 3-2p
$$
\n
$$
\psi_p^p \mathfrak{g} \mathfrak{g}_p^{-1}: \Gamma_{p+1}^{n-1}(K, L) \simeq \mathfrak{H}^n(K, L; (n+p)^n) \quad \text{for} \quad n \geq 3-2p
$$

≤ 3 . **Invariance of** $\sum_{n} (K, L)$

Let (K, L) and (K', L') be complex pairs with dim $(K-L) \leq n$ and with $\dim(K'-L') \leq n$ respectively. Let us consider a cellular map $f: (K', L') \rightarrow$ (K, L) , then f induces homomorphisms

$$
{}_{\alpha}\mathbf{f}_{p}^{q\#} \colon C_{p}^{q}(K, L) \longrightarrow C_{p}^{q}(K', L'),
$$

$$
{}_{\mathbf{A}}\mathbf{f}_{p}^{q\#} \colon A_{p}^{q}(K, L) \longrightarrow A_{p}^{q}(K', L')
$$

for each $q \ge r(p)$, in virtue of $f(K'^q) \subset \overline{K}^q$. And we have³⁾

$$
\beta_p^{q\prime}{}_{\alpha}f^q_{p}{}^{\#} = {}_Af^q_{p}{}^{\#} \beta_p^q \ ,
$$

$$
j_{p}^{q\prime}{}_{A}f^q_{p}{}^{\#} = {}_Gf^q_{p}{}^{\#} j_p^q \ ,
$$

so that $_A f_p^q$ induces homomorphisms $_{\Gamma}^q_p : \Gamma_p^q(K, L) \to \Gamma_p^1(K', L')$ and $_{\Pi}^q_p :$ $\Pi_n^q(K, L) \to \Pi_n^q(K', L')$, and $\sigma_1^{q,*}$ induces a homomorphism H_n^{q} : $H_n^q(K, L)$ \rightarrow H_p^{ℓ} (*K'*, *L'*). Then it is seen that

(3.1)
$$
\begin{aligned}\n \mathbf{i}_y^{\gamma} \cdot \mathbf{r}_1^{\gamma} &= \mathbf{r}_1^{\gamma} \mathbf{i}_y^{\gamma}, \\
 \mathbf{j}_y^{\gamma} \cdot \mathbf{r}_1^{\gamma} &= \mathbf{r}_1^{\gamma} \mathbf{j}_2^{\gamma}, \\
 \mathbf{k}_y^{\gamma} \cdot \mathbf{r}_1^{\gamma} &= \mathbf{r}_1^{\gamma} \mathbf{i}_y^{\gamma} \mathbf{i}_y^{\gamma}. \n \end{aligned}
$$

Lemma 3. *If f, g*: $(K', L') \rightarrow (K, L)$ *are homotopical maps, we have* $r_1^q = r_2^q$, $r_1^q = \pi g_p^q$, and $r_1^q = \pi g_p^q$.

Proof. In virtue of the assumption there exists a map $F: (K' \times I, L' \times I)$ \rightarrow (*K*, *L*) such that

$$
F_0 = F | K' \times 0 = f,
$$

$$
F_1 = F | K' \times 1 = g,
$$

where *I* denotes the interval between 0 and 1. Further it may be assumed without loss of generality that F is cellular (i.e. $F(K'^{q-1} \times I) \subset K^q$ for any q) [8].

i) $r^{\dagger} = r\mathfrak{g}$. If $\gamma \in \Gamma_p^1(K, L)$, we have $\gamma \in \pi^{p+q}(K, \bar{K}^{q-1})$ and $i^{\#}\gamma = 0$. Since the sequence

$$
\pi^{p+q}(K,\bar{K}^q) \xrightarrow{j\#} \pi^{p+q}(K,\bar{K}^{q-1}) \xrightarrow{i\#} \pi^{p+q}(\bar{K}^q, \bar{K}^{q-1})
$$

is exact, γ belongs to $j^{\#}\pi^{p+q}(K,\bar{K}^q)$, so that a map $t: (K,\bar{K}^q) \rightarrow (S^{p+q}, \gamma)$ can be taken as a representative of γ . Since $F: (K' \times I, \bar{K}'^{q-1} \times I) \rightarrow (K, K^q)$, we have

$$
tF: (K' \times I, \overline{K}'^{q-1} \times I) \longrightarrow (S^{p+q}, y).
$$

Therefore $\{tF_0\} = f^{\#}\gamma$ and $\{tF_1\} = g^{\#}\gamma$ represent the same element of $\pi^{p+q}(K', \bar{K}'^{q-1})$. This proves $r^{\dagger} = r\mathfrak{g}$.

ii) $n f = n g$. The commutativity holds in the diagram

³⁾ We agree that $\mathfrak{f}, \mathfrak{f}, \mathfrak{g}, i, j, b$ in the complex pair (K', L') are denoted by $i', \mathfrak{f}', \mathfrak{g}', i, j', b'.$

jlt< n;'PH (K', K'q-1) *--'nr'P+q* (K', K'q-²) l f *qo\f* l fQ-1off A p j'off A P+1 *n;'PH* (K. *K:Q-1)* - *n;P+Q* (K. KQ-2)'

where $j^{\#}$, $j'^{\#}$ are the inclusion homomorphisms. Therefore, if ι_p^q : $\Pi_p^q(K, L)$ $\rightarrow \Gamma_{p+1}^{r-1}(K, L)$, $\{ \}^{y}: \Pi_{p}^{q}(K', L') \rightarrow \Gamma_{p+1}^{q-1}(K', L')$ are the homomorphisms induced by $i^{\#}$, $i'^{\#}$ respectively, we have

$$
\mathfrak{l}^{q\prime}_{p\ \ \Pi}\mathfrak{l}^{q}_{p}=\mathfrak{r}\mathfrak{l}^{q-1}_{p+1}\mathfrak{l}^{q}_{p}.
$$

By the same process with respect to g we have

$$
\mathfrak{l}^{q\prime}_{d}\; \mathfrak{m}^q_{p} = \mathfrak{m}^{q-1}_{p+1} \mathfrak{l}^q_{p}.
$$

From these, together with i), we have

$$
\mathfrak{l}^{q\prime}_{p\ \pi}\mathfrak{l}^{q}_{p}=\mathfrak{l}^{q\prime}_{p\ \pi}\mathfrak{g}^{q\ 4)}_{p}.
$$

As \mathfrak{g} is an isomorphism⁴ from (2.1), we have

$$
\Gamma^{\mathfrak{g}}_{\mathfrak{p}}=\Gamma^{\mathfrak{g}}_{\mathfrak{p}}\cdot
$$

iii) $_{H}$ f = $_{H}$ 0, Let $\{a\} \in \pi^{p+q-1}(\bar{K}'^{q-1}, \bar{K}'^{q-2})$ and let $a: (\bar{K}'^{q-1}, \bar{K}'^{q-2}) \to (S^{p+q-1},$ *y*) be a representative of $\{a\}$. Then we shall define a map $E_{p}^{q}(a)$: $(\bar{K}^{\prime q-1} \times I)$, $(\overline{K}'^{q-1} \times I)^{q-1}) \rightarrow (S^{p+q}, y)$ by

 $E_p^q(a)(x,t) = \varphi(a(x),t)$ for $x \in \overline{K}^{\prime q-1}, t \in I$,

where $\varphi: S^{p+q-1} \times I \to S^{p+q}$ maps $(\gamma \times I) \cup (S^{p+q-1} \times 0) \cup (S^{p+q-1} \times 1)$ into a point *y* and elsewhere topologically onto $S^{p+q-1}-y$. If $E_n^{q+}: \pi^{p+q-1}(\bar{K}'^{q-1}, \bar{K}'^{q-2}) \rightarrow$ $\pi^{p+q}(\vec{K}^{'q-1}\times I, (\vec{K}^{q-1}\times I)^{q-1})$ is a homomorphism such that $\{a\}$ corresponds to ${E_n^q(a)} \in \pi^{p+q}(\overline{K}'^{q-1} \times I, (\overline{K}'^{q-1} \times I)^{q-1}), E_n^{q+q}$ is evidently an isomorphism for $q\geq 3-2p$ in virtue of Freudenthal's suspension theorem. Moreover $F|\vec{K}'^{q-1}\times I$ maps $\bar{K}^{\prime q-1} \times I$, $(\bar{K}^{\prime q-1} \times I)^{q-1}$ into \bar{K}^q , \bar{K}^{q-1} respectively, so that it induces a homomorphism

$$
F^{q\#}_p\colon\pi^{p+q}(\bar{K}^q\boldsymbol{\cdot}\bar{K}^{q-1})\longrightarrow\pi^{p+q}(\bar{K}^{\prime q-1}\times I\boldsymbol{\cdot}(\bar{K}^{\prime q-1}\times I)^{q-1})\boldsymbol{\cdot}
$$

If we put $\xi_p^q = E_p^{q \#^{-1}} F_q^{q \#}$, ξ_p^q is a homomorphism $\pi^{p+q} (\bar{K}^q, \bar{K}^{q-1}) \rightarrow \pi^{p+q-1}$ (K'^{q-1}, K'^{q-2}) . Namely we have the homomorphism ξ_p^q : $C_p^q(K, L)$ $-C_n^{q-1}(K', L')$. Then it can be proved as in the classical chain homotopy theory that ξ_p^q has a property :⁵⁾

$$
{}_0\mathrm{f}^{\,q\neq}_p - {}_0\mathrm{g}^{\,q\neq}_p = \xi_p^{q+1} d_p^q + d'{}_p^{q-1} \xi_p^q \,,
$$

so that $\mathbb{H}_{p}^{q}=\mathbb{H}_{p}^{q}$. This completes the proof of Lemma 3.

Theorem 2. If two complex pairs (K, L) , (K', L') with $dim(K-L) \leq n$ *and dim* $(K'-L')\leq n$ are of the same homotopy type, $\sum_p (K, L)$ and $\sum_p (K', L')$ *are isomorphic.* Namely, there exists a family of isomorphisms $\tilde{\mathbf{I}} = \{ \mathbf{r}_1^T, \mathbf{r}_2^T, \mathbf{r}_3^T, \mathbf{r}_4^T, \dots, \mathbf{r}_n^T, \mathbf{r}_n^T, \dots, \mathbf{r}_n^T, \dots, \mathbf{r}_n^T, \dots, \mathbf{r}_n^T, \dots, \mathbf{r}_n^T, \dots, \mathbf{r}_n^T, \dots, \mathbf{r}_n^T, \dots,$ $\mathbb{H}_{\mathbb{R}}^{\{q\}}$ such that the commutativity holds in each rectangle of the diagaam

⁴⁾ An isomorphism, without qualification, wiil always mean an isomorphism onto.

⁵⁾ Such a homorphism ξ is called a *homotopy operator for f# and* g *#* in the classical theory of chain homotopy (cf. S. Lefschetz: Algebraic Topology (1942))

Exact Sequences $\sum_{p} (K, L)$ and their Applications 89

$$
(3.2) \qquad \begin{array}{ccc}\n\Gamma_{p}^{r}(K,L) & \xrightarrow{\mathbf{i}} \Pi_{p}^{r}(K,L) & \xrightarrow{\mathbf{i}} \cdots \longrightarrow \Gamma_{p}^{q}(K,L) & \xrightarrow{\mathbf{i}} \\
\downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} \\
\Gamma_{p}^{r}(K',L') & \xrightarrow{\mathbf{i}} \Pi_{p}^{r}(K',L') & \xrightarrow{\mathbf{i}} \cdots \longrightarrow \Gamma_{p}^{q}(K',L') & \xrightarrow{\mathbf{i}} \\
\Pi_{p}^{q}(K,L) & \xrightarrow{\mathbf{i}} \Pi_{p}^{q}(K,L) & \xrightarrow{\mathbf{j}} \Gamma_{p}^{r+1}(K,L) & \xrightarrow{\mathbf{i}} \cdots \\
\downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} \\
\Pi_{p}^{q}(K',L') & \xrightarrow{\mathbf{i}} \Pi_{p}^{q}(K',L') & \xrightarrow{\mathbf{i}} \Pi_{p}^{q}(K',L') & \xrightarrow{\mathbf{i}} \cdots \\
\downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} \\
\downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} \\
\downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} \\
\downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} \\
\downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^{\dagger} & \downarrow_{\Gamma}^
$$

Proof. As was shown in [8], homotopy equivalences $f: (K', L') \rightarrow (K, L)$ and $g: (K, L) \rightarrow (K', L')$ can be assumed to be cellular. If $_{\Gamma}^{\dagger} \mathfrak{g}: \Gamma_{p}^{g}(K, L)$ $\rightarrow\Gamma^{\gamma}_{p}(K', L'), \frac{\Gamma^{\gamma}_{p}}{\Pi^{\gamma}_{p}}: \Pi^{\gamma}_{p}(K, L) \rightarrow \Pi^{\gamma}_{p}(K', L'), \frac{\Gamma^{\gamma}_{p}}{\Pi^{\gamma}_{p}}: \Pi^{\gamma}_{p}(K, L) \rightarrow \Pi^{\gamma}_{p}(K', L')$ are isomorphisms induced by f , it is seen from (3.1) that the commutativity holds in each rectangle of (3. 2).

Let $\Gamma_{\mathfrak{p}}^q_{\mathfrak{p}}: \Gamma^q_{\mathfrak{p}}(K', L') \to \Gamma^q_{\mathfrak{p}}(K, L), \quad \Gamma_{\mathfrak{p}}^q_{\mathfrak{p}}: \Pi_{\mathfrak{p}}^q(K', L') \to \Pi_{\mathfrak{p}}^q(K, L), \quad \Gamma_{\mathfrak{p}}^q_{\mathfrak{p}}:$ $H_p^q(K', L') \to H_p^q(K, L)$ be homomorphisms induced by g and let $_{\Gamma}(\mathfrak{f}\mathfrak{g})_p^q$: $\Gamma^q_2(K, L) \rightarrow \Gamma^q_2(K, L), \qquad \pi(\mathfrak{h})^q_2: \Pi^q_2(K, L) \rightarrow \Pi^q_2(K, L), \qquad \pi(\mathfrak{h})^q_2: \Pi^q_2(K, L)$ \rightarrow H_g_l(*K*, *L*) be homomorphisms induced by $fg: (K, L) \rightarrow (K, L)$. Then, since fg is homotopic to the identity, it follows from Lemma 3 that the homomorphisms $r(\mathfrak{f}\mathfrak{g})^q_p$, $r(\mathfrak{f}\mathfrak{g})^q_p$, $r(\mathfrak{f}\mathfrak{g})^q_p$ are all the identities. As is easily seen, we have $r(\mathfrak{f}\mathfrak{g})^q_p$ $=\Gamma\int_{r}^{q} \Gamma\int_{r}^{q}$, $\Gamma\int_{r}^{q}(\tilde{g})_{p}^{q}=\Gamma\int_{r}^{q} \Gamma\int_{r}^{q}$, $\Gamma\int_{r}^{q}(\tilde{g})_{p}^{q}=\Gamma\int_{r}^{q} \Gamma\int_{r}^{q}$. Thus $\Gamma\int_{r}^{q}$, $\Gamma\int_{r}^{q}$, $\Gamma\int_{r}^{q}$ are all onto and $\lim_{\epsilon \to 0} \inf_{\pi}^q$, $\lim_{\pi \to 0} \inf_{\pi}^q$ are all isomorphisms into. Again, using $gf \simeq 1$: $(K', L') \rightarrow (K', L').$ we see that $\Gamma_{\rm R}^{\rm q}$, $\Gamma_{\rm R}^{\rm q}$, $\Gamma_{\rm R}^{\rm q}$ are all isomorphisms into and $\Gamma_{\rm P}^{\rm q}$, $\Gamma_{\rm R}^{\rm q}$, $\Gamma_{\rm R}^{\rm q}$ are all onto. Thus Theorem 2 is established.

 $\S 4.$ Properties of i, j, b.

In this section we shall prove several properties of i , j , β .

Lemma 4. *In the diagram*

$$
\Gamma_0^{n-1}(K, L) \longrightarrow \Pi_0^{n-1}(K, L)
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \down
$$

the commutativity holds, where $n \geq 5$ *and* Λ *is the homomorphism which was given by E. Spanier* [4, $\S 20$].

Proof. I_I⁻¹, i and it are induced by the inclusion homomorphisms, $\pi^{n-1}(K,\bar{K}^{n-1})\to \pi^{n-1}(K,\bar{K}^{n-2}),\quad \pi^{n-1}(K,\bar{K}^{n-2})\to \pi^{n-1}(K,\bar{K}^{n-2})\quad \text{and}\quad \pi^{n-1}(K,\bar{K}^{n-2})$ $\rightarrow \pi^{n-1}(K, L)$ respectively. So ffif⁻¹ is induced by the inclusion homomorphism: $\pi^{n-1}(K, \bar{K}^{n-1}) \rightarrow \pi^{n-1}(K, L)$. Thus $A' = \text{fti}(\psi[(-1)]^{-1}$ is a homomorphism such that we describe below. $\{z\} \in \mathbb{S}^n (K, L, (n-1)^n)$ is represented by a cocycle z such that for an *n*-cell σ^n , $z(\sigma^n)$ is an element of $\pi_n(S^{n-1})$. Let $\alpha: K \rightarrow S^{n-1}$ be a map such that $\alpha | \bar{K}^{n-2} = y$, and $\alpha | \sigma^n$ represents $z(\sigma^n)$. Then $\{z\}$ corresponds to $\{\alpha\} \in \pi^{n-1}(K, L)$ by *A'*. This is the definition of *A*. Thus $A' = A$, and so Lemma 4 is proved,

Lemma 5. *In the diagram*

$$
\Pi_0^q(K, L) \xrightarrow{\dagger} \Pi_0^q(K, L)
$$

\n
$$
\langle \parallel \parallel \mathfrak{U} \qquad \qquad \downarrow \parallel \downarrow \downarrow
$$

\n
$$
\pi^q(K, L) \xrightarrow{\qquad \qquad \downarrow \parallel} \mathfrak{D}^q(K, L; q^q),
$$

the commutativity holds, where $q \geq Max \left(\frac{n}{2} + 1, 3 \right)$ *, and* $\bar{\phi}$ *is the natural homomorphism of the cohomotopy group into the cohomology group* [4, § 17],

Proof. Since If is induced by the inclusion homomorphism: $\pi^q(K, \bar{K}^{q-1})$ $\rightarrow \pi^q(K, L)$ and since j is induced by the inclusion homomorphism: $\pi^q(K, \bar{K}^{q-1})$ \rightarrow π_q (\bar{K}^q , \bar{K}^{q-1}), φ ₁ (f()⁻¹ is a homomorphism, by which $a \in \pi^q(K, L)$ corresponds to an element of $\tilde{p}^q(K, L, q^q)$ containing $\tilde{\psi}^{j*}(lk)^{q-1}$ *a*. This correspondence is nothing else but the definition of $\overline{\phi}$. This proves Lemma 5.

Lemma 6. $In the diagram$

$$
(3.2) \qquad \begin{array}{c}\n\text{H}_0^1(K, L) \xrightarrow{\hspace{0.5cm} \mathfrak{b}_0^q} \Gamma_0^{i+1}(K, L) \xleftarrow{\hspace{0.5cm} \mathfrak{L}_1^{q+2}} \Pi_{-1}^{q+2}(K, L) \xrightarrow{\hspace{0.5cm} \mathfrak{f}_2^{q+2}} \mathfrak{H}_{-1}^{i+2}(K, L) \\
\text{(3.2)} \qquad \text{and} \qquad \text{S}_q^1 \xrightarrow{\hspace{0.5cm} \mathfrak{g}_1^{q+2}} \mathfrak{H}_{-1}^{i+2}(K, L) \xrightarrow{\hspace{0.5cm} \mathfrak{f}_2^{q+2}} \mathfrak{H}_{-1}^{i+2}(K, L) \\
\text{S}_q^1(K, L; q^q) \xrightarrow{\hspace{0.5cm} \mathfrak{g}_1^{q+2}} \mathfrak{H}_{-1}^{i+2}(K, L; (q+1)^{q+2})\n\end{array}
$$

the commutativity

$$
\psi_{-1}^{q+2} \mathfrak{j}_{-1}^{q+2} \mathfrak{l}_{-1}^{q+1}^{-1} \mathfrak{h}_0^q = \mathrm{Sq}^2 \psi_0^q
$$

holds true, where $q \geq Max\left(\frac{n}{2}, 3\right)$.⁶³

Lemma 7. *In the diagram*

$$
\begin{array}{cccc}\n\mathrm{H}_{-1}^q(K, L) & \xrightarrow{\mathfrak{h}_{-1}^q} \Gamma_{-1}^{q+1}(K, L) & \xrightarrow{\mathfrak{l}_{-2}^{q+2}} \Pi_{-2}^{q+2}(K, L) & \xrightarrow{\mathfrak{l}_{-2}^{q+2}} \mathfrak{H}_{-2}^{q+2}(K, L) \\
\downarrow & \downarrow^q & & \searrow & \downarrow^q \downarrow^q \downarrow^2 \\
\mathfrak{H}^q(K, L; (q-1)^q) & \xrightarrow{\mathfrak{H}^q} \mathfrak{H}^q(K, L; q^{q+2}) & \xrightarrow{\mathfrak{H}^q+2} (K, L; q^{q+2})\n\end{array}
$$

the commutativity

$$
\mathscr{V}^{q+2}_{-2}\mathbf{j}^{q+2}_{-2}\mathbf{i}^{q+2}_{-2}\mathbf{b}^{q}_{-1} = \mathrm{Sq}^2\mathscr{\psi}_0^q
$$

holds true, where $q \geq Max\left(\frac{n}{2}+1, 5\right)$.

Before we prove Lemmas $6'$ and 7, let us consider more generally $\hat{\beta}_p^q = \hat{I}_{p-1}^{q+2}I_{p-1}^{q+2-1} \hat{b}_p^q$: H_p (K, L) \rightarrow H_{p+1} (K, L).

In the diagram

$$
(4.1) \qquad \pi^{p+q}(\bar{K}^{q+1}, \bar{K}^{q-1}) \longrightarrow^{\mathbf{j}_1 \#} \pi^{p+q}(\bar{K}^{q}, \bar{K}^{q-1})
$$
\n
$$
\downarrow^{\Delta_2'} \qquad \qquad \downarrow^{\Delta_1'} \qquad \qquad \downarrow^{\Delta_1'} \qquad \qquad \downarrow^{\Delta_2} \qquad \qquad \downarrow^{\Delta_2'} \qquad \qquad \downarrow^{\Delta_2'} \qquad \qquad \downarrow^{\Delta_1'} \qquad \qquad \downarrow^{\Delta_2} \qquad \qquad \downarrow^{\Delta_2'} \qquad \qquad \downarrow^{\mu} \qquad \qquad \downarrow^{\mu} \qquad \qquad \pi^{p+q+1}(\bar{K}^{q+2}, \bar{K}^{q+1}),
$$

6) In the following, the group multiplication with respect to squaring operation $Sq2$ is always defined such that the product of the generator and itself is the generator.

let Δ' , Δ_1 , Δ'_1 , Δ_2 , Δ'_2 be the coboundary operators, and let i^* , i_2^* , i_1^* , i_2^* be the inclusion homomorphisms. Then the commutativity holds in a rectangle and two triangles in (4.1). If $\{a\}$ is an element of H_v^p which is represented by $a \in \pi^{p+q}(\mathbb{R}^q, \mathbb{R}^{q-1})$, we have $\Lambda_{1}a=0$, and \mathbb{R}^q $\{a\} \in \mathbb{H}^{q+2}_{p-1}(K, L)$ is represented by $i^{\#}i_2^{*^{\#}-1}A'_1a$. In virtue of the exactness of $i_1^{\#}$, A_1 , there exists an element $b \in \pi^{p+q}(\overline{K}^{q+1}, \overline{K}^{q-1})$ such that $j_1 \neq b = a$. And we have

$$
j_2^{\#} (A'b - j_2^{\#^{-1}} A'_1 a) = j_2^{\#} A'b - A'_1 a = A'_1 j_1^{\#} b - A'_1 a
$$

= $A'_1 a - A'_1 a = 0$.

From the exactness of A'_2 , j_2 [#], there exists an element $c \in \pi^{p+q}$ (\bar{K}^{q+1} , \bar{K}^q) such that $\Delta' b - j_2^{*+1} \Delta'_{1} a = \Delta'_{2} c$. And we have

$$
i^{\#}4'b - i^{\#}j_2^{\#}^{-1}4'_1a = i^{\#}4'_2c = 4_2c
$$

Therefore we have $\{Ab\} = \{i^{\#}j_2^{\#^{-1}}A'_1a\} = \S_n^q \{a\}$, where $A = i^{\#}A'$: $\pi^{p+q}(K^{q+1}, K^{q-1})$ $\rightarrow \pi^{p+q+1}$ (\bar{K}^{q+2} , \bar{K}^{q+1}). Thus we establish

(4. 2) !l~ {a} = {Jjrff-1a} .

Proof of Lemma 6. Let M^{q+2} be a complex $S^q \cup e^{q+2}$, where e^{q+2} is attached to S^q by an essential map: $\vec{E}^{q+2} \rightarrow S^q$. In this complex, it is easily seen from (4.2) and from [5, § 20] that $\frac{6}{9}$ corresponds to Sq² by ψ . A proof for a general complex is given as follows.

Let $\{a\} \in H_0^q(K, L)$ be an element which is represented by $a \in \pi^q(\bar{K}^q, \bar{K}^{q-1})$ and let *a* be represented by a map $f: (\vec{K}^q, \vec{K}^{q-1}) \rightarrow (S^q, y)$. Using the notations in (4.1) we have $\Lambda_1 a=0$, so that *a* belongs to the image of j_1^* . Thus f can be extended to a map $\bar{f}: (\bar{K}^{q+1}, \bar{K}^{q-1})\rightarrow (S^q, y)$. Since $\pi_{q+1}(M^{q+2})=0$, \bar{f} can be extended again to a map $\bar{f}: (\bar{K}^{q+2}, \bar{K}^{q+1}) \rightarrow (M^{q+2}, S^q)$. Then we have a diagram

$$
\pi^q\,(\bar{K}^q\,,\,\bar{K}^{q-1})\,\stackrel{j_1\#}{\longleftarrow}\pi^q\,(\bar{K}^{q+1}\,,\,\bar{K}^{q-1})\,\stackrel{\Delta}{\longrightarrow}\pi^{q-1}\,(\bar{K}^{q+2}\,,\,\bar{K}^{q+1})\\\uparrow\,\bar{f}\,\notag{\qquad \qquad \qquad }\pi^q\,(M^q\,,\,\,M^{q-1})\longleftarrow\pi^q\,(M^{q+1}\,,\,\,M^{q-1})\,\stackrel{\Delta}{\longrightarrow}\pi^{q+1}\,(M^{q+2}\,,\,\,M^{q+1})\,,
$$

where the commutativity holds in each rectangle. If ${a_0}$ is an element of $\mathrm{H}_0^q(M^{q+2})$ which is represented by the generator a_0 of $\pi^q(M^q, M^{q-1})$, we have

$$
Sq^2\psi\;{a_0}=\psi\mathfrak{s}^q_0\;{a_0}.
$$

from the fact that Lemma 6 holds in M^{q+2} . Therefore we have

$$
\bar{\bar{f}}^*\mathrm{Sq}\mathfrak{g}_{\varphi}\{a_0\}=\bar{f^*\varphi\mathfrak{g}^q_{0}}\{a_0\}.
$$

Moreover we have and \bar{f} *Sq2 ψ {a} = Sq2 \bar{f} * ψ {a₀} $=$ Sq² ψ { f [#] a_0 } = Sq² ψ { a }, $\overline{\tilde{f}}*\varphi_{0}^{a} \{a_{0}\}=\overline{\tilde{f}}*\varphi \{j_{1}*^{-1}a_{0}\}=\varphi \{\overline{\tilde{f}}*j_{1}*^{-1}a_{0}\}$ $=\psi \left\{ {J\bar{f}^{\#}j_1^{\#}}^{-1}a_0 \right\} =\psi \left\{ {Jj_1^{\#}}^{-1}f^{\#}a_0 \right\}$ $c=\psi\left\{4j_1^{*+1}a\right\}=\psi\zeta_0^q\left\{a\right\}.$

Therefore we have

$$
\mathrm{Sq}^2 \, \psi = \psi \mathbf{S}_0^q \, .
$$

This proves Lemma 6.

Proof of Lemma 7. It is easily verified that Lemma 7 holds in a special complex $N^{q+2}=M^{q+2}\cup e^{q+1}$, where e^{q+1} is attached to $S^q\subset M^{q+2}$ by a map $\dot{E}^{q+1} \rightarrow S^q$ of degree 2. Now, let *K* be an arbitrary complex. $\{a\} \in H^q_{-1}(K, L)$ is represented by an element $a \in \pi^{n-1}(\bar{K}^q, \bar{K}^{q-1})$, which is represented by a map $f' : (\bar{K}^q, \bar{K}^{q-1}) \rightarrow (S^{q-1}, y)$. Then it may be assumed that $f' = n \cdot f$, where *f* is a map $(K^q, \bar{K}^{q-1}) \rightarrow (S^q, y)$ and η is an essential map $(S^q, y) \rightarrow (S^{q-1}, y)$. Since $\Delta_1 a = 0$, *f'* can be extended to a map $\bar{f}' : (\bar{K}^{q+1}, \bar{K}^{q-1}) \rightarrow (S^{q-1}, y)$. Thus for a $(q+1)$ -cell σ^{q+1} , $f|\dot{\sigma}^{q+1}$ is a map $\dot{\sigma}^{q+1}\rightarrow S^q$ of even degree. If we consider S^q as the q-sphere of N^{q+1} , f can be extended to a map \bar{f} : $(\bar{K}^{q+1}, \bar{K}^{q-1})$ $\rightarrow (N^{q+1}, N^{q-1})$. Since $\pi_{q+1}(N^{q+2})=0$, \bar{f} can be extended to a map \overline{f} : $(\overline{K}^{q+2}, \overline{K}^{q+1}) \rightarrow (N^{q+2}, N^{q+1})$. Then in the diagram

$$
\pi^{q-1}(\bar{K}^q, \bar{K}^{q-1}) \xrightarrow{j^{\#}} \pi^{q-1}(\bar{K}^{q+1}, \bar{K}^{q-1}) \xrightarrow{\Delta} \pi^q (\bar{K}^{q+2}, \bar{K}^{q+1})
$$
\n
$$
\uparrow f^* \qquad \qquad \downarrow \bar{f}^* \qquad \downarrow \bar{f}^* \qquad \downarrow \bar{f}^*
$$
\n
$$
\pi^{q-1}(N^q, N^{q-1}) \xrightarrow{j^{\#}} \pi^{q-1}(N^{q+1}, N^{q-1}) \xrightarrow{\Delta} \pi^q (N^{q+2}, N^{q+1}),
$$

the commutativity holds in each rectangle. If $\{a_0\}$ is an element of $H^2_{-1}(N^{q+2})$ which is represented by the generator a_0 of $\pi^{q-1}(N^q, N^{q-1})$, we have $a = f \ast a_0$. From the consideration that Lemma 7 holds in N^{q+2} , Lemma 7 can be easily deduced in a general complex through an analogons way as Lemma 6, by the aids of (4.2) and of $a=f^{\#}a_0$.

§ 5. **Exact sequence of E. Spanier**

Let $n\geq 6$ and let us consider the diagram

$$
\Pi_{0}^{n-2}(K, L) \xrightarrow{\dagger} H_{0}^{n-2}(K, L) \xrightarrow{\dagger} H_{0}^{n-2}(K, L) \xrightarrow{\dagger} \Pi_{0}^{n-1}(K, L) \xrightarrow{\dagger} \Pi_{0}^{n-1}(K, L)
$$
\n
$$
(5.1) \qquad \parallel \qquad \text{if} \qquad \overline{\varphi} \qquad \parallel \qquad \downarrow \downarrow \downarrow
$$
\n
$$
\pi^{n-2}(K, L) \xrightarrow{\dagger} \text{for} \mathcal{E}(K, L; (n-2)^{n-2}) \xrightarrow{\dagger} \text{for } (K, L; (n-1)^n) \xrightarrow{\Lambda} \pi^{n-1}(K, L)
$$
\n
$$
\downarrow \qquad \downarrow \qquad
$$

This diagram bas the following properties :

- i) The upper sequence $\sum_{0} (K, L)$ is exact by Theorem 1,
- ii) the vertical homomorphisms are all isomorphisms in virtue of Lemma 2,

iii) the commutativity holds in each rectancgle by Lemmas $4, 5$ and $6.$ Therefore the lower sequence of (5.1) is also exact. Thus we have

Theorem 3. (E. Spanier) Let (K, L) be a complex pair with $dim(K - L)$ $\leq n$ ($n \geq 6$). *Then we have the exact sequence*

$$
\pi^{n-2}(K, L) \xrightarrow{\overline{\phi}} \hat{\mathbb{S}}^{n-2}(K, L; (n-2)^{n-2}) \xrightarrow{\text{Sq}^2} \hat{\mathbb{S}}^n(K, L; (n-1)^n) \xrightarrow{\Lambda} \pi^{n-1}(K, L)
$$

$$
\overline{\phi} \xrightarrow{\overline{\phi}} \hat{\mathbb{S}}^{n-1}(K, L; (n-1)^{n-1}) \longrightarrow 0 \longrightarrow \pi^n(K, L) \xrightarrow{\overline{\phi}} \hat{\mathbb{S}}^n(K, L; n^n) \longrightarrow 0
$$

Remark. We see that this theorem is proved for $n \geq 5$, if $\pi^{n-1}(K, L)$ is discarded.

[~]6. Homotopy classification of mappings of certain complex *K* into an $(n-2)$ -sphere S^{n-2} .

Let $n \ge 7$. Applying Lemmas 2 and 7 to the exact sequence $\sum_{-1} (K, L)$, we have a diagram

$$
H^{n-2}(K, L) \xrightarrow{\qquad \qquad \mathfrak{b}} \Gamma^{n-1}(K, L) \xrightarrow{\qquad \qquad \mathfrak{i}} H^{n-1}(K, L) \xrightarrow{\qquad \qquad \mathfrak{j}} H^{n-1}(K, L) \xrightarrow{\qquad \qquad \mathfrak{b}} \Gamma^{n}_{-1}(K, L)
$$

\n
$$
\langle \mathcal{C} \rangle \downarrow \qquad \qquad \langle \mathcal{C} \rangle \downarrow \qquad \langle \mathcal{C
$$

in which the commutativity holds. From this we see that $\prod_{i=1}^{n-1}(K, L)$ is a group extension⁷⁾ of $\tilde{\mathbb{S}}^n(K, L; (n-2)^n)/\text{Sq}^2\tilde{\mathbb{S}}^{n-2}(K, L; (n-3)^{n-2})$ by $\tilde{\mathbb{S}}^{n-1}(K, L;$ $(n-2)^{n-1}$). And we have $\colon \Pi_{-1}^{n-1}(K, L) \cong \Gamma_0^{n-2}(K, L)$

 (6.1) $\Gamma_0^{n-2}(K, L)$ is a group extension of $\tilde{N}^n(K, L; (n-2)^n)/\text{Sq}^2 \, \tilde{N}^{n-2}(K, L;$ $(n-3)^{n-2}$ *by* $\mathfrak{H}^{n-1}(K, L; (n-2)^{n-1}).$

Now, let us assume (K, L) to be a complex pair such that $Sq^2: \mathfrak{h}^{n-2}(K, L)$; $(n-2)^{n-1} \rightarrow \tilde{p}^n(K, L; (n-2)^n)$ is onto. Then from (6.1), we have

(6,2)
$$
\psi i^{(-1)} : \Gamma_0^{n-2}(K,L) \simeq \mathfrak{H}^{n-1}(K,L; (n-2)^{n-1}).
$$

Consider the diagram

$$
\Pi_0^{n-3}(K, L) \longrightarrow \Pi_0^{n-3}(K, L) \longrightarrow \Gamma_0^{n-2}(K, L)
$$
\n
$$
(6.3) \quad \text{if} \quad \overline{\varphi} \quad \text{if} \quad \varphi \quad \text{if} \quad \mathcal{E} \
$$

This diagram bas the following properties:

- i) The upper sequence $\sum_0 (K, L)$ is exact by Theorem 1,
- ii) the vertical homomorphisms are all isomorphisms in virtue of Lemma 2 and (6.2). It should be noted that for $n=7$ the first vertical homomorphism is meaningless,

⁷⁾ Let A , C be groups and let B be a subgroup of A . If there exists a homomorphism of A onto C with kernel B, we call that A is a group extension of B by C.

iii) the commutativity holds in each rectangle by Lemmas 4, 5 and 6. Therefore the lower sequence of (6.3) is exact, so that we have

Theorem 4. Let $n \ge 7$ and let K be a complex pair with $dim (K - L) \le n$ such that Sq^2 : $\tilde{Q}^{n-2}(K, L, I_2) \rightarrow \tilde{Q}^n(K, L; I_2)^{8}$ *is onto. Then* $\pi^{n-2}(K, L)$ has a $subgroup$ isomorphic to $\delta^{n-1}(K, L; I_2)/\text{Sq}^2\delta^{n-3}(K, L; I)$ and the factor group by *this subgroup is isomorphic to the kernel of* Sq^2 : $\mathfrak{H}^{n-2}(K, L; I) \rightarrow \mathfrak{H}^n(K, L; I_2)$.

Furthermore we have the corresponding extension theorem ;

Theorem 5. *Let* $n \geq 8$. *Let* K *be an n-dimensional complex such that* Sq^2 : $\mathfrak{H}^{n-2}(K, I_2) \rightarrow \mathfrak{H}^n(K, I_2)$ *is onto and let L be its* $(n-3)$ -dimensional sub*complex. In order that a map f:* $L \rightarrow S^{n-3}$ *is extendable to K, it is necessary and su fficient that there exists* $u \in \mathfrak{D}^{n-3}(K; I)$ *such that*

and
$$
f^* \{s^{n-3}\} = i^* \{u\},
$$

 $Sq^2 \{u\} = 0,$

where $\{s^{n-3}\}\$ *is the generator of* $\tilde{p}^{n-3}(S^{n-3}; I), f^* \colon \tilde{p}^{n-3}(S^{n-3}; I) \to \tilde{p}^{n-3}(L; I),$ $i^*: \mathfrak{H}^{n-3}(K; I) \rightarrow \mathfrak{H}^{n-3}(L; I)$ are the homomorphisms induced by f and the *injection i:* $L \rightarrow K$ respectively, and Sq^2 *is the homomorphism of* $\tilde{Q}^{n-3}(K; I)$ $to \ \mathfrak{H}^{n-1}(K,I_2)$.

Proof. Necessity. Let $\bar{f}: K \rightarrow S^{n-3}$ be an extension of *f*, and let $\{u\} = \bar{f}^*$ $\{s^{n-3}\}$. Then we have

$$
i^* \{u\} = i^* \bar{f}^* \{s^{n-3}\} = (\bar{f}i)^* \{s^{n-3}\} = f^* \{s^{n-3}\}.
$$

As from (6.3) the sequence

$$
\pi^{n-3}(K) \xrightarrow{\overline{\phi}} \mathfrak{H}^{n-3}(K; I) \xrightarrow{\mathrm{Sq}^2} \mathfrak{H}^{n-1}(K; I_2)
$$

is exact, we have

$$
Sq^2 \{u\} = Sq^2 \bar{f}^* \{s^{n-3}\} = Sq^2 \bar{\phi} \{\bar{f}\} = 0,
$$

Sufficiency. As we have Sq² { u } =0, from (6.3) there exists { g } $\in \pi^{n-3}(K)$ such that $\phi \{g\} = \{u\}$. Since the commutativity holds in the diagram

$$
\pi^{n-3}(K) \xrightarrow{\overline{\varphi}} \widehat{\Phi}^{n-3}(K; I)
$$
\n
$$
\downarrow i^* \qquad \qquad \downarrow i^*
$$
\n
$$
\pi^{n-3}(L) \xrightarrow{\overline{\varphi}} \widehat{\Phi}^{n-3}(L; I),
$$

we have

$$
\bar{\phi} \{f\} = f^* \{s^{n-3}\} = i^* \{u\} = i^* \bar{\phi} \{g\} \\
= \bar{\phi} i^* \{g\} = \bar{\phi} \{gi\}.
$$

As L is $(n-3)$ -dimensional, $\bar{\phi}$ is an isomorphism from Theorem 3, so that we have $\{f\} = \{g_i\}$. Namely we have

$$
f \simeq gi \simeq g|L.
$$

8) I_h denotes a cyclic group of order h , and I denotes a free cyclic group.

Since g/L has an extension $g: K \rightarrow S^{n-3}$, f can be also extended to K in virtue of the homotopy extension property.

$$7.$ The *n*-th cohomotopy group of an A_n^2 -polyhedron

Let *K* be an $(n+2)$ -dimensional complex with π_i $(K)=0$ for $i\leq n-1$. According to *J. H. C, Whitehead, we refer to such a complex as an* A_n^2 *-polyhedron* [7]. In this section, we shall calculate the *n*-th cohomotopy group of an A_n^2 -polyhedron in terms of its cohomology system.

First we prove

Lemma 8. Let $n \geq 5$. Let K be an A_n^2 -polyhedron, then we have $\pi^n(K) \cong \Gamma_0^n(K) \oplus \mathfrak{H}^n(K; I)^{9}$

where $\Gamma_i^*(K)$ *is a group extension of* $\mathfrak{H}^{n+2}(K; I_2)/\mathfrak{S}q^2\mathfrak{H}^n(K; I_2)$ *by* $\mathfrak{H}^{n+1}(K; I_2)$.

Proof. Consider the diagram

$$
\begin{array}{ccc}\n\mathrm{H}^{n-1}_0(K) \stackrel{\mathfrak{h}}{\longrightarrow} \Gamma^{\frac{\mathfrak{d}}{\mathfrak{d}}(K) \stackrel{\mathfrak{i}}{\longrightarrow} \Pi^{\mathfrak{d}}_1(K) \stackrel{\mathfrak{j}}{\longrightarrow} \mathrm{H}^n_1(K) & \stackrel{\mathfrak{h}}{\longrightarrow} \Gamma^{n+1}_0(K) \\
\parallel \parallel \psi & \parallel \parallel \mathfrak{f} & \bar{\mathfrak{g}} & \parallel \parallel \psi & \mathrm{Sq}^2 & \parallel \parallel \psi \, \mathrm{if}^{-1} \\
\mathfrak{H}^{n-1}(K\,;\,I) & \pi^n(K) \stackrel{\mathfrak{g}}{\longrightarrow} \mathfrak{H}^n(K\,;\,I) \stackrel{\mathfrak{h}}{\longrightarrow} \mathfrak{H}^{n-2}(K\,;\,I_2).\n\end{array}
$$

This diagram bas the following properties :

- i) The upper sequence is exact by Theorem 1,
- ii) the vertical homomorphisms are ali isomorphisms by Lemma 2,
- iii) the commutativity holds in each rectangle by Lemmas 5 and 6,
- iv) as K is $(n-1)$ -connected, $\tilde{\psi}^{n-1}(K; I)=0$ so that i is isomorphism into,
- v) $\tilde{\psi}^n(K; I)$ is free abelian because K is $(n-1)$ -connected, and $\mathfrak{D}^{n+2}(K; I_2)$ is finite, so that the kernel of Sq² is isomorphic to \mathfrak{H}^n $(K: I)$.

From these facts and from (6.1) we have immediately Lemma 8.

We shall determine $\pi^{n}(K)$ more precisely.

Let (a_1, \dots, a_m) be a system of independent generators of $\mathfrak{H}^{n+2}(K; I)$, where a_i is of order σ_i if $i \leq t$ and a_i is of infinite order if $t + 1 \leq j \leq m$. Further let σ_i be a power of a prime $\neq 2$ if $i \leq s \leq t$) and let σ_i be a power of 2 if $s+1 \leq i \leq t$. Then $_2({\mathfrak{D}}^{n-2}(K; I))$ is generated by $\left(-\frac{1}{2} \sigma_{s+1}a_{s+1}, \dots, \frac{1}{2} \sigma_{t}a_{t}\right)$ and ${\mathfrak{D}}^{n+2}(K; I_2)$ $=(\delta^{n+2}(K; I))_2$ is generated by $(\bar{a}_{s+1}, \ldots, \bar{a}_m)$, where \bar{a}_i is the class of a_i^{10} . Let $A(K)$ be a group extension of $\mathfrak{H}^{n+2}(K; I_2)/\mathsf{Sq}^2 \mathfrak{H}^n(K; I_2)$ by $_2(\mathfrak{H}^{n+2}(K; I))$ determined by the relations:

$$
\begin{cases}\n2a_i = \mu \vec{a}_i, & \text{if } \sigma_i = 2, \\
2a_i = 0, & \text{otherwise,} \n\end{cases}
$$

⁹⁾ If A, B are any abelian groups, $A \oplus B$ will always denote their direct sum.

¹⁰⁾ Let G be an abelian group, then $G_2 = G/2G$, and $_2G$ is the subgroup ot G which consists of all the element g such that $2g=0$.

for $i = s + 1, \dots, t$, where (a_{s+1}, \dots, a_t) are representatives in A for $\left(-\frac{1}{2}, \sigma_{s+1}a_{s+1}\right)$, $\ldots, \frac{1}{2} \sigma_{t} a_{t}$ and μ is the natural homomorphism $\mathfrak{D}^{n+2}(K; I_2) \rightarrow$ $\mathfrak{H}^{n+2}(\overline{K};I_2)/\mathcal{S}q^2\mathfrak{H}^n(K;I_2)$. Then we have

Theorem 6. Let $n \geq 5$ and let K be an A_n^2 -polyhedron. Then the n-th *cohomotopy group* $\pi^n(K)$ *is given in terms of its cohomology system as f ollows:*

 (7.1) $\pi^{n}(K) \simeq \mathfrak{H}^{n}(K; I) \oplus (\mathfrak{H}^{n+1}(K; I))_{2} \oplus A(K).$

Before we proceed to prove this theorem, we shall remember two following definitions.

1) *An elementary* A_n^2 *-polyhedron*. This is one of the following kinds [2], $[6]$:

- i) $B_{1}^{r} = S^{r}$ $(r=n, n+1, n+2)$,
- ii) $B_2(\sigma) = S^n \cup e^{n+1}$, where e^{n+1} is attached to S^n by a map $E^{n+1} \rightarrow S^n$ of degree σ , a power of a prime,
- iii) $B_3(\tau) = S^{n+1} \cup e^{n+2}$, where e^{n+2} is attached to S^{n+1} by a map $\dot{E}^{n+2} \rightarrow S^{n+1}$ of degree τ , a power of a prime,
- iv) $B_4 = S^n \cup e^{n+2}$, where e^{n+2} is attached to S^n by an essential map $\dot{F}^{n+2} \rightarrow S^n$.
- v) $B_5(2^p) = S^n \cup e^{n+1} \cup e^{n+2}$, where e^{n+1} is attached to S^n by a map $E^{n+1} \rightarrow S^n$ of degree 2^p and e^{n+2} is attached to S^n by an essential map $E^{n+2} \rightarrow S^n$.
- vi) $B_6(2^q) = (S^n \vee S^{n+1}) \cup e^{n+2}$ is attached to $S^n \vee S^{n+1}$ by a map $\dot{E}^{n+2} \rightarrow S^{n} \vee S^{n+1}$ of the form $a+b$; *a* is an essential map $\dot{E}^{n+2} \rightarrow S^{n}$ and b is a map $E^{n+2} \rightarrow S^{n+1}$ of degree 2^q .
- vii) $B_7(2^p, 2^q) = B_6(2^q) \cup e^{n+1}$, where e^{n+1} is attached to S^n in $B_6(2^q)$ by a map $\dot{E}^{n+1} \rightarrow S^n$ of degree 2^p .

2) *A normal* A_n^2 *-polyhedron*. We mean by this a polyhedron which consists of a collection of elementary A_n^2 -polyhedra with a single point in common.

Proof of Theorem 6. Note that there exists a normal A_n^2 -polyhedron which is of the same homotopy type as K [2] [6], and for two elementary A_n^2 -polyhedra *B. B'* we have

$$
\pi^n(B \vee B') \simeq \pi^n(B) \oplus \pi^n(B'),
$$

$$
\tilde{\mathfrak{D}}^{n+1}(B \vee B'; I))_2 \simeq (\tilde{\mathfrak{D}}^{n+1}(B; I))_2 \oplus (\tilde{\mathfrak{D}}^{n+1}(B'; I))_2,
$$

$$
\tilde{\mathfrak{D}}^n(B \vee B'; I) \simeq \tilde{\mathfrak{D}}^n(B; I) \oplus \tilde{\mathfrak{D}}^n(B'; I),
$$

and

$$
A(B \vee B') \simeq A(B) \oplus A(B'),
$$

Then we see that it is sufficient to prove Theorem 6 for each A_n^2 -polyhedron.

First we shall calculate the left hand of (7.1) , the *n*-th cohomotopy group, for each elementary A_n^2 -polyhedron. It follows from cohomological computation that

¹¹⁾ We denote by $A \vee B$ the union of two spaces A and B with a single point in common,

i) ii) $\pi^{n}(B_2(\sigma))=0$ if σ is a power of a prime $\neq 2$, $\pi^n(B_1^n) \simeq I$, $\pi^n(B_1^{n+1}) \simeq I_2$, $\pi^n(B_1^{n+2}) \simeq I_2$, $\approx I_2$ if *a* is a power of 2, iii) $\pi^{n}(B_3(\tau))=0$ if τ is a power of a prime $\neq 2$, $\pi^{n}(B_3(\tau))/I_2 \cong I_2$ if τ is a power of 2, iv) $\pi^{n}(B_4) \cong I$, V) $\pi^n(B_5(2^p)) \cong I_2$, vi) $\pi^{n}(B_{6}(2^{q})) \approx I_{2} \oplus I_{1}$, vii) $\pi^{n}(B_{7}(2^{p}, 2^{q})) \approx I_{2} \oplus I_{2}$.

Moreover as tor the group extension of iii), we have

iii
$$
\Sigma
$$
 $\pi^n (B_3(\tau)) \approx I_2 \oplus I_2$ if τ is $2^p(p>1)$,
iii Σ $\approx I_4$ if τ is 2.

iii)'_i follows from arguments similar to those used in the proof of Lemma 3.6 in P. J. Hilton [3], and iii)² is the result due to M. G. Barratt and G. F. Paetcher [1].

Second, if we calculate the right hand of (7.1) for each elementary A_n^2 -polyhedron, we shall easily find the same group as the above. Thus Theorem 6 is true.

Remark. Compare Theorem 6 with the one due to Hilton [3] with respect to the determination of the $(n+2)$ -nd homotopy group of an A_{n}^{2} -polyhedron in terms of its homology system.

[~]8. **Homotopy type of an Ah·polyhedron**

J. H. C. Whitehead explained how the homotopy type of an A_n^2 -polyhedron can be described in terms of cohomology $[7]$. We shall again deal with this problem in this section.

Let $n\geq 3$, and let K be an A_n^2 -polyhedron. Let $\sum^n (K)$ be the part of $\sum_0 (K)$ which begins with $H^n(K)$:

$$
\textnormal{H}_{0}^{n}(K) \overset{\mathfrak{h}}{\longrightarrow} \Gamma_{0}^{n+1}(K) \overset{\mathfrak{i}}{\longrightarrow} \textnormal{H}_{0}^{n+1}(K) \overset{\mathfrak{j}}{\longrightarrow} \textnormal{H}_{0}^{n+1}(K) \overset{\mathfrak{j}}{\longrightarrow} \cdots \cdots.
$$

Then it fo11ows from Lemma 2 that

$$
\Gamma^{n+1}_0(K)\!\cong\!(\mathrm{H}^{n+2}_0(K)\,)_2\,,\;\;\Gamma^{n+2}_0(K)=0
$$

and $\Gamma_0^i(K)$, $\Pi_0^i(K)$, $\Pi_0^i(K)$ are all zero for any $i>n+2$. On the other hand, let $\sum(K)$ be the exact sequence of J.H.C. Whitehead which is defined by his using the homotopy group (cf. [9] Chap III), and let $\sum_{n+2} (K)$ be the part of $\sum K$) which begins with $H_{n+2}(K)$:

$$
H_{n+2}(K) \xrightarrow{\mathfrak{h}} \Gamma_{n+1}(K) \xrightarrow{\mathfrak{i}} \Pi_{n+1}(K) \xrightarrow{\mathfrak{j}} H_{n+1}(K) \longrightarrow \cdots
$$

It is known that

 $\Gamma_{n+1}(K) \cong (\mathbf{H}_n(K))_2$, $\Gamma_n = 0$

and $\Gamma_i(K)$, $\Pi_i(K)$, $H_i(K)$ are all zero for $i \leq n$.

Assume that K' is also an A_n^2 -polyhedron. We shall then define proper isomorphisms of $\sum^n (K)$ to $\sum^n (K')$, $\sum_{n+2} (K)$ to $\sum_{n+2} (K')$, $\sum_{n+2} (K)$ to $\sum^n (K')$ and $\sum^n (K)$ to $\sum_{n+2} (K')$. Since all of these can be defined in the same manner, we shall here denote only the definition of a proper isomorphism of the last one. $\sum^n (K)$ is called to be properly isomorphic to $\sum_{n+2} (K')$ if and only if there exists a family of isomorphisms $\rho = \{r \rho, \pi \rho, \mu \rho\}$ such that the commutativity holds in each rectangle of the diagram

$$
\begin{array}{ccc}\n\mathrm{H}^n_0(K) & \longrightarrow \Gamma^{n+1}_0(K) \longrightarrow \Pi^{n+1}_0(K) \longrightarrow \cdots \longrightarrow \Pi^{n+2}_0(K) \longrightarrow \mathrm{H}^{n+2}_0(K) \longrightarrow 0 \longrightarrow \\
\downarrow_{\mathrm{H}^D}^{n} & \downarrow_{\mathrm{H}^D}^{n+1} & \downarrow_{\mathrm{H}^D}^{n+1} & \downarrow_{\mathrm{H}^D}^{n+2} & \downarrow_{\mathrm{H}^D}^{n+2} \\
\mathrm{H}_{n+2}(K') & \longrightarrow \Gamma_{n+1}(K') \longrightarrow \Pi_{n+1}(K') \longrightarrow \cdots \longrightarrow \Pi_n(K') \longrightarrow \mathrm{H}_n(K') \longrightarrow 0 \longrightarrow\n\end{array}
$$

and such that $_{\rm P}\rho^{n+1}$ is identified to the homomorphism induced by $_{\rm H}\rho^{n+2}$ if we make the identification $\Gamma_0^{n+1}(K)=(H_0^{n+1}(K))_2$ and $\Gamma_{n+1}(K')=(H_n(K'))_2$. Then we denote $\sum^n (K) \approx \sum_{n+2} (K')$ and call that ρ is a proper isomorphism of $\sum^n (K)$ to $\sum_{n+2} (K')$. The following Lemma 9 is proved by the arguments similar to those used in the proof of Theorem 16 in [9].

Lemma 9. *Two A_i*-polyhedra K and K' are of the same homotopy type *if and only if* $\sum_{n+2} (K) \approx \sum_{n+2} (K')$.

Now we shall define a "co-polyhedron" P^* of a normal A_n^2 -polyhedron P as follows. As for elementary one, we define:

- i) $B_1^{n*}=B_1^{n+2}$, $B_1^{n+1*}=B_1^{n+1}$, $B_1^{n+2*}=B_1^n$,
- ii) $B_2(\sigma)^* = B_3(\sigma)$, iii) $B_3(\tau)^* = B_2(\tau)$,

iv)
$$
B_4^* = B_4
$$
,
 v) $B_5(2^p)^* = B_6(2^p)$,

vi $\,$ *B*₆ (2^q)*=*B*₅ (2^q), vii $\,$ *B*₇ (2^{*q*}, 2^q) = *B*₇ (2^q, 2^q).

When *P* is a normal A_n^2 -polyhedron, the "co-polyhedron" P^* of *P* is the one which is obtained by replacing each elementary A_n^2 -polyhedron *B* of with its "co-polyhedron" B^* . Then P^* is also a normal A_n^2 -polyhedron which is $\dim P^* = 2n - \dim P + 2$, and we have $P^{**} = P$. Furthermore we have

Lemma 10. For any normal A_n^2 -polyhedron *P* and its "co-polyhedron" P^* , $\sum^n(P)$ *is properly isomorphic to* $\sum_{n+2} (P^*)$. *(If n* ≥ 4 , *we have* $\sum^{n-1} (P)$ $\approx \sum_{n+3} (P)$ *more strongly.*)

Proof. As for elementary A_n^2 -polyhedra, we assert this Lemma by inspectatian, This can be shown easily, so that we wili merely list the following table of homotopy groups and cohomotopy groups.

Generally, as for a normal A_{n}^{2} -polyhedron, Lemma 10 follows from that it is true for elementary A_n^2 -polyhedra, and from the following fact: If B_1 , B_2 be elementary A_n^2 -polyhedia, the following theorems hold for Γ_0^i , Π_0^i , H_0^i ; Γ_i , Π_i , H_i ; i, j, b $(i=n, n+1, n+2)$ [2] [3]:

> $\Gamma_0(B_1 \vee B_2) \simeq \Gamma_0^i(B_1) \oplus \Gamma_0^i(B_2)$, $\Pi_i (B_1 \vee B_2) \simeq \Pi_i (B_1) \oplus \Pi_i (B_2)$, i = h + *iz* , li = li1 + liz,

where i_1, i_2, \ldots are the homomorphisms i, i, \ldots for B_1, B_2, \ldots respectively. Finary corresponding to Lemma 9, we have

Lemma 11. *Two A_n*²-polyhedra *K* and *K'* are of the same homotopy type *if and only if* $\sum^n (K) \approx \sum^n (K')$.

Proof. Necessity. Let K and K' are of the same homotopy type, and let $f: K' \to K$ be a homotopy equivalence of *K* and *K'*. Then if $_{\Gamma}^{\dagger} \delta : \Gamma_0^i(K) \to \Gamma_0^i(K')$, $\Pi_0^{\dagger i}$: $\Pi_0^i(K) \to \Pi_0^i(K')$, Π_0^i : $H_0^i(K) \to H_0^i(K')$ are homomorphisms induced by f, it follows from Theorem 2 that $\dagger = \{r \mid r, n\}$, is an isomorphism of $\sum^n (K)$ onto $\sum^n (K')$. Therefore it is sufficient to prove that r^{n+1} is identified with the homomorphism induced by $_{\text{H}_0^{6}^{4}}$ when we make the identification θ : $\Gamma_0^{4+1}(K)$ $=(H_3^{n+2}(K))_2$ and $\theta': \Gamma_0^{n+1}(K')=(H_0^{n+2}(K'))_2$. Let $\lambda: \mathfrak{H}^{n+2}(K; I)$ $\rightarrow \tilde{\mathbb{S}}^{n+2}(K; I_2)$, λ' : $\tilde{\mathbb{S}}^{n+2}(K'; I) \rightarrow \tilde{\mathbb{S}}^{n+2}(K'; I_2)$ be the natural homomorphisms, then λ and λ' are onto and we have

$$
\theta = \psi_0^{n+2^{-1}} \lambda^{-1} \psi_{-1}^{n+2} \dot{I}_{-1}^{n+2} \ell_{-1}^{n+2}, \quad \theta' = \psi_0'^{n+2^{-1}} \lambda' \psi_{-1}'^{n+2} \dot{I}_{-1}'^{n+2} \ell_{-1}'^{n+2}.
$$

Since the commntativities :

 I_{II} fi = l'_rf, I_{III} = j'_{II}f, $f^*\psi = \psi'_{\text{II}}$ f, $f^*\lambda = \lambda' \cdot \delta^*$

hold, we have easily

 $\theta'_{\Gamma} \mathfrak{f}_{0}^{n+} = {}_{H} \mathfrak{f}_{0}^{n+2} \theta$.
Thus f is a proper isomorphism.

Sufficiency. Let *P* and *P'* be normal A_n^2 -polyhedra which are of the same homotopy type as K and K' respectively. Then we have

$$
\sum^n (K) \approx \sum^n (P), \ \sum^n (K') \approx \sum^n (P').
$$

Thus we have

(8.1)
$$
\sum^n (P) \approx \sum^n (P')
$$

by the assumption of the sufficiency.

Let P^* and P'^* be "co-polyhedra" of P and P' respectively. Then it follows from Lemma 10 that

(8. 2) $\sum^n (P) \approx \sum_{n+2} (P^*)$, $\sum^n (P') \approx \sum_{n+2} (P'^*)$. From (8.1) and (8.2) , we have

$$
\sum_{n+2}^{\infty} (P^*) \approx \sum_{n+2} (P^{q*})
$$

so that *P** and *P'** are of the same bomotopy type in virtue of Lemma 9. Since P^* and P'^* are normal, we see $P^* = P'^*$. Thus we have $P = P^{**}$ $= P^{1*} = P'$. Therefore *K* and *K'* are of the same homotopy type.

Let $S^n(K)$ denote the part of Spanier's exact sequence which begins with $\mathfrak{H}^n(K; I)$:

 $\begin{array}{c} {\rm Sq}_2 \ {\mathfrak{H}}^n(K:I) \rightarrow {\mathfrak{H}}^{n+2}(K:I_2) \rightarrow \pi^{n+1}(K) \rightarrow {\mathfrak{H}}^{n+1}(K:I) \rightarrow 0 \rightarrow \pi^{n+2}(K) \rightarrow {\mathfrak{H}}^{n+2}(K:I) \rightarrow 0 \end{array}$ We shall now define a proper isomorphism of $S^{n}(K)$ onto $S^{n}(K')$ in the similar way as the definition of an proper isomorphism of $\sum^n (K)$ onto $\sum^n (K')$. Then the following theorem is the direct consequence of Theorem 3 and Lemma 11.

Theorem 7. Let $n \geq 3.12$ *Two A*_n²-polyhedra *K and K' are of the same homotopy type if and only if their Spanier's sequence* $S^n(K)$, $S^n(K')$ are *properly isomorphic.*

References

- 1) M.G. Barratt and G.F. Paetcher: A note on $\pi_r(V_n, m)$, Proc. Nat. Acad. of Sci. u.s.A., 38 (1952).
- 2) Su-Cheng Chang: Homotopy invariants and continuous mappings, Proc. Roy. Soc. London, 202 (1950).
- 3) P.J. Hilton: Calulation of the homotopy groups of A_z^2 -polyhedra II Quart. J. Math. Oxford (2), 2, (1951).
- 4) E. Spanier; Borsuk's cohomotopy groups, Ann. of Math., 50 (1949).
- 5) N. E. Steenrod: Products of cocycles and extensions of mappings, Ann. of Math., 48 6) H. Uehara: On homotopy type problems of a special kinds of polyhedra 1, II, Csaka Math. J.. (forthcoming)
- 7) J.H.C. Whitehead: The homotopy type of a special kind of polyhedron, Annals de la Soc. Polon. de Math., 21 (1948).
- 8) J.H. C. Whitehead: Combinational homotopy 1, Il, Bull. Amer. Math. Soc., 55 (1949).
- 9) J.H. C. Whitehead: A certain exact sequence, Ann. of Math., 52 (1950)

Added in proof. The following papers were published recently.

W. S. Massey: Exact couples in Algebraic Topology (Parts I and Il), Ann. of Math., Vol. 56, No. 2 (1952).

J. Adem: The iteration of the Steenrod squares in algelraic Topolopy, Proc. Nat. Acad. of Sci., U. S. A., 38 (1952).

¹²⁾ cf. Remarks of § 5.