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§ 0. Introduction

Homotopy classifications of mappings of an »# dimensional finite cell complex
K" into an n-sphere S” or an (z—1)-sphere S”—! and the corresponding extension
theorems were solved by H. Hopf and N. E. Steenrod [5] respectively. Intro-
ducing the cohomotopy group, E. Spanier [4] unified these results in an exact
sequence, while J. H. C. Whitehead [9] gave a general and constructive method
to obtain an exact sequence, starting with a certain sequence of homomorphisms.

In this paper, we shall define exact sequences Y, (K) by applying White-
head’s method to the cohomotopy group of a complex K (§1). It is proved that
>1p (K) are invariances of homotopy type of complex K (§2), and that, as its
special case, X (K ) may be regarded as a generalization of Spanier’s sequence
(83,4,5). X, (K) are also utilized to obtain a homotopy classification theorem
and a corresponding extension theorem concerning mappings of a certain kind of
an (#+2)-dimensional complex into S” ($6). Furthermore we determine the
n-th cohomotopy group of an A2-polyhedron in terms of its cohomology system
(87). At the end of this paper it is shown that two AZpolyhedra are of the
same homotopy type if and only if their Spanier’s sequences are properly
isomorphic.

I am deeply grateful to Prof. A. Komatu and Mr. H. Uehara for their kind
advices during the preparation of this paper.

£ 1. Exact sequences > ,(K, L)

In the first place, let us define an exact sequence Y abstractly, foliowing
J. H. C. Whitehead [9].

Let 7 be an arbitrary fixed integer, and let (C, A) be the following sequence
of groups and homomorphisms ;

r—1 Vid i7 9 Fo+1
(1,1) C 11— A" CF—> -oene > AT S 01— AT I 0 s .

where C?, A? are arbitrary abelian groups and ¢ is an integer such that ¢ 7.
In this sequence it is assumed that quqzﬁ"“l(O) for any g=7, but p"-1C"?!

-1
=j* (0) is not always assumed. If we denote ¢?=j"*13?: C*—>C"*!, we have
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d*+'d?=0. Let Z?be d"—.l(O), then we have ¢ 'C"*CZ?. Now we define three
groups 17, I1?, H? with homomorphisms as follows :
(1. 2) T? = jq—.l(()), II? = Aq/Bq——lcq-l’ H? = Zq/dq—lcq—-l
As to homomorphisms we define
i) B%: H*—-I'"1. Let z¢Z? be a representative of a class of H?, then
dqz=jq“[3q 2=0, so that ﬁqzé j”l—‘l(O):F'“l. Since ﬁq<d0—1cq—1>=ﬁqquq—1CQ—1 =0,
a mapping z—[(% induces a homomorphism §5?: H%->T"+1,

ii) i%: T%>II?. If 7€, y is an element of A?. Thus we define {? such
that y corresponds to a class of II? containing 7.

i) j?: II%-H?. Let @€ A? be a representative of a¢II?, then d%‘%
= j1*13%%, =0, so that j%€Z?. Since jIR1C!=d*'C’!, a correspondence
a—{j%}, a class of H? containing j%, induces a homomorphism {¢: II*~H?.

As a direct consequence of our definition we have, as is shown in [9],

Lemma 1. The sequence
ir iq ia Bq
(1.3) :I7 I —> e > T IT7—> H? —> T4l 5 ...

is exact.

Next, we shall apply the above result to the cohomotopy group.

Let K be a complex, the subcomplex of which is denoted by L, and let y be
a fixed point of a k-sphere S*. If dimt (K —L)<n and if »<2k—2, we can define
an addition among all the homotopy classes of mappings f: (K, L)—(S*, »)
following Borsuk-Spanier. Thus we have the k-dimensional cohomotopy group,
which is designated by z*(K, L). Refer to E. Spanier [4] for detailed account.
From now on we shall use terminologies and notations in [4], and it is assumed
in §§1-6 that (X, L) is a complex pair with dim (K — L)<n.

Let p be an arbitrary fixed integer, and let 7(p) be the smallest integer
satisfying

(1.4 r=r(p)_>==Max{—?§~+1-—p, 3--2;;}.

Let us define C?, A%, g%, j% in (1.1) as follows :

C'=Cy(K,L)=r"*""(K", K (¢qz=r(p)-1),

A=A} (K, L) = "' (K, K*) @=7(p),

BE=p3 (K, L) =4d: 2***(K?, K" ) — "1 (K, K" @=r(pH)-1),

7' =73 (K, L) =i#*: 2"**(K, K"™) — z?**(K?, k") (gz=7(p)),
where K?=K?UL, and 4 is the usual coboundary operator of the cohomctopy
group and 7# is the homomorphism induced by the inclusion mapi: (K2, K1)
—(K, K*™1).> Let us remember here that groups and homomorphismus defined

1) In the following, for the sake of brevity, we shall call a homomorphism between
cohomotopy groups induced by an inclusion “inclusion homomorphism ”.
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above are not meaningless under the restriction in dimensions, which are indicated
in the round brackets.
Since the sequence
j#
nP+e (K, Kq——l) i__, aPre (KQ ) KQ—I) . > pP+a+l (K, Kq)
-1
is exact, we have j%4?=3? (0). Thus groups and homomorphisms, =T
(K, L), TI"=T1% (K, L) H*=H} (K, L) and i’=i}(K, L), i®=1% (K, L), 57 =5%
(K, L) can be defined for any g=7(p). From Lemma 1 we have
Theorem 1. The sequence Y=, (K, L):
3

i

1 12
T (K> L) —> T (K, L) —> +ooove — T3 (K, L) —> T3 (K, L) — H} (K, L)
BQ
TS (R L) —> e
is exact, where r=r(p)=Max (—’2’—+1—p, 3—2p) .

§2. Properties of I', II, H.

In this section we shall establish formal properties of I') (K, L), T14 (K, L)
and H} (K, L)-
1) Consider the diagram

ﬂD-HI—1<Kq—1 ) Kq—?.) A > np+q (K, KQ—1> _P#_) P+ (K’ Kq—z) # > nm—q (Kq—l , Kq—Z)
Il 9-1 I Il 971 i
CyYW(K,L) —> AYK, L AGNK, L) —  CHI(K. L)

in which the upper sequence is exact. Then from the definition of I'j71 (X, L),
1% (K, L) we have immediately
2.1 %: I3 (K, L)=TH1I(K, L)
for any g=7($), where [} is the homomorphism induced by the inclusion homo-
morphisrn n,p+q.<K’ Kq—l)_,n,p-rq (K» Kq-2>.
II) Let p=>1, then Ci(K,L)=z’*?(K?, K**)=0, so that we have
(K, L)=A%(K, L)=n"*"(K, K*) for any g=r. Since the sequence

A i¥ i
7.L.mrz—-l (Krz—l , L) — gPHe (K, Kq~—1> — > gP+e (K, L) — gPta (Kﬂ—l R L)

is exact and since z***1(K*1, [)=0, z?**(K"', L)=0 for p>1, we have
Pt (K, K" VD)=n?**(K, L). Thus we have

(2.2) t3: TS(K, L)=a"*"(K, L) "
for p=>1 and for g=7(p), where f; is the homomorphism induced by the inclu-
sion homomorphism #?*?( K, K*1)—n?**(K, L).

III) From (2.1) and (2.2), we have

(2.2), 1% 4 (K, L) ==**"(K, L)

for p>0 and for g=7(p).
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IV) Let g->n, then we have z?+%(K,K¥)=r"**(K, K)=0. From the

exactness of the sequence
_ ¥ i# o
(K, K*)— n?* " (K, K1) —> g?*?(K?, K1),

it is concluded that ;# is isomorphic into, so that
(2.3n IV(K,L)=0
for any g=Max (n, 7(p))-
V) From (2.1) and (2.3);, we have
(2.3), (K, L) =0
for any g>>Max (5 +1, 7(p)).

VI) By definition n?*7(K?, K1) is isomorphic onto C*(K, L: (p+g)).?
the g-dimensional cochain group, for g=>2—2p. We denote this isomorphism by
¢%. Then it was proved by Spanier [4] that the commutativity holds in the
diagram

aP+e (Kq s KQ—1> __A__> PO+l (K?+1 s Kq)
3] £ 3
CUK, L; (p+@")—> C™ (K, L; (p+g+1)"1)
for g=2—-2p, where ¢ is the coboundary operator of the cochain group, and E
is the suspension of the coefficient group. From this fact, we have easily
(2.4 ¢ Hj (K, L)=9"(K, L; (p+a)")
for ¢=>3—2p, where ¢% is the homomorphism induced by the isomorphism ¢% .
VII) Let n>>7(p) then from Theorem 1 the sequence

i” in Bn
CT(KS L) —o (K, L) —> Hy (K, L) — T3 (K, L)

is exact, and from (2.3), we have T'3( K, L)=0, T3*!( K, L)=0. Therefore we
have

(2.5) jp: TI3(K, L)~Hy(K, L).
From (2.1), (2.4) and (2.5), it is concluded that

(2.6) el TEl(K, D~ 9" (K, L; (n+p))
for n>3—2p.

Thus we have proved

Lemma 2.

G: 5K, L)=T3I(K, L) for q=1(p),
. (K, LY== z**(K,L) for p=1 and q=7(p),
1710%: I(K, L= 7***(K, L) for p=0 and q=7(p),
(K, L)=0 for gq=Max(n, (D)),
I(K,L)=0 for q=Max(n+1,7(p)),

2) We denote by ¢” the p-th homotopy group n,(S?) of a g-sphere S7.
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p: HI(K,L)=9"(K,L; (p+q)?) for q=3-2p
e3isG7 : PEI(K, D= 9" (K, L; (n+p)»") for n=3-2p
§3. Invariance of >, (K, L)
Let (K, L) and (K’, L’) be complex pairs with dim( K —L)<#» and with
dim( K’'—L)<n respectively. Let us consider a cellular mapf: (K’, L' )—
(K, L), then f induces homomorphisms

Cfgﬂ: C%(K; L)—>C§(K/, L’)v
A3 AY(K, L)— A(K'> L")

for each g=7(p), in virtue of f(K’*)CK?. And we have?®

¥ ofyE = T35 g,
7ol afF = f5* 7h s
so that ,f%# induces homomorphisms rf%: I\ (K, L)—TL(K’, L') and pf}:
3K, L)~ (K’, L’), and ¢f%¥ induces a homomorphism 4i%: HL (K, L)
H,(K’, L’). Then it is seen that
Cyolh = ofp i3,
(3- 1> . ig)/ niq = Hﬁr i% ’
N ) A FARS
Lemma 3. 1f f,g: (K’, L')~(K, L) are homotopical maps, we have
r15=r8%> nl»=ng&s» and uih=ugh -
Proof. In virtue of the assumption there exists a map F: (K’xI, L'XI)

—( K, L) such that
=F|K'x0=F1,
=F|K'xl=g,
where J denotes the interval between 0 and 1. Further it may be assumed with-
out loss of generality that F is cellular (i.e. F(K'"IxI1)CK?* for any ¢) [8].
i) pf=rg. If yeY(K, L) we have ycz?**(K, K*1) and ##y=0. Since
the sequence
¥ i
p+Q(K Kq),___) ﬂpM(K Kq-),)___) P+e (Kq Kq-—1>
is exact, v bezlongs to j#a2?*1( K, K%), so that a map¢: (K, KV)—(S?*?, y) can
be takan as a representative of y. Since F: (K’'xI, K''xI)~(K, K%), we have

tF: (K'XI, K" IXI)—> (S, »).
Therefore {tF,} =f#y and {¢tF,}=g% represent the same element of
a?**(K’, K’%"1). This proves f=rg.

ii) pf=pg. The commutativity holds in the diagram

3) We agree that i,i,ﬁ, i, 7,b in the complex pair (K’, L’) are denoted by i’,i’,B',i, 77,0
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j
n,p+<1 <K/ , val—1> _i_> n.IH-q (K/ , K‘vq—2>

AFF i AR
(K, K 5 2?9 (K, Kq—2> ,

where j#, j’# are the inclusion homomorphisms. Therefore, if {}: 113 (K, L)
—-TENK, L), (¥: L (K", L')>~151 (K, L) are the homomorphisms induced
by j#, j/# respectively, we have

(3 ofp = rBist 65 -
By the same process with respect to g we have

7 0% = roisi (5 -
From these, together with i), we have

(3 ofe =18 ngh ©.
As { is an isomorphism® from (2.1), we have

mp = u8p -
i) uf—ng. Let {a} €@ (R R2) and let a: (K7, K/%)— (™,
v) be a representative of {a}. Then we shall define a map E} (a): (K'*'XI,
(B I)Y™)—>(8**, ») by
EY(a)(x t)=¢(alx) t) for xc K'Y, tel,
where ¢: S lx 7—S8?? maps (yxIIU(S**1x0)U(SP*"1x1) into a point y
and elsewhere topologically onto S?*"-1-y. 1If EI#: g7 1(K', K72 —
APt (KT [, (K%t I)™1) is a homomorphism such that {g} corresponds to
{E% (@)} € P+ (K'*IxI, (K" 'xI)™ 1), E}# is evidently an isomorphism for
¢=>3—-2p in virtue of Freudenthal’s suspension theorem. Moreover F|K'%1x[I
maps K'"IxI, (K" Ix)"! into K%, K*! respectively, so that it induces a
homomorphism
F;I,:ﬁ:: np+¢1 (Kq R K‘Z—l)_> RID+4 (K/ﬂ—lxl’ (K/7—1X1>q—1> .
If we put &=E%¥ 'Fi#, & is a homomorphism 7%+ (K?, R Y)—pttit
(K*t, K'*%). Namely we have the homomorphism §&%: C%(K,L)
—CyYK’, I’). Then it can be proved as in the classical chain homotopy theory
that &% has a property :5
of 5% —o83% = &5 +d'57E5

so that 43 =na%. This completes the proof of Lemma 3.

Theorem 2. [f fwo complex pairs (K, L), (K’, L) with dim (K —L)<n
and dim (K’ — L' )<n are of the same homotody type, 2p (K> L) and X, (K'» L")
are isomorphic. N amely, there exists a family of isomorphisms T={1%, 1%,
it Such that the commutativity holds in each rectangle of the diagaam

4) An isomorphism, without quolification, will always mean an isomorphism onto.
5) Such a homorphism £ is called a komotopy opzrator for f# and g# in the classical theory
of chain homotopy (cf. S. Lefschetz: Algebraic Topology (1942))
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i i
3.2 l of i l ol l of ”
IR’ LTI, L) - —TY (K, L)—>

1 b
%K, L)—> H(K, L)——>T}Y(K, L) —> -
T [
H?,(K/, Ll>——‘? H}’,(K, L)-——-—)F}',“( K/, L/) R R
where r=r(p)=Max (%Jrl—p, 3—21;) .

Proof. As was shown in [8], homotopy equivalences f: (K’, L')—(K, L)
and g: (K,L)~(K’, L’) can be assumed to be cellular. If f%: I'} (K, L)
—15(K", ') ofp: 5 (K, L)— (K", L), ufy: Hi(K, L>-H}(K’, L') are
isomorphisms induced by f, it is seen from (3.1) that the commutativity holds
in each rectangle of (3.2).

Let  pgh: 5 (K7, LD-T5 (K, L), %: (K, LD-1I5 (K, L), ufp:
Hi (K", L')->H}(K,L) be homomorphisms induced by g and let r(ig)3:
'Y (K, L)-T% (K, L), n(Te)% : I (K, L)-115 (K, L) a(fe)%: Hi (K, LD
—H} (K, L) be homomorphisms induced by fg: (KX, L)—(K,L). Then, since
fg is homotopic to the identity, it follows from Lemma 3 that the homomorphisms
()%, w(§e)%» a(§g)% are all the identities. As is easily seen, we have n(ig)}
=855, n(00)b=m% nfh» n(fa)=ne} ufh. Thus g}, n6%, ngh are all onto and
ri% s ui% » als are all isomorphisms into. Again, using gf ~1: (K, L')—~(K’, L"),
we see that g%, 0%, zqb are all isomorphisms into and 5, 1%, ufp are all onto.
Thus Theorem 2 is established.

$4. Properties of i, i, b.
In this section we shall prove several properties of i, i, b.
Lemma 4. In the diagram

' (K, L) —I—> I (K, L)
RN
S5 (K, L, (n—1)"») —> z» (K, L)
the commutativity holds, where n=5 and A is the homomorphism which was
given by E. Spanier [4, $20].

Proof. 1i~1, 1 and ¥ are induced by the inciusion homomorphisms,
TL_n—L (K; Kn—l)__,nn—l (K: K‘\n—2>’ n.n—1<K, Kn—2>_’7t%_l(K9 sz—Z) and n;n—l(K’Kﬂ—2>
—a" 1 (K, L) respectively. So [(fifj~! is induced by the inclusion homomorphism :
a1 (K, B D)-n" (K, L). Thus A =fi(¢jl~1)"! is a homomorphism such
that we describe below. {z} € 9" (K, L, (z—1)") is represented by a cocycle z
such that for an n-cell ¢”, 2(¢") is an element of 7, (S"!). Let «.: K—S"! be
a map such that ¢|K"-2=9, and «|¢" represents z(¢"). Then {z} corresponds
to {«} €na" (K, L) by A’. This is the definition of A. Thus A=/, and so
Lemma 4 is proved,
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Lemma 5. In the diagram

i
§(K, L)— H{ (K, L)
a5 e
ﬂq(KyL) __)'z)q(KyL; Qq)’

the commutativity holds, where q=Max (%Jrl, 3), and ¢ is the natural homo-

morphism of the cohomotopy group into the cohomology group [4, §17],

Proof. Since ¥ is induced by the inclusion homomorphism: 7% (K, K*™)
—7? (K, L) and since ] is induced by the inclusion homcmorphism: 7? (K, K*~1)
—1q (K%, K%V, i (1)~ is @ homomorphism, by which ¢ € z? (K, L) corresponds
to an element of $2( K, L, ¢°) containing ¢ % (Jk)¥-! g. This correspondence is
nothing else but the definition of ¢. This proves Lemma 5.

Lemma 6. Ix the diagram

b 9+2 ig_+2
Hj (K, L) —> 0§ (K, L) e— %2 (K, L) —> H'{ (K, L)
@D Uy s u ] s
CHCEP RN D) PU2(K, L (g+1D")

the commutativity
U] = Sa2yf

holds true, where g=Max ( —7—;— s 3) .6

Lemma 7. In the diagram

7, 432 152
U v ~ e | s
91K, L; (g—1) (K, L; ¢*+?)

the commutativity
PR = Sa%el
holds true, where g=Max ( —g—+ 1, 5) .
Before we prove Lemmas 6 and 7, let us consider more generally
85 =i330348 76 : HE (K, D~H} (K, L.
In the diagram

(4.1) AP (R, 1) ¥ (R, BY)

<,
’ ’ @
Ay’ l & Jo¥ l Ax iy \A

P+ (Ktn-l s Kﬂ) - np+r1+1 (K, Kﬂ—!»l) N np+q+1 (K: K<1> —> Pl (K"nqﬂ , K‘q)
P
PHe+l (Krmz ) K‘fl—ll) ,

6) In the following, the group multiplication with respect to squaring operation Sq2 is always
defined such that the product of the generator and itself is the generator,
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let 47, 41, 4i, 42, 45 be the coboundary operators, and let #, 7o¥, 7%, jo¥
be the inclusion homomorphisms. Then the commutativity holds in a rectangle
and two triangles in (4.1). If {4} is an element of H? which is represented
by q€n?**(K?, K1), we have 4,4=0, and &} {q} ¢ H}*3 (K, L) is represented
by iﬁjzﬁaldl’a. In virtue of the exactness of j;#, 4;, there exists an element
b€ n?+? (K1, K1) such that j*¥p=q. And we have
joi# (4'b— ¥ 4 a) = j#4'b—dia = 4ij1#b— Mia
= dlg—4dia =0.
From the exactness of 45, j»#, there exists an element ¢ ¢ n?"? (K", K% such
that 4'b— j2#"dig=4djc. And we have
A b—#j# Mla = ¥ 4e = dsc

Therefore we have {db} = {#j:% 'dia} =382 {a}, Where d=;#4': 7" (K", K1)
—pPrerl (g2 Ry Thus we establish

(4.2 & la} = {471% a} -

Proof of Lemma 6. Let M®*? be a complex S?Ue?*2, where ¢?*2 is attached
to S? by an essential map: E%+2587 . In this complex, it is easily seen from (4.2)
and from [5, §20] that 3 corresponds to Sq2 by ¢. A proof for a general complex
is given as follows.

Let {q} € Hj (K, L) be an element which is represented by ¢ n?(K?, K1)
and let g be represented by a map f: (K?, K*1)—(S?, v). Using the notations
in (4.1) we have 4,¢=0, so that ¢ belongs to the image of j#. Thus f can
be extended to a map 7: (K%1, K*1)—(S?, y). Since my+1(M*2)=0, F can be
extended again to a map f: : (K**?, K¥Y)—(M*?, S?). Then we have a diagram

j 1%
¢ (Kq s K‘q—l) (_]i_ i (Kq+1 s I‘(‘q—l) _A) nq—l (Kq+2 , Kﬂ+1>
T* J1# r= A T?:H:

th (Mq, Mﬂ—l) < TL'q (M(I+ , Mf1~1) —_— n.q-*l(MtHZ’ Mf1+1>’
where the commutativity holds in each rectangle. If {g,} is an element of
HE (M%) which is represented by the generator ¢, of =?(M?, M%), we
have
Sa2¢ {ao} = ¢8§ {ao}

from the fact that Lemma 6 holds in M?%2. Therefore we have
F¥Sazgiact = f*¢3§ {ao} -

Moreover we have f #8q2¢ {a} = qu.? *¢ {ao}
) — a2 {f#ac} = Sa¥la} .
and 75988 {ao} = 1 1dir* a0} = ¢ {[#4j* a0}
= ¢ {4F%5% g} = ¢ 1452%7 f#ao}
= ¢ 1451% "a} = 88 la} .
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Therefore we have
Sqz ¢ = ¢55.
This proves Lemma 6.

Proof of Lemma 7. It is easily verified that Lemma 7 holds in a special
complex N%2=M"?Je""!, where ¢?*! is attached to S!CM? by a map
E%1S? of degree 2. Now, let K be an arbitrary complex. {g} € H%, (K, L) is
represented by an element g€z !'(K?, K*!), which is represented by a map
S (K%, BD)—(S*1, y). Then it may be assumed that f’=y-f, where f is
a map (K?, K*1)—(8%, ») and y is an essential map (5%, y)—(S*?, y). Since
41a=0, f’ can be extended to a map f/': (K™, K*1)—(S"1, 3). Thus for a
(g+1)-cell 6%, 6"t is a map ¢"*1-S? of even degree. If we consider S? as
the g-sphere of N®!, f can be extended to a map f: (K*!, K1)
—(N®™, N*1). Since me+1(N*?)=0, 7 can be extended to a map
f: (K22, K91)—(N%2, N©1), Then in the diagram

- A
21 (K, K I3 > 771 (K01, Ko-1) > 7 (K72, K941)
[ [ 72 A 1=

nq—l (Nq , Nq—l) 1 > nfl—l (Nq+1 s Nq—-l) > nq (er+2 , Nq+1) .
the commutativity holds in each rectangle. If {go} is an element of HZ, (N7*2)
which is represented by the generator @, of ="'(N?, N71), we have g=f#q,.
From the consideration that Lemma 7 holds in N%2, Lemma 7 can be easily

deduced in a general complex through an analogous way as Lemma 6, by the
aids of (4.2) and of a=f*a,.

85. Exact sequence of E. Spanier

Let #->6 and let us consider the diagram

Tt (K, )~ B2 (B D) T (K Ly T (K 1
GO ouln gl s U]virt Nk

22 (K. L) > 02 (Ko L (1202 > 50 (K, L (n-DM > w1 (K, )
D K D T D T (K. 1) > B, Do T3 (K 1)

ule u) a5 oule ql
91K, L; (n-1y"H>0———>n"(K,L) >9"(K,L; n")—>0.

This diagram has the following properties:
i) The upper sequence >, (K, L) is exact by Theorem 1,
ii ) the vertical homomorphisms are all isomorphisms in virtue of Lemma 2,
iii ) the commutativity hoids in each rectancgle by Lemmmas 4, 5 and 6.

Therefore the lower sequence of (5.1) is also exact. Thus we have
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Theorem 3. (E. Spanier) Let (K, L) be a complex pair with dim (K —L)
<n (#=6). Then we have the exact sequence

2

# Sq A
TL'n—z<K’ L) —_—> @”~2<Ky L ) ("'—2)”—-2) I @n(K, L; (ﬂ"‘l)”)"‘—» TT"—I(K’ L)

$ $
—9"-1(K,L; (n-1)""1)—> 00— 1" (K, L)—> H*"(K, L; n")—>0
Remark. We see that this theorem is proved for #>=5, if z"~!(K,L) is
discarded.

$6. Homotopy classification of mappings of certain complex K into an
(n—2)-sphere S*-2

Let =7. Applying Lemmas 2 and 7 to the exact sequence > -; (K, L), we
have a diagram

H7%(K, L) ——f-)———> (K, L) l> YK, L)—I—> H' (K, L) ——B—> I (K, L)
u | s U]eir e
9 2(K,L; (n-3"D—->9"(K,L; (n—2)") (K, L; (n—-2"1) >0
in which the commutativity holds. From this we see that II"{%( X, L) is a
group extension? of 9" (K, L; (n—2)")/Sa29" ¥ K, L; (n—3)"2) by 9K, L;
(n—2)1). And we have [: II"7%(K, L)=T¢2?(K, L)
(6.1) I'¢2(K,L) is a group extension of 9"(K, L; (n—2)")/Sq2 $"2(K, L;
(n=3)"2) by &1 (K, L (n-2)™),
Now, let us assume (K, L) to be a complex pair such that Sq2: y*-2 (K, L;
(n—2)"Y)—-9" (K, L; (n—2)") is onto. Then from (6.1), we have
6,2) Qi1 T2 (K, D)= 9" (K, L; (n—2)"1).

Consider the diagram

T3 (K 1) B (K D) T2 (K )
63 a5 Ul s Uwit?
(K L) ——=> & (K L (=80 —> 9" (K, Ly (n—2)")
M D et (R D) s T (K DD
a5 e s U]wir

— " 2(K, L) — 9" (K, L; (n—2")—>9"(K, L; (n-1)").
This diagram has the following properties:
i) The upper sequence >, (K, L) is exact by Theorem 1,
ii ) the vertical homomorphisms are all isomorphisms in virtue of Lemma

2 and (6.2). It should be noted that for n=7 the first vertical
homomorphism is meaningless,

7) Let A, C be groups and let B be a subgroup of A. If there exists a homomorphism
of A onto C with kernel B, we call that A is a group extension of B by C.
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iii) the commutativity holds in each rectangle by Lemmas 4, 5 and 6.
Therefore the lower sequence of (6.3) is exact, so that we have

Theorem 4. Let n=7 and let K be a complex pair with dim (K —L)<n
such that Sq?: 9K, L, I:)—9"(K, L; I2)® js onto. Then n"*(K,L) has a
subgroup jsomorphic to 9" (K, L; I:)/Sq29" (K, L; I) and the factor group by
this subgroup is isomorphic to the kernel of Sq2: 9" (K, L; I)—9"(K, L; I2).

Furthermore we have the corresponding extension theorem ;

Theorem 5. Iet n=8. Let K be an n-dimensional complex such that
Sq2: 9*2(K, I2)—9" (K, I2) is onto and let L be its (n—3)-dimensional sub-
complex. In order that a map f: L—~S"2 is extendable to K, it is necessary
and sufficient that there exists u€ 93 (K ; I) such that

S*{s"3) =% {u},
and Sq2 {u} =0,
where {s°} is the generator of 9" (S*3; I), f*: & 3(S*3; 1)~ 3(L; I,
ke 93K 1)~9"3(L; I) are the homomorphisms induced by f and the
injection i: [—~K respectively, and Sa? is the homomorphism of 9" (K ; I)
to D" (K, I2)-

Proof. Necessity. Let 7: K—S"3® be an extension of f, and let
{u}=F* {s"*}. Then we have

i {u} = #KF s = (F* s = f* {s" .
As from (6.3) the sequence

rr“’3(K)—¢> H3 (K ; I)iq—; HU(K; I2)
is exact, we have
Sq? {u} = Sq2/* {s"%} = Sq2 {f} =0,
Su fficiency. As we have Sq2 {u} =0, from (6.3) there exists {g} € z"%(K) such
that ¢ {g}={w}. Since the commutativity holds in the diagram

n”“3(K)—1©""3(K; D
i# — i
3 (L) — 9" 3(L; 1),
g ift = " =% lu} =i%¢ (g}
=¢i* {g} = ¢ {gi} -
As L is (n—3)-dimensional, ¢ is an isomorphism from Theorem 3, so that we
have {f}={gi}. Namely we have

we have

S~gi=gl|L.

8) I, denotes a cyclic group of order %, and I denotes a free cyclic group.
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Since g|L has an extension g: K—S"-3, f can be also extended to K in virtue
of the homotopy extension property.

§7. The n-th cohomotopy group of an AZ-polyhedron

Let K be an (5 +2)-dimensional complex with 7; (K)=0 for ;<p—1. Accord-
ing to J. H.C, Whitehead, we refer to such a complex as an AZ2-polyhedron [7].
In this section, we shall calculate the #-th cohomotopy group of an AZ-polyhedron
in terms of its cohomology system.

First we prove

Lemma 8. Let n>5. Let K be an AZ-polyhedron, then we have
" (K)=T3(K)D 9" (K; I)?
where I') (K ) is a group extension of O (K ; 1:)/Sq29™ (K ; I2) by 9" (K ; I2).
Proof. Consider the diagram

Byt (K)o T (K~ T (K) — H (K — T3 (O
ar ol oy g ufeie
YK ; I " (K) —9"(K;, I)— 9" *(K; Is)-
This diagram has the following properties :
i) The upper sequence is exact by Theorem 1,
ii ) the vertical homomorphisms are all isomorphisms by Lemma 2,
iii ) the commutativity holds in each rectangle by Lemmas 5 and 6,
iv) as K is (#—1)-connected, $"~1 (K ; 1)=0 so that i is isomorphism into,
v) 9*(K; I) is free abelian bacause K is (s#—1)-connected, and
92 (K ; I,) is finite, so that the kernel of Sq2 is isomorphic to
o (K ; ID.
From these facts and from (6.1) we have immediately Lemma 8.
We shall determine n”(K) more precisely.
Let (a1, »am) b2 a system of independent generators of §*+2 (K ; 1), where
a; is of order g¢; if <t and @, is of infinite order if #+1<j<m. Further let o;
be a power of a prima =52 if ;<s(<¢t) and let ¢; be a power of 2 if s+1<;<¢.
Then (9"2(K ; I)) is generated by (—%— Os+1@st1s o e , 1 aaas) and 97+2(K ; I2)
=(9"+2(K; I)), is generated by (asey, - »dm)s Where g; is the class of @;'9,
Let A(K) be a group extension of D"'2(K ; I:)/Sq2 9" (K ; I:) by (92K : I))
determined by the relations:

205 = pit; if 6,=2,
20 =0, otherwise,

9) If A, B are any abelian groups, A @ B will always denote their direct sum.
10) Let G be an abelian group, then Gz=5/2G, and G is the subzroup ot G which consists
of all the element g such that 2g=0,
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for j=s+1,----- ,» t, where (ugsrps oo , u¢) are representatives in A for (—é» Os+1@s+1»
...... .5 otac) and p is the natural homomorphism "2 (K; I~
942K ; 12)/Sq?9" (K ; I.). Then we have

Theorem 6. Let n>5 and let K be an AZpolyhedron. Then the n-th
cohomotopy group n"(K) is given in terms of its cohomology system as
follows:

(7.1 " (K)=9"(K; DO O(K; I)):2:®D AK).

Before we proceed to prove this theorem, we shall remember two following

definitions.

1) An elementary A2-polyhedron. This is one of the following kinds [2],
[6]:
i) B;=S" (r=n n+1l, n+2),
ii) B2(0)=S"Ue™!, where ¢! is attached to S® by a map E"*—-S" of
degree ¢, a power of a prime,
iii) Bs(r)=S*'Ue"?, where ¢"*? is attached to S*! by a map E"2— Sl
of degree r, a power of a prime,
iv) By=S"Ue™?, where e¢™? is attached to S” by an essential map
E‘m+2__, S,
v) Bs(2?)=S"Ue™'Ue™?, where ¢**! is attached to S® by a map E™1—S"
of degree 27 and ¢™*? is attached to S™ by an essential map E"+2—S»,
vi) Bs(29)=(S"v S*+1)Jem*+2 1D, where ¢™? is attached to S"v S"*l by a
map E™?2>8ny 8™l of the form g+5; @ is an essential map Emr2—gGn
and b is a map E?+28Sn+1 of degree 2¢.
vii) B7(2?, 29)=Bs(29)Ue™t, where ¢**! is attached to S™ in Bs(2?) by a
map E"1-S" of degree 2?.
2) A normal A2-polyhedron. We mean by this a polyhedron which consists
of a collection of elementary A2-polyhedra with a single point in common.
Proof of Theorem 6. Note that there exists a normal AZ-polyhedron which
is of the same homotopy type as K [2] [6], and for two elementary Aﬁ-pdlyhedra
B, B’ we have
" (BvB) =z"(B)® =" (B),
9L (BVB' 5 I))=(D"1(B; I)):® @1 (B ;5 1)),
S*(BVB'; DND=9"(B; N® 9" (B'; I,
and A(BvB')=A(B)® A(B"),
Then we see that it is sufficient to prove Theorem 6 for each AZ2-polyhedron.
First we shall calculate the left hand of (7.1), the n-th cohomotopy group, for
each elementary AZ-polyhedron. It follows from cohomological computation that

11) We denote by AV B the union of two spaces A and B with a single point in
common,
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i) n(BY) =~I, n"(BY'Y)=I,, a(By?)==1Is,
ii) #n"(B2(0)) =0 if ¢ is a power of a prime =£E2,
=~J, if ¢ is a power of 2,
iii) #a"(Bs(r))=0 if ¢ is a power of a prime =52,
a"(Bs(r))/I.=1, if r is a power of 2,
iv) a®(Ba) =1, v) 7" (Bs (2")) =12,
vi) a"(Bs(2))=I:DI, vii) a"(Br(2?2, 20))=I1:DI2-
Moreover as tor the group extension of iii), we have
i1i); 7" (Bs(r))=I.DI2 if ¢ is 22 (p>1),
iii ) =T, if ris 2.
iii)] follows from arguments similar to those used in the proof of Lemma 3.6
in P. J. Hilton [3], and iii); is the result due to M. G. Barratt and G. F.
Paetcher [1].
Second, if we calculate the right hand of (7.1) for each elementary
A2-polyhedron, we shall easily find the same group as the above. Thus Theorem 6
is true.

Remark. Compare Theorem 6 with the one due to Hilton [3] with respect
to the determination of the (7 + 2)-nd homotopy group of an A2-polyhedron in terms
of its homology system.

$8. Homotopy type of an A)-polyhedron

J. H.C. Whitehead explained how the homotopy typz of an AZ2-polyhedron
can he describzd in terms of cohomology [7]. We shall again deal with this
probiem in this section.

Let #=>3, and let K be an A}-polyhedron. Let >)* (K ) be the part of >3, (K)
which begins with H" (X):

H§ (O — T3 (K — T4 ()~ Hyt () — o
Then it follows from Lemma 2 that
D3 (K)o (B2 (K)D2» 1372 (K) =0
and T¢(K), II}(K), H{(K) are all zero for any ; >n-+2. On the other hand,
let 37 (K) be the exact sequence of J. H.C. Whitehead which is defined by his
using the homotopy group (cf. [9] Chap III), and let Y4+3 (K ) be the part of
> (K) which begins with Hy.g (K):

H,.» (K) ~—B-> Ty (KD N II,., (K) ._1> Hypy (K)—> oo
It is known that
Twn (K)=Ha(K))2, Tn=0
and I (K), II; (K), Hy(K) are all zero for ;< n.
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Assume that K’ is also an AZ2-polyhedron. We shall then define proper
isomorphisms of >"(K) to X"(K'), a2 (K) to Tusa (KD 2Zne2(K) to
SwW(K’) and X" (K) to Xn+z (K’). Since all of these can be defined in the
same manner, we shall here denote only the definition of a proper isomorphism
of the last one. X" (X) is called to be properly isomorphic to X u+2 (K’) if and
only if there exists a family of isomorphisms o= {p0, 40, go} such that the

commutativity holds in each rectangle of the diagram

"(K) —IY(K) —-IOPFY(K) — - — I (K)—H"?2(K)—0—

7 n+1 n+1 742 n+2
no" o g nf Ho

Hypp (K — Tpn (KD — I (KD — - — I (K) — Ha(K) —0—
and such that po"*! is identifiad to the homomorphism induced by yo"*2 if we make
the identification I'}*'(K)=Hz'1(K)): and I'ysi (K)=(H,(K’))2. Then we
denote >\" (K)=3 n+2 (K’) and call that p is a proper isomorphism of X" (K)
to Xu+2 (K7). The following Lemma 9 is proved by the arguments similar to
those used in the proof of Theorem 16 in [9].

Lemma 9. Two AZpolyhedra K and K' are of the same homotopy type
if and only if Yare (K)~prz (K').

Now we shall define a “co-polyhedron”’ P* of a normal A2-polyhedron P as
follows. As for elementary one, we define:

i) By=By*?, Byt =By+!, By** =B,

ii) Ba(o)*=B;(s), iii) Bs (r)*=B2(1),
iv) Bi*=By, V) Bs (2°)*=Bs (2?),
Vi) Bs (20 =Bs(20), vii) Br(2°, 20)=B; (2, 20).

When P is a normal A2-polyhedron, the ¢ co-polyhedron” P* of P is the one
which is obtained by replacing each elementary A}-polyhedron B of with its
“co-polyhedron” B*. Then P* is also a normal A)-polyhedron which is

dim P*=2r—dim P +2, and we have P**=p, Furthermore we have

Lemma 10. For any normal AZ-polyhedron P and its “co-polyhedron’
P*, X" (P) is properly isomorphic to Xn+z (P¥). (If n=4, we have 3" (P)
~3 n+3 (P) more strongly.)

Proof. As for elementary Aj-polyhedra, we assert this Lemma by inspecta-

tion, This can be shown easily, so that we wili merely list the following table

of homotopy groups and cohomotopy groups.
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PR

Byt | Byt | By(s) | Bs(r) | By |Bs(2%)| Bo(20)| Br (27,20

of 0++
o I I, I, I, 12?12 I I, I,®r Lo Tn+2
4
oftt
nn+l 0 I I, I, I 0 12p+1 0 Izp+1 T+
nu+2 0 0 I 0 I, I I 12q 12:1 T
Byx | Butlk | Btk | B, (o)*| By (£)*| By* |Bs(27)* B (29)% Bq(27, 20)% P T

t 2 (B (6))tn,42 (B (6)* =I, if o is a power of 2,
=0 otherwise.
Tt =" (B3 (r))=rp+2 (Bs (1)) if 7=2,
=I, DI, if ris a power of 2 and =2,
= otherwise.
it =1 (B3 (r))=np+1 (Bs (r)¥)=I; if ¢ is a power of 2,
=0 otherwise.

Generally, as for a normal AZ-polyhedron, Lemma 10 follows from that it is true
for elementary AZ2-polyhedra, and from the foilowing fact: If B;, B, be elemen-
tary AZ-polyhedta, the following theorems hold for 1§, I1i, Hi; I';, II;, H,;
L b (G=m n+l, n+2) [2] [3]:

Lo (BivB2) = T (B D I§(B2)»

II; (B:1vB:) =1I; (B, ® II; (Bs)

’

where iy, by, --ee-- are the homomorphisms i, b, ------ for B1, Ba, -+ respactively.
Finary corresponding to Lemma 9, we have

Lemma 11. Two AZ-polyhedra K and K’ are of the same homotody type
if and only if 23" (K)=~>"(K’).

Proof. Necessity. Let K and K’ are of the same homotopy type, and let
f: K’—K be a homotopy equivalence of K and K’. Then if fi: I (K)—T{ (K",
ute: G (K)—TIE(K”), 5fs: HE(K)—Hi(K’) are homomorphisms induced by f,
it follows from Theorem 2 that f={.}, 4}, 4f} is an isomorphism of 3*(K)
onto 3% (K"). Therefore it is sufficient to prove that pi»+! is identified with
the homomorphism induced by 4f§*? when we make the identification 6: I'g*! (K)
=(H3*?(K))2 and §: ¢ (KD)=(H§2(K"));- Let A O(K ;D
=92 (K ; I,), ¥ 92 (K’; I)>9"*2(K’; I,) be the natural homomorphisms,
then 1 and 1’ are onto and we have

g = ¢6’+2—-11"1¢ﬁ21ﬂ2 AL g </J’B”2—1/1’¢”.‘.‘I2i”1‘§2 rnt2
Since the commntativities :
ol =0Urf, wfi=1af, f*¢=¢%t, fFA=N1-f*

hold, we have easily
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0'cint = ui0r20 .
Thus § is a proper isomorphism.
Su fficiency. Let P and P’ be normal AZ-polyhedra which are of the same
homotopy type as K and K’ respectively. Then we have
TrE)=2(P), XM(K)D)="(P).
Thus we have
(8.1) 2P (PY=2"(P)
by the assumption of the sufficiency.
Let P* and P’* be « co-polyhedra” of P and P’ respectively. Then it foilows
from Lemma 10 that

(8.2) 2P(P)m Tnra (PX), (P~ n+a (P*).
From (8.1) and (8.2), we have
Sne2 (P*) &= Ypee (P*)

g0 that P* and P’* are of the same homotopy type in virtue of Lemma 9.
Since P* and P’* are normal, we see P*=pP’*. Thus we have P =P¥*
=pr*k=p’_  Therefore K and K’ are of the same homotopy type.
Let S*(K) denote the part of Spanier’s exact sequence which begins with
O*(K ; I):
Saq; A % %

O (K ; [)->9"2 (K ; I2)~»>a""1(K)>9"1(K ; I1)~> 0 —>n"+2 (K)->9"+2 (K ;1)~>0
We shall now define a proper isomorphism of S"(K) onto S*(K’) in the
similar way as the definition of an propar isomorphism of >3*(K) onto > " (K’).
Then the following theorem is the direct consequence of Theorem 3 and Lemma 11.

Theorem 7. Let n=>3.1% Two A2-polyhedra K and K' are of the same
homotopy type if and only if their Spanier’s sequence S"(K), S*(K') are
properly isomorphic.
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