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§ O. Introduction 

Homotopy classifications of mappings of an n dimensional finite cell complex 

K" into an n-sphere S" or an (n-1)-sphere sn-1 and the corresponding extension 

theorems were solved by H. Hopf and N. E. Steenrod [5] respectively. Intro­

ducing the cohomotopy group, E. Spanier [4] unified these results in an exact 

sequence, while ). H. C. Whitehead [9] gave a general and constructive method 

to obtain an exact sequence, starting with a certain sequence of homomorphisms. 

In this paper, we shall define exact sequences :EP (K) by applying White­

head' s method to the cohomotopy group of a complex K Œ 1 ). It is proved that 

:L;P (K) are invariances of homotopy type of complex K ( § 2), and that, as its 

special case, :Eo (K) may be regarded as a generalization of Spanier's sequence 

(§3, 4, 5). :EP (K) are also utilized to obtain a homotopy classification theorem 

and a corresponding extension theorem concerning mappings of a certain kind of 

an (n+2)-dimensional complex into S" Œ6). Furthermore we determine the 

n-th cohomotopy group of an A~-polyhedron in terms of its cohomology system 

Œ 7). At the end of this paper it is shown that two ~-polyhedra are of the 

same homotopy type if and only if their Spanier's sequences are properly 

isomorphic. 

I am deeply grateful to Prof. A. Komatu and Mr. H. Uehara for their kind 

advices during the preparation of this paper. 

~ 1. Exact sequences L;p(K, L) 

In the fust place, let us define an exact sequence :E abstractly, fol1owing 

). H. C. Whitehead [9]. 

Let r be an arbitrary fixed integer, and let (C. A) be the following sequence 

of groups and homomorphisms ; 

(1,1) 
~r-1 j' p ~q jHl 

cr-l ~Ar~ cr~ ...... ~ A q---+ cq---+ A Hl---+ C7+l---+ ...... . 

where Cq, Aq are arbitrary abelian groups and q is an integer such that q"2r. 
-l 

In this sequence it is assumed that rAq=[3q (0) for any q~r. but w-rcq-1 
-l 

= jq (0) is not al ways assumed. If we denote dq= j7+1fjq: Cq~CH1 , we have 
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-l 
dH 1dq=O. Let zq be dq (0), then we have dq-lcq-lczq. Now we define three 

groups rq , IIq , Hq with homomorphisms as follows : 

(1. 2) 

As to homomorphisms we define 
i ) !iq: Hq-"> r 1- 1 • Let z E Zq be a representative of a class of Hq, then 

-1 
dqz= jH1fJq z=O, so that {3qz E p+1 ( O)=rqn. Sin ce {3\dq-1CQ- 1 ) =fiq jq{3q_ 1cq-1 =0, 

a mapping z_..{jqz indu ces a homomorphism bq: Hq~ rq+I • 

ii ) F: rq_.. IIq . If rE rq, r is an element of A q . Th us we define iq such 

that r corresponds to a class of rrq containing r· 
iii ) jq: IIq_.. Hq. Let a E A q be a representative of a E IIq , then dq jqa 

= jH1Wjqa = 0, so that jqa E zq. Since jq/3q-1Cq-1 = dq-1Cq-l, a correspondence 

li-"> {jqa}' a class of Hq containing ra. indu ces a homomorpbism F: rrq_.. Hq. 

As a direct consequence of our definition we have, as is shown in [9], 

Lemma 1. The sequence 
ir iq iq bq 

(1. 3) :E: rr-+ rrr-+ ...... -+ rq-+ IP-+ Hq-+ r<+ 1 ----* ······ 

is exact. 
Next, we shall apply the above result to the cobomotopy group. 

Let K be a complex, the subcomplex of which is denoted by L, and let y be 

a fixed point of a k-sphere Sk. If din1 (K- L)<n and if n<Zk-2, we can defi.ne 

an addition among all the homotopy classes of mappings f: (K. L)-">(Sk, y), 

follow~ng Borsuk-Spanier. Thus we have the k-dimensional cobomotopy group, 

which is designated by rrk(K, L). Refer to E. Spanier [4] for detailed account. 

From now on we shall use terminologies and notations in [4], and it is assumed 

in §~ 1-6 that (K. L) is a complex pair with dim (K- L)~n. 

Let p be an arbitrary fixed integer, and let r(P) be the sma1lest integer 

satisfying 

(1. 4) r = r(p)~Max {1-+1--p, 3--2p}. 

Let us define Cq, A q, {jq, p in ( 1.1) as follows : 

cq = CHK. L) = n:PH(kq. kH) (q;;;;r(p)-1), 
Aq =A~ (K, L) = n:P+Q (K, kq-1 ) (q > r(p )) , 
Pq = /3~ (K, L) = .d: rrPH (Kq, kq-1 ) ___.. rr~>+Hl (K, Kq) 
jq = j~ (K, L) = ii;ii: rrPH (K, KH)-+ n:PH (Kq, Kq-1 ) 

( q-;?_ r(p) -1), 
(q?: r(p))' 

where Kq=KqUL, and .d is the usual cob:)Undary operator of the cohomotopy 

group and ii;ii is the homomorpbism induced by the incl us ion map i : (Kq , j{'1- 1 ) 

~(K. K1- 1).n L~t us remember here that groups and homomorphismus defined 

1) In the fo!lowing, for the sake of brevity, we shall cali a homomorphism between 
cohomotopy groups induced by an inclusion "inclusion homomorphism ". 
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above are not meaningless under the restriction in dimensions, which are indicated 

in the round brackets. 

Since the sequence 
i~ A 

rrPH (K, gq-1)-rrPH (Kq, gq-1)- rrP+H1 (K, Kq) 
-1 

is exact, we have FAq=fiq (0). Thus groups and homomorphisms, rq=I'j, 

(K. L), I1q=I1j, (K. L) W=I-Ij, (K. L) and F=ij, (K. L). F=i':, (K, L), Ilq=Ilj, 

(K, L) can be defined for any q?"_r(p ). From Lemma 1 we have 

Theorem 1. The sequence l.:=l.:v(K, L): 

~ ij ~ 
r~ (K, L)- TI~ (ILL)-······- I'j,(K, L)- ITHK. L)- I-IHK. L) 

fi~ 
-+I'~+l(K.L)-+······ 

is exact, where r=r(P)=Max(~-+1-p, 3-2P)· 

~ 2. Properties of r, TI, H. 

In this section we shall est3blish formai properties of r~ (K. L), II~ (K. L) 

and Hj, (K, L). 

I ) Consider the diagram 

A ~ ~ 
rrvH-1 (KQ-1, KQ-2)- rrPH (K, KQ-1)--+ rrPH (K, gq-2)--+ rrPH (KQ-1, KQ-2) 

tlZ-1 Il Il iZ+l: Il 
c~-1 (K, L) - AHK. L) A~+}(K, L) --+ CZ-:;i(K. L) 

in which the upper sequence is exact. Then from the definition of l'~+} (K, L), 

TI~ (K, L) we have immediately 

(2.1) fj,: II~(K,L)~rz:;:l:(K,L) 

for any q>r(p ), where f':, is the homomorphism induced by the inclusion homo· 

morphism rrvH.(K, Kq-1)__,.rrvH (K, K.q-2). 

II) Let p>1, then C~ (K, L)=rrP+q (Kq, gv-l )=0, so that we have 

r~ (K. L).,_,;A~ (K, L)=rrvH (K, K.q-1) for any q~r. Since the sequence 

A j~ i~ 

rrv+q-1 (Kq-1' L)- rrPH (K, Kq-1)- rrPH (K, L)-+ rrPH (Kq-1' L) 

is exact and since rrPH-1 (Kq-1 , L)=O, rrPH (Kq-1 , L)=O for p2l. we have 

71·P+Q (K, KQ-l)~rrPH (K, L). Thus we have 

(2. 2)1 f1: r~ (K. L) ~ rrPH (K. L) ' 

for p~1 and for q>r(p ), where f~ is the homomorphism induced by the inclu­

sion homomorphism rrPH (K, K.q- 1 )~nvH (K, L). 

III) From (2.1) and (2. 2), we have 

(2. 2)z 

for p>O and for q?r(p ). 
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IV) Let q'2'n. then we have nPH (K. Kq)=rr:PH (K. K)=O. From the 

e:x:actness of the sequence 
j~ i~ 

rr;PH (K. Kq)----+ rr;PH (K, K.q-1) __ nPH (Kq, K.q-1), 

it is concluded that i~ is isomorphic into, so that 

( 2. 3)1 

for any q;::;:Ma:x: (n. r(P )). 

V) From (2.1) and (2. 3)1 , we have 

(2.3)z II~(K. L) = 0 

for any q;:;>Ma:x:(n+l. r(p)). 

VI) By definition n.PH(K.q. f{q- 1 ) is isomorphic onto Cq(K.L: (P+qY).2) 

the q·dimensional cochain group, for q~2- 2p. W e denote this isomorphism by 

;j;~. Then it was proved by Spanier [4] that the commutativity holds in the 

diagram 
D. 

rr;PH(Kq. K.q-1) ----+ ~+Hl(j{H1, Kq) 

~!H EB ~!H 
Cq (K. L; (P+qf)----+ cm(K, L; (P+Q+l)H1 ) 

for q?;2- 2p, where à is the coboundary opera tor of the cocha in group, and E 

is the suspension of the coefficient group. From this fact, we have easily 

(2.4) 

for q~-:>:3- 2p, where <J/J, is the homomorphism induced by the isomorphism ;j;'J,. 
VII) Let n?:;r(p ), then from Theorem 1 the sequence 

~ b ~ 
r~(K. L)----+ II~(K, L)----+ H;(l(, L)----+ rJ+1 (K. L) 

is exact, and from (2.3)1 we have r;(K, L)=O, r;+1 (K. L)=O. Therefore we 

have 

(2.5) j~: II~(K. L) ~ H~(K. L). 

From (2.1), (2.4) and (2.5), it is concluded that 

(2.6) 

for n~3-2p. 

Thus we have proved 

Lernma 2. 

f~: II;\(K.L)~r;:;:l:(K.L) for q>r(p), 
n : II~ (K. L) ~ rr;PH (K. L) for p ;;.;;; 1 and q 2 r( p) • 

f'J,:;:l:f'J,: IIJ,(K,L)~ rr:PH(K.L) for p;::;:o and q~r(p), 

r;(K.L)=O lor q~Max(n.r(p)), 
II;\(K.L)=O for q Max(n+l.r(p)), 

2) We denote by qP the P·th homotopy group np(Sq) of a q-sphere sq. 
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c/J~: Hf,(K.L)~·fJq(K.L; CP+q)q) for q~>3-2p 

cpJ;jJ;f'i\-1: l'~:;:t(K,L)C;',f;;J"'(K.L; (n+P)") for n 3-2p 

?, 3. Invariance of l:v ( K, L) 

87 

Let ( K, L) and ( K' , L') be complex pairs with dim ( K- L )~n and with 

dim(K'-L')<n respectively. Let us considera cellular mapf: (K'. L')-? 

(K, L). then f induces homomorphisms 

nf~#: C~(K,L)~C~(K'. L'), 
Af~#: AaCK. L)~ A~CK'. L') 

for each q?;::r(p ), in virtue of f(Ï{-'q)CKq. And we have3) 

fJ~' cf~# = Af~>l' p~, , 
j~' Af~,"' = cf~>~' j~, 

so that Af~# induces homomorphisms rn: I'1(K. L)-~I'1CK'. L') and nn: 

II~(K, L)--?II~(K', L'), and cf~# induces a homomorphism Hn: HHK. L) 

--+ H~, ( K' , L'). Then it is seen that 

(3.1) 
i~' rÏ~ = nn i~. 

Î~' nl'i. = nl~ Î~ • 
oJ'nn=rW 1 fi~. 

Lemma 3. If f, g: (K', L')-~( K. L) are homotopical maps, we have 

rl1=rQ~ • n11=ng~ • and Hn=nQ~ · 

Proof. In virtue of the assumption there exists a mapF: (K'xJ, L'xl) 

->(K. L) such that 
Fo=F\K'xO=f, 
F1=F\K'xl=g, 

where 1 denotes the interval between 0 and 1. Further it may be assumed with· 

out loss of generality that F is cellular (i.e. F(K'q-1 xl)CKq for any q) [8]. 

i) rT=rQ· If rEI';(K.L), we have rEnvH(K,K'1- 1) and i#r=O. Since 

the sequence 
j# i"' 

71vH(K, Kq)~ 71vH(K, K.Q-1)~ 71vH(Kq, K.Q-1) 

is exact, r belongs to j#nPH(K,Kq), so that a mapt: (K.Kq}-""(sv+a, y) can 

be taken as a representative of r- Since F: ( K' xI, K'q-1 x J )--?( K, Kq ), we have 

tF: (K'xJ,K'Q-lxJ)---';(SPH, y). 

Therefore {tFo} =f"'r and {tF1} =g"'r represent the same element of 

rrPH(K', j(N-1). This proves rT=rQ· 

ii ) nf= ng . The commutativity holds in the diagram 

3) We agree that i, j, ~. i, j,b in the complex pair (K', L') are denoted by i', Î', W,i, j',b'. 
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jlt< -
n;'PH (K', K'q-1 ) --'nr'P+q (K', K'q-2 ) 

l f qo\f l fQ-1off 
A p j'off A P+1 

n;'PH (K. K:Q-1) - n;P+Q (K. KQ-2)' 

where j#, j'# are the inclusion homomorphisms. Therefore, if f~: II$ (K, L) 

_..n+~ (K. L), f~': IIi, (K', L'}~f'~+l (K', L') are the homomorphisms induced 

by j#, j''"' respectively, we have 

1$' nT~ = rT~+l: f~ · 
By the same process with respect to g we have 

f~' n\1~ = r\1~+~ f~ · 

From these, together with i), we have 

rZ' un = fft' nil~ 4) • 

As f~' is an isomorphism4) from (2.1), we have 

nT~ = n\1~ • 

iii ) nT =u\1. Let {a} E n;PH-1(K'G-l, j{IQ-2) and let a: (K'Q-1, f(IQ-2)- csP+Q-I, 

y) be a representative of {a}. Then we shall define a mapE~(a): (K'q-1 XJ, 

U?'q-1 x 1)7-1 )--'>( SP+Q ' y) by 

Ei,(a)(x.t)=rp(a(x),t) for xU{'H, tEJ, 

where rp: SPH-1 xi_..SP+Q maps (yxl)U(SPH-1 xû)U(Sll+Q-lxl) into a point y 

and elsewhere topologically onto SPH-l_ y. If E ~'"': n;PH-1 (K'q-l , K'q-2 ) ___.. 

nPH(j('<J-1 xJ, (Kq-1xl)7- 1 ) is a homomorphism such that {a} corresponds to 

{E~(a)} En:'P+Q(K'Q-1 xJ, (K'q-1 xl)H), Ei,'"' is evidently an isomorphism for 

q>3-2p in virtue of Freudenthal's suspension theorem. Moreover F\K'q-1 xi 

maps K'q-1 xJ, (K'q-1 xl)7- 1 into j('l, KQ-1 respectively, so that it induces a 

homomorphism 
F~'"': n'PH (Kq, j(7-1)- n;PH (K'q-1 xJ, (K'7-1 x !)7-1). 

If we put $i,=EZ'"'-1F~#, $1, is a homomorphism n;P+Q CKq, K:Q-1 )--'>nPH-l 

CK'q-1 , K'q-2 ). Namely we have the homomorphism Çi,: Ci, (K, L) 

____,c~-1(K', L'). Then it can be proved as in the classical chain homotopy theory 

that Ç~ bas a property ;5) 

cf~#-cg~# = ~~+ldi,+d'~-1Çi,, 

so that uT1=n\1~. This completes the proof of Lemma 3. 

Theorem 2. If two complex pairs (K, L), CK', L') with dim (K-L)~n 

and dim CK'- L')::;n are of the same homotopy type. LJP (K, L) and LJP CK', L') 

are isomorPhic. Namely, there exists a family of isomorPhisms T={rT1· nT~. 
uT1} such that the commutativitY holds in each rectangle of the diagaam 

4) An isomorphism, without qualification, wiil always mean an isomorphism onto. 
5) Such a homorphism; is called a homotopy op-;vator for f# and g# in the classical theory 

of chain homotopy (cf. S. Lefschetz: Algebraic Topology (1942)) 
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i i 
r~(K. L) -4II~(K, L) ---+ ··· ---+r~(K. L) -4 

( 3. 2) l rf i' l rr T l r T i' 
r~(K', L')---+II~(K', L')---+··· ---+r~(K', L')---+ 

j li 
II~(K. L)~4 H~(K. L)---+rJ+1(K. L)---+ ······ 

l nT j' lut li' lrr 
II~(K', L')-4 H~(K, L)~-~r~+1(K'. L') ~4 ······• 

where r=r(p);?Max ( ~ +1-p, 3-2p). 

Proof. As was shown in [8], homotopy equivalences f: (K', L')~(K. L) 
and g: (K. L)~(K', L') can be as~umed to be cellular. If rf~: r~(K. L) 

--.n(K', L'), rrTZ: II~(K.L)->IIHK'. L'), nf~: HHK.L)->H~(K'. L') are 
isomorphisms induced by f, it is seen from (3.1) that the commutativity holds 

in each rectangle of (3. 2). 

Let dl~: r1 (K'. L')~r1 (K. L), nil~: II~ (K', L')~II~ (K. L), nil~: 

H~ (K', L')-HZ (K, L) be homomorphisms induced by g and let rOll)~: 

r~ (K. L)-r~ (K. L), rrC Til)~: II~ (K. L)->II~ (K. L), nCfll)~: H~ (K. L) 

-H~ (K. L) be homomorphisms induced by /g: (K. L)->(K, L). Then, since 
tg is homotopie to the identity, it follows from Lemma 3 that the homomorphisms 

rOll)~ • rrCTil)~. uCfll)~ are all the identities. As is easily seen, we have rOll)~ 

=rll~rn• rrCtll)~=rrll~rrn• nCTil)~=nll~nf~. Thus rll~· nil~· Hll~ are ail onto and 
rn. rrn. nT~ are ali isomorphi~.ms into. Again, using gf =1: (K', L')_,( K'. L'). 
we see that rll~. nil~' nil~ are ail isomorphisms into and rn' nn. un are ali onto. 
Thus Theorem 2 is established. 

\:'; 4. Properties of i, j, '6. 

In this section we shall prove several properties of i, j, o. 
Lemma 4. In the diagram 

i 
rJ-1 (K. L) ~ II(l-1 (K. L) 

l'i 1 c,bjf-l A /Ill ff 
oP" (K, L. (n-1)") ~ nn-l (K, L) 

the commutativity holds, where n~~5 and A is the homomorPhism which was 
given by E. SPanier [4, \:'; 20]. 

Proof. [i-1 , i and ff are induced by the inclusion homomorphisms, 
n"-1 (K. gn-1)_,nn-1 (K, gn-2), n"-1(K. gn-2)_,nn-1(K, K"-2) and n"-l(K. gn-2) 

->rcn-1 (K. L) respectively. So ffHj-1 is induced by the inclusion homomorphism: 
n"-1 (K. gn-1)-•nn-1 (K, L). Thus A' =ffi (c,Vj(-1)-1 is a homomorphism such 
that we describe below. {z} E oP" (K, L, (n -1)") is represented by a cocycle z 
su ch that for an n-cell a" , z (a") is an element of rr,. ( S"-1 ). Let r;.: K __,.sn-I be 

a map such that (J.IK"-2=y, and (}.la" represents z (a"). Then {z} corresponds 

to {a} E rr'H (K, L) by A'. This is the definition of A. Thus A' =A. and :so 
Lemma 4 is proved, 
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Lemma 5. In the dz"agram 
j 

ITg (K. L) ~Hg (K, L) 

ill 1 u ~ ill 1 'l' 
nq(K.L) ~fijq(K,L; qq), 

the commutativity holds, where q~Max ( ~ +1. 3). and if> is the natural homo· 

morphism of the cohomotopy group into the cohomology group [4, § 17], 

Proof Since U is induced by the inclusion homomorphism: nq (K, f{q-1) 

--'>nq (K. L) and since j is induced by the inclusion homomorphism: nq (K, K.q-1) 

--'>TCq (Kq, j{'l-1), <Oi (f[)- 1 is a homomorphism, by which a E nq (K, L) corresponds 

to an element of .f)q(K. L. qq) containing (Ï;j""(lk)#- 1 a. This correspondence is 

nothing else but the definition of if>. This proves Lemma 5. 

the commutativity 
rf'~j_2j~j_2[~j_c1liô = Sq2rf'ô 

holds true, where q:2;Max ( .1~-, 3) .6> 

Lemma 7. In the diagram 
li~1 {1;_~2 j<;_~2 

H~1 (K. L) ·--> r~11 (K. L) ~ IT~~2 (K, L)~ H~~2 (K, L) 

ill l'l'ô = Sq~ Ill 1 4~12 
fijq (K. L; (q-1)q) ,. ,Pq+2 (K. L; qQ+2) 

the commutativity 

holds true, where q>Max ( 1-+1, 5). 

Before we prove Lemmas 6 and 7, let us consider more generally 
,_q "q+2[Q+2- 1"q. Hq (K L) HH2 (K L) "P=lP-11l-l <'P • P • --; P+l • • 

In the diagram 

h# 
( 4. 1) nPH (fi.H1 ' K.q-l) ~ nP+q (Kq ' Kq-1) 

Az' lA' h# 1 AI' i2# ~ 
nPH (K.Q+1, Kq) ~ nPH+l (K. JI.q+l) ~ nP+H1 (K, Kq) ~ nP+Hl (j(H1, Kq) 

0 .li~ 
TCP+Hl (j(H2, fi.Hl) , 

6) In the following, the group multiplication with respect to squaring operation Sq2 is always 
defined such that the product of the generator and itself is the generator. 
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let .J', J 1 , Ji, J2, Ji, be the coboundary operators, and let i*, i2*, h*, h* 
be the inclusion homomorphisms. Then the commutativity holds in a rectangle 

and two triangles in ( 4.1). If {a} is an element of H~ which is represented 

by a E nP+q (i('l, j(_Q-1), we have Jw=O, and !l~ {a} E H~:':i (K, L) is repres.ented 

by i*h*-1Jr' a. In virtue of the exactness of jrifli, J 1 , there exists an element 

bE nP+q (i(H1 , Kq-1 ) such that jr#b=a. And we have 

N'~ (J'b- h""'- 1 J{a) = jz#J'b-Jia = .:lijrffb-Jia 
= Jia-Jia =O. 

From the exactness of .:1~, jz#, there exists an element cE nv+G (Kn1, i{q) such 

that J'b- jz#- 1Jia=J~c. And we have 

i#J'b-i#jziili- 1Jia = i#J~c = .:/2c 

Therefore wehave {Jb}={i#jzff- 1Jia}=!l~ {a}. where J=i#.:J': n1'H(i(H1, K.q-1) 

~nvH+1 (i(H2 , j(n1 ). Thus we establish 

( 4. 2) !l~ {a} = {Jjrff-1a} . 

Proof of Lemma 6. Let Mn2 be a complex SqUeH2 , where en2 is attached 

to Sq by an essential map: Ëq+ 2_,Sq •. In this complex, it is easily seen from ( 4. 2) 

and from [5, § 20] that s& corresponds to Sqz by rf;. A proof for a general complex 

is given as follows. 

Let {a} E Hfi (K, L) be an element which is represented by a E nq (Kq, J?.H) 

and let a be represented by a map f: (j{'l , K.q-1 )-.(Sq , y). U sing the notations 

in ( 4.1) we have J 1a=0, so that a belongs to the image of jr#. Thus f can 

be extended to a map Ï: (i(H1, K.Q-1)--->(Sq, y). Since 7rq+r(MH2)=0, ï can be 

extended again to a map /: (Kn2, KH1)->(MH 2 , Sq). Then we have a diagram 

j1# ~ 
nq (Kq, j{q-1) +----- nq (J?.H1, K.q-1) -~ nq-1 (KH2, gn1) 

rf# h# If# ~ rf# 
nq(Mq, Mq-1)«-nq(Mn, MQ-1)~nH1 (MH2 , Mn1), 

where the commutativity holds in each rectangle. If {a0 } is an element of 

Hg (MH2 ) which is represented by the generator ao of nq (Mq, MQ-1), we 

have 
Sqzrp {a0} = rf;sg {ao} , 

from the fact that Lemma 6 holds in Mq+z. Therefore we have 

Moreover we have 

and 

-- --

f*SqZrf;{ao} = ftrpsg {ao}. 
- -

f*Sq 2rf; {a} = Sq2f*rj; {ao} 
= Sqzrp {f#a0 } = Sqzrp{a} , 

~' =c • -1 = . -1 f*rf;sg {ao} =/*rf; {J11# ao} =rf; {f#J11# ao} 
=rf; {JÏ*jr#-1ao} = cJ! {Jhr1 f#ao} 

c= cjJ {Jjr#-1a} = cj;gg {a} . 
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Therefore we have 

This proves Lemma 6. 

Proof of Lemma 7. It is easily verified that Lemma 7 holds in a special 
complex NH2=MH2UeH1 , where eH1 is attached to SQCMH2 by a map 

ËH1_,.Sq of degree 2. Now, let K be an arbitrary complex. {a} E H~ 1 (K, L) is 

represented by an element a E nq-r (Kq , K_Q-I ), which is represented by a map 

f' : (Kq, K_Q-1 )->(Sq-r, y). Then it may be assumed that f' =n · f, where f is 

a map(f(q, Kq-1)->(Sq, y) and 7J is an essential map (Sq, y)->(SH, y). Since 

.J1a=0, f' can be extended to a map ï': (KHI, f{q-1 )->(SQ-1 , y). Thus for a 

(q+1}cell aH1 , fJ,;H1 is a map ,;Hr_,.sq of even degree. If we consider Sq as 

the q·sphere of NH1 , f can be extended to a map ï: (f{H1 , j{q-1) 

->(NH1 , Nq-1 ). Since 7rq+ 1 (NH2)=0, Ï can be extended to a map 

1: (Kq+2 , Kq+ 1 )---"(Nq+ 2 , Nq+ 1 ). Then in the diagram 

j>'f Il 
nq-1 (Kq, gq-1) ~ nq-1 (f{H1, KQ-1) ~ nq (f{H2, j(qH) 

1 f# j>'f Jf# Il lt*" 
nq-r (Nq' Nq-1) ~ nq-1 (NHl, Nq-1) ~ nq (NH2, NHI)' 

the commutativity holds in each rectangle. If {ao} is an element of H~ 1 (NH2) 

which is represented by the generator a 0 of nq-l (Nq, N 7- 1), we have a=f#a0 • 

From the consideration that Lemma 7 holds in Nq+ 2 , Lemma 7 can be easily 

deduced in a general complex through an analogons way as Lemma 6, by the 

aids of (4.2) and of a=f#a0 • 

§ 5. Exact sequence of E. Spanier 

Let n>6 and let us consider the diagram 

i 0 
Il3-2 (K, L)----* H3-2 (K. L) _,.r~-r (K, L)---~----c> Il3-r ~K. L) 

( 5. 1) lill ff ;6 11114 Sq 2 lill <J; if -r L\ lill ff 
n"'-2 (K. L) _,. .\)"-2 (K. L; (n-2)"-2 ) _,..\)"(K. L; (n-1)") ~ n"-1 (K. L) 

i 0 i i 0 
~ H3-1 (K, L)-------;. r3(K, L)-+ ITHK. L)---c> H3(K, L)-+ r3+1 (K. L) 

~ lill o/ lill lill f( ~ lill <j; lill 
~·f>"'-1 (K,L; (n-1)"-1)---c>O---~n"(K,L) ---c>i()"(K.L; n")~O. 

This diagram bas the following properties : 

i) The upper sequence :.Eo (K, L) is exact by Theorem 1, 

ii ) the vertical homomorphisms are all isomorphisms in virtue of Lemma 2, 

iii ) the commutativity hoJds in each rectancgle by Lemmas 4, 5 and 6. 

Therefore the lower sequence of ( 5. 1) is also exact. Th us we have 
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Theorem 3. (E. Spanier) Let (K, L) be a complex Pair with dim (K- L) 

<n (n>6). Then we have the exact sequence 

~ ~ A 
rc"-2(K, L) ~ f)"-2(K, L; (n-2)'H) ~ f)"(K, L; (n-1)")~ rc"-1(1(, L) 

~ ~ 
~s:;,n-l (K, L; (n-1)"-1)-0- re" (K, L)- f)" (K, L; n") ~ 0 

Remark. We see that this theorem is proved for n>-5. if rc"- 1 (K. L) is 

discarded. 

~ 6. Homotopy classification of mappings of certain complex K into an 

(n-2)-sphere sn-z. 

Let n>7. Applying Lemmas 2 and 7 to the exact sequence :E-1 (K, L), we 

have a diagram 
li i j li 

H':J:2(K, L) ~---~ r':J:1(K, L) ~ Il':J:1(K, L)- H':J:1 (K. L)- r': 1 (K. L) 

(1! l'Ji Sq2 (Ill '1- jf-1 (1! l ~ (Ill 
.y:yn-2 (K. L; (n -3)"-2)--+ f)" (K. L; (n-2)") s:;,n-z (K, L; (n -2)"-1) ~ 0 

in which the commutativity holds. From this we see that II~J:1(K, L) is a 

group extension7) of .~n (K, L; (n-2)")/Sq2,~"-2(K, L; (n-3)"-2) by f)"-1(K, L; 

(n-2)"-1). And we have (: Il':J:1(K, L)~ra-2 (K, L) 

(6.1) r&-2 (K. L) is a group extension of f)"(K, L; (n-2)")/Sq 2 ·~"- 2 (K, L; 

(n-3)"-2 ) by s:;,n-1 (K, L; (n--2)"-1). 

Now, let us assume (K, L) to be a complex pair such that Sq2: I)"-2 (K, L; 

(n-2)''-l)__..,.s:;,n (K, L; (n-2)") is onto. Then from (6.1), we have 

(6, 2) <,bj(- 1 : r~-2 (K. L) ~ ·~"-1 (K. L; (n--2)"-1). 

Consider the diagram 

j li 
IIE-3 (K. L)- H~-3 (K. L)- - n-2 (K, L) 

(6. 3) (1! 1 H ~ (Ill~ sq1 (Ill 'l' jf-1 

rcn-3 (K, L) ~ ,~n-3 (K, I; (n-3)"-3)- .~n-1 (K, L; (n-2)"-1) 
i j fl 

~rro-2 (K, L)- HE-2 (K. L) - ro-1 (K, L) 

(lllff ~ (Ill·~ Sq~ (111·1-if-l 
~rc"-2 (I(, L) - ·~"-2 (K, L; (n-2)"-2)- f:J" (K. L; (n-1)"). 

This diagram bas the following properties: 

i) The upper sequence :Eo (K. L) is exact by Theorem 1, 

ii ) the vertical homomorphisms are all isomorphisms in virtue of Lemma 

2 and (6. 2). It should be noted tbat for n=7 the first vertical 

homomorphism is meaningless, 

7) Let A, C be groups and let B be a subgroup of A. If there exists a homomorphism 
of A onto C with kernel B, we cali that A is a group extension of B by C. 
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iii ) the commutativity holds in each rectangle by Lemmas 4, 5 and 6. 

Therefore the lower sequence of ( 6. 3) is exact, so that we have 

Theorem 4. Let n'?7 and let K be a complex pair with dim (K-L)<n 

such that Sq2: f)"'-2(K, L, 1 2)-.f,;!" (K, L; 1 2)8) is onto. Then n"-2 (K, L) has a 

subgroup isomorPhic to ô"'-1(K, L; 12)/Sq2f)"'-3 (K, L; I) and the factor group by 

this subgrouP is isomorphic to the kernel ofSq2 : f)"- 2 (K, L; 1)->f.;!" (K. L; Iz). 

Furthermore we have the corresponding extension theorem ; 

Theorem 5. Let n?:_S. Let K be an n-dimensional complex such that 

Sq2: f)"-2(K,J2)->f,;J"(K,Iz) is onto and let L be its (n-3)-dimensional sub­

comPlex. In order that a maP f: L--s"-3 is extendable to K. it is necessarY 
and su fficient that there exists u E f)"-3 (K ; I) such that 

f* {s"-3 } = i* {u} , 

and Sq2 {u} = 0, 

where {s"-5} is the generator of f)"-3 (S"-3 ; 1), f*: ~"-3 (S"-3 ; I)__,..~n-3 (L; 1), 

i*: f)"-3 (K; I)->f,;J"-3 (L; I) are the homomorphisms induced by f and the 

injection i: L->K respective! y, and Sq 2 is the homomorPhism of .y;r-3 (K; I) 

to f)"'-1 (K,J2)· 

Proof. N ecessity. Let 1: K __,.sn-3 be an extension of f, and let 

{u} =l"' {s"-3}. Then we have 

i* {u} = i* 1* {s'H} = Cl i)* {s"-3} = f* {s"-3} • 

As from ( 6. 3) the sequence 

is exact, we have 

Sq2 {u} = Sq2f* {s'H} = Sq2~- {!} = 0, 

Sufficiency. As we have Sq2 {u} =0, from (6. 3) there exists {g} E n"-3 (K) such 

that ~ {g} = {u}. Since the commutativity holds in the diagram 

we have 
~ U} = f* {s'''-3} = i* {u} = i* ~ {g} 

= (fiï!?l {g} = (fi {gi} . 

As L is (n-3)-dimensional, if; is an isomorphism from Theorem 3, so that we 

have { fl = {gi}. Name1y we have 

f~ gi""' gjL. 

8) I,. denotes a cyclic group of order h, and 1 denotes a rree cyc!ic group. 
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Since g 1 L bas an extension g: K __,.sn-3 , f can be also extended to K in virtue 

of the homotopy extension property. 

~ 7. The n-th cohomotopy group of an A~-polyhedron 

Let K be an (n+2)-dimensional complex with rr1 (K)=O for i<n-1. Accord­

ing to ]. H. C, Whitehead, we refer to such a complex as an Ai\-polyhedron [7]. 

In this section, we shall calculate the n-tb cohomotopy group of an A~-polyhedron 

in terms of its cohomology system. 

First we prove 

Lemma 8. Let n?_5. Let K be an A~-Polyhedron. then we have 

rr"' (K) ~ n (K) ffi~" (K; 1)9> 

where I'~ (K) is a group extension of ~"+2(K; 12)/Sq 2 ~"' (K; Jz) by ~"+1 (K; lz). 

Proof. Con.sider the diagram 

li i j li 
Ha-1 (K) ~ I' J (K) ~II'~ (K) ~ H~ (K) ~ I'ô+l (K) 

lill ~ lill f( ï6 lill <ji Sq 2 lill ~ j ( -l 

.<Qn-l (K; l) rr"' (K) ------* ~"' (K; I) ~ ~n-Z (K; lz) · 

This diagram bas the following properties : 

i ) The upper sequence is exact by Theorem 1, 

ii) the vertical homomorphisms are ali isomorphisms by Lemma 2, 

iii) the commutativity holds in each rectangle by Lemmas 5 and 6, 

iv) as K is (n-1)-connected, .'f)n-1 (K; /)=0 so that i is isomorpbism into, 

v) :0"' (K; l) is free abelian bec::tuse K is ( n -1)-connected, and 

~"+ 2 (K; I 2 ) is finite, so that the kernel of Sqz is isomorphic to 

~n (K; l). 

From these facts and from (6.1) we have immediate1y Lemma 8. 

We shall determine rr" (K) more precisely. 

Let (a1 , · ·· , am) be a system of independent generators of ~"'+2 (K; 1), where 

at is of order tli if i< t and at is of infinite or der if t + 1 < j ;;;;,m. Furtber let tlt 

be a power of a prime =F2 if i<s ( <t) and let a, be a power of 2 if s + 1~i<t. 

Then 2(~"-2(K; J)) is generated by (-~ tls+Ws+l, ······, -}- atat) and ~"'+ 2(K; h) 

=(~n+2(K; I) )2 is gçnerated by (iïs+I, ...... ,am), where a1 is the class of at 10\ 

Let A(K) be a group extension of ~"+2(K; lz)/Sq2 ~n (K ; lz) by 2( ~n+2(K ; 1)) 

determin.ed by the relations : 

{ 2a; = p.li; , 

2a; = 0, 
if tli = 2' 
otberwise, 

9) If A, B are any abelian groups, A EB B will always denote their direct sum. 
10) Let G be an abelian group, then G2 =G/2G, and 2G is the subzroup ot G which consists 

of <\Il the element g such that 2g~O. 
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for i =s + 1. ...... , t. where (as+l, · · · · ··, w) are representatives in A for ( ~- as+1as+1 • 

. . . . . . , -~- atat) and p. is the natural homomorphism ~"+ 2 (K; 1 2)--> 

~"+2( K ; 12) /Sq 2,f;)" ( K ; 12 ). Then we have 

Theorem 6. Let n:25 and let K be an A~-polyhedron. Then the n-th 

cohomotopy group n" (K) is given in terms of its cohomology system as 
f ollows: 

(7.1) n" (K) ~ ~" (K; 1) ffi (~"+ 1 (K; 1) )2 ffi A(K). 

Before we proceed to prove this theorem, we shall remember two following 

definitions. 

1) An elementary A~-Polyhedron. This is one of the following kinds [2], 

[6]: 

i) B~=Sr (r=n. n+l. n+2), 
ii) B 2 (a)=S"Uen+1, where e"+l is attached to S" by a map Ji»+1-.S" of 

degree a, a power of a prime, 

iii) B3 (~ )=Sn+1 Ue"+2, where e"+2 is attached to S"+1 by a map Èn+2_. S"+l 

of degree r, a power of a prime, 

iv) B 4 =S"Uen+2, where e"+2 is attached to S" by an essential map 

Èn+2->S"' 

v) Bs (2P)=S"Ue"+IUe"+2 , where e"+l is attached to S" by a map E"+1->S" 

of degree 2P and e"+2 is attached to S" by an essential map É"+2_.S", 

vi) B6 (2'l)=(S"vS"+1)Ue"+21l>. where e"+2 is attached to S"vS"+1 bya 

tnap È"+2->S" v sn+l of the form a+ b ; a is an essential map É"+2_.sn 
and b is a map E"+2->S"+1 of degree 2q. 

vii) B 1 (2P, 2q)=B6 (2q)Ue"+l, where e"41 is attached to S" in B6 (2q) by a 

map E"+l->S"' of degree 2P. 

2) A normal A~-polyhedron. We mean by this a polyhedron which consists 

of a collection of elementary A~-polyhedra with a single point in common. 

Proof of Theorem 6. Note that there exists a normal A~-polyhedron which 

is of the same homotopy type as K [2] [6], and for two elementary A~-polyhedra 

B. B' we have 
n" (B v B') ~ n" (B) ffi n"' (B'). 

~"+ 1 (B v B'; 1) )2 ~ ( ~"+ 1 (B; 1) )2 ffi (~"+ 1 (B'; 1) )2, 
~n (B v B'; 1) ~ ~" (B ; 1) ffi ~" (B' ; 1) , 

and A(B v B') ~ A(B) ffi A(B'), 

Then we see that it is sufficient to prove Theorem 6 for each A~-polyhedron. 

First we shall calcula te the left band of ( 7. 1 ), the n-th cohomotopy group, for 

each elementary A;-polyhedron. It follows from cohomological computation that 

11) We denote by A v B the union of two spaces A and B with a single point in 
COJIUnOn, 
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i) 

ii) 

nn(BV c:;-- 1, 

nn(B2(a))=O 

~h 

iii) nn(B3(-r))=0 

nn (B3 (-r) )/12~ h 
iv) nn(B4)~1. 

nn(B~41) ~ 12, n"(B~42) ~ h • 

if a is a power of a prime =P2, 

if a is a power of 2, 

if -r is a power of a prime =P2, 

if -r is a power of 2, 

V ) nn (Es (2P)) ~ 12 • 

vi) nn(B6(2q))~f28j1, 

Moreover as tor the group extension of iii), we have 

iii )i nn (B3 (-r)) ~ h ffi 12 if -r is 2P (p/1), 

iii )~ ~ 14 if -r is 2. 
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iii )i follows from arguments similar to tho se used in the proof of Lemma 3. 6 

in P. J. Hilton [3], and iii)~ is the result due to M. G. Barratt and G. F. 

Paetcher [1]. 

Second, if we calculate the right band of (7. 1) for each elementary 

A;{-polyhedron, we sha11 easily find the same group as the above. Thus Theorem 6 

is true. 

Remark. Compare Theorem 6 with the one due to Hilton [3] with respect 

to the determination of the (n+2)-nd homotopy group of an A~-polyhedron in terms 

of its homology system. 

~ 8. Homotopy type of an Ah·polyhedron 

J. H. C. Whitehead explained how the homotopy typê of an A~-polyhedron 

can be describê::l in terms of cohomology [7J. We shall again deal with this 

problem in this section. 

Let n>-3. and let K be an Ai,-polyhedron. Le:t L:"' (K) be the part of L:o (K) 

which begins with Hn (K): 

li . i i 
Hg (K)--. f'l:+l (K)-----* liS+l (K)-----* Hg+l (K)-----* ······. 

Then it fo11ows from Lemma 2 that 

rô+l CK) ~ CH3+2 CK) )2. ro+2 CK) = o 

and r6 (K), II& (K), Hb (K) are ali zero for any i>n+2. On the other band, 

let L: (K) be the exact sequence of ). H. C. Whitehead which is defined by bis 

using the homotopy group (cf. [9] Chap III), and let L:n+ 2 (K) be the part of 

:E (K) wbich begins with Hn+2 (K): 

li i j 
Hn+2 (K) --. ru+l (K)-----* IIn+l (K)-----* Hn+l (K)---? · ··· ·· 

It is known that 

rn+l (K) ~ (Hn (K) )2, rn= 0 

and ri (K), IIi (K), Hï(K) are ail zero for i<n. 
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Assume that K' is also an A;-polyhedron. W e shall then defi.ne proper 

isomorphisms of 1.:" (K) to 1.:" (K'), I:n+z (K) to L:n+z (K'), L:n+z (K) to 

I:" (K') and 1.:" (K) to L:n+z (K' ). Since all of these can be defi.ned in the 

same manner, we shall here denote only the definition of a proper isomorphism 

of the last one. 1.:" (K) is calied to be properly isomorphic to L:n+z (K') if and 

only if there exists a family of isomorphisms P= {rP, nP, HP} such that the 

commutativity ho1ds in ea'ch rectangle of the diagram 

H~ (K) ~ l'~41 (K) ~ II~41 (K) ~ · ·· ~ II~+z (K) ~ H3+2 (K) ~ 0 ~ 

l HP" l rPn+l l nPn+l l nPn+2 l HPn+2 

H,+z (K') ~ r,.+l (K') ~ IIn+1 (K') ~ ... ~II, (K') ----+ H,. (K') ----+ 0----+ 

and such that rP"+I is identified to the homomorphism induced by HPn+z if we make 

the identification l'J+1 (K)=(Hg+I(K))2 and l\+,(K')=(H,.(K'))2 • Then we 

denote 1.:" (K}=~:e:L:n+z (K') and ca11 that p is a proper isomorphism of 1.:" (K) 

to L:n+z (K'). The following Lemma 9 is proved by the arguments similar to 

those used in the proof of Theorem 16 in [9]. 

Lemma 9. Two A;-polyhedra K and K' are of the same homotopy type 

if and only i/ L:n+2 (K)=L:n+2 (K'). 

Now we shall define a "co-polyhedron" P* of a normal A~-polyhedron p as 

follows. As for elementary one, we define: 

ii) Bz (O')*=Bs (0'), iii) Bs (r')*=Bz (r), 

iv) B4*=B4, V) Bs (2P)*=B6 (2P), 

vi) B6 (2q)*=Bs (~), vii) B 7 (2P, 2q)=B7 (2q, 2q). 

When P is a normal A~-polyhedron, the "co-polyhedron" P* of P is the one 

which is obtained by replacing each elementary A~-polyhedron B of with its 

"co-polyhedron" B*. Then P* is also a normal A~-polyhedron which is 

dimP*=2n-dimP+2, and we have P**=P. Furthermore we have 

Lemma 10. For anY normal A~-Polyhedron P and ifs "co-Polyhedron" 

P*, 1.:" (P) is properly isomorPhic to L:n+z CP*). (If n~4. we have I:"-1 (P) 

=L:n+s (P) more strongly.) 

Proof. As for elementary A~-polyhedra, we assert this Lemma by inspecta­

tian, This can be shown easily, so that we wili merely list the following table 

of homotopy groups and cohomotopy groups. 



~1 
,..n 1 

---

rcn+l 

---

sn 1 

1 l 
1 

I 
1 

-1 
0 

----

tt 
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sn+l l sn+2 l 

lz lz 

I h 
---

,n (Bz (a))~"n+2 (Bz (a)* ~/2 
~o 

n"' (Bg (r))~"'n+2 (B3 (r)*)~/4 
~lz ffi/z 
~o 

if a is a power of 2, 
otherwise. 
if r=2, 
if r is a power of 2 and =!=2, 
otherwise. 

ttt ,..n+J (B3 (r))~"n+l (B3 (r)*)~/2 if r is a power of 2, 
otherwise. ~o 
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Generally, as for a normal A~·polyhedron, Lemma 10 foUows from that it is true 

for elementary A~-polyhedra, and from the following fact: If B 1 , B 2 be elemen­

tary A~·polyhedl a, the following theorems hold for I'ô, II ô, Hô; I'; , II;, H, ; 

i, j, li (i=n. n+l, n+2) [2] [3]: 

I'o CB1 v Bz) ~ I'ô (B1) tB I'ô (Bz), 
IIi (B1 v Bz) ~IIi (BI) ffi IIi (Bz), 

i = h + iz , li = li1 + liz, 

where h, li2 , · · ·· ·· are the homomorphisms i, li, ...... for B 1 , B 2 , ...... respectively. 

Finary corresponding to Lemma 9, we have 

Lemma 11. Two A~·Polyhedra K and K' are of the same homotopy type 

if and ont y il :2:" (K)""":E" (K'). 

Proof. N ecessity. Let K and K 1 are of the same homotopy type, and let 

f: K'~K be a bomotopy equivalence of K and K 1• Then if rTJ: r& (K}-~I'ci (K'), 

nTÔ: ITô (K)-IIô (K'), nTÔ: Hô (K)->-Hô (K') are homomorphisms induced by f, 
it follows from Theorem 2 tbat t= {rf, nT, nU is an isomorpbism of :E"(K) 

onto :En(K'). Therefore it is sufficient to prove that rf~+l is identified with 

the homomorphism induced by nfô+2 when we make the identification (}: I'J+1 (K) 

=(H3+2 (K))z and (}': I';;+1 (K')=(H3+2 (K'))2 • Let J: fij"+ 2 (K; I) 

-.S)"+ 2 (K; Iz), ).': S)n+z CK'; l)->-S)"+ 2 (K'; 1 2 ) be the natural homomorphisms, 

then ). and J' are onto and we have 

(} = <P8+z-1 ;.-lq,~,12i::12 e~z' (}' = <P'ô+z-l ).' <P'::1zi'::12 f'::12 . 

Since the commntativities : 

nff=l'rf• Hti=i'nf, /*rJ!=rJ!'uT• /*À=À'·f* 
hold, we have easily 
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B'rT~+ = Hm+ 2o · 
Thus T is a proper isomorphism. 

Sufficiency. Let P and P' be normal A~-polyhedra which are of the same 
bomotopy type as K and K 1 respectively. Then we bave 

l..:n (K) = :2..:" (P), :2..:" (K') = :2..:" (P'). 
Thus we have 

(8.1) :2..:" (P) = :2..:" (P') 
by the assumption of the sufficiency. 

Let P* and P'* be "co-polyhedra" of P and P' respectively. Then it foJlows 

from Lemma 10 that 

(8. 2) :2..:" (P) = l..:n+2 (P*), :2..:" (P') = l..:n+2 (P'*). 
From (8.1) and (8. 2), we have 

l..:n+2 (P*) = l..:n+2 (Pq*) 
so that P* and P'* are of the same bomotopy type in virtue of Lemma 9. 

Since P* and p'.J< are normal, we see P*=P'*. Thus we have P=P** 
=P'*-l<=P'. Therefore K and K 1 are of the same homotopy type. 

Let S" (K) denote the part of Spanier's exact sequence which begins with 

f?"(K; I): 

Sq< A 9ï ;iï 
~" (K; I)~~n+2 (K; I 2)~rc"+ 1 (K)~~"+1 (K; I)~ 0 ~rc"+ 2 (K)~S:Y"+ 2 (K; I)~ 0 

We shall now defi.ne a proper isomorphism of S" (K) onto S" (K') in the 
similar way as the definition of an prop;::r isomorphism of :2..:" (K) onto :2..:" (K'). 
Then the following theorem is the direct consequence of Theorem 3 and Lemma 11. 

Theorem 7. Let n~3.l2) Two A~·Polyhedra K and K' are of the same 
homotopy type if and only if their Spanier's sequence S" (K), S" (K') are 
properly isomorPhic. 
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