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Introduction

A fundamental problem in algebraic topology, the calculation of homotopy
groups 7S") of spheres, was initiated by studies of several authors ; Brouwer’s
degree, Hopf’s invariant and Freudenthal’s suspansion method. Recently, G. W.
Whitehead [22] [23]1’ generalized Hopf’s invariant and Freudenthal’s invariant
to enumerate several non-trivial homotopy groups of spheres. It is reported
that H. Cartan, P. Serre, G. W. Whitehead, and W. S. Massey? have obtained a
number of remarkable results?, applying Eilenberg-MacLane’s cchomolcgy theory
of a group complex.

Methods employed here by author, are rather intuitive. Making use of recent
results due to S. Eilenberg and S. MacLane [7], he constructs an elementary
CW -complex K., the n-section K, of which is an zn-sphere S», such that
excepting 7n.(Kn)=Z, all the other homotopy groups vanish. Generators in
7 (S"), which are essential in the (z+k—1)-skelton K2**~! and inessential in
KZ*%, can be represented by the image of the boundary homomorphism :
mre1 (K28, K046=1Y > g ( K#+5=1), Thus, generators of 7,(S"”) can be realized
by adequately chosen maps in virtue of the construction of the complex K,.
Main results in this paper are stated as follows.

Theorem i) 7n43(S")=Z2 for n=5, the genraior of which is represented by
(n—4)-fold suspension of the Hopf’s fibre map: S™S*

i) 7:4(S®)=0 for n=6,
iii) 7nes(S?)=0 for n=7,

iv) mue(S?)=Z2 or Z:+Z: for n=8,

V)  7ns7(S™) is the direct sum of Z1s and a group of order 2°(3<k<8) for n9.
vi)  7ma+g (S®) is a group of order 2% for n=10.

In Chapter 1 various kinds of notations are given and the excision theorems3’

due to A. L. Blakers and W. S. Massey is stated in order to be available under
the removal of the restriction in dimensions. In Chapter 2 Whitehead product

1) Numbers in blackets refer to the references cited at the end of the paper.

2) Cf.[4], [14], [15], [16] and Bull. Amer. Math. Soc. U.S. A. 57 (1951) abstruct 544.
3) Theorem I of [3].
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is generalized to get certain types of products, called generalized Whitehead
product®’, which have much to do with the Hopf construction of G. W. Whitehead.
In Chapter 3 generalized Hopf invariant and Freudenthal invariant are systemat-
ically discussed as a Hopf homomorphism of a triad z,S"; E;» E.). Generalizing
this homomorphism to define a Hopf homomorphism of =,(X*; &", X), we obtain
that 7.(X**; &, X) has a direct factor isomorphic to mp—r+1(X, &) Q m(&", &) in
lower dimensional cases. In Chapter 4, essential elements in homotopy groups
na(S™) of spheres of spacial dimensions, are given and also their essentiality is
shown by means of Hopf invariant. In Chapter 5, 2 homomorphism T : o[m(X )]—
n21(X)/2mn:1(X) is introduced in order to consider the element of order four
in 7m,e3(S™)(n=>3), which Barratt and Paecher obtained recently. In Chapter 6
it is shown how the suspension homomorphism of Eilenberg-MacLane® is
interpreted as homomorphisms of homology groups of K., K»:1 by making use
of their recent results. Chapter 7-8 involve our principal results. Making
use of preparations in the previous chapters, we can compute automatically
homotopy groups m,(S™) of spheres. We calculate homotopy groups of the s#-fold
suspended space Y"*! of the projective plane, making use of T-homomorphism in
Chapter 5.

Chapter 1. Preliminaries

i) In this section, we shall describe several notations, which will be used
throughout this paper.

Symbols (X; X1+ s X Xo)» (X X1+ » X ) (X, A %0), (X, A) and (X, x0)
indicate systems of topological spaces such that XDX: X1~ --- A X2 %o
XDA>x and X 3x0. A mapping f: X— X’ is a continuous function of X to
X/, and if f(X:)DX/ and f(x0)=2x¢", the mapping f is indicated by f:(X; X1,
s X %0) > (X7 X1 X5 %0”). A homotopy fi9:(X; X1, - » Xns %0)—
(X’"; X1s ... » 20> 20’ ) means that the homotopy f;: X — X’ carias the subsets X;
and xo to X’ and xo” respectively. If f: X—Y and g: Y—Z are mappings, a
composite map gof: X—Z is given by (gof X x)=g(f(x)) for x€ X.

x=(%1, ---» xn) indicates a point of the real Cartesian space C of infinite
dimension having the ;—th coordinate x, for ;<< and O for ;7 >n, thus (x1,-.-» %)
end (x15-.. 5 %05 0,...,0) indicate the same point of C.” Define subspaces of
C by

4) Products of this sort are also provided by A.L. Biakers and W. S. Massey ; cf. Bull. Amer.
Math. Soc. U.S. A. 57 (1951) abstruct 165.

5) Cf.[7].

6) The homotopy is indicated by symbol: fo=~f;.

7) The n-dimensional cartesian space is denoted by C”.
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E® = %(xl, s X)) | 20 x?_i_l% , S = {(xl,... »xns)| 20 &7 = 1% ,
E%= {<x1,...,xn+1>es"|xigo . B = E" s
E%= (31 am) €M 5 <0}, BR = ERuuy
SP = {(xl,... i) €S =0V, g = (1,0,...,0):

1.1 In =3<xl,...,x,,)10gngl}, in={(xl,...,xn>eznlnxi(1—-m>=0}»

~——— '~

1 ={m el lmz= b 1= {Gae ) €1 mS )
I = (10 s €17 = O}, J7 = CIUI*2- 12,
I =JINI, Jr= i Ji=CLUIRR -1,
Kny=JiNJ}, K= K&, and Og=(0,...,0).
Thus E**1DE?DS™1DE?;1DSrl, E*t1-—Int. E"*l = S" = E?.iu " En NE}
=SI=L, I"DI"D Jy 1D K513 O and I"—Int. [*=["= [\ I 1=K} 1Y [ Y 15
Let
1.2 Pu: (J% I 04 — 1% 1% 04)
and Po: (K" J*% J57h 050 — ("5 J™ 4 171, 050
be projections from the points (1/2,...,1/2, —-1)€C"+* and (1/2,...,1/2,0, —-1)
€ C"*1 respectively, then P, and P,’ are homeomorphisms.
Let ou(0): (E™*1, S")— (E™*1, S") be the rotation through ¢ given by
(1.3)  0a(0) (%15 -5 Xns1)=C%1s -+ » X1, COS O % —8IN O+ %541, 810 - X5+ COS - %0 41)
Define a mapping dn: (S"X E1, S"X S~ ye x E1) — (S™*1, ) by
(1.4)

dilx, )=t +(1—)x1, T —E)x2s oo s L= Dxns1 (Zt(l»—t)(1-~x1)‘5) 0<#<1,
=(=t+ A+ w0 T+ Exzr - s (L gnsrs =21+ )1 —x1)P)  —1<4<0,

then d, maps S"xX E1—(S"x S y«x E1) homeomorphically onto S"+1— yy, and

(14Y du(E i x EY) = E™1 for 1<i<n-+1.

Define a mapping ¢n: (I% ") —(S" y4) inductively by setting
(1.5) d1(x1) = 01(2rxr) (¥
and ¢n(xl, ey xn> = dn—l(d’n—l(xl g eens xn—l)) 2.’)67;_1> for n ;i 2,

then ¢, maps Int. 7” homeomorphcally onto S"— yy.

Let ¢;: (J2,04)->(SY, p4) be a homeomorphism given by ¢;(x1,0) =0(7x1 ) ¥s)»
and for x€ J' by e,(x)=p(m)21P1(x).

Define homeomorphisms e, : (I"*1,04)— (S" %) and z,: ("% [")->(E" S"~1)

inductively by setting & (ljﬂ%m =D s li—ft‘(223c @;;D) = (421 - » txa’) for
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(%1 e s %0’ )=€n(%1, ... »2n) and £€I', and by setting es(x)=p-1(ex(x)) and
en( Pu(x)=071(ea(x)) for x€1” where p.: E»— E™ and p._: E*— E™ are pro-
jections given by p.(%1,.-.»%ns1)=(%1, ... xa,0). Note that (for n>1)

(1.6) en(I”) = E*, el(J") = E? and eu|[" =cu-y .

The calles and their boundaries 1", I", J*, E", S"~1, E?, and E” are orientable
such that ¢n,e. and p. preserve the orientations and P, and p, reverse the
orientations.

Denote a subspace S”x yx“ y«xS? of S?xS? by S?V S% and define a mapping
¢n: (S"; ET E2 95) —>(S"V S™; 8" X s X S" yxX yx) by (x€S"1, t€ E)

a.n ¢ dnas(x> 1)) = (on(m/2) 0 dnr(x: 2¢6—1), ¥4 0=t<1,
= (9% on(—7/2) 0 dnr(x, 2t+1))  —1<4<0.

¢n maps Int. E? and Int. E* homeomorphically onto (S"—yx)xXyx and yy
x (8" — y4) preserving orientations, and ¢.(E%»)=E" vV E. and ¢,( E®,)=E_V E’.
Let g,:(S"xS"” S*VS")—(S"xS" S"VS™) be a homeomorphism given by

(1.8) on(% ¥)=(¥ %) % YES*,
then we have
(1.9 60 ¢n= ¢n0 pa(T) -
Define a mapping ¢p,q: (I7+9, [?*?) - (S? x S% S? V S?) by
(1.10) prax1s e s Xpaa) = (%15 05 %) Pa(Xpa1s o s Xpaa))

¢pq maps Int. JP*?2=J7+?_ [?+7 homeomorphically onto S?xS?—S?V S% hence
there is unique mapping ¢p.q: (S?xS?% S?V S?) — (S?*?, y4) such that
(1. 11) $91a° Pprg = ¢pig-
Define a mapping 0p,q: [?*1x[%1x E1 — [P+7+2 hy
(1.12) mpyq<x9 y) t) =(<1—t))61’-~-»<1—‘t)xp+1’ BATRTS ’y(1+1> Og_t:\f»,l’
= (xly seey xp+1’ (1+t>y1’ ceey (1+t)yq+1> ‘“l;ét__}/_,o »

where x=(x1s -o.» %ps1) EIPL, y=(P1, ..., Y1) €I%1 and #€ EL, than ¢, .| [7+1
x [¥*1xInt. E1 is a homeomorphism.

ii) homotopy groups
Define a sum f+ig: (1% ") — (X, x0) of f and g: (1" I*)(X, x0) on the
xi—axis (1<;<n) by

(1.13)1 (fl‘,;g><x11~--1x;5) =f\xl""!xi—l’zxi’XL+1""’x”> O;VL,;I’
= g(xl, s Xim15 26— 1y Kigys oo X)) — 152,50 ’

and also define an inverse —if : (1", I") — (X, %0) of f by
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(1- 13)2 (—ff)(xn rxn> = f(xl, ,xi-—-lrl—xiv Xi+1s «-- ,xn>-

It is easily sesn that the sums f+;g on different two axes are homotcpic to
each other, and the homotopy classes of f form the (absolute) homotopy group
(X x0) With respact to to the above addition.

A mapping f: (S yx)—(X,x0) is called a representative of «€ma(X, %0)
if the homotopy class of the composite map fo ¢n: (1% [*)— (X, x0) is «. Define
asum f+gof f and g: (S ) — (X, x0) and an inverse —f of f by

(1.14) (f +8) (dnari(x 1) = f (duea( 26 +1))  —1<4<0,
= g(du(x2t-1)) 0=:<1,
and (—f)(dna(x ) = £ (dn-i(%> = 1))

then ¢u( f+2)=¢a( f)+udu(g) ¢l —f )= —upa(f) and ¢u( f)=~¢u(g) implies
f=~g. Therefore 7,(X, xo) may be regarded as the set of the homotopy classes
of f:(S"% yx)— (X, x0) with addition in (1.14).

A mapping f: (I"1,04) — (X, x) is called a representative of «€ nu( X, x%0)
if there is a mapping f/:(I"*1,0)—(X,x0) such that f=f’, f’(J")=x0 and
the class of f/|1": (1" ") —(X,%0) is «. It is not so difficult to show that

(1.15) If f:(S" y+)—(X,x0) is a representative of a, then the composite
map foen:(I"1,05) — (X, x0) is also a representative of a.

The relative homotopy group m(X,A,xo) iz a sct of homotopy classes of
mappings : (J% 1%, J*~1)—(X, A, %) with addition which is representad by
a sum and an inverse on the x;-axis (1_<_4ign—1‘) as in (1.13); and (1.13),. A
mapping f: (1% I",04) — (X, A, x0) is called a representative of « € (X, A, x0)
if there is a mapping f/®: (I I",04) — (X, A, x0) such that f=~f’, f'(J*)=xo
and the class of f/: (" I"%, J*1)—-(X,A,x0) is « Also a mapping
i (E* S, y5)— (X, A, x0) is called a reprasentative of « € (X, A), if the
composite map foZ.: (I" I"04) — (X, A, x0) is a represeatative of «.

The triad homotopy groupd m(X ; A,B,x0) is a set of homotopy classes of
mappings: (I"; I177% I'74 J") — (X ; A, B, x0) with addition which is re-
presented by a sum and an inverse on the x;-axis (1<;<n-2) as in (1.13).
Since ¢p—y: ("L ["1) - (S""L px) maps I77! and %7l to El and EnC!
respectively, there is a mapping ¢n: (I"; I77% 1271, J*) —(E"; E”, E”, y¥) such
that ¢n|I"'=¢u-1 and ¢, maps 1"~ J°~1 homzomorphically onto E”— ypy. As is
easily sezn, any extensions (,E,‘,; of ¢u_1=¢4|I™1 are homotdpic to each other.
A mapping f: (E™; E?"L, E™ 1, y.) (X ; A, B, %) is called a representative of
a € X ; A, B, %0) if the composite map fo ¢n: (I7; i, I —(X A, B, %0)
represents «. Also a mapping f:(I"; J" L 1" 404)->(X ; A, B, x0) is called a

8) The existence of such mapping is clear.
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representative of «, if the composite map foz;l: (E"; Em1, E™-1, gy) —
(X ; A, B xo) is a representative of «.

Let f:(X,x0)—(Y, ) be a mapping, tor any mappings g, and go: (1" I"™)
—(X,x0) we have that gy=~g, implies fog1=fo gy and that fo(gi+.g2)
=(fog1)+«{ fogs). Therefore f induces a homomorphism
(1.16) I (X %0) = (Y Yo) -

Similarly mappings f1: (X, A,x0)—(Y,B, yo) and f2: (X; A, B, x0)—Y; C, D, %0)
induce homomorphisms

(1.16), ff: Tfn(X’ A’xOD__)n'n(Y’ B’ y0>’

and ¥ m(X 5 A Byxo) = Y 5 Cs Ds y0) -

The mapping f: (I*, I")—( X, xo) is regarded as the mapring f: (1%, 1", J*~1)
— (X, %0 X0) and this impiies ithe natural isomorphism
(1. 17) ]./ 5 TL'n(Xr xO)'—) Tn (Xr X0 xO) .

The mapping f: (I I1*"Y J*~1) = (X, B, x0) is regarded as the mapping
f:{r; jeL 1+, K1)~ (X; x0s Bs x0) and this implies the natural isomorphism
.17y 7"l X5 By %0) = 7 X ; %05 By %0) -

Define a boundary 0f: (171 [*~1) = (A, x0) of f: (I%1"Y, J*~1)— (X, A, x%0)
by 0f =f|1""1, then f=~g implies 0f=~0g and 0( f +:g)=0f +.0f for 1<i<pn-1.
Therefore we obtain the boundary homomorphism
(1.18) . 0; mn( X5 As %0) = mu—-1(As %0) for p=2

Define a boundary ($.f: (I’;"l; "2, J"=2)—> (A, A~B, xo) of f:(I*;1"1,
"L J) = (X5 As By %0) bY Baf (%15 - %a)=Ff (%15 -+ » ¥n=25 2xn-1—1,0) then
f=~=gimplies B, f>~p,g and B.(f+:g)=B+f +B+g for 1<;<n—2. Therefore we
obtain the boundary homomorphism

(1.18Y B+ il X; As Bs %0) = (A5 A A B; x0) for n2=3.
The following prbperties are well known,
(1.19) i) If f is the identity mabd, then f* is the identity homomorphism.
i) (fog)¥=f*og¥*.
iii) f=~g implies f*=g*.
(1.20) The sequence of the homomorphisms

j Gl i*
e > TEn(X: xo) _—> ﬂ'n(Xs A, xo) —> ﬂn—l(A’ xo) I 7l'n-—1(X: xo) —_— <ﬂ>1>
is exact, where 7: A—X is the injection and j5* is the composite homomorphism

4 injection
ﬂn(X» xo) —> 7(7&(1‘(’ X0 xo) ’_'

homcmorphisms

> ta( X» Ay x0)- And also the sequence of the
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7’ Br i*
bre> Tfn(X’ B, xo)—* ﬂn(X ; A, B, x0>'_> Tfn—-l(Ay AnB, xo) —_—> 7T71-—1<X’ Br x0>—’ s
(n>2)

is exact, where 7 ; (A, A~B,x0)— (X, B, x0) is the injection and j* is the
14

composite homomorphism 7. X, B, xo) —J» 7l X ; %0» By %0) = mwa( X ; A, B, %0)-
(1.21) In the following diagrams the commutativity relations hold;
= (X %0) > (X As %0) = mae1( Ay x0) = ma—1( X5 x0) — -+
| 7 | 7 | rrax | 1
S TL'n(Yy y0> g Tfn(Yy B, yo)*" TEn-—l(Ba y0> g ﬂn—l(X’ yO) e
and
= (X5 By x0) = (X ; Ay B, %0) > ma—1( A A~ B> %0) = n—1( X, B, x0) -
g* g* l(glA)* lg*
iliand ﬂn(Y, D, yo) - TCn(Y; C, D, yo) i 7'£'n—1<c» CnD’ yo) d Tfn-l( Y, D, y0> .
where f:(X,A,x0)—(Y.B, y)and g; (X; A,B,x0)—(Y; C, D, o) are mappings.

Definition (1.22) 7o X)=0 if and only if X is arcwise connected, m;( X, A, x0)=0
if and only it the injection homomorphism *: 7;( A, x0) — m1( X, x0) is onto, and
7 X ; A, B, x0)=0 if and only if the injection homomorphism 7%: 7o( A, A~ B, x0)
— 72( X, B, x0) is onto.

X is ca'led n-connected if m(X,x0)=0 for 0<;<n. (X,A,x) is called
n-connected if wo( A, xo)=mo( X, 20)=0 and =(X,A,x0)=0 for 1<i<n. (X;
A, B, x0) is called n-connected if (A, A~Bsxo) and (B, A~ B, x0) are 1-connected
and m;(X; A, B, x0)=0 for 2<;<n.

iii) The main theorem of Blakers and Massey [3] is described without restric-
tion in lower dimension ;

Theorem (1.23) I1f X=nt A)“(Unt B), (A A~B) is m-connected and
(B, A~B) is n-connected, then the triad (X ; A, B) is (m+n)-connected
(mz=n=1).

For the case 5. ~2, the proof of theorem was given in [3].

We shall prove this theorem for the case z=1. With normalization process
in §3 of [3], any elements of n,(X; A, B) is represented by normal form
%17 J*=1) — (X ; A, B) such that

A D NV and f-WB) D C1U-N(M))-

Suppose 2<g<m-+1, then dim. M<g—m—1=<0, and therefore N(M)="s!+ !,
where o] and 7§ are finite number of disjoint rectilinear closed cells in J? —J?-!
such that o] 19"'=¢ and ¢§~1%"! are faces of J.

Since ¢.~2, we can take sezments #; from each point of r5 to point of 1%71 in
1%-I% - N(M), such that ¢, are disjoint to each other. Set P=Y¢,Y N(M)“ 1!
and Q=C1(1%--P"), then interior of @ is an open g-cell and its boundary is
(P~AQ)ZJ1 and (P AQ)AJ"t=I""1. Therefore P is a retract of @ and
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let its retraction be 7:: Q > P~ Q-
Since (B, A~ B) is 1-connected, f|Y't; is deformable into A B relative to ‘*jt' IR
and extendable to whole homotopy of (I%; 1%, J%~1) such that the resulted map
£ 1% 17 J1) —~(X; A, B) satisfies the conditions

T(A)DP and fi{B)D Q-
Equations fi+:|Q@=/,107:and fi..|P=/1| P define a homotopy of f1==f5, and f; maps
1% in A. Also a retraction of 1? leads a null-homotopy of f, and nul'homotopy
of f. Consequently any element of 7,(X; A, B) is trivial for 2<g<lsn-+1, and the
proof of theorem is comleted.

Let A~B, A, B and X be subspaces of X xI! given by A B=(A~B)xI,
A=Ax(0)YA~B, B=Bx(1)YA~B and X =AY B, and let ¢’ : (A, (A ~B)x(1))
—( A\, x) and ¢: (A, A~B)— (ff, x0) be mappings identifying the subsets
(A~B)x(1) and A~ B to singie points.

For convenience we shall give a sufficient condition to omit the condition
X =Int. A¥Int. B of (1.23).

Definition (1.24) The pair (A, A~B) is smooth if and on'y if there is a
homotopy h:: (A, A~B)-— (A, AL B) such that h(x)=(x,¢) for x € A~ B.

Lemma (1.23) i) If (A, A~B)issmoothand X =AY B, then triads (X ; A, B)
and (X ; A, B) have the same homotopy type.

ii) If A is a retract of AxIY, then (A, A~B) is smooth, and a combinatorial
pair (K, L) is also smooth.

iii) Let ¢:(X,A)—(Y,B) be a mapping such that ¢|X — A is homeomorphism
onto Y—B, and if (X,A) is smooth then (Y,B) is also smooth.

iv) If (A, A~B) is smooth then (A, (A~B)Yx(1)) and (A, A~B) have the
same homotody types.

v) If(X,A)is smooth, then (X xI', X xI'"Y AxI') and (X xI', X x(0)Y Ax 1)
are also smooth.

From the lemma we have (C:. [3])

Theorem (1.23) 1f (A,A~B) is smooth and m-connected, (B, A~B) is
n-connected, A~ B is r-connected and X =A™ B, then
i) (X; A,B) is (m+n)-connected,
ii) the induced homomorphisms ¢*: wp(A, AmB>”_’7Tp<‘4~’ x0) are onto for
pP<m+n+1 and isomorphic for p<m-+n,
iii) and the injection homomorphisms i*:n,(A, A~B)— mp(X,B) are iso-
morphisms into for p<mtr and their image are direct factors of ny,(X,B),
and we have 7, (X, B)=~n, (A, A~B) ) my(X; A, B).

Let %;: (£7% S" 1, v.)— (X% X, x0) b2 mappings such that x;|E® -S»~1 are
homeomorphisms, X (E"—-S"1)=x%-X and %(E"-S*"!) are disjoint to
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each other. The mappings ¥, will be refered to us characteristic maps, and we
donote & =2;(E™), & =1 S"1), &n=Y &} and &F="&". By iii) of (1.25), (&% &)
is smcoth and the theorem (1.26) is availabie for the triad (X*; &", X).

Set E;lf: {(x15 -5 20| 27 =1/4}, a;’_—_xi(EgU[l/Z 1D, Yi=¢&;—Int. 6}, "
=Yo7 and Y=Y Y;. The pairs (&” &) and (&% Y) have the same homotopy
tyre, and in the exact sequence --- — 1,(d" i;")—i*—> &% Y)—ny(&%; 6" Y )~
mp-1(E% 6") ..., ¥ is equiva’ent to a homomorphism: x*: X3 m,(E", S"1) —
m(E" &) which is given by ¥¥(ay+ -+ + i+ ) =1 )+ - +x'*:<(ai)+ . From
i) and i) of (1.26) we have

Corollary. (1.27) x%: 25 m,(E" 8" 1) — m,(E" &) are isomoprphisms into and
w(E”, E” DR; 7 ( E" S" D@ n,E%; 6" Y) for p<2n-3, and if &" is m-connected
¥ is onto for p<n+ Min. (m,n—1)-1.

Chapter 2. Suspension, Products and Hopf costruction.

i) Suspension

Let d: (X XEYL X xS xox EV)—(E(X), x0) be a map identifying the subset
X x S~ xox E! to the single point x,, and denote 3(+-=d(X' x[0,1]) and )A(_=d(X
x[—-1,C]). E(X) is called a suspended space of X, and we identify the point
% of X to the point (x0) of E(X) thus E(X)=X:"X- and X=X, X—.
Sm*1 is a suspended space of S® with respect to the shrinking map dn» of (1.4).

Define @ sum f+g of f and g: (E(X),%0)— (Y, %) and an invers —f of
S by

(2.1 (f+gXdxt)) = f(dx2t-1)) 0<s<1,
= g(d{x,2t+1)) —1<¢<0,
(~Hd(xt)) = f(d(x —1)) -1<¢t<0,

then the homotcpy ciasses orf f form a group, which coincide tc the fundamental
group of the function space Y ={f: X—>Y |f(x0)=20}, with reference point fo:
X—%0.

A suspension (map) Ef: (1%, I"*1V)— (E(X ) x0) of f: I [")—(X,x0) is
defined by
2.2) Ef(xis-os%ns1) =d(f(x1s 5 %n)» 28041 —1) >
then we have E(f+:9)=Ef+:Eg and E(—,f)=—;Ef for 1<;<y, and there-
fore we obtain the suspensiocn homomcrphism
(2.3) E: 7 X5 %0) = mnr( E(X D> %0) -

For f: (I I")— (X,x0) and g1, g2: (E(X)sx0) — (Y, ) we have
(2.4 (g1+g2)oEf = gioEf 4 nigeoEf and (—g)oEf = —pui(goEf).

A
Since )A; + and X - are cortractible, the exactness of the homotopy sequences
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of the pairs ()/;’+, X, x0) and (E(X), }A(_, x0) lead that the homomorphisms
A A
0: 7Tn+1<X+9 X, xo) and Tfn(X’ x0> and j*: Tl.'n(E(.X), x0>"” ﬂn(E(X)n X-» xo) are
isomorphisms onto. Consider the diagram
(2.5) ) -
A A B+ i* A J A A
A T(‘n+1(E(X> 3 X4 X—)“‘> ﬂn(X—n X>__> ﬂn(E(X)a X—>—> ?n(E(X) s X 4o X—)"“ e
-/ e
A\\ ° g T’ oI
ma-1( X)) —> m( E(X )

where 4=008, and I =% o % It ic easily verified that E = j*_,04%¥0c8-1 and that
A E I
the sequence of the homomorphisms ... —> ——> —— -+ is exact. By (1.23), v)

of (1.25) and i) of (1.26),

(2.6) if X is r—connected and smooth, then (E(X |, )/}M )Q'—) is (27 + 2)-connected
and therefore the suspension komomorphisms E : zn( X )~ masi( E)) are iso-
morphic for n<2r and onto for n=2r+1.

Ncte that
(2.7) if £, D)1, 741 s @ map snch that eno(f|I"*1) is a represent-
ative of an element ¢ € m(S"™) and if g: (1"*L, I"*1)—(Xoxo) is a representative
of BE€mrs1(X), then the composite mapping gof: (1", I"*1)—(X, xo) represents
Bo E(w) € mn( X %0)-

Define a mapping D”: (X xI? X xI"“xox1?)— (E™(X), x) inductively by
setting D! =d and D"(x, (%1 »2x0)) =d (D" (% (%15 --+ » Xne1)s 2x6n—1), where
E*(X) indicates the g-told suspended space cf X. Since D™ maps X xI"—(X
x " xoxI*) homeomorphically onto E"(X)-x¢, we can define a mapping
¢n: (X xS X VS")—(E"(X) x0) such that
(2.8) ¢n(% o)) = D™(x y)  x€X, yEI™.

Define a product f xg:(I**%,"*")—>(AxB, AVB) of f:(I%I?)— (A, ao)
and g: (1% ") — (B, bo) by
(2.9) (Fxg) (s s pwa) = (f(H15 020D 2(Xp415 o s Xp2a))
then f~f’, g~g’ implies fxg=~f'xg and hence a product axf €mpi(A
xB,AVB) of a€n,(A) and BE€n(B) is defined. If f: (1™ ™) — (X, x0) is a
representatve of « € mo(X ), we have by (2.8) ¢u( f X ¢n) (%15 - » ¥u))=D* f (%),
15 o5 90) =d(D" (S (2 (D15 v s Pne1)s 29— 1) = ED"2(f (%) (P15 v s Pu1))
= .- =F"f(x), in which E” indicates the n—fold suspension. Therefore
(2.10) ¢i(axm)=E"(2), when tx” is the generator of mn (S™) represented by ¢n-
Finally we remark that the suspension Ef of f: (1% I")— (X, xo) satisfies
the condition f(13*1) C X+, f(I2)C X~ and Ef {51, » % é) =F(K1soer )

9) This notation: v, ¢ n,,(S”) will be used through the paper.
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and that if a map F: (1" [™1)— (E(X), x0) satisfies this condition then we
have Ef=~F.
ii) Products.

The original product of J. H. C. Whitehead [f. g]: (I**%0)— (X, x0) of
%17 (X, x0) and g: (1% 19— (X, x0) is given by

(2.1D L g1 (xrsoos i) = f(225 s 20D (Fpa1s -2 Xpra) €17,
= g(Xpr1s e s Xpra) (K1s - sxp)EIP,
or LS 81 (o a(x 3 8)) = f((A=Dx1s e s (1= x0) 0<z<1,
=g((14 )y1s s T+ )y ~1<¢:20.

If f; and g, are homotopies, then [f;, g.] is a homotopy from [ fo, go] to
[ /1> £1] and therefore the product [, 87€ mpre—1(X> x0) Of a€mp(X,x0) and
B€m(X>x0) can be defined. Let 7,: A~ AV B and i»: B—> AV B are injections
such that 7,(a)=(a,bo) and ix(b)=(ao.b). By (2.9) and (2.11) we have for
f:U? 1"~ (Asa0) and g: (1% 1) — (B, bo)

(2.12) [i10f, iz0g] = fx g|I?+2.

Let f: (S?, »)—(X,x0) and g:(S% yx)—( X, x0) be representatives of « € 7,(X)
and B € ro( X ) respectively and let fV g:(S? VS, yux yx) — (X, x0) be a mapping
such that (fV g)(x» ysx)=s(x) and (fV g)(yx.x")=g(x’) for x€ S” and € S°
Then the composite map
(2.13) (V80 ¢ng: (1%, 04) —~ (87 V S, pxx y5) = (X %0)
is a represeniative of [4, 5].

Now we define a (relative) product [, Blr € mprq—1(Xs As x0) OF € mp( As %0)
and B € TFq(X’ A, x)- Let f: (110’ Ip)"’ (A’ x0> and g(]qa 1q—]_, ]q—]')'—)(Xf A, xO) be
representatives of « and 3 respectively. Define a mapping (f, g)-: (J*+ 1,
IP-!-Q—-I, O*) e (xy A’ xO) bY

(2.14y (f:g>r<x1~--yxp+q>=f(X1y---,Xp> (xp+1»-~’xp+q>€]q—‘l’
=g(xp+1,~--,xp+q) (xl,...,xp)Ejp,

and define a relative product [ f, gl-: (J2*%~, [?+%-1,04) — (X, A, x¢) of f and

g by

(2.14) Lfsglr=(fsgoPyie,-

f=f"and g~g’ imply [ f, gl=[f', g’]-and [ f, g]- is a representative of the

relative product [« 8] -

Next we define a (triad) product [us Bl € mpsq—1( X ; As By %0) of a€ (B, A
~B. %) and Bem(As AnB, %) Let f: (1% 1771, J"1)~(B, A ~B, x;) and
g: 1% 171, J=1)— (B, A~B, %) be representatives or 4 and 8 respectively.
Define a mapping (f, g)e: (K?*%1; 74972, J7+1-2,0,) — (X ; A, B, %0) by



54 Hirosi TODA

(2~ 15)’ (f’ g\/t(xu vy Xpyg) = f(xl» s Xpe1s Xptq) (xp, ey xp+q—1> € ]q"l ’

= g(Xps e » Xp4g-1) (%15 e s Xp—12Xp4g) € JP71,
and define a triad product [ f,gls: (1?*9-1; jP+i-2, Jr+¢-2,0)— (X ; A, B, xo) of
f and g by

(2.15) [fi8le=CSfr8hoP 3ke1>
f==f’ ard g~g’ imwply [f.gl=[f’.g’]: and [f,g]: is a representative of
[“’ Bl:-

We have

(2.16) [ pr+pel=[aprl+ [ B2] a€ml XD P1:B2€n( XD (g>1),
[ +ar, Bl=[an B+ 22 8] wra2€n( XD BErLX) (p>1),
[a Br+Belr=[a Brlr+[w Balr c€r(A) BuB2€n X, A) (g>2),
[e1+ag, Blr=[a1, B]r+[flzy B]r apaz €T A, BeEmd X, A) <P>1>’
L Br+Bele =L Brle+ [ 2] @€ m( B A~ B> B Ba€ e As ARB) (¢>2),
[a1+ a2, Ble =L, e+ [a2, B]e 1,2 € ee( By A ~B): BEn As A~B) (p>2),
217 f*LwBl = [f*(a) FHB)] a€m( XD BERLX)S
S¥Las Blr = [f§(ad fHBY)r a€m(A)BELX, A
I Ble = [fH(ad) fH(B)]e w€m(B, A~B), BE€nA, A~B),
for f:(X;A,B:%0)—(Y;C.D, %), fi=f|A and f,=f|B.

From the definitions of products and boundaries, we have a[ f, gl-=[f,0g]
and B.[ f, gl:=[0f, glr» and we have
(2.18) 0l Blr = [, 08] and B+[a Bl: = [04. B]--

Next consider a product [«, 7%(8)], where v € n:( A), B€m( X ) and j* is the
natural homomorphism : 7( X )— 7( X, A). ) Let f:(1%,i?)— (A, x) and
g: (1% I —(X,x0) be representatives of « and 8 respectively, then the map
[fsgle: (201, J2+9-1,0)— ( X, A, x0) represents [a, 75(8)]r. Remark that if a
mapping F:(I7*% 04)— (X, xo) represents 7 €mpsq-1(X) and F(J**"-1)CA,
then F|I?+%=1:(]?+%-1, j»+9-1 (0. )— (X, A, xo) represents (7)€ mprg-1i( X, A).
Making use of this remark, we have [, 7%(B)]-=7%y) where y is represented
by a mapping F: (I?*%,04)—( X, x0) such that F|1?**1=[f, g]r and F|J?+?-!
=(Lf> gll1"**"1)o Pn. Since [ f, gl-=(Lf, gl J***"1)o P, we have F=[f, g]
o P, where P, is given by P,|I,=P, and P,|J.=P;' and hence P, is a
homeomorphism reversing the orientation. Consequently we obtain

(2.19) 7L 8] = —[w 7B for u€mA) and BE X ).
Similarly we have
2.19Y  jilw 2] = (~1Y[% ) B Sfor e €n(B), BEn As A~ B)
and for the natural homomorphistms j%: 7( B) — 7 Bs AnB) i¥: n( Ay AnB)—
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n{ X, B) and ]é‘ Tp1q-1( X ; B) = mpse-1( X5 A, B).

Let : 1”x 17— J?*? be a mapping given by 17(%1s - s Xp» V15 oo s Vo) =(X15 -2 »
Xp—1s Y15 -5 Yo» %) then the mapping (f, g); (KP+01; Jrro-2, Ji+1-2,0,) —
(X; A, B, x0) of (2.15Y satisfies the condition:

(2.20) (S5 @)((IP ) J"INCTB, (f> @ JPIxINCTA, (s @e((I? x Ji-1¥
JP I ITYCAAB, and (f, g)l9(I2%x04) and (f, g)|5(0%x1?) represent the
elements « € mp(B, A~B) and B¢ n (A, A~B) respectively.

Lemma (2.21) If a mapping F:(K?+1, JP+-1, J2+0-1,0,.)—~ (X ; A, B, %0)
satis fies the condition then the composite map F oPpiqe1 represents [a> 5]:

The proof of the lemma follows the fact that I? x 0404 xI% [?x J9=1Y 12 x 04
and 04x 9% JP=1x[? are retacts of [?x J-1V JP=1xJ% JPx J%~1 and JP-1x]°

respectively.

ili) Join and Hopf construction.

A join fxg: (IP**2, 04)— (I™*2, 0) of f: (I?+1,04)— (I™1, 04) and
g: (I*1,04) — (i"*1,04) is defined by
(2.21) (g X Dp:q(55 35 1)) = Py n (S (%> g(¥ 1) -

Let f: <1p+q’ I‘p+1>_., <1'In+1’ I‘mu) and 5: (Ip+1, ['p+1>_, <1n+1, j"’“) be exten-
sions of f=7|I?*1and g=g|I"" such that if f(x1 ..., xpe1)=Cx4s .o s Khns1) and
(D15 o5 Yau1)=(Yls - s V1) then Fltxis-..rtxp) =815 - » txms1) and g(¢5%,
s t9q1)=(2¥], .. s t¥hs1)- Define a mapping Fx g: (IP¥%+2, [P+9+2) — (Jm+n+e,
I™742) by (Fx &) (w1 s Xprge2) =S (15 oo s %041 £(Xp42s e s Xpsge2)), then we
have 0f=f, 0g=g and 0(Fxg)=f*g.

As is shown in [22], the join operator is induced in homotopy groups and
is bilinear. Let «€ny(S™) and B€r(S") be the classes of enof and eyo g
respectively, then ¢miio f: (I?*L [271) — (8™, 9,.) and ¢nei0 g: (I, [91) —
(S"*1, yy) vepresent E («) and E(B) by (2.7). From (2.9) and (1.11)
a1, n41(( P10 FIX (P10 &) =¢ms1n+1 0 Pma1ns1(F X Z)=Pmans2(Fx &)1 (IP+72,
Jrrar2y — (§mn+l .Y, and by (2.7) we have

(2.22) dmivnt1(E()X E(B)) = E(exB)  a€ml(S™), BEm(S™).
Let f,g,7 and g be mappings as above. For two mappings f/: (J™*1, [™+1)
— (X, x0) and g’ : ("L, ")~ (X, x0)»

Lf g 1o @) Dol 3:8)) =L g 1( Dyl f(2)r g(H) 1))
= (FA=t) x5 s (I=tDxps1)  0=tL1,
=g'(&((A+)y1s s (1 +E)pqr1) —1=40.
=[f"0F,g’0g](@p,o(x% 9.¢)). Therefore by (2.7) we have
(2.23) [+, 1oCaxB) = [« o ECud B o E(BI]»
where o« € wpa( X)) B € mnai( X ) w€m(S™) and B € n( S™)-
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The following property of join was provided in [22]

(2.24) (—)MDOD g = gt = E" W ), where .€ wu(S™) and tn € 7 S™) is
represented by the identity map.

A Hopf construction Gf: (I**9%2,0.) —(E(X ), xo) Of f:(I?*1x 71, 04) —
(X, x0) is defined by

(2.25) Gf(@p,(% 3:8)) = d(f (2 ) ).

The mapping Gf satisfies the conditions Gf(I7*! xi"“)C)/g\',u » GF(IP*1x 1)
Cfr_ and Gf |[?*1x "1 =f, and conversely, any mapping G!: (J#+9+2,0,)—
(E(X ), %) satisfying the condition is homotopic to Gf.

We say that the map f hasa type («, 8) if f|[7*1x0y and f |04 x [9+1 re-
present « € m( X ) and 8 € m( X )respectively. Also a mapping f/:(S? x S% 3y X ¥ )—
(X,%0) is said to have a type (a ), if f/1S?x vy and f'|yxxS? represent
a€m(X) and B€ (X)) respectively. Consider the composite map f/ o ¢p,q:
(1?4, 04) — (X» %0)s then f’ o ¢p,q|[?*? represents [«, 8] by (2.13), herce f7 o ¢p,q
gives a nullhomotopy of f’o ¢p,q|1?*" and [, f]=0. Conversely if [« §]=0,
there is am apping F:(I?+%,04)— (X, %) such that F|[?*9= f’ o ¢p,|[?+Y,
Si(S?VSY, yuxy)—(X,x0) and f/|SPx vy« and f'|yxxS? represent « and
B respectively. Define f/|(S*xS"--S?VS?) by setting f'(x)=Fo¢; (%)
for x€ S? xS*—S?V S?, then f’ has the type [, 3]

(2.26) There is a mapping f:[P*1xI"1— X of type (a, B) if and only if
[« 8]1=0.

Since )} + and )/g\'_ are contractible the boundary homomorphisms 0, :
m”l(f\(,u X)—n{X) and 0-: mpsi( X- X)— mp( X ) are isomorphisms onto. Let
ac€ npu()A(,, X) and B¢ n'q+1()}+’ X) be elements such that 0az=«€ np( X ) and
0B=B€m(X), then 4[a fl:=0[w Bl-=[u B]- The exactness of the sequence

I A A A E
c = sl E( X)) —mp40+1 E(X ) X 40 X ) —1p10-1( X X—> w4 E(X D))
leads

2.27) E[2B8]1=0 a€xlX)BenlX).

If [, B]=0, then 4[z 3];=0 and there is an element 7 of mpre1( E(X))
such that 1()=[a ;-

Lemma (2.28) I(7)=[a Bl if and only if (—1)*@*D*1y is represented by the
Hopf construction of a mapping: (IP+*1xI1,0,)— (X, x0) of the type (u, p).

First remark that if a mapping F:(I"*1,0,)— (X, x0) represents 7 € my( X)),
and if FUZ)CB and FU")CA, then (F|K")o P/;t:(I%; J*1, 11, 04)
(X; A, B,x0) represents —1(y), where I:m(X)— ni(X; A, B) is the natural
homomorphism.

Let 7:(17*%, 7, ]")—»()A(_, X,%0) and g:(1%v4L1% j")%(ﬁ@ X, x0) he
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representatives of g and j respectively. We extend the mapping (7, ) : (K?+9+1;
TP JP,04) = (E(X); X 40 X—»%0) of (2.14) over j?+7+2 as follows, and obtain
a map F:[?*%2— E(X). Since ((f,2)|I**")o P'=08.[F,2le=[f. g]=0, the
mapping F|I[?*'=(f, g),|I?*? is extendable over 1?*? such that F(I?**)CX.
Since 5\(+ and 3(_ are contractible, the mappings F|I?+%*1: I'”””*n;ﬁ and
Fl 33t iz:g:{-»)?_ are extendable over [?+9+1 and J31%}1 such that F(J?+9+1)
C}g+ and FJ3353)CX~. Let 5:jP+%2 jP+7+2 he a mapping of degree
(=17 given by (%15 --. » Xprqs2)=(Xps1s - » Xprqals Xls oo 2 Xp» Xpsq+z)- Then
the composite map Foy: [?*%2— E(X) maps subsets ]?+1x J9*1 and J#+1x jo*1
into XA' 4+ and )?’ — respectively, and therefcre F oy is homotopic to the Horpf
construction of the mapping Foy|j?*1x [?*1 which has type (@, §). By making
use of the above remark, the necessity of the lemma is established.

Conversely, let F’/: [?*%*2— X be the Hopf construction of F’/|[?*1xjo+L,
then F’ oy maps [?*9*! and ]23¢f1 into )2+ and )A(_ respectively, and therefore
(F'opl K?*9%1) 0 P g,y represents (—1) I({F’}). While F’oyn| K?*7+1 satisfies
the condition (2.20) and homotopic to (7, g);, and the sufficiency of the lJemma
is established.

Define a suspension E’f:(I"*% 1% J*)— (E(X)» E(A) x0) of f: (1% 1™%,
JH (X, A, x0) by
(2.29) E'f(x1seee s 2ne1) = d(F(Z1s v s Bnm1s Xna1)s 2% — 1)«
Clearly f=~ f’ imp'ies E'f~E’f’, and E'(f +:g)=E'f +:E’g (1<i<n-1), and
we obtain a suspension homomorphism E’: 7 X» A)— mn1( E(X), ECA)). Also
we have 0(E'f )=E(0f) and E(u)=—E'(j4(u)) tor « € m( X)-

Now we shall prove the fact analogeous to (2.27):

(2.30) E'Tu,Blr =0 for a€m(A) and BE€n(X,A).

Set Ji={x€ J"|xn=1/2}, J2={x€ J*|xa<1/2}, [2=]"~ %, and ["=["~]".
First remark that if a mapping F: J**! — E(X) satisfies condition

(2.31) F(J""DCX 4 F(MDCX o FPCA, F(P")CA-, and if Fo: J'> X
is a mapping given by Fo(%1s o5 Xns1) = F(x1s -o. » %n> 1/2, xn41), and Foo Pa
represents « € (X, A), then Fo P,.; represents E'(«).

Define subsets of ["*! by ["=CI(j"*~1}_,~ 1), K" =CI(Ih— 1;=1—1"),
Ko =CI(I7 — I3 —1"), J7=2=K""1 K""! and Ji-2=K"1, K"}, then L is a
closed cell with faces K 174 K3~' and K"t There is a homeomorphism
% (Jrre; Jore, gree, j£+7, ['g+q)~+<Kzla+un:;+q : K11)+q’ K127+q’ ]1lo+¢1—~1, ]g+q—-1) and a
mapping % : J?*¢x ['— [2+%*1 such that %(w, - » ¥psa—is 1/2 Tprge1) = (X1 er s
Xp+a:0)s X(x,0)=%(x) for x€ J**%, % (x, t)=%(x) for x€ [**% and 7|Int. J7+Ix I*
-is 2 homeomorphism.

Let f:(1%,1?)— (A,x0) and g: (1% 1%, J"1) = (X, A, x0) be represent-



58 ‘ Hirosi TODA

“atives of v €7m,(A) and € n( X. A) respectively, and define mappings f: (I**1,
172, )~ (AA+,A, xo)ard g: (171 19,15, KO — (3’_ ; X,fAl_,xo) by setting f(x1,

ey xp+1>=d(f<x1! rl’p)’ 2xp+1*1> and g<x1’ ’xq+1)=d(g(x1’ cee s Xg—1s xq+l)’
2%,—1). Define a mapping F: [?*9*1— EF(X) by

F(x1s s Xprara) = F(H1s oo s Xps Xprgr1) i (Xpals-oe s Xprgs Xprgr2) € K9
= Z(Xp11> -1 Xprar ¥prgr2) if (X1seeos Xpa1sXpsqr1) € JP «

The map F=(F|K}*"YK}**)ox satisfies the condition (2.31) and therefore
Fo Py, represents E'[a,(]r.
By setting Fi(x)=F((x,t)) and F,=Ff,o P,.q we see that F=F, is homctopic
to F; which maps J?*? into F(A) and is homctopic to the trivial map, and
the proof of (2.30) is established.

Supposed that elements «€7,(A) and F€ (X, A) satisfies the condition
[« 88]=0. Ccnsider the following diagram

i’ )
Tp+q=1(X) —> Mp19-1(X> A)— mprq-2(A)
E E’

sl ECAY) > i ECXO) 2> mpad BCXO, ECA)
The condition 0[«, 8]-=[u 03]=0 impiies that there is an element 7 of 7,4+¢-:(X)
such that j/(y)=[u 8]-. Since j(E(;)=-E'(j(7))=—E [« pl-=0 by (2.30),
there is an element ¢ of 7,.,(E(A)) such that #(6)=E(y)-

Lemma (2.32) With the above hypothesis, (—1)?*D§ js represented by
the Hopf construction of a mapping of type (u,0B), and conversity is also true.

As in the proof of (2.19) —y is represented by a mapying G: (J?*%04) —
(X, x0) such that G| j?**-1=(f, g)» where f and g are representives of « and
B respectively. Also E(y) is represented by a mapping F’: (j?*%1,04)—
(E(X), x0) such that F’| J?*'=F, F’(Iﬁ*")C)/E'+ and F’(Iﬁ*")C}/;'._- 1(x)=2(x,1)
gives a homeomorrhism xy:(J?+9; [P+, [P —(K?+%; JP+i-1, JP+2-1), and there
is a homesmorphism o: [?+%*1 — j?*%*1 such that o(I?*?)=I17*% «(I5t)=]"*1
and o|K***=x71. It is not so difficult to show that the map o has degree (—1).
Therefore we have that the ccmposite map, F/ow: [?*%1— E(A) represents
(—=1)7 hence represents (—1)d, and that Fow(I?*)CA+s Fouw(I5tDCA-
and Fow|K?*"=(f, g)- As in the proof of the lemma (2.28) F o » represents
(1)@ wre g (E((A)), where 77 is represented by the Hopf construction
of mapping ot type (4, 08). And the proof of conversity follows from the
exactness in the above diagram.

iv) J-homomorphism

Denote the group of the rotations of n-sphere by R,, and denote the identity
by 70€ Rs. Let f:(J?%1,04)— (Ra>70) be a representative of «¢ mp,(R,), and
Fo (7 ne1, 040 — (S, 94) be a mapping cefined by F(x, )=/ (x)(eu(»))- The
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homotopy class of the Hopf construction of 7 is denoted by J(«) € mpsns1(S™*L).
which was given by G.W. Whitehead [20] and he showed that the operation J
induces homomorphism

j: ﬂp(Rn> e 7Tp+n+1<sn+1> .

The projection r: R,— S® given by (x)=x(»x) is the fibre map with
the fibre R,—1, so that r induces isomorphism &*: 7,(Rns> Rno1) — 7p(S?). Let
tn € ma(S™) be the element represented by ¢, : (I% I"*) — (S" y«). Define a homo-
morphism K : 7p(Ras Rn-1) = p+as1(S*1; E}*L, EZ1) by setting (p>2)

(2- 33) K(l[} = [a:l(ﬁ*((t>>y a;l ln]p for «€ ﬂp(Rr“Rn—l) ’
where 0-: 7p1(E2"Y S")—>mp(S™) and 0. : mani(EHY, S*) — my(S™) are boundary
homomorphisms (isomorphisms).

Lemma (2.34) In the diagram

i* %
=y (Ru-1) ——>  wp(Ru) —>  7p(Rns Ru—1) —> mp-1(Rn-1)—> -
7 & 7 |& A |7

e 7Tp+n(sn> I 7Tp+n+1(S“+1> —_—> 7'L'p+n+1<sn+1 3 E:):+1r Eﬁ”‘)"") 71'p+n+1(lsn)'_>
relations EoJ=—Joi* IToJ=(-1)"*"1Koj* gud doK=(—-1)"J0od hold.

The first relation was proved in previous paper [18], and the second relation
follows from (2.28). To show the third relation we ralize the operation K.
Let f:(J?, I?)— (Ru»Rn-1) be a mapping such that fo P, is a representative
of «€mp(Ru> Ru—1)> and let F: JPxf?*1— S* he a mapping given by f(x, »)
=f(x)(ex(»)). Since the element of R,-; is regarded as the element of R,,
which maps hemispheres E} and E” to E} and E” respectively, and cincide to
R,—y on S"°1, 7 maps J?x %! and J?x["1 to E} and ET respectively. A
mapping F:(K?++1; JPen, Jp40, 0)—(S"+1; ETY, BT, yy) is defined on J?xI™
by setting F|J?x [%*1=7, by extending F'|[? x J* over I1? x J* such that F(I?x J*)
CE"*1, and elsewhere satisfying the condition (2.20). Then FoP%is+1 repre-
sents [021 k*(«), 072 1o =K (). Since F o Phin|I?*™:(1?",04) — (S” *) maps
I?x ™ and J? x]? into E™*! and E”"l respectively, and F(x,9)=f(x)(en-1(¥))
for (x,¥)€I?xJ"? we have from (2.25) that F|[?*"=FoP ,.,|[?*" represents
J(@(x)), hence we have 4o K(a)=(—1)*J(0(a)).

Chapter 3. A generalization of Hopf and Freudenthal Invariants.
i) Denote a subspace Axbo“~aoxB of AxB by AVB, and let 71: A— AVB,
is: B~ AVB, p: AxB— A, and p;: AXxB— B be mappings given by i;1(a)
=(a, bo)s i2(b)=(ao,b), p1(a b)=a and ps(a,b)=> respectively. It was shown
by G. W. Whitehead [22] that the injection homomorphisms #¥: 7,( A)—m.(A VY B)
and 7§ : m( B)—>m.( AV B and the boundary homomorphism 0 : n,01(Ax B, AV B)
->m.{ AV B) are isomorphisms into, and that thzre is a direct sum decomposition

(n>1).
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AV B) = Fa(A) + ¥ B) + 0mns1{ Ax B, AV B)
with projections to these direct factors p¥: 7.(AY B) = m(A)s p¥: m( AV B) —
mB) and Qo: my(AVB)— mni1(AxB, AVB). For a€mn,(AVB), we have
a=1{ (o) + 5 5 () +0Qo(w)-
From the exactness of the following two sequences

i j

> ﬂn(B>"—2) 77n<A v B) —> 77%<A VB, B) — ﬂn+l(B> i Tfn—-l(A v B) > e

and
z'ol'i< 7’

> ﬂn<A>_‘> ﬁn(A v B, B)'_'_) ﬁn(A v B 5 A, B)'_' ﬂn(A) - Tfn(A v B, B) > e
we see that the composition j/0 jod: 7 1(AXB, AVB)—m {AVB; A, B) is
isomorphism onto for x->3. Define a isomorphism
3D Q: m(AVB; A,B)—~ nai(AXB, AV B)
by setting Q=(j"0jo0)7L, then Qy=Qoj o 7.

Set ST=S"X yx, S;=y4xxS" and yo=y«X yx, and consider the following dia-

gram, in which the commutativity relctions hold;

E A
> s (ST > (ST > 7(ST 5 By BL) ——> mpea(S71) > -

o l@i‘
7 r I/ r 7 r r
7fn(\sl \(’/552)—-;»77»(51 VSy; St 2)
\
QNN Qg
(ST % SQ» STV S5)—> mns1(S?)
R o E

7fn+1<]27" 1127') I 7Tn<52r—1> 4

then our Hopf homomorphisms H: m(S™s E%» ET) — maea(S?) and Ho: ml(S")
— 1,41(S27) are defined by setting (5.23)

(3.2) H:q&i’;roQoga;[: and Ho=HolI.

The generalized Hopt homomorphism H’: 7,(S")— 7, (S¥-1) of G. W.
Whitehead [22] [23] are given by H'=d" odzj?";lo Qoo ¢F tor p<dyr—4, and from
the commutativity of the above diagram we have Ho=FH’'oFE. Since E is
isomorphic for n<<4r—4, we have that I’ is equivalent to H,.

As is shown in [9] and [18], we have
(3.3) HooE =0,

@34 Hy(BoE(«))=Ho(B)o EE(x).
Theorem (3.5) If a€n,(E”, S™1), B n(E, S™71), then
Hlw B8] = (—1)"" 1 E((0a)(08)) -

Proof. Let fo: (1%% [*"1)->(S""% y4) be a representative of 93¢ r,,(S™1),
then 3 is represented by f{(xis---» %) = dr—1(fo(%1s - 20-1) %,). By (1.7,
(S (%)) = (Efo(x), 34), and we have ¢¥(8) = +£(9B). Similarly we have
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G (W)= EBa). By (3.2), (3.1), (2.12), (2.19) and (2.22) we have

Hlw ) = %, 0 Qo ¢¥[wr 81 = #%, 0 QLi{ E@ud. i EOR]:
= (=I5 (f 0 j08) o (7 0 0 0) (B9 x ECOB))
—(~ 1)1 (B(00)) = (~1E(8) % (09)) -

Combining this theorem to lemma (2.28) we have

Corollary (3.6) If 7€ mpiq-1(S") is represented by the Hopf construction of
a mapping: [?xI— S™1 of type (o B) (4€ mp1(S™L), BE€ 7q—1(S™"1)), then
Ho(i)=(—1)"E(ax ).
ii) Generalized Freudenthal invariants A’, 4" of G.W. Whitehead are defined on
the group =z, which is isomorphic to =,(S"; E7, E), and have the properties
A(a) =(=1yA"(¢«) and A (u)—A"(«) = (1Y *1EEHo(4(x)). The following
theorem due to G. Takeuchi shows that our Hopf invariant H may be used in
rlace of A’.
Theorem (3.7) H(u)--(—=1)tyo H(u) =1+ EEH(4(x)) for vu€m,(S";
7L BT (25, r=2).

To prove the theorem we need several preparations. Let a homomorphism
A 1 (ST71x S5, STV ST = 101 (S7x S5 STV S3) be induced by the formula
Af (%1 e s %041) =(Ara1(P1F (15 ovs Znm2s X1 )s 28n—1— 1 dre1( P2 f (X1s-+0s Bne2s Xt 1)s
2%,—1) where f:(I"% I"72, J"=2) — (S]71x S5~ STV S5, yo) is @ mapping.
As is shown by Hilton [9], in the diagram

A Qo
p-1(ST71x S5~ L, STV §5-1) — 7,,.1(STX S5, ST VISQD % m(S1V S5
Prosr [
EoE ’ |
Tn-1(S¥2) —> mp1(S%)  mas1(STX ST, S1V S

the relations ¢, 0 A =(-1Y EEo¢f, . 1» ¢7,00f =(=1)caro ¢k » and oo Qo
=@ o oF hold. The restriction F=Af|I* satisfies condition
FI"1x ['x S)CST, F(I"2x [ xI?)CS;, F(I"x (1)) = yo
3.8) F(x1s s %m) €STVEL if 251w, and xp—1==1—xn,
€SIVEL if xp1z2xn and xp 1 <1— %0,
€ELVS; if xp-1224s and xp—1=21—2%n»
EELVSy if xp1<%n and xp—1<1—2%n,
and  F(x1r - » ¥ne101/2,1/2,0) = 05 (X1» oov » Sn2) -
If a mapping F: j**!1— S]VS; satisfies the condition (3.8), the mapping
0f : (I"=2, J*=2) — (S;-1V S5, o) represents an element wp of my—2(Si~1V S5~1).
Since F(x1s -oe» Xn—1,0,0) = (E(P100f ) (X1 ... » Xu-1)» Yo)» the restriction
F|I": I»— S} represents a nullhomotopy of E(p,of ), and we haue E(pfao)=0.
Simitarly we have E(pfFao)=0. Coversely for any mapping f:(1""2 ["~2) -
(Si-1V S5-1, 9¢) which satisfiie the condition E(p o f)=0 and E(p;o f)=~0,
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there is a mapping F:I7+' — S;V S5 which satisfies the condition (3.8).

Since S7-1V Sj-1 is contractible in ELVY EZL, we have that if two mappings
frg: (™4, 1Y) — (ELV EL, S7~1V §-1) coincide on j"~1, then f is homotopic
to g rel. j»~1. This shows that if two mappings F and F’ satisfy the con-
dition (3.8) and homotopic on I7~1x(1/2)x(1/2), then F’ is homotopic to
a mapping F” (in the homotopy the condition (3.8) holds) such that F”"(x;,...
%5 0)=F(%1s .- »%4,0) if %p—1=%n OF xp-1=1—1x,. It is not so difficult to show
that the difference {F} — {F"} is the sum of four elements, which are represented by
mappings of forms: j**1— E1VS;, ELVS;, SIVEL and STV Ej; respectively.
Since E’, and E”. are contractible, {F} — {F'} is in Fma(S") + 15 ma(S™)Cra( STV S%)
and therefore Qo {F} —@o{F’'} =Qo({F} —{F’})=0. And further calculation shows
that the correspondence {f} — Qo{F} induces a homomorphism

A [rp2(ST1V S57)] = masa (STt x S5-1, ST-1V S5-1)
where [m,-2(S;~1V S5-1)] is a subgroup of m,-3(S;~1V8;~1) whose elements
satisfy the conditions E(pT«)=0 and E(pF«)=0.

If g: (%2 " 2)—(S""L y4) is a mapping such that E({g})=0, and let g;
be a nullhomotopy of go=Eg, we define a mapping G: [**1— S§" by G(x1,...,
2 ) =Eg(%1s -+ s Xn—1)s G(%1s+ev s X1 £L, ) = ge(x1s - » Xu—1) and G(J?--1""2x J1
x I2)=y,, then 7; o G satisfies the condition (3.8). Therefore if «€ i¥mn—s(S™1)
~[n—2(Si~1V S5~1)], then we have A(«)=Q:f {G} =0. Similarly if « € i§mu—a(S™1)
ALma-2(S7~tV S5-1)], we have A(u)=0. If «€7m,1(ST~txS5-1, ST-1V §5-1), we
have obvious'y A(04)=A(«x), hence if «€[x,-2(ST~1VS;~1)] we have A(x)=
AT + 5D 3(a) +0Qo()) = A(Qo(x)). Cornsequantly we have

Lemma (3.9) if a mapping F satisfies the condition (3.8), and if F|I""2x(1/2)
x(1/2) represents o€ wn-a(S;~1V S5-1), then we have Q¢{F}=A o Qo(u).

Proof of theorem (3.7). Let f:(I"; 1741778, J*~1)—(ST; E5, EL, y%) be a
represzntative of « ¢ 7,(S"; E%, E7), and let 4f: (1"2, j»~2)— (S”, ¥4) be repre-
sentative of du such that 47 (%1, ... Xn—2)=J (%1« » Xu—2,1/2,0). Since f=|I17"11is
homotopic to E4f, we may assume that f|I*"1=Fd4f. Set F=g¢r0f and define
a mapping F’:(I"; 174 1%L, J*~1)— (S1V S5 ; S5. ST, ¥o) by setting

F'(%1s e s%n) = F(&1s v s X1 28— 1) 1/2<%,<1,

= ¢r 0 0r(2rx,) EAf (%15 - s Xn—1) 0<x,<1/2.

It is easily verified that F’/ is homotopic to a mapping ¢ro o) o F=grogro F.
Since the homomorphism 7’: m,(S7V S3) — m(S;V S5 ; S7,S5) is onto there is a
mapping F: [**1— S7V S; such that F|["=F, F(1""'x(0)xI)CS;, F(1"1x(0)
xIVNCS;, and F(K™)=y, and we have I’'{F}=¢(«). And also there is a
mapping F’: ["*1-> S}V S} such that p|[7=pF', /(1" x(0)xIV)CS,, F/(1"1

X(O)XIVNCSL F'(K™)=y, and I'({F'} Y=g} o ¢i(x). The difference {F} — {F'} is
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represented by a mapping F,: j"*1— S;V S} such that Fo(I"x ()Y " 1xI12)=y,,
Fo(IT ' x(@) XTI x ()X C ST, FIT ) (O x 1P Y15t x (1) x 1) CS; and
Fol%x1s s %) =0r 0 0r{ —7%n) © EAf (%15 .. » Xn—1)-

Define a mapping w: [**1— j*+1 of degree —1 by setting w((x1s---» Xns1)=
(%1s e s Xnm2> 0" (Xn—1> ¥ )s Xn+1) Where o’ (x, »)=(1-2(1—x)1—y),1-2(1-x)y) for
1/2<x<1 and o’(x, ¥)=2xy, 26(1 - »)) for 0<x<1/2. Since » is homeomorphic
on jrtl—Jn=2xjlx ]2 and F, maps ["lxJlx ]2 into the single point y,, there
is a mapping F,: ["*1— S}V S5 such that Foow=F,. Itis verified from (1.4Y
and (1.7) that F, satisfies the conditions (3.8), and from (3.9) we have

H()—~ (=1 tar 0 H() =47 0 o0 Qo ¢¥(w)
=¢*o QoI {F}—¢*oQoI'{F't=¢*o Qo ({F} ~ {F})
= §%0 Qo {Foh=— ¥ QIFs} = —%0 Ao Qo gk pr(5) 0 ar)
= —¢*o Ao Qo ¢pFf1(du) =(-1Y'EEH4uw)»
and the proof of the theorem (3.9) is accomplished.
Since 40 1=0, we have

Corollary (3.10) Ha) = (=1) t2r 0 Hfa) -

If uemp(S™) and B € n,(S™), there are elements 4 € mp1(E7F1L, S™) and B € mye
(E%+1, 87) such that da=u, 08=p and 4[a, Bls=[«,B]. By (3.5),(3.7) and (2.4),
we have (—1)" EEH,[« 8] = H[% Bl:—(—1)* tars20 H[a Bl = (—1)*E(a*p8)
— (=10 (1) E(axB)=(-1) (1~ (~-1)+1) E(a*B), and therefore
Corollary (3.11) EEH [ 8] =2(-1)?*E(a*xp) if r is even,

=0 if r is odd.

iii) Next we shall define a Hopf invariant to more general group 7,(X*; &% X).
Let ¢;; (X*; &, X)—(XVS";S" X) be a mapping identifying the subset
gj,s;»uéf to the single point xo=S"~X, and let ¢,; (X x S% X V S")— (E"( X)), x4)
be the shrinking map in (2.8). Then a Hopf homomorphism H=r,( X*; & X)
— w1 E®( X)) is defined by setting H=¢%o Qo ¢¥: m,( X*; &% X) — n-p(fc Vs
S X) = wpa1(X xS" X VS") = 1,:1(E"(X)). Define a homomorphism P, :
Tpeni1 (X &™) = mp( X*; &, X) by setting Pi(a)=[a> ], where ; is a generator
of mu(&, &f). By (3.1), (2.12), (2.19) and (2.10) we have H;P,(«)=¢% 0o Q o ¢f
Lo ¢ide = ¢ © @ 0 [9i()s tule =(—1)"¢E(j 0 j00)71 j 0 j o 0 (¢f() X tw)=(—1)" ¢i§
() X ) =(=1)" E"(@¥(x)). If i=j, ¢¥ [ar¢;]=0 and hence H;P;=0.
(3.12) H{Pj(w)=(-1E¢i{a) i=7j,

= 0 i=l:7.

If (X,&) is smooth and m-connected, and if ¢" is y-connected, then
@F: Tpenin(X> &) > Tpens1(X) is isomorphism onto for p 5 +-1-"m + p by (1. 26),
and E”: 7fp—-n+1(}2)’“’ 7r,,+1(E"()~()) is isomorphism onto for p —u+1<2m by (2.6).
Then the tollowing theorem is algebraic consequence of the above considerations :
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Theorem (3.13) with above hypotheses mwo(X*; & X) has a direct factor iso-
morphic 10 wp-ni1(X, &) R (&™) for p<n-+m-+min(m,r)—1.

Combining this theorem to (1.27) we have
Corollary (3.14) 7,(&% &) has a direct factor isomorphic to Zi wp(E" S* 1) D

Tens1( &) Q (™ &) for p=n+min. 2r,n—2)—1, where tensor product K is
induced by the relative product.

Chapter 4. Some elements of 7,(S™).

i) It is well known that the mapping ¢,: (I [®)— (S" y«) represents a
generator ¢, of the infinite cyclic group 7,(S*)=~Z, and that 7,(S1)=0 for n_>1,
and m,(S")=0 for n<s.

There is fibre mappings hr: S2-1— S"(r=2,4,8) with fibre S”-1, and they

are represented by the Hopf construction of mappings of type (er—y,tr—1). If B'»
is another fibre mapping, then there is a mapping %: S2"~1— S2'~1 of degree 1
such that h-=h'r o %, and therefore H({hr})=E( re1®tro1)=ter=t H({h'}). As is
shown in [5], the homomorphisms A¥: m,(S2"~1)— 7, (S”) and E ; mp—1(S™" 1) —
m«(ST) are isomorphisms into and
4.1 7 S") = B ma(S¥ 1) D E(mn-1(S""1)).
ii) By (4.1) n3(S2)=~nm3(S3)=~Z and its generator 7, is represented by hs;. The
fact w1 (S®)=~Z, for n=>3 is shown by H. Freudenthal [8], and its generator 7,
is the (s#-2)-fold suspension of 7,. It was shown by G. W. Whitehead [23] that
Tas2( S")~Z(1n=2) and its generator is 9,° Hn+1-

For convenience we modify the theorem (3.7). Let «¢ 7,(S") be an element
such that E(«)=0, then there is an element 7 of 7,,2(S™*1; E7FY, E7+Y) such that
) =a. By (3.7) we have H(?)— (1Y} tzrsa0 H(?)=(—~1Y EEHo(a), hence
we have EEH(«)=0 if  is odd. If »+2<2(27+1)—1, the suspension homo-
morphism E : mps2(S¥ 1) > m,43(S27*2) is onto and there is an element B of
n+2(S¥+1) such that E(B)=H(y), and therefore we have by (2.4) (—1YEEH(«)
=EBR)—(—1)Y*1igr90 E(B)=1—-(—-1)*1)E(B). Consequently we have
(4.2) if «€nS") and E(ax) =0, we have

EEHa) =0 if v is odd,

EEH )€ 2m,:3(S?*2) if 7 is even and n<Ar-—1.
Since 27r,2(S"+1) =2nr49(S")=0 for r==2, we have
(4.2 if € ne(S") of w€ marsi(S™) and 7222, and if H(a)=-0, then E(a)=}-0.
For example %3 o 34 o35 is a nonzerc element of 7s(S3).
iii) Let g=x;tix2+jxs-+kxse be a quaternion, then we may regard a point
(21> %2> x3> x4) Of S% as a quaternion of unit absolute value and regard a point
(%1, %2, x3) of S2 as a pure quaternion ix, + jxa-+ kxs of unit absolute value. The
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product p-i-p~1=k(p) (p€ S8, 7i=(C,1,0,0)) defines a fibre mapping h: S®— S2
and h represents a generator of m3(S2).

The products p-q=f(p,q) and p-qo-p~'=g(p @) (> g€ S% qo€S*) define
mappings f:S3xS3— S3 and g:S3xS2— S2 of types (e3,¢3) and (L%, ¢2)
respectively. The hopf construction of f is a fibre mapping, and let its class be
va € m7(S4), then H(vy)=ts by (3.6). Let ascne(S?) be the class of the Hopf
construction of g, the H(u3)=. Let v, and «, be (n—4)- and (n—3)-fold
suspensions of y, and «3 respectively. The author proved that [18]

Lemma (4.3) i) the (n—3)-fold suspension E"~3: 7e(S*)— mnss(S") is isomor-
DPhism into for n=5, and wnss(S*)/E"ne(S*))~Zs,
i) [tas tal=2vs—tar 2n=un for n=5 and n° n+1 © Yus2==0 for n=2.

iv) Let f, g and h be mappings as in iii), then a diagram

S8 x S8 i» S
igXh h
sk, &
commutes, where 7y: S3— S3 is the identity map and (Z3xh) (% ¥)=(x, h(¥)).
The difinitions of Hopf construction, join and suspension shows that E(%ys)ova
=gzo(tzx92) =uzoms. By (2.23), (2.24) and (4.3) we have [y4, t4]=[ta, ta]o(gs*¢3)
=2vs—us)ons=(2va096) +usons=usone and by (2.27) ysovs=asons=E[74, 4] =0.
By (8.4) we have H(9sovs)=H(as°9s)=H(as)on7=76°97=-0 hence »3 oy4=-0, and
by (4.2)Y we have E(y;ovs)=ns0vs==0. Consequently we obtain
Lemma (4.4) Tn O Vne3 = Un© M350 for n=3 and 4,
=0 for n=b.
v) It was shown in [19] [17] that the homotopy group ns(R:) of the rotation
group R, is thz cyclic group of order 2 and the boundary homomorphism
0:ms(Rs» Ry) — mi(Ry) is onto, and that the generator of z,.(R,) is given by
i*(u)oys, where «<m(Rs) is represented by f(p)X(g)=p-q(p,q€ S?). From
(2.34) we have that J(#(a)ons)=]J(@(uops))=—EJ(aops)=FEJ(auoys) is
represented by product [¢s,¢s], and J(ao9s)=J(x) o (ys*¢e3)=vso7p;. Therefore
[s:e5]=Eaoni)=vsons, and vsoye=FE[t5,¢:]=0. By (3.4) H(v4o097)=ys+0
and vy 0 9740, and by (4.3) E(v4oy7)=vys o 7s+0.
Lemma (4.5) VO Yues =0 for n=4 and 5
=0 for n==6.

vi) Let ¢; be a quaternion, then we may represents a point of C4” by (g1, ... , gn)-
The equivalence relation {(gi,..-»@u)} ={(Pq1s-.-» Pgn)} induces quarternion
projective space @QW-! with respsct to th2 indentification mapping Q1
C¥—0y > Q. Obviousiy gp-1|C" *—0x=gh-2. With normalization process
we obtain a fibre mapping g@u-1: S*™ 1> @Q®-t and its fibre is S3. The
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correspondence (gis .- » @n)— {(q1s - » @)} € @ gives a homeomorphism: C4*—
Q" — Q% and this shows that there is a character mapping gn-1: (£, S1*-1)
— (@, Q+—*) such that ga-11S*1=gs-1. Then we obtain a cell decomposition
Q" =84"e8"Y...Y et of Q. The fibre mapping g.: (S, S7)— (@8, S3) induces
isomorphism g¥: m,(S, S7) — m (@8, S4). Consider the diagram

(S, S7>“—‘a" m19(S7) —> m10(S)
Q?f ¥ lQT

m(@% S*) —> m(S*) .
Since S7 is contractible in S11, @ is onto. Let 7g€ 7s(Q%, S) be the class of g,
then 0~s={q} =vs- There is an element 7 of x;;(S!1,S7) such that g¥f(y)
=[ts Ts]r» for gf is onto, and therefore [¢4, vs]=0[t4, ts]r=0gF(7) =gt 0'(y). Set
0'(7) = BEmo(S™), then [es,va] =vsof. We have Hl[tsva]=2E" (eaxrs)=2vs
by (3.11), and HvsoB)==E(B) by (3.4). Since E: n1,(S")— m11(S8) is
isomorphism onto, we have =2y, and

Lemma (4.6) [t vs]=2v40v7 and 2vnovni3=0 for n=>5.

Chapter 5. A construction of mapping.
i) Consider a mapping F: (I"*%, [**1) — (X, x,) which satisfies the conditions
(n=2):
(A1) F(x15--.» Zn+1) = F(X1s o s Xn—2s xn—-1+1/2’ Xns Xn+1)
for 0 < 6,1 <1/2 and 0 < 2000 <1/2,

<A2> F(xl, ,xn+1) = F(xp ,xn-—1,xn+1/2, xn+1)

for 0<%,<1/2 and 1/2< xp1 < 1.
The formula

G.D S(x1s e x0) = F(%15 0 s Xn—2s Xn—1/2s %n/2,1/2)
represents a map f: (1" I") — (X,%,). From (A;) a map F;: (I ")~ (X,x)
given by F1(%1s --» %0) =F (%15 -+ » 2%p-15 %n> 1/2) is the sum f+f cn the x,-; -axis,
and also from (A;) the formula Fo'(x1s---»%n) = F(%1s - » ¥n—1>2%n> 1/2) gives
the sum f+f on the x, -axis. By setting Fi(x1, - »%n) = F(X1s -+ » Xn—2s 20015
Xns £/2) and Ftl(xlr ’xn)=Ft<xlv cer's Xne2s Xn—1s 2Xns (t+1>/2)' we obtain null-
homotopies of F; and F, respectively. Therefore
(As3) f represents an element « of o[m(X)],
where o[7,(X)] is the subgroup of 7,(X) generated by the elements of order 2.
Conversely for any element « of o[, (X )], there exists a map F: (J»*1, f»+1)
— (X, x,) satisfying the conditions (A;), (A2) and (A43). Let F and F’ be two
maps which satisfy the above thres conditions, and let f and f” be the restricted
maps as in (5.1). Since f and f’ represent the same element ¢, there is a
homotopy fi: (1% I") — (X, %) from f=f, to f'=fi. Define a homotopy
ge: (I ™) — (X, x0) by a rule
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ﬂ(xly ceey xn> = gt(x19 oo s Xp—2> xn—1/2, xn/z) == gt(xl’ cei s Xpe—2 xn—-l/z) (xn"'l)/z)

= gg(xl’ oo s Xns (xn—1+1)/2, xn/Z) = gc(xly e s Xp—2>» (xn-—l"" 1)/2’ (xn+1>/2> ’
then we have go(x1, .--» X)=F(%1s ---» % 1/2) and g1(x1s s %) =F' (%15 o0 » X 1/2).
Define two maps F. and F_: (I*1, j**1) — (X, x,) by setting

F—!-(Xl» oo s X t) = F(xl, ,xm(2—3t)/2) Oé tél/sr
=g35—1(x1,...,xn) 1/3§t§2/3'
= F'(x1s s s (3E-1)/2)  2/3<t<1.

and
F_(xl,...,xn,t):-F'(xl,...,xn,3t/2> Ogtél/gr
= go—3:(X15 - » Xn) 1/3<¢<2/8,

= F(xr 50 (3-3)/2)  2/3<t<1

It is easily verified that the sum F,+(F+F.) on the x,,; —-axis is homotopic
to F’. Since Fi(%1s-..sXn-15%ns Xnsr1) = F (15 oo s Xnm1r X0 +1/2, 2041) for 0=<w,
<1/2, F, is the sum F’ + F/ on the x, -axis, where F/(%x1,...»%p+1)=F.(x1,...,
Xn—1s>%¥n/2 %ns1)» and hence the class of F, belongs to 2(my.1(X)). Similarly
the class of F_ belongs to 2 (m,;1(X)). Consequently we have

(5.2) the class {F} of in mn1( X)/2mn1(X) depends only on o, and it is denoted
by T(a).

If »=5, and if F, and F; are representatives of T(«) and T(B) respectively,
a representative F of T(u«+B) is given by the sum F;+F; on the x; -axis.
Therefore T(«)+T(B)=T(x+B), and we obtain a homomorphism
(5.3 T2: o[ ma( X)] = me1( XD/ 2m0sn( XD (23D,
In the case =2, by theorem (5.15) of [2Z] and the following theorem we have
TCaAB)=T(uw)+TR)+ {[x B1}-
Theorem (5.4) T(a) is the class of @ © yn-

To prove the theorem we shall give a representative of 7T(«) by spherical
mappings. Let ¢: (E" S""1)— (I" [") be the homeomorphism given by

1+ oxn
8(%11 ...’xn) = (1+2px1) “eey +énx ) s where o=

,/x%+~+x72’
max(lxll,---, lxn\>
Define a map %,: I1"*1— E” by setting for 0<x,-;<<1/2 and 0<x,<<1/2

1K1 e s Hnr1) = €72 X1 - s Xnzs 2%ns> 2Xns1) if 0<xn41 < %15
= "X X1s-er s Xn—2> 2%n> 2Xp—1) if Xpe1 = 201 <120,
=7 X1 oo s X2 27 200415 200pm) i 12 Sxni1 1,
and by adjoining the condition
L1(x1s oo s Xne1) = X1(X1s oo s Xnm1> 1 —%ns Xna1) = X1(X15 oov » K15 1 — %05 K1) -
for the other values of x,-, and x,
Set L.= {(®15 - s 021D € I”+1lxn=1/2, xn+1zl/2} and L. = {(xl’ s Xne1) €
1" %,1=1/2, x,,1,<1/2}. We may represent a point (x;,x;) of S! by a radian
0 such that (cosd, sinf)=(x1, x2). Dafine a mapping: Ap: ["*1—j?*1-—-L,—L_
— S1 by setting



68 Hirosi TODA

L2(X1s oo s K1) = — /4 0L %01<1/2,1/2< 501 and xns1=1/2,
= 5 Arctan 52 0<x,1<1/2 and 0Lxnir<1/2,
- % 0< %p1<1/2, 0< %,<1/2 and %nsi1=1/2,
= —721+%— Arctan %:—gﬁ—:ﬁ 0<x,<1/2 and 1/2< 201 <1,
= 3n/4 1/2< %01<1, 0<%, 1/2 and xns1=1/2,
= -1/2 Arctan [~ 52— 1/2< 201 and 0< 531 <1/2,
= 5r/4 1/2<xp1<1, 1/2< %01 and x%ps1=1/2,
=3/2r~1/2 Arctan %:—gﬁgii 1/2<%,<1 and 1/2< 501 <1 .

For a fixed point #¢€ S, the inverse image 2;1(f) is an open g-cube in 7"+!
and x; maps %x;1(#) homeomorphically onto E”—S"-1. Therefore the formula
1(x)=X1(x), %2(x)) gives a homeomorphism % : #*1—j»*1_f . [ _—(E?—S""1)
x St

Define a map ¢: E?xS1—> S 1 by ¢(x1s - s Xns V1> Y2) =(X1s oo s Xns V15 12>
where (%1, .. » %n) € E® (91, ¥2)€S! and p=(1—x}— - —x3), then ¢ maps
(E”—S""1)x S! homeomorphically onto S*+1-S7-1,

Define a map ¢: (1™, j»*1YL,Y L) — (8", §*"1) by setting

P(x) = ¢(x(x)) for ye1"*1—p"*1-L,—L_,
and (%) = (01(%),0,0) for x€ j» Y L. YL,
then ¢ maps ]"*!—j?»*1- [, L_ homeomorphically onto S*+1—S"~1,

Since F maps j?*1“Y[,“Y[L_ into the single point x,, there is a unique map
H: (S, 8"1)— (X, x,) such that F=H o ¢. It is verified from the definition
of ¢ that the map H satisfies the conditions:

(By) H($(x1s--5%0,0)) = H(¢(%15 - s Kn-1s ¥nsw—0)) —w/d=<0==n/4,

(B2) H(¢(x1s s %02 0)) = H($(X15 oo s Xnm1s —%m» 2r—0)) /4 <0 <3r/4,

(B3) and a map h:(E" S* 1)~ (X,x%9) giving by h(x1,-..»%n) = H($(x1s--.»
Xn» Yx)) represents .

Conversely, for any map H: (S"*1, S"~1)— (X, x,) satisfying the above three
conditions, the composite map Ho¢=F:({1"*, j**1)— (X, x,) satisfies the
conditions (A1), (A2) and (As).

Since ¢|™*! does not cover the point (0,0,...,0,1) of S* 1, the map ¢|j»+?
is inessential in S§”~1. Hence the map ¢(I"*1, j**1) — (S"*1, S"~1) is extendable
to j**1 such thay ¢(J**1)CS"~1. Obviously the Brouwer’s degree of the resultant
map ¢: j?*2 — §7*+1 ig +1.

The composite map Ho¢: [**2— X carries the subset J™*1into the reference
point x,, and hence Ho¢ represents the same element of x,..(X) with
Ho¢|I™ Consequently the map H satisfying the conditions (B;), (B:) and
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(Bs) represents £T(a)=T(x) € mps1(X)/2mn+1(X)-

Let ho: (E™ S"1)— (X, x,) be a representative of « ¢ o[ m,(X )], then there is
a homotopy h;: (E” S" 1)— (X, %) such that m(x1, -os xn) =ho(X1s -+ s Xne1s —Xn)s
since h, represents —« and = —q¢.

Define a map H,: (S**L, 8"1) — (X, x,) by setting

Ho(¢p(x1s e s %0, 0)) = haf +%Cx1, s Xn) —n/AZH<r/4,
= hi_&(p(%_zr_)(xu s Xn)) n/4=A=3r/4,
PR 2
=h3 20(X1s - s — Xn—1>%n) 37/4<6<5r/4,
2"

= hij__-;_(p<%ﬂ_29><x1, ey X1y — xn>) 57T/4§6§77‘[/4 ’

then H, satisfies the conditions (B:1), (B:) and (Bs), and represents T(a).
Give a homotopy H;: S"*1— X by setting for 0<¢<1

Hc(¢(x1, e s Xy 0)) = }’I(?;t? +%><1_t><x1: ,xn) - 7T/4,>:H§T5/4 ’
= h<_';_+5;t6 )(l—t>(‘0<29— Z;,)(xl’ cees an ﬂ/4§ﬂg3ﬂ'/4 s
= ht—l—(%—:‘ﬂi)(l—p)(xl’ ees —Xp—1> xn> 37T/4§ﬂ§571/4 ,

= h”(z?f"%)(1"’)@(%#26)(9‘1’ cos Xnm1s —%n)) Dr/AZALTr/4,

and by setting for 1<z<2
He(¢(x15 - s %02 0)) = Rolocoer-195(H15 - » ¥s)) —n/A=f=r/4,
= hO('O(B(”“‘l)+(29"%X2“’><x1, e Xn)) n/4<0<3rn/4,
= Ro(0cact-1+rc2=t3(X1s -+ > %n)) 3n/d=f=br/4,
= hO(pQ;(t—l)+<29+§>(2_5>><x1 e X)) Or/AALT/4,

then H, is homotopic to H, which is given by

Ho(¢p(x15 5 205, 0)) = BoCop(15 o s Xn)) -
Let w: E™"— S™ be a map given by
O(x1s o s %) = (2%15 oor s 200> pt=) for > x3<1/4,
= (1-2%1,...,1—2%5, p,) for 1/4<37x3<1,
where y_=—(1-43 %)% and p,=1-3 (1-2%)2)%  Then w|E"—S™! is a
homeomorphism, and there is a map /: S"— X such that W ow=h, and A
represents +¢. Let u, be the map given by
Pl (%15 v s Xns 0)) = 0 (7g(%1s - > Xn))

then Ho=h o /iy.

For n=2, us: S®* — S2 is the Hopf construction of a mapping si»|¢(S*yx S*)
of type (e1,¢1), where Sly={(x1,x2)|x}+x3=1/2}, and ¢|S?yxS! is a homeo-
morphism. Therefore the Hopf invariant of z; is =+:y and ps represents
t9s € 13(S2).
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For n>2, pn: S™1— S® maps hemispheres E?{! and E”%! into hemispheres
E"; and E"; respectively, and we have /in(%as...%ns1) = fne1(%2s -+ s Xns1))-
Hence i, is homotopic to (—1)"E(zis-1), and by induction we see that ji,
represents 7, € mn1(S?).

Consequently we have

T(a) = {HO} = {H2} = {hlo,&n} = i{aoﬂn} = {floﬂn} in 7Tn~l-1(X>2/71'n.+1(X—)
and the proof of the theorem (5.4) is accomplished.

ii) Assume that elements « € n-(S*), B € 7n(S™) and € m.(S™) satisfy conditions
#of3=0, and Boy=0. Let f:S™—S° g:S™—S" and h: S"—>S™ be representatives
of ¢, and y respectively, and let F;: S™S° and G;: S™S" be nullhomotopies
of fog=Fo and go h=G,. Define a map H: S"*1—S* by the rule

(5.5 H(dn(x: 1)) = f(Ge(x)) 0<t<1,
= F_.(h(x)) -1<t<0.

The construction of H depends on the choice of f, g, h, F; and G;. Let H' be
another construction as above with respect to f”, g/, I, F/; and G;’, and let
fe» g: and h, be homotopies from f=f,, g=go and h=h, to f'=f1, g =g1 and
K =h, respectively. Define a homotopy H.: S"+1— S° by
H(du(%: 1)) = f:(Geat-r /2= %)) 0<r/2=t<1,
= fr(grrae(Prr2:(x))) 0=<¢<r/2<1,

= fre2(grra(h(x))) —1=-7/2<¢=0,
= Fera-n(h(x)) —1<¢<-7/2<0,

then Ho=H and H;|S"=H'|S" Define two maps H. and H_: S"*1— S* by

H:(dn(%: 1)) = Hi(dn(% 1)) 01,

= H'(du(x, —1)) —1Z¢<0,

and H-(du(x, 1)) = H'(du(%, — 1)) 0<t<1,
= H:\(dw(x,t)) -1<<0,

then H. represents an element of o m,+,(S™) and H-_ represents an element of
m1(S*) o E(7), where ¢omn+1(S®) and mm+1(S™)o E(R) are subgroups of my+1(S*)
consisted of the elements of the forms vo¢ and &€ 0o E(B) (€ € nn+1(S*), & € mn+1(S%))
respectively. As is easily seen, the sum H.+(H’+ H.) is homotopic to H;,
and therefore

(5.6) the class Of H in nnﬂ(S")/aonn+1(S’)+nm+1(Ss)0E(;’) depends only on
w B and 1, and it is denoted by {u,B,7}-

Theorem (5.7) If a€[n.(S")] and if 2<n<2r—2, then
{2000 20} = T() = {ogn} in wae1(S")/2mne1(S™) -

Since the suspension homomorphism E : 7,-1(S™1) — 7,(S") is an isomor-
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phism onto for %< 2r—2, there is an element « of m,—1(S""1) such that E(« )=«
and 24 =0. By (2.5) we have 2 o0a=(tr+t)o E(«) =E(«)+E(a)=2u=0.
Let f7:(S™1, y4)— (S™L, y4) be a representative of «’, and let g,”: (S"1, yx)
— (871, y4) be a nullhomotopy of f’o2,.,=g,, where 2,,: S™— S™(m>1) is a
map of degree 2 given by

2m(Bm—1(2s 1)) = dma(x, 26—-1)  0<t<1,
= dm-1(% 2t +1) —1<¢=0.

Set f=FEf’ and g;=FEg,/, then f represents « and g; is a nullhomotopy of
SoE2, 1=g,. Let f,:(S" y4)—(S", y%) be anullhomotopy of 2,0 f=f,. Then
{2, 1, 2tn} is 1epresented by a map H: (S™1, y5) — (S7, y4) given by

H(dn(%: 1)) = 2:(g:(%)) 01,
= foi(B2:-1(x)) —1<4<0.

Now we shall calculate the composite map H o ¢n+y: (71, [7+1) — (S7, yx)
which is a representative of {2¢,a 2t} Since ¢m+1(x1s - » Tm+1) =dmlPm(X1 - »
Xm)s 2x%me1—1) and 2p(dm-1(% 1)) =2n(dm-1{x, t+1)) for —1<¢<0, we have

H((/Jm-l(xl, ,xn+1>> = H(dn((ﬁn(%l' ,xn), an+1“1>)

= r(Egét—l(dn—l(d)n—l(xl»---:xn—l)n?xn—l))=2r(dr-—1(gét—l(¢'n—1<x1v-~yxn—-1)y2xn~1)>
=2,(dr-1(g5t—1(¢n-1(%15 .- s Xn-1))s 220 +1))

=H(¢ns1(%15 -+ » ¥ne1> ¥n+1/2, xn11)) for 0=<x,<1/2 and 1/2<xn+1=t<1,

H(pue1(x15 - » 2n201)) = H(dul P %15 <+ s %n)s 20041— 1))
=f1-20(E2n-1(dn-1(¢n-1(x15 -+ » ¥n-1)> 2% —1)))

= f1-20(dn-12n1(dn~2(Pn-2(%1s -« » Xn—2)s 2%n-1—1)), 2x,— 1))

= f1-26(d0—1(2n-1(dn—2(Pum2(211s -+ » Xn—2)s 200-1+1D), 220, —1))

=H(¢ne1(x1s oo s Xn1+1/2, %ns Xne1)) for 0<{x,-1<1/2 and 0<xp—1=£<1/2.

and H(¢n+1(x1, ,xn—z»x'n-—l/z, xn/2’1/2>)

= H(do{Pa(X1s - s Xne2> Xn—1/2 %0/ 2), 0)

= (20 Ef’ 0 E2p-1)(dn-1(¢n-1(%15s -+ » Xne2> Xnm1/2)s X —1))
= 2(dr-1(f"(Znr(dn-2(n—2(X1s -+ s Tnm2)s Xnm1 — 1))y 22 —1))
= dr1( f(dnma(Pn=2(X1s - » Fnm2)s 280—1—1))2x,—1)

= dr—1(f"(dn-1(%15 - » Zn=1))s 2%n—1)

= f(a(x1s -+ s Xn))-

Therefore H satisfies the conditions (A4;), (A;) and (As), and represents T'(«).
Consequently we obtain {2, a, 265} = {H} =T(a) in 7,+1(S")/2mn+1(S").
Lemma (5.8) [If elements 0 € nr(S*), BE€ nm(S™), 7 € 1a(S™) and 6 € m(S™) satisfy
a0B=0, Boy=0, gnd 7o06=0, then

ao {B, 7,0 ={u By} o E(—=08) in mi1(S*)/ao mys1(S™) o E(d).
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In the lemma, «o {3,7,0} and {u B,7} o E(—0) are classes of «o{ and
£ o E(—d) (for elements ¢¢ {8,7,0} and £¢ {4, B,7}) respectively in the factor
group m+1(S*)/uo (B o m141(S™) + w1 (S™) 0 E(8)) = m141(S*)/a © mn+1(S™) 0 E(J)
=m141(S*)/ (20 s 1(S™) + am+1(S*) 0o E(7)) 0o E(—6). Let f, g, h and k be repre-
sentatives of «, 8,7 and 8, and let F;, G, and H; be nullhomotopies of fog, goh
and ho k respectively. Consider a homotopy K.: S'*!— S° which is given by

K (di(x: ) = f(Ge(k(%))) 0=t<1,
= Fo-(H-1:(x)) —1=¢=0,
then K, represents {u B,7} o E(—0) and K; represents «o {§8,7, 0}, and it follows
from this that we have the lemma.
iii) In this section we shall use the notations of the previous section and
assume that «o3=0, and foy=0.

Let K7#1=S"¢"+1 be a cell complex, in which ¢”+1 is attached to S° by a
characteristic map 4:(E*, S") — (K%, S°) such that a|S"=f represents «.
Dezfine a mapping, &: S™+1— K%+l by setting

Z(dn(x: 1)) = d(du(g(x), 1))  0=t<1,
= F_«(x) —-1<#<0,

then Z represents an element 3 of mpsi(K% ).
Lemma (5.9) gZo E(h) is homotopic to a mapping S"*1— S° which represents
{s B 7}
The lemma follows from a homotopy H. given by

H(dn(%: 1) = i(d(Ge-(%):2)) 0<t<1,

= F-:(I(x)) —-1<4#<0.

iv) For example, consider an element &€ m,+3(S") of {9, 2tr+1» Pr+1}> then from
(5.8) we have 2=Co24.3=75-0& for an element & of {2t41, Pr+1, 2tre2}, and
from (5.7) {2trs1s9re1s 2trs0} =7re1 0 Yrae in mras(S7+1) (#223). Therefore
Lemma (5.10) There is an element ¢ of mr+3(S7) such that 25 =9 © Hr+1 © Prr2=1-0,
and ¢ has order 4. (r=3).

Chapter 6. Eilenberg-MacLane complex.

Let K(II,%n) be the complex of a (abelian) group II which is defined and
treated by S. Eilenberg and S. MacLane [7]. A g-cell of K(Il,n) is an s-
dimensional cocycle ¢%¢ Z,(4y; IT) of the g-dimensional ordered simplex 4,.
The suspension homomorphism S: Hi( K(II, n))— He+1(K(II, n+1)) is given by
setting So?=T¢?— g3+, where ¢§+1(4)=0¢ I and Ts? is defined for each (5z+1)-
dimensional ordered subsimplex (7g,...,#n+1) Of dg+1=(0,...,g+1) such as

T (7os - sTnt1) = 6" (#gs oo s 7n)  if 7041 =¢q+1,
=0 if 7ui1<gq+1.
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S. Eilenberg and S. MacLane reduced the complex K(II,n) to A(Il,»n) and
calculated the following results for the infinite cycle group Z,

Hn—!-l(K(Z’n)):O n:Z,ly Hn+2<K<Z:7Z)> =ZZ n:Zg,
Hus(K(Z,n)) =0 n=>4, Hu:l K(Z,n)) =Z2+Z3 n=>5,
(6.1) Hn+5(K(Z,n))==0 n;j ) Hn+6(K(Zy7l>)=Z2+Z2 72;\17,

Hn+7(K(Z,n))=0 n,ZS, Hn+a(K(Z,ﬁ)>=22+22+Z3+Zs niig,
Huio(K(Z,n)) =2Z2 n=10.

In particular, Hn:+4(K(Z,n)) are calculated for lower dimensions:

(6.2) H«(K(Z,2))=Z, H(K(Z,3)=Z3, H(K(Z,4))=Z +Z3 and the suspen-
sion homomorphism S: He(K(Z,2)) — H:(K(Z,3)) is onto and the (n--3)-fold
suspension S"3: H:(K(Z,3)) — Hu:s(K(Z,n)) is an isomorphism into.

Let K, be a CW-complex such that its (s +1)-skeleton is an p-sphere S*
and homotopy groups m;(K»,) for 7 >un vanish. The existence of such a complex
was shown by J. H.C. Whitehead [24]. Furthermore we may assume that the
(n+k)-skeleton K2+* of K, is a finite cell complex, for the homotopy groups
of a finite complex are finitely generated (cf. [14]). Therefore the singular
homology groups of K, coincide to the usual homology grougs.

Consider the suspended space 'K=FE(K.) of K, with reference point y
€S"CKn» then 'K is also a cell complex and its (zn+2)-skeleton is S™+1

Let x: (Em+b+1, SW+k) — (VK Nk gnik+l / Knek) he a characteristic map of a
cell e”*+1¢c’K, and let a mapping f:’'K"*— Kntt(k>=2) be given, then
the composite map fo (x|S"*) represents an element of m,+x(KLiE). Since
T Knt¥ D) =mpa1( K1) =0 for k=2, there is a mapping x/: (E"k+l, Snk) —
(KR3h+1, Knth) such that 2/|S™%=fo (%|S"*). A mapping %’ o %~! defines an
exte sion of f over ¢"+*+1. By induction we obtain a mapping

fo: E(Kn)— Kn+1

such that f,|S™ is the identical map and f, maps the (% + k)-skeleton of E(K,)
into the (n+k)-skeleton of Ky+1.

Let S,—1(K.) be a subcomplex of the singular complex S(K,) of K, con-
sisted of the simplexes T?: 4, — K, such that T maps the (n—1)-subsimp’ex
of 4, into yy. Dezfine a suspended simplex E'(T%): dgs1— E(Kn.) of T? by
setting E/(T(Ags --- » dg+1) =d(T(Ags--- » Aa)» 2hqs1—1) for the barycentric repre-
sentative (Ag,..., Aq+;) of a point of 4q:y. Define a chain transformation
S’ Sn—l(Kn>—’Sn(Kn+1> by setting S’(T“)=f;ﬁ(E’(Tq))—T?,+1 where T571(dqs1)
= Y%, then we obtain a suspension homomorphism S’ : H?(Su-1(Kn))—
Hos1(Su(Knt1))-

Lemma (6.3) ZLet kn: K(Z, %) Su-1(Kn) CS(Kn) be the natural chain
equivalence given in [6]. then we can choose a natural chain equivalence
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kns1: K(Z,n+1) — Su(Kus1) such that S’ © kn=fn+10S.
Therefore we have a commutative diagram

S
H(K(Z,n)) —> Hen(K(Z,n+1))

K S’ l'c;'iﬂ
Hq(Kn) _—> Hq+1(Kn+1)
N /'
EN
H, u(E(Kn))

where &, ki1 and E are isomorphisms.
Now we shall prove an important lemma:

Lemma (6.4) Hpwx+1(K(Z, 1)) = musl Kat*1)/0[mnan(KLF, Koo -1)] (k=1).
In the following diagram

7Tn+k<K:+kx K"+k"1)
3/'

2
Tnapso( Kptht2, Kprbrl)— gy lal 2
e (KL K”+’“)—>ﬂn+k+l(]{"+k+z K3+%) > muapar(Ko+e+ , Kneiel)

T PR
Tn+ k+1<K"+k+2> - 7rn+k+1(K +h+2 Kn+k"1) —_—> 7Tn+h<K +k"1>—’7fn+k(K"+k+2
l*
Tfn+k+1(K1|b+k K”"'k"l)

the exactness of each direct sequences and the commutativity relations hold. By
a simple algebraic lemma of T. Kudo [13, II, lemma 17, there is an isomorphism:
kernel 03/ kernel i§~ kernel js | kernel ji. Since mpip+r (KotE+2, Knte+1) =0,
Tntee1 (K nt82) = a1 (Kp) =0 and  mpep(K2+%+1) = 1p40(K,) =0, we have
Hysx11(Kn)="kernel 0s/image 0:=kernel 0s/kernel if~kernel js/kernel ji=mnsr+1
(K2*%, KRV image i¥ = K3+*~1)/image 0, and the proof of lemma is
established.

Remark that in the lemma (6.4), Ky+* is the (n+k)-skeleton of K,, but we
may assume that Kj+* is an (u+k)-demensional complex such that its (n+1)-
skeleton is S™ and m(K"+*)=0 for n<i<n+k, because we can construct a
complex K, whose (n+k)-skeleton is Kj+%.

For >3, we define a cell complex K=%+3 as follows.

(6. 5)1 %+3 S”U ﬂ+2uen+3

(6.5)2 emt? is attached to S® by a characteristic map %,: (E™+2, S*+1) — (S"YY
e"+2, S™) such that 7,|S"*! represents 7,€ mn+1(S™) and E(Fn|S"+1)=%n+1|S"+2,
then we have E(Kn+?)=Kn} for n=>2.

(6.5); e™+3 is attached to SV en+2=Kn+2 by a characteristic map &,: (E™+3, Sn+2)
— (Kn+2Yents, Kn+3) where £,|S"*? is given as follows. For =3, iet 2: (E%,SY)
— (E5, S%) be a mapping of degree 2, then there is a mapping h: E3 — S3 such
that h|S*=(3s 02—)\54 for 27, =0. The mapping 3|S° is defined by setting
G|E3 =7302 and C3|E3 =h. For u>3, Z,|S™+2 is defined by setting Z,|S"*2
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=E(Za-118"1) inductively, then E(K2+3)=Kn"tt. It is easily verified that a
generator Z,, of mpea(Kp+2) is represented by &,|S™+2 for >3, and that
(6.6) , Tus1(K2*2) =0 and mas2(Kpt3) =0 for n=3.

By (5.9), (Zn]S™2)0pns2 is homotopic to an representative ¢ of {7m 2tnt1> Tnt1}»
in K3*2 and by (5.10) we have 2{=7,0 9+ 0%+2. Since a generator of the
image of 0: mpea(K*2, S™) — mu43(S™) iS %n 0 Yu+1 © Yus2, and a generator of the
image of 0: mp+a(Kp*3, Knt2) — m,e3(K72+2) is ¢, and since they are not trival,
we obtain
(6.7) The boundary homomorphisms 0 : mnss(K2+3, K2+2)— goi3(K2*2) and
0: mnsa(K2t2, S®) — 11043(S™) are isomorphisms into for n=3.

Chapter 7. The group m,+3(S™).

Applying the lemma (6.4) to the complex Kj+3 of (6.5), we have from
(6.1) Zs+Zs~ mnts( K3+2) [0(mnea(Kn+3, Kpt2)) for n=>5.
By (6.7), 8 : mnsa(Kpt3, K32) — mpe3(Kp+2) is isomorphic and m,+3( K%+2) must
0 i*
have 12 elements. In the exact sequence myss (K72+2, S*) —> mye3 (S?) —>
. y

r:n+3(K2+2)——]—> o3 (K2+2, §™) —> 7,12(S"), 8/ is isomorphism onto and hence
¥ is onto, while (6.7) shows that @ is isomorphism into and therefore m,+3(S™)
must have 24 elements. By (4.3) ns(S3) has 12 elements and by (5.10) it
contains an element of order four, therefore ns(S3) is cyclic group of order 12.
The only element of order 2 in n6(S3) is psomsoys and its Hopf invariant is
trivial, then «3 must have order 4 or 12 for H(us)=%s0. Since wy=2v, for
7n=>b, v, has order 8 or 24, and we obtain.

Proposition (7.1) #s(S3)=Z12, mi(S*)=Z +Z12 and mn+3(S®)=Z3ss for n=5b.

Now we shall calculate generators of these groups.

Let M?2* be the complex projective space, and let M27=S2YetY...Y 2% he
its cell decomposition as in (4.iv) with characteristic maps Z)n~1: (E2", S20~-1)
— (M?", M2"-2) such that pn_lzin,llsm‘—l are fibre maps with fibre S. Then
pn induces isomorphisms pif: 7,(S2"+1, S1) — m,( M2*). Let K, be the Jimit space
U M?2", then M2"=K3%" and K} is the complex given in (6.5), and the homotopy

7

groups of K, are trivial except nmo(K2)=Z. Next we construct a complex K?

whose ;-th homotopy groups vanish for 3<7«<7. In the exact sequence:
0 o’
(K3, S%) —> me(S?) — me( K3) — me( K3, S) — m5(S?), 8 and 0 are isomorphisms

into and n,(S3)=~Zs, hence m(K3)~Z, and its generator is represented hy a
mapping g: S¢->S% which represents a generator of 7,(S%). Define K]=K{Ye?
with characteristic mapping g: (E7, S%)->(S3Ye?, S¥) such that §|S%=g, then
no(K3)=0 for 3<7<7, and we can construct the complex Ky such that its
7-skeleton is K¢.
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Let fo: E(K3)— K3 be a mapping given in Chapter 6, then (6.3) and (6.2)
shows that f¥: H«(E(K:))=Z — H«K3)=Z3 is onto, and therefore f, maps
E(e®) onto 7 with degree k, where % is prime to 3. This implies that Eﬁzz S
— K3=FE(M?") represents an element of degree 3 or 6 in rs(K3). Consider a
diagram )

75(5%) —> ms(K D) —> ms(K§ 1) —> mi(5)
E E/
76(S%) —> me(K3) —> me(K3, S%) .
From (8.14), ns(K3, S?) has direct factor isomorphic to Z, and its generator is
the relative product [¢s,¢s]- for generators ¢y € 72(S2%) and ¢4 € 14(K3, S2). Since
ns(K 3)~ns(S3) =2, ns(S2)=Z and [ta, 72]=010 there is an element y of ns(K3)
such that j(y)=[¢t2,¢] and E(y) is an element of ns(Kj) which has order 3
or 6. By lemma (2.32) a3 is an element of m6(S3) such that #*(uz)=E().
Consequently 3 must have order 12 and generate ns(S3). By (4.3) we have that
vs has order 24 and generates m,+3(S™) for =5. We have
Theorem (7.2) 1) #6(S3)~Z12 and its generator is as,
ii) m(SY)Y=~Z+Z12 and its generators are vs and a4,
iii) mne3(S®) =~ Zas  for n=5 and its generator is va.
And also we have relations
(7.3) 6yp =3un=Crommez in Kp+2, 60n€ {Yns 2tn+1s Pu+1} and 12y, =64, =
Yn© Ynt+10 Pu+z JOr m=b.

Chapter 8 Caluculations in higher dimensions.

i) In this chapter, our calculations are teated for sufficiently large values of 7,

such that the exision theorem (1.23) holds, for example we may assume 2 >10.
Define a cell complex Kp+5=Kpt3“ent4 gnt5eh+6Yel+6 ag follows.

(8.1)1 Kpr3=S"enr+2Yent3 is defined as in (6.5).

(8.1); em+* is attaced to SPCK,*3 by a characteristic map 7,: (E™+4, S*3) —

(S”Yem+4, S™) such that p,|S™+3 represents the generator y, of m,+3(S?).

(8.1); €5 is attached to K%+ by a characteristic may &,: (E™+5, Sn+4)—

(Kn+s, Kn+4) as follows, set £,|E"%*=5,06 where E"%=dn+3(S™3x[1/2,1])

and 6: (E™43, En4) — (E™+, S"+3) is a mapping of degree 6, and set £,| En+4

=Enoi7n+3 where 7,4+3: (E™4, SP3) — (E"+3, S*+2) represents generator 0-ly,+s

of 7mueq (E™3, S?t2), then we can extend the mapping £, over the subset

Etre—Int. ETRY into Kj+2 for 6y, =C,0 n+s in K2,

(8.1)4 €79 is attaced to S"~em+* CK3+5 by a characteristic map #n+4: (B9, S+5)

— (K3+6, Ki+5) as follows, set p14| EV'5=0, 0 Ypss Where Zpiqa: (ET+S, SP+e) —

(E™ 4, S*+3) represents generator 0~ lyuss Of mues(E™+4, S*¥3), and extend the
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(8.1)s €56 is attached to S®“Yen+2CKp+5 by a characteristic may Vnia: (E™*s6,
Sn+5)— (K p+6, K2+5) as follows, set vpiz]| %5 =9p0vns2 WhETe ppig: (ETF5, StHe)
— (E™+2, S"+1) represents the generator 6-lyy+; Of mues(E™ 2, S™1), and extend
the mMApping Vns|S™4: S*+4— S* over E™5 such that yasg (E"'S) C S* for
Nn © Vn+l =0.

For convenience, we shail use the following notations in the chapter:
5 =tn+ (K5, tr =1+,(S™) and C'(y — ) =mn+(K3+t, K2+t-1). By (1.27), C'(r —¢t)
is isomorphic to the (#%+¢)-dimensional chain group with coefficent group m,—:
for sufficiently large .

Ih a diagram

2/7[(\,' \ T
cxsy T 2 L 52—
2 C4) 52 s 2 7
\ 2~ 25 C? Iy
7[2/ ]6 2" (3) lé CZ(Z)/ \
- aa/ \6 - —/Tg/ 5 \ ;2/ Z§
3,5 7 3 dg \ 7[2/ 4 \'
C4) 8 C3(3)/ s 81—~ \‘* T
3—1 3/ ¢ . /CS(PY/' 23 /64/ )
ag/ﬂft\s 775;//? ¢ 4/C3(!) 23
_ -
6 CH2) 7% brv— 4 3
L t C4o)y 2% Chort
5—/7[6 zh—7I5 \ " 0)
1 \ BF—7"7 74 3
- s — e rel \
) 2% Ciy s B ¢
\ - 23 CS0)~ 3%
el \ 2z o ’
37" 6 L5 0° \
6 = o8 "% /
Coy 28 6 oo \zﬁ . 75
L i 5
Ay _ '7[6 ‘/7‘_? /
C"o: il o
7\r7/
<6
if J$ oF
suhsequences - — mi~l—— i —> C(r—s)—> - = niZl—> -1 —0 are exact,

and the composite homomorphisms C*(r —s) — niZl — C*~1(r —s) are the boundary
homomorphism of the chain groups.

We already know that nl=rn3 =22, 1§ =212, 7} =Zs and the injection

i3 i3

homomorphisms : w3 —> 7§ —> =} are onto,
ii) The image of 0} is generated by a{ln} =yn, and v, is the generator of my, n}
and 7}, hence 0} is onto and #}=0. The complex K2+* has the homotopy groups
mi(Ka+t) =0 for n<i<n+4 and we have from (6.4) and (6.1)

0 = Hu+s(Krn) =~ n}/image 0%.
Hence 0% is onto and 74 is trivial. The image of 95 is generated by v, 0 7443 =0,11
therefore we have n} =0. The image of 03 is generated by &,o09uiz0 Nni3l?
=6y, 0 Yn+3=0 and hence nf=0. The image of 9% is generated by 7,0 yye; =011
and hence 7,=0. Consequently we have

11) Cf. (4.4) an(i (4.5).
12) Cf. (7.3).
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Proposition (8.3) 7x+4(S*) =0 for n=6.
iii) Since #}=0, =} is isomorphic to the kernel of 8i. n§=Zs, C*(0)=Z and

4 js onto, so we have that a generator of 8; is represented by a mapping of
degree 6. Let an element &, of ni be presented by §‘,,|Sn+4, then ji(&n) is
represented by a mapping of degree 6 and therefore ji(£,) generates the kernel
of 94. Consequently we have that £, generates n} and 6% is onto, hence =§=0.
Applying (6.4) and (6.1) to the complex Kn*5 which has the homotopy groups
mi(Kn+5)=0 for n<s<n+5, we have

Zo+Zs = Huns+e(Kn) =~ nt/image 0% . )

The image of @ is generated by £,07n+5. Since incidence number [¢”+5: ¢"+4]
=6, we have ji(&no07.+5)=0, hence there is an element & of nf such that
is(§")=Enoyn+s. From the structure of the mapping §n, we have easily that
the imag j2(§’) is the non-zero element of C3=Z,, hence &,o0%9,+5=0, image
02=Z> and the group n{ must have form Z,+Zs+Zs or Z2+Z4. Let 3 € nt be
represented by, 7n+4|S"5, then ji(»’) is the generator of C4(1)=2Z.. If 2y/-0,
we have 2y’ =£&,0yuss. The mapping %.+4|S™5, however, does not cover the
cell e”+3, therefore we have 2y'=0in Kj+4 and rnt=Z,+Z5+Z,. Since the image
of d¢ is generated by vy o Yn+3 0 Puea=0, we have ni=Z,+Z,, j is onto and
image ;2=Z,. Let v; be a generator of C3(3)=Z34. Since the incidence number
[en+3: e"+2] =2, we can chose a generator v, of C2=Zy, such that jZod(y;)=2v,,
hence image 03=2Z 2, 0r Z15. Since 12(€n0vn+2)=Cn0120n42=(10n+20Yn+30 Prt4q 12
=611 0 Yns3 © Pura=0 in Kptt, we have image 03=Z12 and nt/Z12=2Z,. Since 62
is trivial, j% is onto and therefore isomorphism onto, It is easily seen that a
generator »/ of nt=Zj, is represented by the mapping P,+z2|S™"5. Since m,=0,
we have C2(4)=0 and
Proposition (8.4) m4+5(S*) =0 for n=7.

iv) The generators of ni=Z;+Z, are iI(y’) and i2oito2(y’), and they are
also the image of 8¢. Hence n¢=0 and K7+ has the homotopy groups 7;( K2+6) =013
for n<i<n+6. From (6.4) and.(6.1) we have
0 = Hnio(Kn) = ni/image 0%,

and 0% is onto. An analogeous consideration as in iii) and the fact 2v,0 yus3=0
show that

image 01 =Z32+Z3 Or Zy= {y' oquss, v ©yuss}, image ji =0,

image 03 = Zz = {£40 Yu+a 0 nss} image jé=Zs,

image 07 =Zy or 0= {ypovnss}, image j3 =27,

image 0% = image jt = image 0% =0,

and that there are elements «, € ¢ and «, € 7} such that 4§ () =75" © Yuss» 76 (uz)

13) Cf. (4.6).
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=&, 0 NYn+4 © Puas», J6(u1)=F0 and j2(u2)=-0. Consequently we have

Proposition (8.5) m4+6(S?)=0 or Z3 or Z2+Z2 for n=8.

v) To prove the non-triviality of ms, we construct a complex Kp*+7 whose
homotopy groups n;(Kn+?) vanish for p<i<n+7. If we assume 7s=0, we can
prove that the group H.+s(Kn)=nj/image 0} must contain a group of 8-element
and this contradict to (6.1).

Proposition (8.6) 7w+6(S")=Z; or Z:+Zs for n=8, and the generators of
which are vnovnss and an element of {hnsVnt1s Ynra}.
Fur ther calculations show

Proposition (8.7) If n=9 we have mn::(S*)=Z15+G where G is a group
of 2% elements (3=k<8).
ii) If n=10, we have that ma+s(S™) is a group of 2% elements.

Appendix 1. The homotopy groups of the suspended
space of the projective plane.

Let Y2 be the real projective plane, and let Y2=S1“¢2 be its cell decomposi-
tion in which the cell ¢? is attached to S! by a mapping of degree 2. Let Y©+1
be the (n—1)-fold suspended space of Y2, then Y"*1=S"“¢"+1 is also a cell
complex with a characteristic mapping @:(E"*, S*)— (Y"+1, S*) such that
&1S"=w is a mapping of degree 2. By (1.26) the characteristic mapping &
induces the isomorphism &¥: nu(E"+1, S*) — m(Y"+1, S™) for p<2n-2. Since the

boundary homomorphism 0 : mp( E®*1, S®) — mp—1(S®) is isomorphism, we obtain
w¥ "l £ 3

an exact sequence ---—> mp(S™) N T Y+ i) mp-1(S™) =, Tp-1(S™) —> -

by setting 4=0 o0 w*~loj for p<2xp—2. Since E : mp-2(S"1)— m-1(S™) is onto

for p<2n—1, we have w¥(u)=24ou=2to By =2FEa’ =24, and therefore the

kernel of w* is the subgroup o[mp-1(S?)] and the image of 7 is isomorphic to

r(SM)/2m(S".

Lemma [f 7 is an element of m(Y"1) such that A(7) =a€ mp-1(S™), then

27 =7*(a © n)-

The lemma follows from (5.9) and (5.7). Applying this lemma to the results

of m,(S”) we have

Theorem 1) 7, (Y™1) =27, n>1,
ii) ﬂ”+l(Y7z+1> =23 n;;B ,
i)  mpa(Y™D) =2, n=4,

iv)  maes(Y™) =Zs+Z2 n>25,
V) wail(YY) = Zs n-—-6,
vi)  muas(Y™ 1) =0 n. -7,
viil)  mua(Y™Y) =Zy or Zo4+Zs n - 8.
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Appendix 2. Lower dimensional cases
Recently P. Sree, [16] has provided that there is a homomorphism : m,-2(S27~3)
— 1a(S”; E%, E") and which is onto for <37 —4 and isomorphic for p<3r—4.
By (3.13) m.(S™; E%, EL) has a direct factor isomorphic to 7,+1(S2") for <37 —4.
Therefore the homomorphism P : wp—rs1(EZ, S™1)— 1, (S”; E%., EZ) given by
P(a2)=[u tr]s is isomorphism onto for <37 —4, where ¢ is a generator of

7(E%, S™"1). The exctness of the sequence m,+2(S"+1; E%F1, £+ —A—> an(ST) —>
Tn+1(S"*1) shows that the kernel of suspension homomorphism E : 7.(S*)—
mns1(ST+1) is generated by the Whitehead product [, ¢r] (&€ mp—r+1(ST)) for
n<3r-—3.

The following list of special Whitehead product is verified (%#<3r—3)

'nis'g o | 12 13
T \

7| 4 5 4

10 n | on

‘ii

| |

5 | 6 | 5
T Tur 0| e 5100 D om0 T30 | Do 6340 [ 100 L 10| Py 110,

6 7

[765t6]1=0 and [¢7,¢7]=0 follow from (2.26) and the fact that there are mappings
ot types (96,t6) and (¢7,¢7). By (7.3), (2.23) and (4.6) we have [7so0 76> ¢5]
=y50%80%99N10=V5°12v5=12p50p5=0. Since H[¢s, t6]=2012=F0 we have [¢s, ¢6]7=0.
The fact [94,ta]=as o 9710 and [¢s,¢s]=vs 0 9s=3=0 is already verified in (4.4) and
(4.5). From (2.23) we have [nio79s,ta] =wusonproys and [9s,ts] =vs07nz09;.
Since H(uso9sop7)=7560%7°7sF0 and H(vsop709s)=%s°79=+0, we have by
(4.2 E(az o y6°77)-F0 and E(v4 0 77 0 78)=+0.

E I
Therefore the exactness of the sequence - - mp+1(S”) — mpea(ST+l) —>

Tue2(STHL; ETFL ETFD) ——A——> a(S™) i) n+1(S"*1) — ... leads the following reselts ;
i) E : ns(S4) — no(S5) is onto and its kernel is generated by piovs,
ii) E:mo(S5) — mo(S%) is onto and its kernel is generated by vso s,
iii) E: mo(S) — m11(S7) is onto its kernel is generated by .o vso 7s,
iv)  E: mo(S5) — m11(S¢) maps into the subgroup of w1(S¢) which is generated
by the elements of the Hopf invariants 0, and the kernel of E is generated
by vsoygo 7.
V)  E:mnu(S%) — ma(S7) is onto and its kernel is generated by [ts,ts],
vi) E:m(S5)— ma(S8) is isomorphism onto,
Vii) E:m2(S%) — m13(S?) is isomorphism onto,
viii) E: m3(S?) — m14(S8) is isomorphism onto.
Summarizing the results of 7,(S") we obtain;
a) m(S™)=Z for n=l, m(SY)=0 for n>1 and 7.(S™=0 for n<zr.
b) w3(S2)=Z = {92} and mn+1(S™)=Zs={na} for n>3,
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C) mn2(S™)=Z2=1{9n0 Yu11} for n=2,

d) 7s(S2)=Zz2={n20n3 0794}, m(S3)=Z12={us}, (S =Z +Z12={va} + {us} and
Tn3(S™)=Z 2= {va} for n=5b,

e) 71'6(32)=Zz= {7720(13} ’ TL’7(S3) =Zg= {7730V4}, ﬂa(s4)=22+22= {77401/5} + {V4°777}’
no(S5)=Zs={vs o ys} and mn+a(S™)= for n=6.

£) wi(S2)=Za={n20m30v4}, 1a(S?)=Z2={ysovsoyr}, me(S)=Z2+Zs={ga0vs07s}
+ {vaonronst, me(S*)=Za={vs0so99}, m1(S)=Z =[t6,t6] and wa+s(S")=0 for
n=7.

g) 7Tn+6<sn)=22= {Vn o Vn+3} or =Zs+Zs= {Vn o Vn-!-s} + {ﬂn’ Vn+ls 'ﬂn+4} fOf 7125-
The essentiality of y,ovn+s is follows from (4.2).
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