Journal of the tnstitute of Polytcchnics, Osaka City University, Vol, 3, No, 1-2, Series A

Generalized Whitehead Products and Homotopy Groups of Spheres

By Hirosi TonA

(Received September 15, 1952)

Introduction

A fundamental problem in algebraic topology, the calculation of homotopy groups $\pi_r(S^n)$ of spheres, was initiated by studies of several authors; Brouwer's degree, Hopf's invariant and Freudenthal's suspension method. Recently, G. W. Whitehead $\lceil 22 \rceil \lceil 23 \rceil$ generalized Hopf's invariant and Freudenthal's invariant to enumerate several non-trivial homotopy groups of spheres. It is reported that H. Cartan, P. Serre, G. W. Whitehead, and W. S. Massey²⁾ have obtained a number of remarkable results², applying Eilenberg-MacLane's cohomology theory of a group complex.

Methods employed here by author, are rather intuitive. Making use of recent results due to S. Eilenberg and S. MacLane [7], he constructs an elementary *CW*-complex K_n , the *n*-section K_n^n of which is an *n*-sphere S^n , such that excepting $\pi_n(K_n) = Z$, all the other homotopy groups vanish. Generators in $\pi_r(S^n)$, which are essential in the $(n+k-1)$ -skelton K_n^{n+k-1} and inessential in K_n^{n+k} , can be represented by the image of the boundary homomorphism: $\pi_{r+1}(K_n^{n+k}, K_n^{n+k-1}) \to \pi_r(K_n^{n+k-1})$. Thus, generators of $\pi_r(S^n)$ can be realized by adequately chosen maps in virtue of the construction of the complex K_n . Main results in this paper are stated as follows.

Theorem i) $\pi_{n+3}(S^n) = Z_{24}$ *for* $n \geq 5$ *, the genrator of which is represented by* $(n-4)$ -fold suspension of the Hopf's fibre map: $S^7 \rightarrow S^4$.

- ii) $\pi_{n+4}(S^n)=0$ *for* $n\geq 6$,
- **iii**) $\pi_{n+5}(S^n) = 0$ *for* $n \ge 7$,
- iv) $\pi_{n+6}(S^n) = Z_2$ *or* $Z_2 + Z_2$ *for* $n \ge 8$,
- v) $\pi_{n+7}(S^n)$ *is the direct sum of* Z_{15} *and a group of order* $2^k(3 \leq k \leq 8)$ *for* $n > 9$.
- vi) π_{n+8} (Sⁿ) *is a group of order* 2^k *for* $n \ge 10$.

In Chapter 1 various kinds of notations are given and the excision theorem³⁾ due to A. L. Blakers and W. S. Massey is stated in order to be available under the removal of the restriction in dimensions. In Chapter 2 Whitehead product

3) Theorem I of [3].

¹⁾ Numbers in blackets refer to the references cited at the end of the paper.

²⁾ *Cf.* [4], [14], [15], [16] and Bull. Amer. Math. Soc. U.S.A. 57 (1951) abstruct 544.

is generalized to get certain types of products. called generalized Whitehead product⁴⁾, which have much to do with the Hopf construction of G. W. Whitehead. In Chapter 3 generalized Hopf invariant and Freudenthal invariant are systemat· ically discussed as a Hopf homomorphism of a triad $\pi_n(S^r; E^r_+, E^r_-)$. Generalizing this homomorphism to define a Hopf homomorphism of $\pi_n(X^*, \mathcal{E}^*, X)$, we obtain that $\pi_n(X^*; \mathcal{E}^r, X)$ has a direct factor isomorphic to $\pi_{n-r+1}(X, \mathcal{E}^r) \otimes \pi_r(\mathcal{E}^r, \mathcal{E}^r)$ in lower dimensional cases. In Chapter 4, essential elements in homotopy groups $\pi_n(S^r)$ of spheres of special dimensions, are given and also their essentiality is shown by means of Hopf invariant. In Chapter 5, a homomorphism $T: \mathbb{R}[\pi_n(X)] \rightarrow$ $\pi_{n+1}(X)/2\pi_{n+1}(X)$ is introduced in order to consider the element of order four in $\pi_{n+3}(S^n)(n\geq 3)$, which Barratt and Paecher obtained recently. In Chapter 6 it is shown how the suspension homomorphism of Eilenberg-MacLane⁵⁾ is interpreted as homomorphisms of homology groups of K_n , K_{n+1} by making use of their recent results. Chapter 7-8 involve our principal results. Making use of preparations in the previous chapters. we can compute automatically homotopy groups $\pi_n(S^r)$ of spheres. We calculate homotopy groups of the n-fold suspended space Y^{n+1} of the projective plane, making use of T -homomorphism in Chapter 5.

Chapter 1. Preliminaries

i) In this section, we shall describe several notations, which will be used throughout this paper.

Symbols $(X; X_1, ..., X_n, X_0)$, $(X; X_1, ..., X_n)$, (X, A, x_0) , (X, A) and (X, x_0) indicate systems of topological spaces such that $X \supseteq X_i$, $X_{1 \cap \cdots \cap} X_n \ni x_0$, $X \supseteq A$ $\exists x_0$ and $X \ni x_0$. A mapping $f: X \rightarrow X'$ is a continuous function of X to *X'*, and if $f(X_i) \supseteq X_i'$ and $f(x_0) = x_0'$, the mapping *f* is indicated by $f: (X; X_1,$ \ldots , X_n , x_0) \rightarrow $(X'; X_1', \ldots, X_n', x_0')$. A homotopy $f_t^{(6)}$: $(X; X_1, \ldots, X_n, x_0)$ \rightarrow $(X'; X_1', \ldots, X_n', x_0')$ means that the homotopy $f_t : X \to X'$ carias the subsets X_i and x_0 to X_i' and x_0' respectively. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are mappings, a composite map $g \circ f : X \to Z$ is given by $(g \circ f)(x) = g(f(x))$ for $x \in X$.

 $x=(x_1, \ldots, x_n)$ indicates a point of the real Cartesian space C of infinite dimension having the *i*-th coordinate x_n for $i \leq n$ and 0 for $i > n$, thus (x_1, \ldots, x_n) $\text{end } (x_1, \ldots, x_n, 0, \ldots, 0)$ indicate the same point of C^{7} . Define subspaces of *c* by

⁴⁾ Products of this sort are also provided by A. L. Biakers and W. S. Massey; cf. Bull. Amer. Math. Soc. U.S.A. 57 (1951) abstruct 165.

⁵⁾ *Cf.* [7].

⁶⁾ The homotopy is indicated by symbol: $f_0 \simeq f_1$.

⁷⁾ The *n*-dimensional cartesian space is denoted by $Cⁿ$.

$$
E^{n} = \{(x_{1},...,x_{n})| \sum x_{i}^{2} \leq 1\}, S^{n} = \{(x_{1},...,x_{n+1})| \sum x_{i}^{2} = 1\},
$$

\n
$$
E_{+i}^{n} = \{(x_{1},...,x_{n+1}) \in S^{n} | x_{i} \geq 0\}, E_{+}^{n} = E_{+(n+1)}^{n},
$$

\n
$$
E_{-i}^{n} = \{(x_{1},...,x_{n+1}) \in S^{n} | x_{i} \leq 0\}, E_{-}^{n} = E_{-(n+1)}^{n},
$$

\n
$$
S_{i}^{n} = \{(x_{1},...,x_{n+1}) \in S^{n} | x_{i} = 0\}, \quad y_{*} = (1,0,...,0):
$$

\n(1.1)
$$
I^{n} = \{(x_{1},...,x_{n})| 0 \leq x_{i} \leq 1\}, \quad I^{n} = \{(x_{1},...,x_{n}) \in I^{n} | Hx_{i}(1-x_{i}) = 0\},
$$

\n
$$
I_{+}^{n} = \{(x_{1},...,x_{n}) \in I^{n} | x_{n} \geq \frac{1}{2}\}, I_{-}^{n} = \{(x_{1},...,x_{n}) \in I^{n} | x_{n} \leq \frac{1}{2}\},
$$

\n
$$
I_{i}^{n} = \{(x_{1},...,x_{n+1}) \in I^{n+1} | x_{i} = 0\}, I_{i}^{n} = C1(I^{n+1} - I_{i}^{n}),
$$

\n
$$
I_{i}^{n} = I_{i}^{n} \cap I_{i}^{n}, I^{n} = J_{n+1}^{n}, I_{0}^{n} = C1(I^{n+1} - I^{n-1}),
$$

\n
$$
K_{i,j}^{n} = I_{i}^{n} \cap J_{j}^{n}, K^{n} = K_{n,n+1}^{n}
$$
 and $0_{*} = (0,...,0)$.

Thus $E^{n+1} \supseteq E^n \supseteq S^{n-1} \supseteq E^{n-1}_{+i} \supseteq S^{n-1}_{i}$, $E^{n+1} - \text{Int.} E^{n+1} = S^n = E^n_{+i} \supseteq E^n_{-i}$, $E^n_{+i} \cap E^n_i$ $=S_i^{n-1}, I^n \supset I^n \supset I_i^{n-1} \supset K_{i,j}^{n-1} \ni 0_{\frac{1}{2}}$ and I^n —Int. $I^n = I^n = I_i^{n-1} \cup I_i^{n-1} = K_{i,j}^{n-1} \cup I_i^{n-1} \cup I_j^{n-1}$. Let

$$
\mathsf{r}\mathsf{s}
$$

(1.2)
$$
P_n: (J^n, I^n, 0_k) \to (I^n, I^n, 0_k)
$$

and
$$
P_n': (K^n; J^{n-1}, J_0^{n-1}, 0_k) \to (I^n; J^{n-1}, I^{n-1}, 0_k)
$$

be projections from the points $(1/2, ..., 1/2, -1) \in C^{n+1}$ and $(1/2, ..., 1/2, 0, -1)$ $\in C^{n+1}$ respectively, then P_n and P_n' are homeomorphisms.

Let $\rho_n(\theta)$: $(E^{n+1}, S^n) \rightarrow (E^{n+1}, S^n)$ be the rotation through θ given by (1.3) $\rho_n(\theta)(x_1,\ldots,x_{n+1})=(x_1,\ldots,x_{n-1},\cos\theta\cdot x_n-\sin\theta\cdot x_{n+1},\sin\theta\cdot x_n+\cos\theta\cdot x_{n+1})$

Define a mapping $d_n: (S^n \times E^1, S^n \times S^{0} \cup y_* \times E^1) \to (S^{n+1}, y_*)$ by (1.4)

$$
d_n(x,t)=(t+(1-t)x_1,(1-t)x_2,\ldots,(1-t)x_{n+1},(2t(1-t)(1-x_1)^{\frac{1}{2}}) \qquad 0\leq t\leq 1,
$$

= $(-t+(1+t)x_1,(1+t)x_2,\ldots,(1+t)x_{n+1},-(2-t(1+t)(1-x_1)^{\frac{1}{2}}) \qquad -1\leq t\leq 0,$

then d_n maps $S^n \times E^1 - (S^n \times S^{0} \rightarrow \gamma * \times E^1)$ homeomorphically onto $S^{n+1} - \gamma *$, and $d_n(E_{+i} \times E^1) = E_{+i}^{n+1}$ for $1 \le i \le n+1$. $(1.4)'$

Define a mapping $\psi_n: (I^n, I^n) \to (S^n, y_*)$ inductively by setting

(1.5)
$$
\psi_1(x_1) = \rho_1(2\pi x_1)(y_*)
$$

and
$$
\psi_n(x_1, ..., x_n) = d_{n-1}(\psi_{n-1}(x_1, ..., x_{n-1}), 2x_n - 1) \text{ for } n \ge 2,
$$

then ψ_n maps Int. I^n homeomorphically onto $S^n - y_{\ast}$.

Let ε_1 : $(i^2, 0_*) \rightarrow (S^1, y_*)$ be a homeomorphism given by $\varepsilon_1(x_1, 0) = \rho(\pi x_1)(y_*)$, and for $x \in J^1$ by $\varepsilon_1(x) = \rho_1(\pi) \varepsilon_1 P_1(x)$.

Define homeomorphisms ε_n : $(I^{n+1}, 0)$. (S^n, y) and $\overline{\varepsilon}_n$: $(I^n, I^n) \rightarrow (E^n, S^{n-1})$ inductively by setting $\bar{\epsilon}_n\left(\frac{1+t(2x_1-1)}{2},\ldots,\frac{1+t(2x_n-1)}{2}\right)=(tx_1',\ldots,tx_n')$ for $(x_1',...,x_n') = \varepsilon_n(x_1,...,x_n)$ and $t \in I^1$, and by setting $\varepsilon_n(x) = p^{-1}(\bar{\varepsilon}_n(x))$ and $\varepsilon_n(P_n(x)) = p_+^{-1}(\bar{\varepsilon}_n(x))$ for $x \in I^n$, where $p_+ : E^n_+ \to E^n$ and $p_- : E^n_- \to E^n$ are projections given by $p_+(x_1,\ldots,x_{n+1})=(x_1,\ldots,x_n,0)$. Note that (for $n>1$)

(1.6)
$$
\epsilon_n(I^n) = E_{-}^n, \ \epsilon_n(J^n) = E_{+}^n \text{ and } \epsilon_n | I^n = \epsilon_{n-1}.
$$

The calles and their boundaries I^n , I^n , I^n , E^n , S^{n-1} , E^n_+ , and E^n_- are orientable such that ψ_n , ε_n and p . preserve the orientations and P_n and p , reverse the orientations.

Denote a subspace $S^n \times \gamma_* \cup \gamma_* \times S^q$ of $S^p \times S^q$ by $S^p \times S^q$, and define a mapping $\varphi_n: (S^n: E^n_+, E^n_-, y_*) \to (S^n \vee S^n; S^n \times y_*, y_* \times S^n, y_* \times y_*)$ by $(x \in S^{n-1}, t \in E^1)$

(1.7)
$$
\varphi_n(d_{n-1}(x,t)) = (\rho_n(\pi/2) \circ d_{n-1}(x, 2t-1), y_*) \qquad 0 \le t \le 1,
$$

$$
= (y_*, \rho_n(-\pi/2) \circ d_{n-1}(x, 2t+1)) \qquad -1 \le t \le 0.
$$

 φ_n maps Int. E_+^n and Int. E_+^n homeomorphically onto $(S^n - y_*) \times y_*$ and y_* $\times (S^{n}-\gamma_{\mathcal{B}})$ preserving orientations, and $\varphi_{n}(E_{+n}^{n})=E_{+}^{r} \vee E_{-}^{r}$ and $\varphi_{n}(E_{-n}^{n})=E_{-}^{r} \vee E_{+}^{r}$. Let σ_n : $(S^n \times S^n, S^n \vee S^n) \rightarrow (S^n \times S^n, S^n \vee S^n)$ be a homeomorphism given by

(1.8)
$$
\sigma_n(x, y) = (y, x), \quad x, y \in S^n
$$

then we have

Define a mapping $\psi_{p,q}: (I^{p+q}, I^{p+q}) \to (S^p \times S^q, S^p \vee S^q)$ by

$$
(1.10) \qquad \psi_{p,q}(x_1,\ldots,x_{p+q})=(\psi_p(x_1,\ldots,x_p),\ \psi_q(x_{p+1},\ldots,x_{p+q})).
$$

 $\psi_{p,q}$ maps Int. $I^{p+q} = I^{p+q} - I^{p+q}$ homeomorphically onto $S^p \times S^q - S^p \vee S^q$, hence there is unique mapping $\phi_{p,q}: (S^p \times S^q, S^p \vee S^q) \rightarrow (S^{p+q}, y_*)$ such that

$$
\phi_{p,q} \circ \psi_{p,q} = \psi_{p+q}.
$$

Define a mapping $\varphi_{p,q}: I^{p+1} \times I^{q+1} \times E^{1} \to I^{p+q+2}$ by

$$
(1,12) \quad \Phi_{p,q}(x,y,t) = ((1-t)x_1, \ldots, (1-t)x_{p+1}, y_1, \ldots, y_{q+1}) \quad 0 \le t \le 1, = (x_1, \ldots, x_{p+1}, (1+t)y_1, \ldots, (1+t)y_{q+1}) \quad -1 \le t \le 0,
$$

where $x=(x_1,\ldots,x_{p+1})\in I^{p+1}$, $y=(y_1,\ldots,y_{q+1})\in I^{q+1}$ and $t\in E^1$, then $\phi_{p,q}|I^{p+1}$ $\times I^{q+1} \times$ Int. E^1 is a homeomorphism.

ii) homotopy groups

Define a sum $f+_ig:(I^n,\dot{I}^n)\to (X,x_0)$ of f and $g:(I^n,\dot{I}^n)(X,x_0)$ on the x_i -axis $(1 \leq i \leq n)$ by

$$
(1.13)_1 (f+_{i}g)(x_1,...,x_n) = f(x_1,...,x_{i-1},2x_i,x_{i+1},...,x_n) \qquad 0 \leq x_i \leq 1,
$$

= $g(x_1,...,x_{i-1},2x_i-1,x_{i+1},...,x_n) -1 \leq x_i \leq 0,$

and also define an inverse $-i f: (I^n, I^n) \rightarrow (X, x_0)$ of f by

$$
(1.13)2 \qquad (-i f)(x1,...,xn) = f(x1,...,xi-1,1-xi,xi+1,...,xn).
$$

It is easily seen that the sums $f +_i g$ on different two axes are homotopic to each other, and the homotopy classes of *f* form the *(absolute) homotopy group* $\pi_n(X, x_0)$ with respect to to the above addition.

A mapping $f: (S^n, y_*) \rightarrow (X, x_0)$ is called a *representative* of $a \in \pi_n(X, x_0)$ if the homotopy class of the composite map $f \circ \psi_n : (I^n, I^n) \to (X, x_0)$ is *a*. Define *a sum f + g* of *f* and $g: (S^n, y_*) \rightarrow (X, x_0)$ and *an inverse - f* of *f* by

(1.14)
$$
(f+g)(d_{n-1}(x,t)) = f(d_{n-1}(x, 2t+1)) -1 \le t \le 0,
$$

$$
= g(d_{n-1}(x, 2t-1)) -0 \le t \le 1,
$$

and
$$
(-f)(d_{n-1}(x,t)) = f(d_{n-1}(x,-t)),
$$

then $\psi_n(f+g) = \psi_n(f) + \psi_n(g)$, $\psi_n(-f) = -\psi_n(f)$ and $\psi_n(f) \simeq \psi_n(g)$ implies $f \approx g$. Therefore $\pi_n(X, x_0)$ may be regarded as the set of the homotopy classes of $f: (S^n, y_*) \rightarrow (X, x_0)$ with addition in (1.14).

A mapping $f: (i^{n+1}, 0_k) \rightarrow (X, x)$ is called a *representative* of $a \in \pi_n(X, x_0)$ if there is a mapping f' : $(i^{n+1},0) \rightarrow (X,x_0)$ such that $f \simeq f'$, f' (I'') = x_0 and the class of $f'|I^n:(I^n, I^n) \rightarrow (X, x_0)$ is *a*. It is not so difficult to show that

 (1.15) If $f: (Sⁿ, y_k) \rightarrow (X, x₀)$ is a representative of a, then the composite *map* $f \circ \varepsilon_n : (\dot{I}^{n+1}, 0) \to (X, x_0)$ *is also a representative of* α *.*

The relative homotopy group $\pi_n(X, A, x_0)$ is a set of homotopy classes of mappings: $(I^n, I^{n-1}, I^{n-1}) \rightarrow (X, A, x_0)$ with addition which is represented by a sum and an inverse on the x_i -axis $(1 \leq i \leq n-1)$ as in (1.13) ₁ and (1.13) ₂. A mapping $f: (I^n, I^n, 0_k) \to (X, A, x_0)$ is called a representative of $\alpha \in \pi_n(X, A, x_0)$ if there is a mapping $f^{(8)}$: $(I^n, \dot{I}^n, 0_k) \rightarrow (X, A, x_0)$ such that $f \simeq f', f'(I^n) = x_0$ and the class of $f' : (I^n, I^{n-1}, I^{n-1}) \rightarrow (X, A, x_0)$ is *a*. Also a mapping $f: (E^n, S^{n-1}, y_*) \to (X, A, x_0)$ is called a representative of $a \in \pi_n(X, A)$, if the composite map $f \circ \overline{\varepsilon}_n$: $(I^n, I^n, \mathbb{O}_*) \to (X, A, x_0)$ is a representative of α .

The triad homotopy group $\pi_n(X; A, B, x_0)$ is a set of homotopy classes of mappings: $(l^n; l_+^{n-1}, l_-^{n-1}, J^{n-1}) \rightarrow (X; A, B, x_0)$ with addition which is represented by a sum and an inverse on the x_i -axis $(1 \le i \le n-2)$ as in (1.13). Since $\psi_{n-1} : (I^{n-1}, I^{n-1}) \to (S^{n-1}, y_*)$ maps I^{n-1}_+ and I^{n-1}_- to E^{n-1}_+ and $E^{n-1}_$ respectively, there is a mapping $\bar{\psi}_n: (I^n; I^{n-1}_+, I^{n-1}_-, J^n) \to (E^n; E^n_+, E^n_-, \mathcal{Y}^*)$ such that $\bar{\psi}_n | I^{n-1} = \psi_{n-1}$ and $\bar{\psi}_n$ maps $I^{n} - J^{n-1}$ homeomorphically onto $E^{n} - y_k$. As is easily seen, any extensions $\bar{\psi}_n^{\dagger}$ of $\psi_{n-1} = \bar{\psi}_n^{\dagger} \, | \, I^{n-1}$ are homotopic to each other. A mapping $f:(E^n; E^{n-1}_+, E^{n-1}_-, y_*)\to (X; A, B, x_0)$ is called a representative of $a \in \pi_n(X; A, B, x_0)$ if the composite map $f \circ \bar{\psi}_n : (I^n; I^{n-1}, I^{n-1}, I^{n-1}) \rightarrow (XA, B, x_0)$ represents *a*. A¹so a mapping $f: (I^n; J^{n-1}, I^{n-1}, 0) \rightarrow (X; A, B, x_0)$ is called a

⁸⁾ The existence of such mapping is clear.

representative of α , if the composite map $f \circ \bar{\epsilon}_n^{-1}$: $(E^n : E^{n-1}, E^{n-1}, Y^*) \rightarrow$ $(X; A, B, x_0)$ is a representative of α .

Let $f:(X,x_0)\to (Y,y_0)$ be a mapping, tor any mappings g_1 and $g_2:(I^n,I^n)$ \rightarrow (X, x_0) we have that $g_1 \simeq g_2$ implies $f \circ g_1 \simeq f \circ g_2$ and that $f \circ (g_1 + g_2)$ $=(f \circ g_1) + i(f \circ g_2)$. Therefore f induces a homomorphism

(1.16)
$$
f^*; \pi_n(X, x_0) \to \pi_n(Y, y_0).
$$

Similarly mappings f_1 : $(X, A, x_0) \rightarrow (Y, B, y_0)$ and f_2 : $(X, A, B, x_0) \rightarrow Y$; C, D, y₀) induce homomorphisms

$$
(1.16)' \t\t f_1^*: \pi_n(X, A, x_0) \to \pi_n(Y, B, y_0),
$$

and
$$
f_2^* : \pi_n(X; A, B, x_0) \rightarrow \pi_n(Y; C, D, y_0)
$$

The mapping $f: (I^n, I^n) \rightarrow (X, x_0)$ is regarded as the mapping $f: (I^n, I^{n-1}, I^{n-1})$ \rightarrow (*X*, x_0 , x_0) and this implies the natural isomorphism

$$
(1.17) \t\t j' ; \pi_n(X, x_0) \to \pi_n(X, x_0, x_0).
$$

The mapping $f: (I^n, I^{n-1}, I^{n-1}) \rightarrow (X, B, x_0)$ is regarded as the mapping $f:(I^n: I^{n-1}, I^{n-1}, K^{n-1}) \rightarrow (X; x_0, B, x_0)$ and this implies the natural isomorphism $j': \pi_n(X, B, x_0) \to \pi_n(X; x_0, B, x_0)$. $(1.17)'$

Define a boundary $\partial f: (I^{n-1}, I^{n-1}) \rightarrow (A, x_0)$ of $f: (I^n, I^{n-1}, I^{n-1}) \rightarrow (X, A, x_0)$ by $\partial f = f |I^{n-1}$, then $f \approx g$ implies $\partial f \approx \partial g$ and $\partial (f +_ig) = \partial f +_i \partial f$ for $1 \le i \le n-1$. Therefore we obtain the boundary homomorphism

Define a boundary $\beta_+ f: (I^{n-1}; I^{n-2}, I^{n-2}) \to (A, A \cap B, x_0)$ of $f: (I^n; I^{n-1}, I^{n-2})$ $I^{n-1}, I^{n-1}) \rightarrow (X; A, B, x_0)$ by $\beta_+ f(x_1, ..., x_n) = f(x_1, ..., x_{n-2}, 2x_{n-1} - 1, 0)$ then $f \approx g$ implies $\beta_+ f \approx \beta_+ g$ and $\beta_+ (f +_i g) = \beta_+ f +_i \beta_+ g$ for $1 \le i \le n-2$. Therefore we obtain the boundary homomorphism

The following properties are well known,

- (1.19) i) If f is the identity map, then f^* is the identity homomorphism. ii) $(f \circ g)^* = f^* \circ g^*.$
	- iii) $f \simeq g$ implies $f^* = g^*$.

 (1.20) The sequence of the homomorphisms

$$
\cdots \longrightarrow \pi_n(X, x_0) \longrightarrow \pi_n(X, A, x_0) \longrightarrow \pi_{n-1}(A, x_0) \longrightarrow \pi_{n-1}(X, x_0) \longrightarrow \cdots \quad (n>1)
$$

is exact, where $i: A \rightarrow X$ is the injection and j^* is the composite homomorphism $\pi_n(X, x_0) \longrightarrow \pi_n(X, x_0, x_0) \longrightarrow \pi_n(X, A, x_0)$. And also the sequence of the homomorphisms

$$
\cdots \to \pi_n(X, B, x_0) \xrightarrow{j'} \pi_n(X; A, B, x_0) \xrightarrow{\beta_+} \pi_{n-1}(A, A \cap B, x_0) \xrightarrow{i^*} \pi_{n-1}(X, B, x_0) \to \cdots
$$

(*n*)2)

is exact, where i ; $(A, A_0, B, x_0) \rightarrow (X, B, x_0)$ is the injection and j^* is the composite homomorphism $\pi_n(X, B, x_0) \longrightarrow \pi_n(X; x_0, B, x_0) \longrightarrow \pi_n(X; A, B, x_0)$. (1.21) In the following diagrams the commutativity relations hold:

$$
\cdots \to \pi_n(X, x_0) \to \pi_n(X, A, x_0) \to \pi_{n-1}(A, x_0) \to \pi_{n-1}(X, x_0) \to \cdots
$$

\n
$$
\downarrow f^* \qquad \qquad \downarrow f^* \qquad \qquad \downarrow (f|A)^* \qquad \qquad \downarrow f^*
$$

\n
$$
\cdots \to \pi_n(Y, y_0) \to \pi_n(Y, B, y_0) \to \pi_{n-1}(B, y_0) \to \pi_{n-1}(X, y_0) \to \cdots
$$

and

$$
\cdots \to \pi_n(X, B, x_0) \to \pi_n(X; A, B, x_0) \to \pi_{n-1}(A, A \cap B, x_0) \to \pi_{n-1}(X, B, x_0) \cdots
$$

\n
$$
\downarrow g^* \qquad \qquad \downarrow g^* \qquad \qquad \downarrow (g|A)^* \qquad \qquad \downarrow g^*
$$

\n
$$
\cdots \to \pi_n(Y, D, y_0) \to \pi_n(Y; C, D, y_0) \to \pi_{n-1}(C, C \cap D, y_0) \to \pi_{n-1}(Y, D, y_0) \cdots
$$

where $f: (X, A, x_0) \rightarrow (Y, B, y_0)$ and $g: (X, A, B, x_0) \rightarrow (Y, C, D, y_0)$ are mappings.

Definition (1.22) $\pi_0(X) = 0$ if and only if X is arcwise connected, $\pi_1(X, A, x_0) = 0$ if and only if the injection homomorphism $i^*: \pi_1(A, x_0) \to \pi_1(X, x_0)$ is onto, and $\pi_2(X; A, B, x_0) = 0$ if and only if the injection homomorphism $i^*: \pi_2(A, A \cap B, x_0)$ $\rightarrow \pi_2(X, B, x_0)$ is onto.

X is called *n*-connected if $\pi_i(X, x_0) = 0$ for $0 \le i \le n$. (X, A, x_0) is called *n*-connected if $\pi_0(A, x_0) = \pi_0(X, x_0) = 0$ and $\pi_i(X, A, x_0) = 0$ for $1 \le i \le n$. $(X;$ A, B, x_0) is called *n*-connected if (A, A_0, B, x_0) and (B, A_0, B, x_0) are 1-connected and $\pi_i(X; A, B, x_0) = 0$ for $2 \leq i \leq n$.

iii) The main theorem of Blakers and Massey [3] is described without restriction in lower dimension:

Theorem (1.23) If $X = (Int A)^{\cup}(Int B)$, $(A, A_{\cap}B)$ is m-connected and $(B, A₀B)$ is n-connected, then the triad (X, A, B) is $(m+n)$ -connected $(m \ge n \ge 1).$

For the case $n \geq 2$, the proof of theorem was given in [3].

We shall prove this theorem for the case $n=1$. With normalization process in §3 of [3], any elements of $\pi_q(X; A, B)$ is represented by normal form $f:(I^{q}:I^{q-1}, I^{q-1}) \to (X; A, B)$ such that

 $f^{-1}(A) \supset \overline{N}(M)^{\cup}I^{q-1}$ and $f^{-1}(B) \supset \text{Cl}(I^{q}-\overline{N}(M)).$

Suppose $2 \leq q \leq m+1$, then dim. $M \leq q-m-1 \leq 0$, and therefore $\overline{N}(M) = \bigcup_{i} \sigma_i^q + \bigcup_{i} \tau_i^q$, where σ_i^q and τ_j^q are finite number of disjoint rectilinear closed cells in $I^q - J^{q-1}$ such that $\sigma_i^q \cap I^{q-1} = \phi$ and $\tau_j^q \cap I^{q-1}$ are faces of τ_j^q .

Since $q \ge 2$, we can take segments t_j from each point of τ_j^q to point of I^{q-1} in $I^q - \dot{I}^q - \dot{N}(M)$, such that t_i are disjoint to each other. Set $P = \frac{Q}{I} t_j \cup N(M) \cup I^{q-1}$ and $Q = Cl(I^{q} - P^{r})$, then interior of Q is an open q-cell and its boundary is $(P_{\Omega}Q)^{\cup}J^{q-1}$ and $(P_{\Omega}Q)_{\Omega}J^{q-1}=\dot{I}^{q-1}$. Therefore $P_{\Omega}Q$ is a retract of Q and

let its retraction be $r_t: Q \to P \cap Q$.

Since $(B, A_{\cap}B)$ is 1-connected, $f|_{j}^{\vee}t_j$ is deformable into $A_{\cap}B$ relative to $\forall i_j$, and extendable to whole homotopy of $(I^q; I^{q-1}, I^{q-1})$ such that the resulted map f_1 : $(I^q: I^{q-1}, I^{q-1}) \rightarrow (X; A, B)$ satisfies the conditions

 $f_1^{-1}(A) \supset P$ and $f_1^{-1}(B) \supset Q$.

Equations $f_{1+t} | Q=f_1 \circ r_t$ and $f_{1+t} | P=f_1 | P$ define a homotopy of $f_1 \simeq f_2$, and f_2 maps I^q in A. Also a retraction of I^q leads a null-homotopy of $f₂$ and nullhomotopy of f. Consequently any element of $\pi_q(X; A, B)$ is trivial for $2 \leq q \leq m+1$, and the proof of theorem is comleted.

Let $\overline{A_{\cap}B}$, \overline{A} , \overline{B} and \overline{X} be subspaces of $X \times I^1$ given by $\overline{A_{\cap}B} = (A_{\cap}B) \times I^1$, $\overline{A}=A\times(0)^\cup\overline{A\cap B}, \overline{B}=B\times(1)^\cup\overline{A\cap B}$ and $\overline{X}=\overline{A}^\cup\overline{B}$, and let $\phi':(\overline{A},(A\cap B)\times(1))$
 $\rightarrow(\hat{A},x_0)$ and $\phi:(A, A\cap B)\rightarrow(\tilde{A},x_0)$ be mappings identifying the subsets $(A_0, B) \times (1)$ and A_0, B to single points.

For convenience we shall give a sufficient condition to omit the condition $X = \text{Int. } A \cup \text{Int. } B$ of (1.23) .

Definition (1.24) The pair $(A, A \cap B)$ is *smooth* if and only if there is a homotopy $h_t: (A, A_{\cap}B) \to (\overline{A}, \overline{A_{\cap}B})$ such that $h_t(x)=(x, t)$ for $x \in A_{\cap}B$.

Lemma (1. 25) i) *If* (A, A_0, B) *is smooth and* $X = A^{\cup}B$, *then triads* $(X; A, B)$ *and* $(X; \overline{A}, \overline{B})$ *have the same homotopy type.*

ii) *If* \overline{A} *is a retract of* $A \times I^1$, *then* $(A, A \cap B)$ *is smooth, and a combinatorial* $pair (K, L)$ is also smooth.

iii) Let ϕ : $(X, A) \rightarrow (Y, B)$ be a mapping such that $\phi | X - A$ is homeomorphism *onto* $Y - B$ *, and if* (X, A) *is smooth then* (Y, B) *is also smooth.*

iv) If $(A, A_{\cap}B)$ is smooth then $(\overline{A}, (A_{\cap}B)\times(1))$ and $(A, A_{\cap}B)$ have the *same homotopy types.*

v) *If*(*X, A*) *is smooth, then* $(X \times I^1, X \times I^1 \cup A \times I^1)$ *and* $(X \times I^1, X \times (0) \cup A \times I^1)$ *are also smooth.*

From the lemma we have $(C_i, [3])$

Theorem (1.23) *If* $(A, A₀, B)$ *is smooth and m*-connected, $(B, A₀, B)$ *is n*-connected, $A_{\cap}B$ is r-connected and $X = A^{\cup}B$, then

i) $(X; A, B)$ *is* $(m+n)$ -connected,

ii) *the induced homomorphisms* $\phi^*: \pi_p(A, A_{\cap}B) \to \pi_p(\tilde{A}, x_0)$ *are onto for* $p\leq m+n+1$ *and isomorphic for* $p\leq m+n$ *.*

iii) and the injection homomorphisms $i^*: \pi_p(A, A \cap B) \to \pi_p(X, B)$ are iso*morphisms into for* $p\leq m+r$ *and their image are direct factors of* $\pi_p(X, B)$, *and we have* $\pi_p(X, B) \approx \pi_p(A, A \cap B) \cup \pi_p(X; A, B)$.

Let $\chi_i: (E^n, S^{n-1}, y_*) \to (X^*, X, x_0)$ be mappings such that $\chi_i|_{E^n - S^{n-1}}$ are homeomorphisms, $\frac{1}{i}\chi_i(E^n - S^{n-1}) = X^* - X$ and $\chi_i(E^n - S^{n-1})$ are disjoint to each other. The mappings χ_i will be referred to us *characteristic maps*, and we donote $\varepsilon_i^n = \chi_i(E^n)$, $\varepsilon_i^n = \chi_i(S^{n-1})$, $\varepsilon^n = \frac{1}{2}\varepsilon_i^n$ and $\varepsilon_i^n = \frac{1}{2}\varepsilon_i^n$. By iii) of (1.25) , $(\varepsilon^n, \varepsilon^n)$ is smooth and the theorem (1.26) is available for the triad $(X^*; \varepsilon^n, X)$.

Set $E_{\frac{1}{2}}^{n} = \{(x_1, ..., x_{n+1}) | \sum_{i=1}^{n} 1/4\}, \sigma_i^{n} = \chi_i(E_{\frac{1}{2}}^{n} \cup [1/2, 1]), Y_i = \varepsilon_i^{n} - \text{Int. } \sigma_i^{n}, \sigma_i^{n}$ $=\bigcup_{i} \sigma_i^n$ and $Y=\bigcup_{i} Y_i$. The pairs $(\mathcal{E}^n, \dot{\mathcal{E}}^n)$ and (\mathcal{E}^n, Y) have the same homotopy type, and in the exact sequence $\cdots \rightarrow \pi_p(\sigma^n, \dot{\sigma}^n) \xrightarrow{i^*} \pi_p(\varepsilon^n, Y) \rightarrow \pi_p(\varepsilon^n; \sigma^n, Y) \rightarrow$ $\pi_{p-1}(\mathcal{E}^n, \mathcal{E}^n) \ldots$, i^* is equivalent to a homomorphism: $\chi^*: \sum_{i} \pi_p(E^n, S^{n-1}) \rightarrow$ $\pi_p(\mathcal{E}^n, \xi^n)$ which is given by $\chi^*(a_1 + \cdots + a_i + \cdots) = \chi^*_1(a_1) + \cdots + \chi^*_i(a_i) + \cdots$. From i) and \langle ii) of (1.2δ) we have

Corollary. (1.27) $\chi^*: \sum_i \pi_p(E^n, S^{n-1}) \to \pi_p(\varepsilon^n, \varepsilon^n)$ are isomoprphisms into and $\pi_p(\varepsilon^n, \varepsilon^n) \approx \sum_i \pi_p(E^n, S^{n-1}) \oplus \pi_p(\varepsilon^n; \sigma^n, Y)$ for $p \leq 2n-3$, and if ε^n is m-connected x^* is onto for $p \leq n+Min$. $(m, n-1)-1$.

Chapter 2. Suspension, Products and Hopf costruction.

i) Suspension

Let $d: (X \times E^1, X \times S^0 \cup x_0 \times E^1) \rightarrow (E(X), x_0)$ be a map identifying the subset $X \times S^{0} \rightarrow x_{0} \times E^{1}$ to the single point x_{0} , and denote $\overrightarrow{X}_{+} = d(X \times [0,1])$ and $\overrightarrow{X}_{-} = d(X)$ $\times[-1, 0]$). $E(X)$ is called *a suspended space of X*, and we identify the point S^{n+1} is a suspended space of S^n with respect to the shrinking map d_n of (1.4).

Define a sum $f+g$ of f and $g:(E(X),x_0) \rightarrow (Y, y_0)$ and an invers -f of f by

(2.1)
$$
(f+g)(d(x,t)) = f(d(x, 2t-1)) \qquad 0 \le t \le 1,= g(d(x, 2t+1)) \qquad -1 \le t \le 0,(-f)(d(x,t)) = f(d(x, -t)) \qquad -1 \le t \le 0,
$$

then the homotopy classes of f form a group, which coincide to the fundamental group of the function space $Y_0^X = \{f : X \to Y | f(x_0) = y_0\}$, with reference point f_0 : $X \rightarrow y_0$.

A suspension (map) $Ef: (I^{n+1}, I^{n+1}) \rightarrow (E(X), x_0)$ of $f: (I^n, I^n) \rightarrow (X, x_0)$ is defined by

$$
(2.2) \tEf(x_1,...,x_{n+1})=d(f(x_1,...,x_n),2x_{n+1}-1),
$$

then we have $E(f+_{i}g)=Ef+_{i}Eg$ and $E(-_{i}f)=-_{i}Ef$ for $1\leq i\leq n$, and therefore we obtain the suspension homomorphism

(2.3)
$$
E: \pi_n(X, x_0) \to \pi_{n+1}(E(X), x_0).
$$

For $f: (I^n, I^n) \rightarrow (X, x_0)$ and $g_1, g_2: (E(X), x_0) \rightarrow (Y, y_0)$ we have

$$
(2.4) \quad (g_1+g_2)\circ Ef = g_1\circ Ef +_{n+1}g_2\circ Ef \text{ and } (-g)\circ Ef = -_{n+1}(g\circ Ef).
$$

Since \hat{X}_+ and \hat{X}_- are contractible, the exactness of the homotopy sequences

of the pairs (\hat{X}_+, X, x_0) and $(E(X), \hat{X}_-, x_0)$ lead that the homomorphisms $\hat{\theta}: \pi_{n+1}(\hat{X}_+, X, x_0) \to \pi_n(X, x_0)$ and $j^*: \pi_n(E(X), x_0) \to \pi_n(E(X), \hat{X}_-, x_0)$ are isomorphisms onto. Consider the diagram

$$
(2.5)
$$

\n
$$
\cdots \pi_{n+1}(E(X); \hat{X}_+, \hat{X}_-) \longrightarrow^{\beta_+} \pi_n(X_+, X) \longrightarrow^{\mathbf{i}^*} \pi_n(E(X), \hat{X}_-) \longrightarrow^{\mathbf{j}^*} \pi_n(E(X); \hat{X}_+, \hat{X}_-) \longrightarrow \cdots
$$

\n
$$
\Delta \searrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow
$$

\n
$$
\pi_{n-1}(X) \longrightarrow^{\mathbf{m}} \pi_n(E(X)) \longrightarrow^{\mathbf{m}} \qquad^{\mathbf{j}^*} \qquad^{\mathbf{j}^*} \qquad^{\mathbf{j}^*} \qquad^{\mathbf{k}}
$$

where $\Delta = \partial \circ \beta_+$ and $I = i^{*\prime} \circ i^{*\prime}$. It is easily verified that $E = i^* \rightarrow i^{*\prime} \circ i^{*\prime} \circ \partial^{-1}$ and that the sequence of the homomorphisms $\cdots \longrightarrow \longrightarrow \longrightarrow \longrightarrow \cdots$ is exact. By (1.23), v) of (1.25) and i) of (1.26) ,

(2.6) if X is r-connected and smooth, then $(E(X | , X + X -)$ is $(2r+2)$ -connected and therefore the suspension komomorphisms $E: \pi_n(X) \to \pi_{n+1}(E)$ are isomorphic for $n\leq 2r$ and onto for $n=2r+1$.

Note that

 (2.7) if $f(T^{n+1}, \dot{T}^{n+1}) \rightarrow (T^{n+1}, \dot{T}^{n+1})$ is a map such that $\varepsilon_n \circ (f | \dot{T}^{n+1})$ is a representative of an element $a \in \pi_n(S^r)$ and if $g:(I^{r+1},I^{r+1}) \rightarrow (X_0x_0)$ is a representative of $\beta \in \pi_{r+1}(X)$, then the composite mapping $g \circ f : (I^{n+1}, I^{n+1}) \rightarrow (X, x_0)$ represents $\beta \circ E(\alpha) \in \pi_n(X, x_0).$

Define a mapping $D^n: (X \times I^n, X \times I^{n} \to_{x_0 \times I^n}) \to (E^n(X), x)$ inductively by setting $D^1 = d$ and $D^n(x, (x_1, ..., x_n)) = d(D^{n-1}(x, (x_1, ..., x_{n-1}), 2x_n-1))$, where $E^{n}(X)$ indicates the *n*-told suspended space of X. Since D^{n} maps $X \times I^{n}-(X)$ $\times I^{n} \rightarrow \times I^{n}$ homeomorphically onto $E^{n}(X) - x_{0}$, we can define a mapping $\phi_n: (X \times S^n, X \vee S^n) \to (E^n(X), x_0)$ such that

$$
(2.8) \t\t\t \phi_n(x,\psi_n(y)) = D^n(x,y) \t x \in X, y \in I^n.
$$

Define a product $f \times g : (I^{p+q}, I^{p+q}) \to (A \times B, A \vee B)$ of $f : (I^p, I^p) \to (A, a_0)$ and $g:(I^q, I^q) \rightarrow (B, b_0)$ by

$$
(2.9) \qquad (f \times g)(x_1, \ldots, x_{p+q}) = (f(x_1, \ldots, x_p), g(x_{p+1}, \ldots, x_{p+q})),
$$

then $f \simeq f'$, $g \simeq g'$ implies $f \times g \simeq f' \times g'$ and hence a product $a \times \beta \in \pi_{p+q}(A)$ $\times B$, $A^{\vee}B$) of $a \in \pi_p(A)$ and $\beta \in \pi_q(B)$ is defined. If $f: (I^m, I^m) \to (X, x_0)$ is a representative of $a \in \pi_n(X)$, we have by $(2.8) \phi_n(f \times \psi_n)(x, (y_1, ..., y_n)) = D^n(f(x))$ $(y_1, ..., y_n) = d(D^{n-1}(f(x), (y_1, ..., y_{n-1}), 2y_n-1)) = ED^{n-1}(f(x), (y_1, ..., y_{n-1}))$ $= \cdots = E^{n} f(x)$, in which E^{n} indicates the *n*-fold suspension. Therefore

 (2.10) $\phi_n^*(a \times a) = E^n(a)$, when (a^0) is the generator of $\pi_n(S^n)$ represented by ψ_n . Finally we remark that the suspension Ef of $f:(I^n, I^n) \rightarrow (X, x_0)$ satisfies the condition $f(I^{n+1}_+) \subset \hat{X}_+, f(I^{n+1}_-) \subset \hat{X}_-$ and $Ef(x_1, ..., x_n, \frac{1}{2}) = f(x_1, ..., x_n),$

⁹⁾ This notation: $u_n \in \pi_n(S^n)$ will be used through the paper.

and that if a map $F: (I^{n+1}, I^{n+1}) \to (E(X), x_0)$ satisfies this condition then we have $Ef \approx F$.

ii) Products.

The original *product* of **J.** H. C. Whitehead $[f, g]$: $(i^{p+q}, 0) \rightarrow (X, x_0)$ of $f:(I^p, I^p) \rightarrow (X, x_0)$ and $g:(I^q, I^q) \rightarrow (X, x_0)$ is given by

(2.11)
$$
[f,g](x_1,...,x_{p+q}) = f(x_1,...,x_p) \qquad (x_{p+1},...,x_{p+q}) \in \dot{I}^q,
$$

$$
= g(x_{p+1},...,x_{p+q}) \qquad (x_1,...,x_p) \in \dot{I}^p,
$$

or
$$
[f,g](\phi_{n,q}(x,y,t)) = f((1-t)x_1,...,(1-t)x_p) \qquad 0 \le t \le 1,
$$

$$
= g((1+t)y_1,...,(1+t)y_q) \qquad -1 \le t \le 0.
$$

If f_t and g_t are homotopies, then $[f_t, g_t]$ is a homotopy from $[f_0, g_0]$ to $[f_1, g_1]$ and therefore the product $[\alpha, \beta] \in \pi_{n+q-1}(X, x_0)$ of $\alpha \in \pi_p(X, x_0)$ and $\beta \in \pi_q(X, x_0)$ can be defined. Let $i_1 : A \rightarrow A \vee B$ and $i_2 : B \rightarrow A \vee B$ are injections such that $i_1(a)=(a,b_0)$ and $i_2(b)=(a_0,b)$. By (2.9) and (2.11) we have for $f:(I^p, \dot{I}^p) \rightarrow (A, a_0)$ and $g:(I^q, \dot{I}^q) \rightarrow (B, b_0)$

$$
(2.12) \qquad \qquad [i_1 \circ f, i_2 \circ g] = f \times g \, | \, i^{p+q} \, .
$$

Let $f: (S^p, y) \rightarrow (X, x_0)$ and $g: (S^q, y_*) \rightarrow (X, x_0)$ be representatives of $a \in \pi_p(X)$ and $\beta \in \pi_q(X)$ respectively and let $f \vee g: (S^p \vee S^q, y_* \times y_*) \rightarrow (X, x_0)$ be a mapping such that $(f \vee g)(x, y_*) = f(x)$ and $(f \vee g)(y_*, x') = g(x')$ for $x \in S^p$ and $x' \in S^q$. Then the composite map

$$
(2.13) \qquad (f \vee g) \circ \psi_{p,q}: (I^{p+q}, 0_{\ast}) \to (S^{p} \vee S^{q}, y_{\ast} \times y_{\ast}) \to (X, x_{0})
$$

is a representative of $\lceil \alpha, \beta \rceil$.

Now we define *a (relative) product* $[a, \beta]_r \in \pi_{p+q-1}(X, A, x_0)$ ot $a \in \pi_p(A, x_0)$ and $\beta \in \pi_0(X, A, x)$. Let $f: (I^p, I^p) \to (A, x_0)$ and $g(I^q, I^{q-1}, I^{q-1}) \to (X, A, x_0)$ be representatives of α and β respectively. Define a mapping $(f, g)_r$: $(I^{p+q-1},$ $j^{p+q-1}, 0_* \rightarrow (x, A, x_0)$ by

$$
(2.14) \t(f,g)_{r}(x_{1},...,x_{p+q}) = f(x_{1},...,x_{p}) \t(x_{p+1},...,x_{p+q}) \in J^{q-1},
$$

= $g(x_{p+1},...,x_{p+q}) \t(x_{1},...,x_{p}) \in \dot{I}^{p},$

and define a relative product $[f, g]_r$: $(I^{p+q-}, I^{p+q-1}, 0_*) \to (X, A, x_0)$ of *f* and *g* by

(2.14)
$$
[f, g]_r = (f, g)_r \circ P_{p+q-1}.
$$

 $f \simeq f'$ and $g \simeq g'$ imply $[f, g]_r \simeq [f', g']_r$ and $[f, g]_r$ is a representative of the relative product $\lceil a, \beta \rceil_r$.

Next we define *a* (*triad*) product $[\alpha, \beta]_t \in \pi_{p+q-1}(X; A, B, x_0)$ of $\alpha \in \pi_p(B, A)$ $\pi_B(B, x_0)$ and $\beta \in \pi_q(A, A \cap B, x_0)$. Let $f: (I^p, I^{p-1}, J^{q-1}) \rightarrow (B, A \cap B, x_0)$ and $g: (I^q, I^{q-1}, J^{q-1}) \rightarrow (B, A \cap B, x_0)$ be representatives or α and β respectively. Define a mapping $(f, g)_t: (K^{p+q-1}; J^{p+q-2}, J^{r+q-2}, 0_*) \to (X; A, B, x_0)$ by

$$
(2.15)'\t(f,g)_{t}(x_{1},...,x_{p+q}) = f(x_{1},...,x_{p-1},x_{p+q}) \t(x_{p},...,x_{p+q-1}) \in J^{q-1},
$$

= $g(x_{p},...,x_{p+q-1}) \t(x_{1},...,x_{p-1},x_{p+q}) \in J^{p-1},$

and define a triad product $[f, g]_t$: $(I^{p+q-1}; J^{p+q-2}, J_0^{p+q-2}, 0) \rightarrow (X; A, B, x_0)$ of f and g by

(2.15)
$$
[f,g]_t = (f,g)_t \circ P'^{-1}_{p+q-1},
$$

 $f \simeq f'$ and $g \simeq g'$ imply $[f, g]_t \simeq [f', g']_t$ and $[f, g]_t$ is a representative of $[a, \beta]_t$.

We have

$$
(2.16) \left[a, \beta_1 + \beta_2 \right] = \left[a, \beta_1 \right] + \left[a, \beta_2 \right] \quad a \in \pi_p(X), \beta_1, \beta_2 \in \pi_q(X) \quad (q>1),
$$
\n
$$
\left[a_1 + a_1, \beta \right] = \left[a_1, \beta \right] + \left[a_2, \beta \right] \quad a_1, a_2 \in \pi_p(X), \beta \in \pi_q(X) \quad (p>1),
$$
\n
$$
\left[a, \beta_1 + \beta_2 \right] = \left[a, \beta_1 \right] + \left[a, \beta_2 \right] \quad a \in \pi_p(A), \beta_1, \beta_2 \in \pi_q(X, A) \quad (q>2),
$$
\n
$$
\left[a_1 + a_2, \beta \right] = \left[a_1, \beta \right] + \left[a_2, \beta \right] \quad a_1, a_2 \in \pi_p(A), \beta \in \pi_q(X, A) \quad (p>1),
$$
\n
$$
\left[a, \beta_1 + \beta_2 \right]_t = \left[a, \beta_1 \right]_t + \left[a, \beta_2 \right]_t \quad a \in \pi_p(B, A \cap B), \beta_1, \beta_2 \in \pi_q(A, A \cap B) \quad (q>2),
$$
\n
$$
\left[a_1 + a_2, \beta \right]_t = \left[a_1, \beta \right]_t + \left[a_2, \beta \right]_t \quad a_1, a_2 \in \pi_p(B, A \cap B), \beta \in \pi_q(A, A \cap B) \quad (p>2),
$$

$$
(2.17) \quad f^*[a,\beta] = [f^*(a), f^*(\beta)] \quad a \in \pi_p(X), \beta \in \pi_q(X),
$$

$$
f^*[a,\beta]_r = [f^*(a), f^*(\beta)]_r \quad a \in \pi_r(A), \beta \in \pi_q(X,A),
$$

$$
f^*[a,\beta]_t = [f^*(a), f^*(\beta)]_t \quad a \in \pi_r(B,A\cap B), \beta \in \pi_q(A,A\cap B),
$$

for $f: (X; A, B, x_0) \rightarrow (Y; C, D, y_0)$, $f_1 = f |A$ and $f_2 = f |B$.

From the definitions of products and boundaries, we have $\partial [f, g]_r = [f, \partial g]$ and β ₊[f , g]_{i} =[∂f , g]_r, and we have

Next consider a product $[\alpha, j^*(\beta)]$, where $\alpha \in \pi_p(A)$, $\beta \in \pi_q(X)$ and j^* is the natural homomorphism : $\pi_q(X) \to \pi_q(X, A)$. Let $f: (1^p, 1^p) \to (A, x_0)$ and $g:(I^q, I^q) \rightarrow (X, x_0)$ be representatives of α and β respectively, then the map $[f,g]_r:(I^{p+q-1},I^{p+q-1},0)\to (X,A,x_0)$ represents $[a, j^*(\beta)]_r$. Remark that if a mapping $F: (I^{p+q}, 0_*) \to (X, x_0)$ represents $\gamma \in \pi_{p+q-1}(X)$ and $F(I^{p+q-1}) \subset A$, then $F(I^{p+q-1}:(I^{p+q-1},I^{p+q-1},0_{\kappa})\to (X,A,x_0)$ represents $j^*(\gamma)\in \pi_{p+q-1}(X,A).$ Making use of this remark, we have $[\alpha, j^*(\beta)]_r = j^*(\gamma)$ where γ is represented by a mapping $F: (I^{p+q}, 0_*) \to (X, x_0)$ such that $F \mid I^{p+q-1} = [f, g]_r$ and $F \mid J^{p+q-1}$ $=\left([f,g]|I^{p+q-1}\right) \circ P_n$. Since $[f,g]_{r}=\left([f,g]|I^{p+q-1}\right) \circ P_n^{-1}$, we have $F=[f,g]$ $\circ \bar{P}_n$ where \bar{P}_n is given by $\bar{P}_n | I_n = P_n$ and $\bar{P}_n | I_n = P_n^{-1}$ and hence \bar{P}_n is a homeomorphism reversing the orientation. Consequently we obtain

$$
(2.19) \t\t j^*[a,\beta] = -[a,j^*(\beta)]_r \t\t \text{for } a \in \pi_p(A) \text{ and } \beta \in \pi_q(X).
$$

Similarly we have

 $j_{0}^{*}[\alpha, i^{*}(\beta)]_{r} = (-1)^{q} [i^{*}(\alpha), \beta]_{t}$ for $\alpha \in \pi_{p}(B)$, $\beta \in \pi_{q}(A, A_{\cap}B)$ (2.19) and for the natural homomorphisms $j^*: \pi_p(B) \to \pi_p(B, A \cap B)$, $i^*: \pi_q(A, A \cap B) \to$

 $\pi_q(X, B)$ and $j^* : \pi_{p+q-1}(X; B) \to \pi_{p+q-1}(X; A, B).$

Let $\eta: I^p \times I^q \to I^{p+q}$ be a mapping given by $\eta(x_1, \ldots, x_p, y_1, \ldots, y_q) = (x_1, \ldots, x_p)$ $x_{p-1}, y_1, \ldots, y_q, x_p$, then the mapping $(f, g)_t$; $(K^{p+q-1}; J^{p+q-2}, J^{p+q-2}, 0_k) \rightarrow$ $(X; A, B, x_0)$ of (2.15) satisfies the condition:

 (2.20) $(f, g)_t(\gamma(I^p \times I^{q-1})) \subset B$, $(f, g)_t(\gamma(I^{p-1} \times I^q)) \subset A$, $(f, g)_t(\gamma(I^p \times I^{q-1}))$ $(f^{p-1} \times \dot{I}^q)$)CA_CB, and $(f, g)_t | \eta(I^p \times 0_k)$ and $(f, g)_t | \eta(I^{p} \times I^q)$ represent the elements $a \in \pi_p(B, A \cap B)$ and $\beta \in \pi_q(A, A \cap B)$ respectively.

Lemma (2.21) *If a mapping* $F: (K^{p+q-1}, I^{p+q-1}, I_0^{p+q-1}, 0_*) \rightarrow (X; A, B, x_0)$ *satis fies the condition then the composite map* $F \circ P'_{p+q+1}$ *represents* $[a, \beta]_t$.

The proof of the lemma follows the fact that $\dot{I}^p \times 0_* \vee 0_* \times \dot{I}^q$, $\dot{I}^p \times I^{q-1} \cup I^p \times 0_*$ and $0 \times \chi I^{q}$ $I^{p-1} \times I^q$ are retacts of $I^p \times I^{q-1}$ $I^{p-1} \times I^q$, $I^p \times I^{q-1}$ and $I^{p-1} \times I^q$ respectively.

iii) Join and Hopf construction.

A join $f * g: (I^{p++2}, 0_*) \rightarrow (I^{m+n+2}, 0)$ of $f: (I^{p+1}, 0_*) \rightarrow (I^{m+1}, 0_*)$ and $g: (i^{+1}, 0_*) \to (i^{n+1}, 0_*)$ is defined by

(2.21)
$$
(f*g)(\Phi_{p,q}(x,y,t)) = \Phi_{m,n}(f(x),g(y),t).
$$

Let \bar{f} : $(I^{p+q}, I^{p+1}) \rightarrow (I^{m+1}, I^{m+1})$ and \bar{g} : $(I^{p+1}, I^{p+1}) \rightarrow (I^{n+1}, I^{n+1})$ be extensions of $f = \bar{f}/I^{p+1}$ and $g = \bar{g}/I^{q+1}$ such that if $f(x_1, ..., x_{p+1}) = (x'_1, ..., x'_{n+1})$ and $g(y_1, \ldots, y_{q+1}) = (y'_1, \ldots, y'_{n+1})$ then $\bar{f}(tx_1, \ldots, tx_{p+1}) = (tx'_1, \ldots, tx'_{m+1})$ and $\bar{g}(ty'_1, \ldots, ty'_m)$..., $ty_{q+1}=(ty'_1, ..., ty'_{n+1})$. Define a mapping $\bar{f}\times\bar{g}$: $(I^{p+q+2}, I^{p+q+2}) \rightarrow (I^{m+n+2}, I^{m+n+1})$. j^{m+n+2}) by $(\bar{f} \times \bar{g})(x_1, ..., x_{p+q+2}) = (f(x_1, ..., x_{p+1}), g(x_{p+2}, ..., x_{p+q+2}))$, then we have $\partial \bar{f} = f$, $\partial \bar{g} = g$ and $\partial (\bar{f} \times \bar{g}) = f * g$.

As is shown in [22], the join operator is induced in homotopy groups and is bilinear. Let $a \in \pi_p(S^m)$ and $\beta \in \pi_q(S^n)$ be the classes of $\varepsilon_m \circ f$ and $\varepsilon_n \circ g$ respectively, then $\psi_{m+1} \circ \bar{f} : (I^{p+1}, I^{p+1}) \to (S^{m+1}, y_*)$ and $\psi_{n+1} \circ \bar{g} : (I^{q+1}, I^{q+1}) \to$ (S^{n+1}, y_*) represent $E(\alpha)$ and $E(\beta)$ by (2.7). From (2.9) and (1.11) $\phi_{m+1,n+1}((\psi_{n+1} \circ \bar{f}) \times (\psi_{m+1} \circ \bar{g})) = \phi_{m+1,n+1} \circ \psi_{m+1,n+1}(\bar{f} \times \bar{g}) = \psi_{m+n+2}(\bar{f} \times \bar{g}): (I^{p+q+2},$ j^{p+q+2} \rightarrow (S^{m+n+1}, *y_{*}*), and by (2.7) we have

$$
(2.22) \t\t \phi_{m+1,n+1}^*(E(\alpha)\times E(\beta))=E(\alpha*\beta) \t \alpha\in \pi_p(S^m), \beta\in \pi_q(S^n).
$$

Let f, g, \bar{f} and \bar{g} be mappings as above. For two mappings f' : (I^{m+1}, I^{m+1}) $\rightarrow (X, x_0)$ and $g': (1^{n+1}, 1^{n+1}) \rightarrow (X, x_0)$,

$$
[f', g'] \circ (f * g)(\varphi_{p,q}(x, y, t)) = [f', g'](\varphi_{m,n}(f(x), g(y), t))
$$

\n
$$
= f'(\bar{f}((1-t)x_1, \ldots, (1-t)x_{p+1}) \quad 0 \le t \le 1,
$$

\n
$$
= g'(\bar{g}((1+t)y_1, \ldots, (1+t)y_{q+1}) \quad -1 \le t \le 0.
$$

\n
$$
= [f' \circ \bar{f}, g' \circ \bar{g}](\varphi_{p,q}(x, y, t)).
$$
 Therefore by (2.7) we have
\n(2.23)
$$
[\alpha', \beta'] \circ (\alpha * \beta) = [\alpha' \circ E(\alpha), \beta' \circ E(\beta)],
$$

where $a' \in \pi_{m+1}(X)$, $\beta' \in \pi_{n+1}(X)$, $a \in \pi_p(S^m)$ and $\beta \in \pi_q(S^n)$.

56 Rirosi TOPA

The following property of join was provided in [22]

 (2.24) $(-\int^{(n+1)(r+1)} \ln \alpha \, d\alpha = a * \ln \alpha = E^{n+1}(a)$, *where* $a \in \pi_m(S^r)$ *and* $\ln \alpha \in \pi_m(S^r)$ *is represented by the identity map.*

A *Hopf* construction $Gf: (\mathbf{i}^{p+q+2}, 0_*) \to (E(X), x_0)$ of $f: (\mathbf{i}^{p+1} \times \mathbf{i}^{q+1}, 0_*) \to$ (X, x_0) is defined by

(2.25)
$$
Gf(\Phi_{p,q}(x,y,t)) = d(f(x,y),t).
$$

The mapping *Gf* satisfies the conditions $Gf(I^{p+1} \times I^{q+1}) \subset X_+$, $Gf(I^{p+1} \times I^{q+1})$ \overrightarrow{X} and $Gf|\dot{I}^{p+1}\times\dot{I}^{q+1}=f$, and conversely, any mapping $G^1:(\dot{I}^{p+q+2},0_*)\rightarrow$ $(E(X), x_0)$ satisfying the condition is homotopic to Gf .

We say that the map *f* has a type (a, β) if $f | I^{p+1} \times 0_k$ and $f | 0_k \times I^{q+1}$ represent $a \in \pi_r(X)$ and $\beta \in \pi_r(X)$ respectively. Also a mapping $f' : (S^p \times S^q, y_* \times y_*) \rightarrow$ (X, x_0) is said to have a type (a, β) , if $f' | S^p \times y_*$ and $f' | y_* \times S^q$ represent $a \in \pi_q(X)$ and $\beta \in \pi_q(X)$ respectively. Consider the composite map $f' \circ \psi_{p,q}$: $(I^{p+q}, \mathbb{O}_*) \rightarrow (X, x_0)$, then $f' \circ \psi_{p,q} | I^{p+q}$ represents $[\alpha, \beta]$ by (2.13), hence $f' \circ \psi_{p,q}$ gives a nullhomotopy of $f' \circ \psi_{p,q}$ *i*^{p+*q*} and [a, β] =0. Conversely if [a, β] =0, there is am apping $F: (I^{p+q}, 0_\star) \to (X, x_0)$ such that $F|I^{p+q}=f' \circ \psi_{p,q}|I^{p+q}$, $f':(S^p \vee S^q, y_* \times y_*) \rightarrow (X, x_0)$ and $f'|S^p \times y_*$ and $f'|y_* \times S^q$ represent α and β respectively. Define $f' | (S^p \times S^q - S^p \vee S^q)$ by setting $f'(\chi) = F \circ \psi_{p,q}^-(\chi)$ for $x \in S^p \times S^q - S^p \vee S^q$, then f' has the type $[a, \beta]$.

(2.26) *There is a mapping* $f: I^{p+1} \times I^{q+1} \to X$ of type (a, β) *if and only if* $[\alpha, \beta]=0.$

Since \hat{X}_+ and \hat{X}_- are contractible the boundary homomorphisms $\hat{\theta}_+$: $\pi_{q+1}(\hat{X}_+,X) \to \pi_q(X)$ and $\partial_-: \pi_{p+1}(X, X) \to \pi_p(X)$ are isomorphisms onto. Let $\bar{a}\in \pi_{p+1}(\hat{X}_-,X)$ and $\bar{\beta}\in \pi_{q+1}(\hat{X}_+,X)$ be elements such that $\partial \bar{a}=\alpha\in \pi_p(X)$ and $\partial \overline{\beta} = \beta \in \pi_q(X)$, then $\Delta[\overline{a}, \overline{\beta}]_t = \partial[\alpha, \overline{\beta}]_r = [\alpha, \beta]$. The exactness of the sequence $\begin{array}{c}\n I \longrightarrow \pi_{p+q+1}(E(X)) \longrightarrow \pi_{p+q+1}(E(X); \stackrel{\wedge}{X}_+, \stackrel{\wedge}{X}_-) \longrightarrow \pi_{p+q-1}(X) \longrightarrow \pi_{p+q}(E(X)) \longrightarrow \cdots\n\end{array}$ leads

$$
(2.27) \t E[\alpha, \beta] = 0 \t \alpha \in \pi_p(X), \beta \in \pi_q(X).
$$

If $[\alpha, \beta]=0$, then $\Delta[\bar{\alpha}, \bar{\beta}]_t=0$ and there is an element γ of $\pi_{p+q+1}(E(X))$ such that $I(\gamma)=[\bar{a},\bar{\beta}]_t$.

Lemma (2.28) $I(\gamma) = [\bar{a}, \bar{\beta}]$ *if and only if* $(-1)^{p(q+1)+1}\gamma$ *is represented by the Hopf construction of a mapping*: $(i^{p+1} \times i^{q+1}, 0_k) \rightarrow (X, x_0)$ *of the type* (a, β) .

First remark that if a mapping $F: (I^{n+1}, 0_*) \to (X, x_0)$ represents $\gamma \in \pi_n(X)$, and if $F(I_n^n) \subset B$ and $F(I^n) \subset A$, then $(F|K^n) \circ P'^{-1}: (I^n; I^{n-1}, I^{n-1}, 0) \to (I^n; I^n)$ $(X; A, B, x_0)$ represents $-I(\gamma)$, where $I: \pi_n(X) \to \pi_n(X; A, B)$ is the natural homomorphism.

Let $\bar{f}:(I^{p+1},I^p,J^p)\to(\stackrel{\wedge}{X}_{\neg},X,x_0)$ and $\bar{g}:(I^{q+1},I^q,J^q)\to(\stackrel{\wedge}{X}_{\neg},X,x_0)$ be

representatives of \bar{a} and $\bar{\beta}$ respectively. We extend the mapping $(\bar{f}, \bar{g})_t$: (K^{p+q+1}) ; $J^{p+q}, J^{p+q}, 0_{\mathcal{R}} \rightarrow (E(X); X_+, X_-, x_0)$ of $(2.14)'$ over I^{p+q+2} as follows, and obtain a map $F: I^{p+q+2} \to E(X)$. Since $((\bar{f}, \bar{g})_t | I^{p+q}) \circ P' = \partial \beta_t [\bar{f}, \bar{g}]_t = [f, g] \simeq 0$, the mapping $F|I^{p+q}=(f,g)_t|I^{p+q}$ is extendable over I^{p+q} such that $F(I^{p+q})\subset X$. Since X_+ and X_- are contractible, the mappings $F|I^{p+q+1}: I^{p+q+1} \to X_+$ and $F|I^{p+q+1}_{p+q+1}: I^{p+q+1}_{p+q+1} \rightarrow \hat{X}$ are extendable over I^{p+q+1} and I^{p+q+1}_{p+q+1} such that $F(I^{p+q+1})$ \overrightarrow{X}_+ and $F(I^{n+q+1}_{p+q+1})\overrightarrow{X}_-$. Let $\eta: I^{p+q+2} \to I^{p+q+2}$ be a mapping of degree $(-1)^{p(q+1)}$ given by $\eta(x_1, ..., x_{p+q+2}) = (x_{p+1}, ..., x_{p+q+1}, x_1, ..., x_p, x_{p+q+2})$. Then the composite map $F \circ \eta : I^{p+q+2} \to E(X)$ maps subsets $I^{p+1} \times I^{q+1}$ and $I^{p+1} \times I^{q+1}$ into X_+ and X_- respectively, and therefore $F \circ \eta$ is homotopic to the Hopf construction of the mapping $F \circ \eta | i^{p+1} \times i^{q+1}$ which has type (a, β) . By making use of the above remark, the necessity of the lemma is established.

Conversely, let $F': I^{p+q+2} \to X$ be the Hopf construction of $F'|I^{p+1} \times I^{q+1}$, then $F' \circ \eta$ maps I^{p+q+1} and I^{p+q+1}_{p+q+1} into \hat{X}_+ and \hat{X}_- respectively, and therefore $(F' \circ \eta | K^{p+q+1}) \circ P'_{p+q+1}$ represents $(-1) I({F'}).$ While $F' \circ \eta | K^{p+q+1}$ satisfies the condition (2.20) and homotopic to $(\bar{f}, \bar{g})_t$, and the sufficiency of the lemma is established.

Define a suspension $E'f$: $(I^{n+1}, I^n, J^n) \rightarrow (E(X), E(A), x_0)$ of $f: (I^n, I^{n-1}, I^n)$ $I^{n-1}) \rightarrow (X, A, x_0)$ by

$$
(2.29) \tE' f(x_1, ..., x_{n+1}) = d(f(x_1, ..., x_{n-1}, x_{n+1}), 2x_n-1).
$$

Clearly $f \approx f'$ implies $E'f \approx E'f'$, and $E'(f +_i g) = E'f +_i E'g$ ($1 \le i \le n-1$), and we obtain a suspension homomorphism $E': \pi_n(X, A) \to \pi_{n+1}(E(X), E(A)).$ Also we have $\partial(E'f) = E(\partial f)$ and $E(u) = -E'(f^*(u))$ for $u \in \pi_n(X)$.

Now we shall prove the fact analogeous to (2.27) :

$$
(2.30) \tE'[a,\beta]_r=0 \tfor a \in \pi_p(A) \tand \beta \in \pi_q(X,A).
$$

Set $J_{+}^{n} = \{x \in J^{n} | x_n \ge 1/2 \}$, $J_{-}^{n} = \{x \in J^{n} | x_n \le 1/2 \}$, $I_{+}^{n} = I^{n} \cap J_{+}^{n}$, and $I_{-}^{n} = I^{n} \cap J_{-}^{n}$. First remark that if a mapping $F: J^{n+1} \to E(X)$ satisfies condition

 (2.31) $F(J^{n+1}_{+})\subset X_{+}$, $F(J^{n+1}_{-})\subset X_{-}$, $F(I^{n}_{+})\subset A_{+}$ $F(I^{n}_{-})\subset A_{-}$, and if $F_{0}: I^{n} \to X$ is a mapping given by $F_0(x_1, ..., x_{n+1}) = F(x_1, ..., x_n, 1/2, x_{n+1})$, and $F_0 \circ P_n$ represents $a \in \pi_n(X, A)$, then $F \circ P_{n+1}$ represents $E'(a)$.

Define subsets of I^{n+1} by $L^n = Cl(\dot{I}^{n+1} - I_{n-1}^n - I_n^{n-n})$, $K_1^{n-1} = Cl(\dot{I}_n^{n-1} - I_n^{n-1})$, $K_2^{n-1} = Cl(\dot{I}_{n-1}^n - I_n^n - I^n)$, $J_1^{n-2} = K^{n-1} \cap K_1^{n-1}$ and $J_2^{n-2} = K^{n-1} \cap K^{n-1}$, then L^n is a closed cell with faces K_1^{n-1} , K_2^{n-1} and K^{n-1} . There is a homeomorphism $\chi: (J^{p+q}; J^{p+q}_+, J^{p+q}_-, I^{p+q}_+, I^{p+q}_-) \to (K_1^{p+q} \cup K_2^{p+q}; K_1^{p+q}, K_2^{p+q}, J_1^{p+q-1}, J_2^{p+q-1})$ and a mapping $\bar{\chi}: I^{p+q} \times I^{1} \to L^{p+q+1}$ such that $\chi(x_1, ..., x_{p+q-1}, 1/2, x_{p+q-1}) = (x_1, ..., x_{p+q-1})$ $x_{p+q},0$, $\overline{\chi}(x,0)=\chi(x)$ for $x\in J^{p+q}, \overline{\chi}(x,t)=\chi(x)$ for $x\in I^{p+q}$, and $\overline{\chi}|\text{Int. } J^{p+q}\times I^{1}$ is a homeomorphism.

Let $f: (I^p, I^p) \to (A, x_0)$ and $g: (I^q, I^{q-1}, J^{q-1}) \to (X, A, x_0)$ be represent-

atives ot $\alpha \in \pi_n(A)$ and $\beta \in \pi_q(X, A)$ respectively, and define mappings $\bar{f}: (I^{p+1}, A)$ I^p , I^p) \rightarrow (\hat{A}_+ , A , x_0) and \bar{g} : $(I^{q+1}; I^q, I_0^q, K^q)$ \rightarrow (\hat{X}_- ; X, \hat{A}_-, x_0) by setting $\bar{f}(x_1,$..., x_{p+1})=d(f($x_1, ..., x_p$), $2x_{p+1}-1$) and $\bar{g}(x_1, ..., x_{q+1})=d(g(x_1, ..., x_{q-1}, x_{q+1}),$ $2x_q-1$). Define a mapping $F: L^{p+q+1} \to E(X)$ by

$$
\overline{F}(x_1, ..., x_{p+q+2}) = \overline{f}(x_1, ..., x_p, x_{p+q+1}) \quad \text{if} \quad (X_{p+1}, ..., x_{p+q}, x_{p+q+2}) \in K^q,
$$
\n
$$
= \overline{g}(x_{p+1}, ..., x_{p+q}, x_{p+q+2}) \quad \text{if} \quad (X_1, ..., x_{p+1}, x_{p+q+1}) \in J^p.
$$

The map $F = (\bar{F} | K_1^{p+q} \cup K_2^{p+q}) \circ \chi$ satisfies the condition (2.31) and therefore $F \circ P_{n+q}$ represents $E'[a,\beta]_r$.

By setting $F_i(x) = \overline{F}(\chi(x,t))$ and $F_t = F_i \circ P_{p+q}$ we see that $F = F_0$ is homotopic to F_1 which maps I^{p+q} into $E(A)$ and is homotopic to the trivial map, and the proof of (2.30) is established.

Supposed that elements $a \in \pi_p(A)$ and $\beta \in \pi_q(X, A)$ satisfies the condition [a, $\partial \beta$]=0. Consider the following diagram

$$
\pi_{p+q-1}(X) \xrightarrow{j'} \pi_{p+q-1}(X, A) \xrightarrow{\partial} \pi_{p+q-2}(A)
$$
\n
$$
\downarrow E \qquad \qquad \downarrow E'
$$
\n
$$
\pi_{p+q}(E(A)) \xrightarrow{i^*} \pi_{p+q}(E(X)) \xrightarrow{j} \pi_{p+q}(E(X), E(A))
$$

The condition $\partial [a, \beta]_r = [\alpha, \partial \beta] = 0$ implies that there is an element γ of $\pi_{p+q-1}(X)$ such that $j'(\gamma)=[a,\beta]_r$. Since $j(E(\gamma))=-E'(\gamma(\gamma))=-E'[\alpha,\beta]_r=0$ by (2.30) , there is an element δ of $\pi_{p+q}(E(A))$ such that $i^*(\delta)=E(\gamma)$.

Lemma (2.32) *With the above hypothesis,* $(-1)^{p(q+1)}$ *o is represented by the Hopf construction of a mapping of type* $(a, \partial \beta)$, *and conversity is also true.*

As in the proof of (2.19) $-\gamma$ is represented by a mapying $G: (i^{p+q}, 0_*) \rightarrow$ (X, x_0) such that $G|J^{p+q-1}=(f, g)_r$, where f and g are representives of a and β respectively. Also $E(\gamma)$ is represented by a mapping $F': (i^{p+q+1}, 0_*) \rightarrow$ $(E(X), x_0)$ such that $F'| J^{p+q} = F, F'(I^{p+q}_*) \subset X_+$ and $F'(I^{p+q}_*) \subset X_-$. $\chi_1(x) = \overline{\chi}(x, 1)$ gives a homeomorphism $\chi_1: (J^{p+q}; \dot{I}^{p+q}_+, \dot{I}^{p+q}_-) \to (K^{p+q}; J^{p+q-1}, J^{p+q-1})$, and there is a homeomorphism $\omega: I^{p+q+1} \to I^{p+q+1}$ such that $\omega(I^{p+q})=I^{p+q}_{+}$, $\omega(I^{p+q}_{p+q})=I^{p+q}_{-}$ and $\omega | K^{p+q} = \chi_1^{-1}$. It is not so difficult to show that the map ω has degree (-1). Therefore we have that the composite map, $F' \circ \omega : I^{p+q+1} \to E(A)$ represents $(-1)\gamma$ hence represents $(-1)\delta$, and that $F \circ \omega(I^{p+q}) \subset A_+$, $F \circ \omega(I^{p+q}_{p+q}) \subset A_$ and $F \circ \omega | K^{p+q} = (\bar{f},g)_t$. As in the proof of the lemma (2.28) $F \circ \omega$ represents $(-1)^{p(q+1)+1}$ $\gamma' \in \pi_{p+q}(E((A)),$ where γ' is represented by the Hopf construction of mapping of type $(a, \partial \beta)$. And the proof of conversity follows from the exactness in the above diagram.

iv) **J-homomorphism**

Denote the group of the rotations of n -sphere by R_n , and denote the identity by $r_0 \in R_n$. Let $f: (i^{p+1}, 0) \to (R_n, r_0)$ be a representative of $a \in \pi_p(R_n)$, and $\tilde{f}: (I^{p+1} \times I^{n+1}, \mathbb{O}_*) \to (S^n, y_*)$ be a mapping defined by $\tilde{f}(x, y) = f(x)(\epsilon_n(y))$. The homotopy class of the Hopf construction of \tilde{f} is denoted by $J(a) \in \pi_{p+n+1}(S^{n+1})$. which was given by G.W. Whitehead $[20]$ and he showed that the operation J induces homomorphism

$$
J: \pi_p(R^n) \to \pi_{p+n+1}(S^{n+1}).
$$

The projection $\kappa: R_n \to S^n$ given by $\kappa(x) = x(y_*)$ is the fibre map with the fibre R_{n-1} , so that κ induces isomorphism κ^* : $\pi_{\nu}(R_n, R_{n-1}) \to \pi_{\nu}(S^n)$. Let $\iota_n \in \pi_n(S^n)$ be the element represented by $\psi_n: (I^n, I^n) \to (S^n, \nu_*)$. Define a homomorphism $K: \pi_p(R_n, R_{n-1}) \to \pi_{p+n+1}(S^{n+1}; E^{n+1}_+, E^{n+1}_-)$ by setting $(p>2)$

(2.33)
$$
K(\alpha) = [\partial_-^{-1}(\kappa^*(\alpha)), \partial_+^{-1} \iota_n]_t \text{ for } \alpha \in \pi_p(R_n, R_{n-1}),
$$

where $\partial_-: \pi_{p+1}(E^{n+1}_-, S^n) \to \pi_p(S^n)$ and $\partial_+: \pi_{n+1}(E^{n+1}_+, S^n) \to \pi_n(S^n)$ are boundary homomorphisms (isomorphisms).

Lemma (2.34) *In the diagram*

$$
\cdots \to \pi_p(R_{n-1}) \xrightarrow{\qquad i^*} \pi_p(R_n) \xrightarrow{\qquad j^*} \pi_p(R_n, R_{n-1}) \xrightarrow{\qquad \qquad \partial} \pi_{p-1}(R_{n-1}) \to \cdots
$$

\n
$$
\downarrow J \qquad \qquad \downarrow K \qquad \qquad \downarrow J
$$

\n
$$
\cdots \to \pi_{p+n}(S^n) \xrightarrow{\qquad \qquad \cdots} \pi_{p+n+1}(S^{n+1}) \xrightarrow{\qquad \qquad \cdots} \pi_{p+n+1}(S^{n+1}; E_+^{n+1}, E_-^{n+1}) \xrightarrow{\qquad \qquad \cdots} \pi_{p+n+1}(S^n) \to \cdots
$$

\n*relations* $E \circ J = -J \circ i^*, \quad I \circ J = (-1)^{p+1} K \circ j^* \quad \text{and} \quad \Delta \circ K = (-1)^p J \circ \partial \quad \text{hold.}$

The first relation was proved in previous paper [18], and the second relation follows from (2.28) . To show the third relation we ralize the operation K. Let $f:(J^p, i^p) \rightarrow (R_n, R_{n-1})$ be a mapping such that $f \circ P_p$ is a representative of $a \in \pi_p(R_n, R_{n-1})$, and let $\tilde{f}: I^p \times I^{n+1} \to S^n$ be a mapping given by $f(x, y)$ $=f(x)(s_n(y))$. Since the element of R_{n-1} is regarded as the element of R_n , which maps hemispheres E_{+}^{n} and E_{-}^{n} to E_{+}^{n} and E_{-}^{n} respectively, and cincide to R_{n-1} on S^{n-1} , \tilde{f} maps $J^p \times I^{n+1}$ and $I^p \times I^{n+1}$ to E^n_+ and E^n_- respectively. A mapping $F: (K^{p+n+1}; J^{p+n}, J_0^{p+n}, 0_k) \to (S^{n+1}; E_+^{n+1}, E_-^{n+1}, y_k)$ is defined on $J^p \times I^n$ by setting $F|J^p\times \dot{I}^{q+1}=\tilde{f}$, by extending $F|I^p\times J^n$ over $I^p\times J^n$ such that $F(I^p\times J^n)$ $\mathbb{C}E^{n+1}_+$, and elsewhere satisfying the condition (2.20). Then $F \circ P'_{n+n+1}$ represents $[\partial_-^{-1} \kappa^*(\alpha), \partial_+^{-1} \beta]_t = K(\alpha)$. Since $F \circ P'_{p+n} | I^{p+n} : (I^{p+n}, 0_\ast) \to (S^n, y^\ast)$ maps $I^p \times I^n$ and $I^p \times I^n$ into E^{n+1} and E^{n+1} respectively, and $F(x,y) = f(x)(\epsilon_{n-1}(y))$ for $(x, y) \in \mathbb{I}^p \times \mathbb{I}^n$, we have from (2.25) that $F | \mathbb{I}^{p+n} = F \circ P_{p+n} | \mathbb{I}^{p+n}$ represents $J(\partial(\alpha))$, hence we have $\Delta \circ K(\alpha) = (-1)^{pn} J(\partial(\alpha)).$

Chapter 3. A generalization of Hopf and Freudenthal Invariants.

i) Denote a subspace $A \times b_0^{\cup} a_0 \times B$ of $A \times B$ by $A^{\vee} B$, and let $i_1: A \to A^{\vee} B$, $i_2: B \to A \vee B$, $p_1: A \times B \to A$, and $p_2: A \times B \to B$ be mappings given by $i_1(a)$ $=(a, b_0), i_2(b) = (a_0, b), p_1(a, b) = a$ and $p_2(a, b) = b$ respectively. It was shown by G.W. Whitehead [22] that the injection homomorphisms $i_1^*: \pi_n(A) \to \pi_n(A \vee B)$ and $i_2^*: \pi_n(B) \to \pi_n(A \vee B)$ and the boundary homomorphism $\hat{\theta}: \pi_{n+1}(A \times B, A \vee B)$ $\rightarrow \pi_n(A \vee B)$ are isomorphisms into, and that there is a direct sum decomposition $(n>1)$.

$$
\pi_n(A \vee B) = i_1^* \pi_n(A) + i^* \pi_n(B) + \partial \pi_{n+1}(A \times B, A \vee B)
$$

with projections to these direct factors $p_1^* : \pi_n(A \vee B) \to \pi_n(A)$, $p_2^* : \pi_n(A \vee B) \to$ $\pi_n(B)$ and $Q_0: \pi_n(A \vee B) \to \pi_{n+1}(A \times B, A \vee B)$. For $a \in \pi_n(A \vee B)$, we have $a = i_1^{\times} p_1^{\times}(a) + i_2^{\times} p_2^{\times}(a) + \partial Q_0(a).$

From the exactness of the following two sequences

 $\cdots \to \pi_n(B) \xrightarrow{i_{\mathfrak{Z}}^*} \pi_n(A \vee B) \xrightarrow{j} \pi_n(A \vee B, B) \longrightarrow \pi_{n+1}(B) \longrightarrow \pi_{n-1}(A \vee B) \to \cdots$ and

$$
\cdots \to \pi_n(A) \xrightarrow{i \circ i_1^*} \pi_n(A \vee B, B) \xrightarrow{j'} \pi_n(A \vee B; A, B) \to \pi_n(A) \to \pi_n(A \vee B, B) \to \cdots
$$

we see that the composition $j' \circ j \circ \partial : \pi_{n+1}(A \times B, A \vee B) \to \pi_n(A \vee B; A, B)$ is isomorphism onto for $n \geq 3$. Define a isomorphism

(3.1)
$$
Q: \pi_n(A \vee B; A, B) \to \pi_{n+1}(A \times B, A \vee B)
$$

by setting $Q=(j'\circ j\circ \partial)^{-1}$, then $Q_0=Q\circ j'\circ j$.

Set $S_1^r = S^r \times y_*$, $S_2^r = y_* \times S^r$ and $y_0 = y_* \times y_*$, and consider the following diagram, in which the commutativity relations hold;

$$
\cdots \rightarrow \pi_{n-1}(S^{r-1}) \xrightarrow{E} \pi_n(S^r) \xrightarrow{\pi_n(S^r; E^r_+, E^r_-)} \xrightarrow{\Delta} \pi_{n-2}(S^{r-1}) \rightarrow \cdots
$$

\n
$$
\downarrow \varphi_r^*
$$

\n
$$
\pi_n(S_1^r \vee S_2^r) \xrightarrow{I'} \pi_n(S_1^r \vee S_2^r; S_1^r, S_2^r)
$$

\n
$$
\downarrow Q
$$

then our *Hopf* homomorphisms $H: \pi_n(S^r, E^r_+, E^r_-) \to \pi_{n+1}(S^{2r})$ and $H_0: \pi_n(S^r)$ $\rightarrow \pi_{n+1}(S^{2r})$ are defined by setting $(n \ge 3)$

(3.2)
$$
H = \phi_{r,r}^* \circ Q \circ \varphi_r^* \text{ and } H_0 = H \circ I.
$$

The generalized Hopt homomorphism $H' : \pi_n(S^r) \to \pi_n(S^{2r-1})$ of G.W. Whitehead [22] [23] are given by $H' = \partial' \circ \psi_{r,r}^{k-1} \circ Q_0 \circ \psi_r^*$ for $n \leq 4r-4$, and from the commutativity of the above diagram we have $H_0 = H' \circ E$. Since E is isomorphic for $n \leq 4r-4$, we have that H' is equivalent to H_0 .

As is shown in $[9]$ and $[18]$, we have

$$
(3.3) \t\t\t H_0 \circ E = 0,
$$

(3.4)
$$
H_0(\beta \circ E(\alpha)) = H_0(\beta) \circ EE(\alpha).
$$

Theorem (3.5) If $a \in \pi_p(E_{-}^r, S^{r-1}), \beta \in \pi_q(E_{+}^r, S^{r-1}),$ then $H[\alpha, \beta]_t = (-1)^{q+1} E((\partial \alpha) * (\partial \beta)).$

Proof. Let $f_0: (I^{q-1}, I^{q-1}) \rightarrow (S^{r-1}, y)$ be a representative of $\partial \beta \in \pi_{q-1}(S^{r-1})$, then β is represented by $f(x_1, \ldots, x_q) = d_{r-1}(f_0(x_1, \ldots, x_{q-1}), x_q)$. By (1.7), $\varphi_r(f(x)) = (Ef_0(x), y_*)$, and we have $\varphi_r^*(\beta) = i_1^*E(\partial \beta)$. Similarly we have

$$
\varphi_r^*(\alpha) = i_2^* E(\partial \alpha). \text{ By (3.2), (3.1), (2.12), (2.19) and (2.22) we have}
$$

\n
$$
H[\alpha, \beta]_t = \phi_{r,r}^* \circ Q \circ \varphi_r^* [\alpha, \beta]_t = \phi_{r,r}^* \circ Q[i_2^* E(\partial \alpha), i_1^* E(\partial \beta)]_t
$$

\n
$$
= (-1)^{q+1} \phi_{r,r}^*(j' \circ j \circ \partial) \circ (j' \circ j \circ \partial) (E(\partial \alpha) \times E(\partial \beta))
$$

\n
$$
= (-1)^{q+1} \phi_{r,r}^* (E(\partial \alpha)) = (-1)^{q+1} E((\partial \alpha) * (\partial \beta)).
$$

Combining this theorem to lemma (2.28) we have

Corollary (3.6) If $\gamma \in \pi_{p+q-1}(S^r)$ is represented by the Hopf construction of a mapping: $I^p \times I^q \to S^{r-1}$ of type (a, β) $(a \in \pi_{n-1}(S^{r-1}), \beta \in \pi_{q-1}(S^{r-1}))$, then $H_0(\gamma) = (-1)^{pq} E(\alpha * \beta).$

ii) Generalized Freudenthal invariants A', A'' of G.W. Whitehead are defined on the group π_r^n which is isomorphic to $\pi_n(S^r; E^r_+, E^r_-)$, and have the properties $A'(\alpha) = (-1)^r A''(\alpha)$ and $A'(\alpha) - A''(\alpha) = (-1)^{r+1} E E H_0(\Lambda(\alpha))$. The following theorem due to G. Takeuchi shows that our Hopf invariant H may be used in place of Λ' .

Theorem (3.7) $H(a) - (-1)^r \iota_{2r} \circ H(a) = (-1)^{r+1} EEH_0(\Delta(a))$ for $a \in \pi_n(S^r)$; E_{+}^{r} , E_{-}^{r} $(n \ge 5, r \ge 2)$.

To prove the theorem we need several preparations. Let a homomorphism $A: \pi_{n-1}(S_1^{r-1} \times S_2^{r-1}, S_1^{r-1} \vee S_1^{r-1}) \to \pi_{n+1}(S_1^r \times S_2^r, S_1^r \vee S_2^r)$ be induced by the formula $Af(x_1,...,x_{n+1})=(d_{r-1}(p_1f(x_1,...,x_{n-2},x_{n+1}),2x_{n-1}-1),d_{r-1}(p_2f(x_1,...,x_{n-2},x_{n+1}),$ $2x_n-1$) where $f: (I^{n-1}, I^{n-2}, J^{n-2}) \rightarrow (S_1^{r-1} \times S_2^{r-1}, S_1^{r-1} \vee S_2^{r-1}, y_0)$ is a mapping. As is shown by Hilton [9], in the diagram

$$
\pi_{n-1}(S_1^{r-1}\times S_2^{r-1},S_1^{r-1}\vee S_2^{r-1})\longrightarrow\pi_{n+1}(S_1^r\times S_2^r,S_1^r\vee S_2^r)\xrightarrow{\mathcal{Q}_0}\pi_n(S_1^r\vee S_2^r)\xrightarrow{\mathcal{Q}_1}\pi_n(S_1^r\vee S_2^r)
$$
\n
$$
\pi_{n-1}(S^{2r-2})\longrightarrow\pi_{n+1}(S^{2r})\quad\pi_{n+1}(S_1^r\times S_2^r,S_1^r\vee S_2^r)
$$

the relations $\phi_{r,r}^* \circ A = (-1)^r E E \circ \phi_{r-1,r-1}^*$, $\phi_{r,r}^* \circ \phi_r^* = (-1)^r \iota_{2r} \circ \phi_{r,r}^*$ and $\phi_r^* \circ Q_0$ $=Q_0 \circ \sigma_r^*$ hold. The restriction $F = Af | I^n$ satisfies condition

(3.8)
$$
F(I^{n-1} \times I^1 \times S^1) \subset S_1', F(I^{n-2} \times I \times I^2) \subset S_2', F(I^{n} \times (1)) = y
$$

\n
$$
F(x_1, ..., x_n) \in S_1' \vee E_1'' \text{ if } x_{n-1} \le x_n \text{ and } x_{n-1} \ge 1 - x_n,
$$

\n
$$
\in S_1' \vee E_1'' \text{ if } x_{n-1} \ge x_n \text{ and } x_{n-1} \le 1 - x_n,
$$

\n
$$
\in E_1'' \vee S_2'' \text{ if } x_{n-1} \le x_n \text{ and } x_{n-1} \le 1 - x_n,
$$

\n
$$
\in E_1'' \vee S_2'' \text{ if } x_{n-1} \le x_n \text{ and } x_{n-1} \le 1 - x_n,
$$

and $F(x_1, ..., x_{n-1}, 1/2, 1/2, 0) = \partial f(x_1, ..., x_{n-2}).$

If a mapping $F: I^{n+1} \to S_1^r \vee S_2^r$ satisfies the condition (3.8), the mapping $\partial f: (I^{n-2}, I^{n-2}) \to (S_1^{r-1} \vee S_2^{r-1}, y_0)$ represents an element α_0 of $\pi_{n-2}(S_1^{r-1} \vee S_2^{r-1})$.

Since $F(x_1, ..., x_{n-1}, 0, 0) = (E(p_1 \circ \partial f)(x_1, ..., x_{n-1}), y_0)$, the restriction $F|I^n: I^n \to S_1^r$ represents a nullhomotopy of $E(p_1 \circ f)$, and we have $E(p_1^*a_0)=0$. Similarly we have $E(p_2^k a_0) = 0$. Coversely for any mapping $f: (I^{n-2}, I^{n-2}) \rightarrow$ $(S_1^{r-1} \vee S_2^{r-1}, y_0)$ which satisfies the condition $E(p_1 \circ f) \approx 0$ and $E(p_2 \circ f) \approx 0$, there is a mapping $F: I^{r+1} \to S_1^r \vee S_2^r$ which satisfies the condition (3.8).

Since $S_1^{r-1} \vee S_2^{r-1}$ is contractible in $E_{\pm}^r \vee E_{\pm}^r$, we have that if two mappings $f, g: (I^{n-1}, I^{n-1}) \rightarrow (E_{\pm}^r \vee E_{\pm}^r, S^{r-1} \vee S^{r-1})$ coincide on I^{n-1} , then *f* is homotopic to g rel. i^{n-1} . This shows that if two mappings *F* and *F'* satisfy the condition (3.8) and homotopic on $I^{n-1} \times (1/2) \times (1/2)$, then *F'* is homotopic to a mapping F'' (in the homotopy the condition (3.8) holds) such that $F''(x_1, \ldots, x_n)$ $x_n, 0) = F(x_1, \ldots, x_n, 0)$ if $x_{n-1} = x_n$ or $x_{n-1} = 1 - x_n$. It is not so difficult to show that the difference ${F} - {F''}$ is the sum of four elements, which are represented by mappings of forms: $I^{n+1} \rightarrow E_+^r \vee S_2^r$, $E_-^r \vee S_2^r$, $S_1^r \vee E_+^r$ and $S_1^r \vee E_2^r$ respectively. Since E^r_+ and E^r_- are contractible, $\{F\}-\{F'\}$ is in $i\uparrow\pi_n(S^r)+i\downarrow\pi_n(S^r)\subset\pi_n(S^r\vee S^r_2)$ and therefore $Q_0 \{F\} - Q_0 \{F'\} = Q_0 (\{F\} - \{F'\}) = 0$. And further calculation shows that the correspondence $\{f\} \rightarrow Q_0\{F\}$ induces a homomorphism

$$
\overline{A}: [\pi_{n-2}(S_1^{r-1} \vee S_2^{r-1})] \to \pi_{n+1}(S_1^{r-1} \times S_2^{r-1}, S_1^{r-1} \vee S_2^{r-1})
$$

where $\lceil \pi_{n-2}(S_1^{r-1} \vee S_2^{r-1}) \rceil$ is a subgroup of $\pi_{n-2}(S_1^{r-1} \vee S_2^{r-1})$ whose elements satisfy the conditions $E(p_1^*u)=0$ and $E(p_2^*u)=0$.

If $g:(I^{n-2},I^{n-2})\rightarrow (S^{r-1},y_*)$ is a mapping such that $E({g})=0$, and let g_t be a nullhomotopy of $g_0=Eg$, we define a mapping $G: I^{n+1} \to S^r$ by $G(x_1, \ldots,$ x_n , 0) = $Eg(x_1, ..., x_{n-1})$, $G(x_1, ..., x_{n-1}, \pm 1, t) = g_t(x_1, ..., x_{n-1})$ and $G(J^{n-1}I^{n-2} \times I^1)$ xI^2)=y₀, then $i_1 \circ G$ satisfies the condition (3.8). Therefore if $a \in i_1^* \pi_{n-2}(S^{r-1})$ $\bigcap_{n=2}^{\infty} \left[\pi_{n-2}(S_1^{r-1} \vee S_2^{r-1}) \right]$, then we have $\overline{A}(\mu) = Q_i^* \{G\} = 0$. Similarly if $\mu \in i^* \pi_{n-2}(S^{r-1})$ $\bigcap \pi_{n-2}(S_1^{r-1} \vee S_2^{r-1})\big]$, we have $\overline{A}(u)=0$. If $u \in \pi_{n-1}(S_1^{r-1} \times S_2^{r-1}, S_1^{r-1} \vee S_2^{r-1})$, we have obvious¹y $\overline{A}(\partial\mu)=A(\mu)$, hence if $\mu\in[\pi_{n-2}(S_1^{r-1}\vee S_2^{r-1})]$ we have $\overline{A}(\mu)=$ $\tilde{A}(i_1^r p_1^*(a)+i_2^* p_2^*(a)+\partial Q_0(a))=A(Q_0(a)).$ Consequently we have

Lemma (3.9) *if a mapping* F *satisfies the condition* (3.8), *and if* $F \mid I^{n-2} \times (1/2)$ \times (1/2) represents $a \in \pi_{n-2}(S_1^{r-1} \vee S_2^{r-1})$, *then we have* $Q_0\{F\} = A \circ Q_0(a)$.

Proof of theorem (3.7). Let $f: (I^n; I^{n-1}_+, I^{n-1}_-, I^{n-1}) \rightarrow (S_1^r; E_+^r, E_-^r, y_*)$ be a representative of $a \in \pi_n(S^r; E^r_+, E^r_-)$, and let $\Delta f: (I^{n-2}, I^{n-2}) \rightarrow (S^r, y_*)$ be representative of Δa such that $\Delta f(x_1, ..., x_{n-2}) = f(x_1, ..., x_{n-2}, 1/2, 0)$. Since $f = |1^{n-1}$ is homotopic to *E A f*, we may assume that $f | I^{n-1} = E A f$. Set $F = \varphi_r \circ f$ and define a mapping F' : $(I^n; I^{n-1}, I^{n-1}, I^{n-1}) \rightarrow (S_1^r \vee S_2^r; S_2^r; S_1^r, y_0)$ by setting

$$
F'(x_1, ..., x_n) = F(x_1, ..., x_{n-1}, 2x_n - 1)
$$

= $\varphi_r \circ \varphi_r(2\pi x_n) Edf(x_1, ..., x_{n-1})$
 $0 \le x_n \le 1/2.$

It is easily verified that F' is homotopic to a mapping $\varphi_r \circ \varphi_r(\pi) \circ F = a_r \circ \varphi_r \circ F$. Since the homomorphism $I': \pi_n(S_1^r \vee S_2^r) \to \pi_n(S_1^r \vee S_2^r; S_1^r, S_2^r)$ is onto there is a mapping $\overline{F}: I^{n+1} \to S_1^r \vee S_2^r$ such that $\overline{F}\vert I^n = F$, $\overline{F}(I^{n-1}_+ \times (0) \times I^1) \subset S_1^r$, $\overline{F}(I^{n-1}_+ \times (0)$ $\times I^1) \subset S^r_1$, and $\overline{F}(K^r) = y_0$, and we have $I'(\overline{F}) = \varphi^r_r(a)$. And also there is a mapping $F':i^{n+1} \to S''_1 \vee S'_2$ such that $\overline{F}'|I^n = F'$, $\overline{F}'(I^{n-1} \times (0) \times I^1) \subset S'_2$, $\overline{F}'(I^{n-1} \times (0) \times I^1)$ $\times (0) \times I^1) \subset S^r_1$, $\overline{F'}(K^n) = y_0$ and $I'(\{\overline{F'}\}) = \sigma^*_{\overline{r}} \circ \varphi^*_{\overline{r}}(\mu)$. The difference $\{\overline{F}\} - \{\overline{F'}\}$ is represented by a mapping $F_0: i^{n+1} \to S_1^* \vee S_2^*$ such that $F_0(I^n \times (1)^{\cup} i^{n-1} \times I^2) = y_0$, $F_0(I^{n-1}_+\times(0)\times I^{1\cup}I^{n-1}_-\times(1)\times I^{1})\subset S_1^r$, $F_0(I^{n-1}_-\times(0)\times I^{1\cup}I^{n-1}_+\times(1)\times I^{1})\subset S_2^r$ and $F_0(x_1, ..., x_n) = \varphi_r \circ \varphi_r(-\pi x_n) \circ E\varphi(x_1, ..., x_{n-1}).$

Define a mapping $\omega: i^{n+1} \to i^{n+1}$ of degree -1 by setting $\omega((x_1, \ldots, x_{n+1}) =$ $(x_1, ..., x_{n-2}, \omega'(x_{n-1}, x_n), x_{n+1})$ where $\omega'(x, y) = (1-2(1-x)(1-y), 1-2(1-x)y)$ for $1/2 \leq x \leq 1$ and $\omega'(x, y) = (2xy, 2x(1-y))$ for $0 \leq x \leq 1/2$. Since ω is homeomorphic on $I^{n+1}-I^{n-2}\times I^1\times I^2$ and F_0 maps $I^{n-1}\times I^1\times I^2$ into the single point y_0 , there is a mapping \overline{F}_0 : $j^{n+1} \rightarrow S_1^r \vee S_2^r$ such that $\overline{F}_0 \circ \omega = F_0$. It is verified from (1.4) ' and (1.7) that \bar{F}_0 satisfies the conditions (3.8), and from (3.9) we have

$$
H(\alpha)-(-1)^{r} \iota_{2r} \circ H(\alpha) = \phi_{r,r}^{*} \circ \sigma_{r}^{*} \circ Q \circ \phi_{r}^{*}(\alpha)
$$

= $\phi^{*} \circ Q \circ I' \{\overline{F}\} - \phi^{*} \circ Q \circ I' \{\overline{F}'\} = \phi^{*} \circ Q \circ (\{F\} - \{\overline{F}\})$
= $\phi^{*} \circ Q \circ \{\overline{F}_{0}\} = -\phi^{*} \circ Q \{\overline{F}_{0}\} = -\phi^{*} \circ A \circ Q \circ \{\phi_{r}^{*} \circ \rho_{r}(\frac{\pi}{2}) \circ \Delta f\}$
= $-\phi^{*} \circ A \circ Q \circ \phi_{r-1}^{*}(\Delta \alpha) = (-1)^{r+1} E E H_{0}(\Delta \alpha)$,

and the proof of the theorem (3. 9) is accomplished.

Since $\Delta \circ I = 0$, we have

Corollary (3.10) $H_0(a) = (-1)^r \iota_{2r} \circ H_0(a)$. If $a \in \pi_{\nu}(S^r)$ and $\beta \in \pi_{\nu}(S^r)$, there are eiements $\bar{a} \in \pi_{\nu+1}(E^{r+1}, S^r)$ and $\bar{\beta} \in \pi_{\nu+1}$

 (E^{r+1}, S^r) such that $\partial \bar{a}=\alpha$, $\partial \bar{\beta}=\beta$ and $\Delta[\bar{a}, \bar{\beta}]_t=[\alpha, \beta]$. By (3.5),(3.7) and (2.4), we have $(-1)^r E E H_0[a, \beta] = H[\bar{a}, \bar{\beta}]_t - (-1)^{r+1} \iota_{2r+2} \circ H[\bar{a}, \bar{\beta}]_t = (-1)^q E(a * \beta)$ $-(-1)^{r+1}$ _{$(r+2 \circ (-1)^{q} E(\alpha \beta) = (-1)^{q} (1-(-1)^{r+1}) E(\alpha \beta)$, and therefore} **Corollary** (3.11) $EEH_0[a,\beta] = 2(-1)^q E(a*\beta)$ *if r is even,* $= 0$ *if r is odd.*

iii) Next we shall define a Hopf invariant to more general group $\pi_p(X^*; \mathcal{E}^n, X)$. Let φ_i ; $(X^*; \mathcal{E}^n, \tilde{X}) \rightarrow (X \vee S^n; S^n, \tilde{X})$ be a mapping identifying the subset $\bigcup_{i \in \mathcal{I}} \mathcal{E}^n_i \cup \mathcal{E}^n_i$ to the single point $x_0 = S^n \cap X$, and let $\phi_n : (\tilde{X} \times S^n, \tilde{X} \vee S^n) \rightarrow (E^n(X), x_0)$ be the shrinking map in (2.8). Then a *Hopf homomorphism* $H = \pi_v(X^*; \varepsilon^n, X)$ $\rightarrow \pi_{p+1}(E^{n}(X))$ is defined by setting $H = \phi_n^* \circ Q \circ \varphi_i^* : \pi_p(X^*; \varepsilon^n, X) \rightarrow \pi_p(X^* \circ S^n;$ S^n , $\tilde{X} \rightarrow \pi_{n+1}(\tilde{X} \times S^n, \tilde{X} \vee S^n) \rightarrow \pi_{n+1}(E^n(X)).$ Define a homomorphism P_i : $\pi_{n-n+1} (X, \xi^n) \to \pi_n(X^*; \xi^n, X)$ by setting $P_i(a) = [a, i]$, where i is a generator of $\pi_n(\xi_i^n, \xi_i^n)$. By (3.1), (2.12), (2.19) and (2.10) we have $H_iP_i(a) = \phi_n^* \circ Q \circ \phi_i^*$ $\begin{bmatrix} u, & i \end{bmatrix}_t = \phi_h^* \circ Q \circ [\varphi_i^*(u), & i_n]_t = (-1)^n \phi_h^*(j' \circ j \circ \partial)^{-1} j' \circ j \circ \partial (\varphi_i^*(u) \times r_i) = (-1)^q \phi_h^*$ $(\varphi_i^*(a)\times\zeta_n)=(-1)^n E^n(\varphi_i^*(a))$. If $i\neq j$, $\varphi_i^*[\alpha,\zeta_i]=0$ and hence $H_iP_j=0$.

(3.12)
$$
H_i P_j(a) = (-1)^n E \varphi_i^*(a) \qquad i = j,
$$

$$
= 0 \qquad i : |j|.
$$

If (X, ξ^n) is smooth and m-connected, and if ξ^n is r-connected, then $\varphi_i^* : \pi_{p-n+1}(X, \xi^n) \to \pi_{p-n+1}(\tilde{X})$ is isomorphism onto for $p \mid n+1 \leq m+p$ by (1.26), and $E^n: \pi_{p-n+1}(\tilde{X}) \to \pi_{p+1}(E^n(\tilde{X}))$ is isomorphism onto for $p-n+1\leq 2m$ by (2.6). Then the rollowing theorem is algebraic consequence of the above considerations : **Theorem** (3.13) *with above hypotheses* $\pi_p(X^*; \varepsilon^n, X)$ *has a direct factor isomorphic to* $\pi_{p-n+1}(X, \dot{e}^n) \otimes \pi_n(\dot{e}^n, \dot{e}^n)$ for $p \leq n+m+min(m, r)-1$.

Combining this theorem to **(1.** 27) we bave

Corollary (3.14) $\pi_p(\varepsilon^n, \varepsilon^n)$ *has a direct factor isomorphic to* $\sum \pi_p(E^n, S^{n-1}) \oplus$ $\pi_{p-n+1}(x^n) \otimes \pi_n(x^n, x^n)$ for $p \geq n+min(2r, n-2)-1$, where tensor product \otimes *is induced by the relative product.*

Chapter 4. Some elements of $\pi_n(S^r)$.

i) It is well known that the mapping $\psi_n: (I^n, I^n) \to (S^n, y_*)$ represents a generator ι_n of the infinite cyclic group $\pi_n(S^n) \approx Z$, and that $\pi_n(S^1)=0$ for $n>1$. and $\pi_n(S^r)=0$ for $n \leq r$.

There is fibre mappings $h_r: S^{2r-1} \to S^r(r=2, 4, 8)$ with fibre S^{r-1} , and they are represented by the Hopf construction of mappings of type (c_{r-1}, c_{r-1}) . If h'_r is another fibre mapping, then there is a mapping $\chi: S^{2r-1} \to S^{2r-1}$ of degree 1 such that $h_r=h'_r \circ \chi$, and therefore $H(\lbrace h_r \rbrace)=E(\lbrace r_{-1} \rbrace_{r-1})=\lbrace r_{2r}=\pm H(\lbrace h_r \rbrace_{r})$. As is shown in [5], the homomorphisms $h_r^*: \pi_n(S^{2r-1}) \to \pi_n(S^r)$ and $E: \pi_{n-1}(S^{r-1}) \to$ $\pi_n(S^r)$ are isomorphisms into and

(4.1)
$$
\pi_n(S^r) = h_r^* \pi_n(S^{2r-1}) \oplus E(\pi_{n-1}(S^{r-1})).
$$

ii) By (4.1) $\pi_3(S^2) \approx \pi_3(S^3) \approx Z$ and its generator γ_2 is represented by h_2 . The fact $\pi_{n+1}(S^n) \approx Z_2$ for $n \geq 3$ is shown by H. Freudenthal [8], and its generator π_n . is the $(n-2)$ -fold suspension of γ_2 . It was shown by G. W. Whitehead [23] that $\pi_{n+2}(S^n) \approx Z_2(n\geq 2)$ and its generator is $\gamma_n \circ \gamma_{n+1}$.

For convenience we modify the theorem (3.7). Let $a \in \pi_n(S^r)$ be an element such that $E(a)=0$, then there is an element γ of $\pi_{n+2}(S^{r+1}; E^{r+1}_+, E^{r+1}_-)$ such that $\Delta(\gamma) = a$. By (3.7) we have $H(\gamma) - (-1)^{r+1} c_{2r+2} \circ H(\gamma) = (-1)^r E E H_0(a)$, hence we have $EEH_0(a)=0$ if *r* is odd. If $n+2 \leq 2(2r+1)-1$, the suspension homomorphism $E: \pi_{n+2}(S^{2r+1}) \rightarrow \pi_{n+3}(S^{2r+2})$ is onto and there is an element β of $\pi_{n+2}(S^{2r+1})$ such that $E(\beta)=H(\gamma)$, and therefore we have by $(2.4) (-1)^r E E H_0(\alpha)$ $=E(\beta)-(-1)^{r+1}$ _{c3r+2} \circ $E(\beta)=(1-(-1)^{r+1})E(\beta)$. Consequently we have

 (4.2) *if* $a \in \pi_n(S^r)$ *and* $E(a) = 0$ *, we have* $EEH_0(a) = 0$ *if r is odd, EEH*₀(*a*) \in 2 $\pi_{n+3}(S^{2r+2})$ *if r is even and n* \leq 4*r*-1.

Since $2\pi_{r+2}(S^{r+1})=2\pi_{r+2}(S^r)=0$ for $r\geq 2$, we have $(4.2)'$ *if* $a \in \pi_{2r}(S^r)$ or $a \in \pi_{2r+1}(S^r)$ and $r \geq 2$, and if $H(a) \neq 0$, then $E(a) \neq 0$. For example $\gamma_3 \circ \gamma_4 \circ \gamma_5$ is a nonzero element of $\pi_6(S^3)$.

iii) Let $q = x_1 + ix_2 + jx_3 + kx_4$ be a quaternion, then we may regard a point (x_1, x_2, x_3, x_4) of S³ as a quaternion of unit absolute value and regard a point (x_1, x_2, x_3) of S^2 as a pure quaternion $ix_1 + jx_2 + kx_3$ of unit absolute value. The

product $p \cdot i \cdot p^{-1} = k(p)$ $(p \in S^3, i = (0, 1, 0, 0))$ defines a fibre mapping $h: S^3 \to S^2$ and *h* represents a generator of $\pi_3(S^2)$.

The products $p \cdot q = f(p, q)$ and $p \cdot q_0 \cdot p^{-1} = g(p, q)$ (p, $q \in S^3$, $q_0 \in S^2$) define mappings $f: S^3 \times S^3 \to S^3$ and $g: S^3 \times S^2 \to S^2$ of types (s_3, s_3) and $(\pm \gamma_2, s_2)$ respectively. The hopf construction of f is a fibre mapping, and let its class be $\nu_4 \in \pi_7(S_4)$, then $H(\nu_4) = t_8$ by (3.6). Let $a_3 \in \pi_6(S^3)$ be the class of the Hopf construction of g, the $H(u_3) = 6$. Let ν_n and u_n be $(n-4)$ - and $(n-3)$ -fold suspensions of ν_4 and α_3 respectively. The author proved that [18]

Lemma (4.3) i) *the* $(n-3)$ -fold suspension E^{n-3} : $\pi_6(S^3) \rightarrow \pi_{n+3}(S^n)$ is isomor*phism into for n* \geq 5, *and* $\pi_{n+3}(S^n)/E^{n-3}(\pi_6(S^3)) \approx Z_2$,

ii) $[\iota_4, \iota_4] = 2\nu_4 - \iota_4$, $2\nu_n = \iota_n$ *for* $n \geq 5$ *and* $\eta_n \circ \eta_{n+1} \circ \eta_{n+2} \neq 0$ *for* $n \geq 2$.

iv) Let *f,* g and *h* be mappings as in iii), then a diagram

$$
S^3 \times S^3 \longrightarrow S^3
$$

\n
$$
\downarrow (i_3 \times h) \quad g \quad \downarrow h
$$

\n
$$
S^3 \times S^2 \longrightarrow S^2
$$

commutes, where $i_3: S^3 \to S^3$ is the identity map and $(i_3 \times h)(x, y) = (x, h(y))$. The difinitions of Hopf construction, join and suspension shows that $E(\pm \gamma_2) \circ \nu_4$ $=\mu_3 \circ (r_3 \ast \gamma_2) = \mu_3 \circ \gamma_6$. By (2. 23), (2. 24) and (4. 3) we have $[\gamma_4, r_4] = [r_4, r_4] \circ (\gamma_3 \ast r_3)$ $=(2\nu_4 - \mu_4) \circ \gamma_6 = (2\nu_4 \circ \gamma_6) + \mu_3 \circ \gamma_6 = \mu_3 \circ \gamma_6$, and by (2. 27) $\gamma_5 \circ \nu_6 = \mu_5 \circ \gamma_8 = E[\gamma_4, \iota_4] = 0$. By (3.4) we have $H(\eta_3 \circ \nu_4) = H(a_3 \circ \eta_6) = H(a_3) \circ \eta_7 = \eta_6 \circ \eta_7 = 0$ hence $\eta_3 \circ \nu_4 = 0$, and by $(4.2)'$ we have $E(\gamma_3 \circ \nu_4) = \gamma_4 \circ \nu_5 = 0$. Consequently we obtain

Lemma (4.4) $\eta_n \circ \nu_{n+3} = a_n \circ \eta_{n+3} = 0$ *for n=3 and 4,* $= 0$ *for n* ≥ 5 .

v) It was shown in [19] [17] that the homotopy group $\pi_4(R_4)$ of the rotation group R_4 is the cyclic group of order 2 and the boundary homomorphism $\hat{\theta}$: $\pi_5(R_5, R_4) \rightarrow \pi_4(R_4)$ is onto, and that the generator of $\pi_4(R_4)$ is given by $i^*(u) \circ \eta_3$, where $u \in \pi_3(R_3)$ is represented by $f(p)(q) = p \cdot q(p, q \in S^3)$. From (2.34) we have that $J(i^*(\alpha) \circ \eta_3) = J(i^*(\alpha \circ \eta_3)) = -E J(\alpha \circ \eta_3) = E J(\alpha \circ \eta_3)$ is represented by product $[\ell_5, \ell_5]$, and $J(a \circ \eta_3) = J(a) \circ (\eta_3 * \ell_3) = \nu_4 \circ \eta_7$. Therefore $[s, t_5]=E(\nu_4\circ\eta_7)=\nu_5\circ\eta_8$, and $\nu_6\circ\eta_9=E[t_5, t_5]=0$. By (3.4) $H(\nu_4\circ\eta_7)=\eta_8+0$ and $\nu_4 \circ \eta_7 = 0$, and by $(4.3)'$ $E(\nu_4 \circ \eta_7) = \nu_5 \circ \eta_8 = 0$.

Lemma (4.5)
$$
\begin{aligned}\n\mathbf{v}_n \circ \eta_{n+3} &= 0 \quad \text{for } n = 4 \text{ and } 5 \\
&= 0 \quad \text{for } n \geq 6.\n\end{aligned}
$$

vi) Let q_i be a quaternion, then we may represents a point of C^{4n} by (q_1, \ldots, q_n) . The equivalence relation $\{(q_1, \ldots, q_n)\} = \{(pq_1, \ldots, pq_n)\}$ induces quarternion projective space Q^{1n-1} with respect to the indentification mapping q'_{n-1} : $C^{4n}-0_* \rightarrow Q^{4n-1}$. Obviously $q'_{n-1}|C^{n-1}-0_*=q'_{n-2}$. With normalization process we obtain a fibre mapping $q_{n-1}: S^{4n-1} \rightarrow Q^{4n-1}$ and its fibre is S^3 . The

correspondence $(q_1, ..., q_n) \rightarrow \{(q_1, ..., q_n)\}\in Q^{4n}$ gives a homeomorphism: $C^{4n} \rightarrow$ $Q^{4n}-Q^{4n-4}$, and this shows that there is a character mapping \tilde{q}_{n-1} : (E^{4n} , S^{4n-1}) $\rightarrow (Q^{4n}, Q^{4n-4})$ such that $q_{n-1}|S^{4n-1}=q_{n-1}$. Then we obtain a cell decomposition $Q^{4n} = S^{4} \cup e^{8} \cup \dots \cup e^{4n}$ of Q^{4n} . The fibre mapping q_2 : $(S^{11}, S^7) \rightarrow (Q^8, S^3)$ induces isomorphism q_2^* : $\pi_n(S^{11}, S^7) \rightarrow \pi_n(Q^8, S^4)$. Consider the diagram

$$
\pi_{11}(S^{11}, S^7) \xrightarrow{\partial} \pi_{10}(S^7) \longrightarrow \pi_{10}(S^{11})
$$
\n
$$
\downarrow q_2^* \qquad \qquad q_1^* \qquad \qquad q_1^* \qquad \qquad q_1^* \qquad \qquad \pi_{11}(\mathbf{Q}^8, S^4) \longrightarrow \pi_{10}(S^4).
$$

Since S^7 is contractible in S^{11} , ∂ is onto. Let $\tilde{\tau}_8 \in \pi_8(Q^3, S)$ be the class of \tilde{q}_1 , then $\partial^*_{8} = \{q_1\} = \{q_1\} = \{q_2\}$. There is an element γ of $\pi_{11}(S^{11}, S^7)$ such that $q_2^*(\gamma)$ $=[\ell_4, \tilde{\ell}_8]_r$, for q_2^* is onto, and therefore $[\ell_4, \nu_4] = \partial[\ell_4, \ell_8]_r = \partial q_2^*(\gamma) = q_1^* \circ \partial'(\gamma)$. Set $\partial'(\gamma) = \beta \in \pi_{10}(\mathcal{S}^7)$, then $[\iota_4, \nu_4] = \nu_4 \circ \beta$. We have $H_0[\iota_4, \nu_4] = 2E^{-1}(\iota_4 * \nu_4) = 2\nu_8$ by (3.11), and $H_0(\nu_4 \circ \beta) = E(\beta)$ by (3.4). Since $E: \pi_{10}(S^7) \to \pi_{11}(S^8)$ is isomorphism onto, we have $\beta = 2\nu_7$ and

Lemma (4.6) $\lceil c_4, v_4 \rceil = 2v_4 \circ v_7$ *and* $2v_n \circ v_{n+3} = 0$ *for n* ≥ 5 .

Chapter 5. A **construction of mapping.**

i) Consider a mapping $F: (I^{n+1}, I^{n+1}) \rightarrow (X, x_0)$ which satisfies the conditions $(n\geq 2)$:

$$
(A_1) \quad F(x_1, \ldots, x_{n+1}) = F(x_1, \ldots, x_{n-2}, x_{n-1}+1/2, x_n, x_{n+1})
$$

for $0 \le x_{n-1} \le 1/2$ and $0 \le x_{n+1} \le 1/2$,

$$
(A_2) \quad F(x_1, \ldots, x_{n+1}) = F(x_1, \ldots, x_{n-1}, x_n+1/2, x_{n+1})
$$

for $0 \le x_n \le 1/2$ and $1/2 \le x_{n+1} \le 1$.

The formula

(5.1)
$$
f(x_1,...,x_n) = F(x_1,...,x_{n-2},x_{n-1}/2,x_n/2,1/2)
$$

represents a map $f: (I^n, i^n) \to (X, x_0)$. From (A_1) a map $F_1: (I^n, i^n) \to (X, x)$. given by $F_1(x_1, ..., x_n) = F(x_1, ..., 2x_{n-1}, x_n, 1/2)$ is the sum $f + f$ on the x_{n-1} -axis, and also from (A_2) the formula $F_0'(x_1, ..., x_n) = F(x_1, ..., x_{n-1}, 2x_n, 1/2)$ gives the sum $f + f$ on the x_n -axis. By setting $F_t(x_1, ..., x_n) = F(x_1, ..., x_{n-2}, 2x_{n-1},$ $x_n, t/2$ and $F_t'(x_1, ..., x_n) = F_t(x_1, ..., x_{n-2}, x_{n-1}, 2x_n, (t+1)/2)$, we obtain nullhomotopies of F_1 and F_0' respectively. Therefore

 (A_3) *f represents an element a of* $_2[\pi_n(X)]$,

where $_2[\pi_n(X)]$ is the subgroup of $\pi_n(X)$ generated by the elements of order 2. Conversely for any element α of $_2[\pi_n(X)]$, there exists a map $F: (I^{n+1}, I^{n+1})$ \rightarrow (X, x_0) satisfying the conditions (A₁), (A₂) and (A₃). Let *F* and *F'* be two maps which satisfy the above three conditions, and let f and f' be the restricted maps as in (5.1) . Since f and f' represent the same element α , there is a homotopy $f_t: (I^n, I^n) \to (X, x_0)$ from $f = f_0$ to $f' = f_1$. Define a homotopy $g_t: (I^n, I^n) \rightarrow (X, x_0)$ by a rule

$$
f_t(x_1,\ldots,x_n)=g_t(x_1,\ldots,x_{n-2},x_{n-1}/2,x_n/2)=g_t(x_1,\ldots,x_{n-2},x_{n-1}/2,(x_n+1)/2)
$$

= $g_t(x_1,\ldots,x_n,(x_{n-1}+1)/2,x_n/2)=g_t(x_1,\ldots,x_{n-2},(x_{n-1}+1)/2,(x_n+1)/2),$

then we have $g_0(x_1, ..., x)=F(x_1, ..., x_n, 1/2)$ and $g_1(x_1, ..., x_n)=F'(x_1, ..., x_n, 1/2)$. Define two maps F_+ and F_- : $(I^{n+1}, I^{n+1}) \rightarrow (X, x_0)$ by setting

$$
F_{+}(x_{1},...,x_{n},t) = F(x_{1},...,x_{n},(2-3t)/2) \qquad 0 \leq t \leq 1/3,
$$

= $g_{3t-1}(x_{1},...,x_{n})$ $1/3 \leq t \leq 2/3,$
= $F'(x_{1},...,x_{n},(3t-1)/2)$ $2/3 \leq t \leq 1.$

and

$$
F_{-}(x_{1},...,x_{n},t) = F'(x_{1},...,x_{n},3t/2)
$$

= $g_{2-3t}(x_{1},...,x_{n})$
= $F(x_{1},...,x_{n},(3-3t)/2)$
 $2/3 \le t \le 1$.

It is easily verified that the sum $F_++(F+F_-)$ on the x_{n+1} -axis is homotopic to *F'*. Since $F_+(x_1,\ldots,x_{n-1},x_n,x_{n+1})=F_+(x_1,\ldots,x_{n-1},x_n+1/2,x_{n+1})$ for $0 \le x_n$ \leq 1/2, F_+ is the sum $F_+ + F_+$ on the x_n -axis, where $F_+ (x_1, ..., x_{n+1}) = F_+ (x_1, ..., x_{n+1})$ $x_{n-1}, x_n/2, x_{n+1}$, and hence the class of F_{+} belongs to $2(\pi_{n+1}(X))$. Similarly the class of F_{-} belongs to $2(\pi_{n+1}(X))$. Consequently we have

 (5.2) *the class* $\{F\}$ *of in* $\pi_{n+1}(X)/2\pi_{n+1}(X)$ *depends only on a, and it is denoted* $by T(a)$.

If $n \geq 3$, and if F_1 and F_2 are representatives of $T(a)$ and $T(\beta)$ respectively, a representative *F* of $T(\alpha+\beta)$ is given by the sum $F_1 + F_2$ on the x_1 -axis. Therefore $T(\alpha)+T(\beta)=T(\alpha+\beta)$, and we obtain a homomorphism

(5.3) $T_2: \mathbb{Z}[\pi_n(X)] \to \pi_{n+1}(X)/2\pi_{n+1}(X) \quad (n \geq 3).$

In the case $n=2$, by theorem (5.15) of [22] and the following theorem we have $T(a+\beta)=T(a)+T(\beta)+\{\lceil a,\beta\rceil\}.$

Theorem (5.4) $T(a)$ *is the class of* $a \circ \eta_n$.

To prove the theorem we shall give a representative of $T(\alpha)$ by spherical mappings. Let ε : $(E^n, S^{n-1}) \rightarrow (I^n, I^n)$ be the homeomorphism given by

$$
\varepsilon(x_1,\ldots,x_n)=\left(\frac{1+\rho x_1}{2},\ldots,\frac{1+\rho x_n}{2}\right),\text{ where }\rho=\frac{\sqrt{x_1^2+\cdots+x_2^n}}{\max\left(\left|x_1\right|,\ldots,\left|x_n\right|\right)}
$$

Define a map $\chi_1: I^{n+1} \to E^n$ by setting for $0 \leq \chi_{n-1} \leq 1/2$ and $0 \leq \chi_n \leq 1/2$

$$
\begin{aligned}\n\chi_1(x_1,\ldots,x_{n+1}) &= \varepsilon^{-1}(x_1,\ldots,x_{n-2},2x_n,2x_{n+1}) & \text{if } 0 \leq x_{n+1} \leq x_{n-1}, \\
&= \varepsilon^{-1}(x_1,\ldots,x_{n-2},2x_n,2x_{n-1}) & \text{if } x_{n-1} \leq x_{n+1} \leq 1-x_n, \\
&= \varepsilon^{-1}(x_1,\ldots,x_{n-2},2-2x_{n+1},2x_{n-1}) & \text{if } 1-x_n \leq x_{n+1} \leq 1,\n\end{aligned}
$$

and by adjoining the condition

 $\chi_1(x_1,\ldots,x_{n+1}) = \chi_1(x_1,\ldots,x_{n-1},1-x_n,x_{n+1}) = \chi_1(x_1,\ldots,x_{n-1},1-x_n,x_{n+1}).$ for the other values of x_{n-1} and x_n

Set $L_{+}=\{(x_1,\ldots,x_{n+1})\in I^{n+1}|x_n=1/2,x_{n+1}\geq1/2\}$ and $L_{-}=\{(x_1,\ldots,x_{n+1})\in I^{n+1}|x_n=1/2\}$ $I^{n+1} |x_{n-1}=1/2, x_{n+1}\leq 1/2$. We may represent a point (x_1,x_2) of S^1 by a radian θ such that $(\cos \theta, \sin \theta) = (x_1, x_2)$. Define a mapping: $x_2: I^{n+1}-I^{n+1}-L_+-L_ \rightarrow$ S¹ by setting

$$
\begin{aligned}\n\chi_2(x_1,\ldots,x_{n+1}) &= -\pi/4 & 0 &< x_{n-1} < 1/2, 1/2 < x_n < 1 \text{ and } x_{n+1} = 1/2, \\
&= \frac{1}{2} \text{ Arctan} \frac{1-2x_n}{1-2x_{n+1}} & 0 &< x_{n-1} < 1/2 \text{ and } 0 < x_{n+1} < 1/2, \\
&= \frac{\pi}{4} & 0 < x_{n-1} < 1/2, 0 < x_n < 1/2 \text{ and } x_{n+1} = 1/2, \\
&= \frac{\pi}{2} + \frac{1}{2} \text{ Arctan} \frac{1-2x_{n-1}}{1-2x_{n+1}} & 0 < x_n < 1/2 \text{ and } 1/2 < x_{n+1} < 1, \\
&= 3\pi/4 & 1/2 < x_{n-1} < 1, 0 < x_n < 1/2 \text{ and } x_{n+1} = 1/2, \\
&= \pi - 1/2 \text{ Arctan} \frac{1-2x_n}{1-2x_{n+1}} & 1/2 < x_{n+1} < 1 \text{ and } 0 < x_{n+1} < 1/2, \\
&= 5\pi/4 & 1/2 < x_{n-1} < 1, 1/2 < x_n < 1 \text{ and } x_{n+1} = 1/2, \\
&= 3/2\pi - 1/2 \text{ Arctan} \frac{1-2x_{n-1}}{1-2x_{n+1}} & 1/2 < x_n < 1 \text{ and } 1/2 < x_{n+1} < 1.\n\end{aligned}
$$

For a fixed point $\theta \in S^1$, the inverse image $\chi^{-1}(\theta)$ is an open *n*-cube in I^{n+1} and χ_1 maps $\chi_2^{-1}(\theta)$ homeomorphically onto $E^n - S^{n-1}$. Therefore the formula $\chi(x) = (\chi_1(x), \chi_2(x))$ gives a homeomorphism $\chi: I^{n+1} - I^{n+1} - L_+ - L_- \to (E^{n} - S^{n-1})$ $\times S^1$.

Define a map $\phi: E^{n} \times S^{1} \to S^{n+1}$ by $\phi(x_1, ..., x_n, y_1, y_2) = (x_1, ..., x_n, \mu y_1, \mu y_2)$, where $(x_1, ..., x_n) \in E^n$, $(y_1, y_2) \in S^1$ and $\mu = (1 - x_1^2 - ... - x_n^2)^{\frac{1}{2}}$, then ϕ maps $(F^{n}-S^{n-1})\times S^{1}$ homeomorphically onto $S^{n+1}-S^{n-1}$.

Define a map $\psi: (I^{n+1}, I^{n+1} \cup L_+ \cup L_-) \rightarrow (S^{n+1}, S^{n-1})$ by setting

$$
\psi(x) = \phi(\chi(x)) \quad \text{for } x \in I^{n+1} - I^{n+1} - L_+ - L_-,
$$

and

$$
\psi(x) = (\chi_1(x), 0, 0) \quad \text{for } x \in I^{n+1} - L_+ - L_-,
$$

then ψ maps I^{n+1} - I^{n+1} - L_+ - L_+ homeomorphically onto S^{n+1} - S^{n-1} .

Since F maps $I^{n+1} \cup L_+ \cup L_-$ into the single point x_0 , there is a unique map $H: (S^{n+1}, S^{n-1}) \to (X, x_0)$ such that $F = H \circ \psi$. It is verified from the definition of ψ that the map H satisfies the conditions:

 (B_1) $H(\phi(x_1, ..., x_n, \theta)) = H(\phi(x_1, ..., x_{n-1}, x_n, \pi - \theta))$ $-\pi/4 \leq \theta \leq \pi/4$,

 (B_2) $H(\phi(x_1, ..., x_n, \theta)) = H(\phi(x_1, ..., x_{n-1}, -x_n, 2\pi - \theta))$ $\pi/4 \leq \theta \leq 3\pi/4$,

 (B_3) and a map $h: (E^n, S^{n-1}) \rightarrow (X, x_0)$ giving by $h(x_1, \ldots, x_n) = H(\phi(x_1, \ldots, x_n))$ (x_n, y_*) represents a .

Conversely, for any map $H: (S^{n+1}, S^{n-1}) \to (X, x_0)$ satisfying the above three conditions, the composite map $H \circ \psi = F : (I^{n+1}, I^{n+1}) \to (X, x_0)$ satisfies the conditions (A_1) , (A_2) and (A_3) .

Since $\psi | \dot{I}^{n+1}$ does not cover the point $(0,0,\ldots,0,1)$ of S^{n-1} , the map $\psi | \dot{I}^{n+1}$ is inessential in S^{n-1} . Hence the map $\psi(I^{n+1}, I^{n+1}) \rightarrow (S^{n+1}, S^{n-1})$ is extendable to i^{n+1} such that $\psi(I^{n+1}) \subset S^{n-1}$. Obviously the Brouwer's degree of the resultant map ψ : $\dot{I}^{n+2} \rightarrow S^{n+1}$ is ± 1 .

The composite map $H \circ \psi : I^{n+2} \to X$ carries the subset I^{n+1} into the reference point x_0 , and hence $H \circ \psi$ represents the same element of $\pi_{n+1}(X)$ with $H \circ \psi | I^{n+1}$. Consequently the map H satisfying the conditions (B_1) , (B_2) and

68

(B₃) represents $\pm T(a) = T(a) \in \pi_{n+1}(X)/2\pi_{n+1}(X)$.

Let $h_0: (E^n, S^{n-1}) \to (X, x_0)$ be a representative of $\alpha \in \{[\pi_n(X)],$ then there is a homotopy $h_t: (E^n, S^{n-1}) \to (X, x_0)$ such that $h_1(x_1, ..., x_n) = h_0(x_1, ..., x_{n-1}, -x_n)$, since h_1 represents $-a$ and $a = -a$.

Define a map H_0 : $(S^{n+1}, S^{n-1}) \rightarrow (X, x_0)$ by setting

$$
H_0(\phi(x_1, ..., x_n, \theta)) = h_{\frac{2\theta}{\pi} + \frac{1}{2}}(x_1, ..., x_n) \qquad -\pi/4 \leq \theta \leq \pi/4,
$$

\n
$$
= h_{\frac{3}{2} - \frac{2\theta}{\pi}}(\rho_{(2\theta - \frac{\pi}{2})}(x_1, ..., x_n)) \qquad \pi/4 \leq \theta \leq 3\pi/4,
$$

\n
$$
= h_{\frac{3}{2} - \frac{2\theta}{\pi}}(x_1, ..., -x_{n-1}, x_n) \qquad 3\pi/4 \leq \theta \leq 5\pi/4,
$$

\n
$$
= h_{\frac{2\theta}{\pi} - \frac{5}{2}}(\rho_{(\frac{3}{2}\pi - 2\theta)}(x_1, ..., x_{n-1}, -x_n)) \quad 5\pi/4 \leq \theta \leq 7\pi/4,
$$

then H_0 satisfies the conditions (B_1) , (B_2) and (B_3) , and represents $T(a)$.

Give a homotopy $H_t: S^{n+1} \to X$ by setting for $0 \le t \le 1$

$$
H_t(\phi(x_1, ..., x_n, \theta)) = h_{(\frac{2\theta}{\pi} + \frac{1}{2})(1-t)}(x_1, ..., x_n) \qquad -\pi/4 \leq \theta \leq \pi/4,
$$

\n
$$
= h_{(\frac{3}{2} + \frac{2\theta}{\pi})(1-t)}(\rho_{(2\theta - \frac{\pi}{2})}(x_1, ..., x_n)) \qquad \pi/4 \leq \theta \leq 3\pi/4,
$$

\n
$$
= h_{t+(\frac{5}{2}-\frac{2\theta}{\pi})(1-t)}(x_1, ..., x_{n-1}, x_n) \qquad 3\pi/4 \leq \theta \leq 5\pi/4,
$$

\n
$$
= h_{t+(\frac{2\theta}{\pi} - \frac{5}{2})(1-t)}(\rho_{(\frac{3}{2}\pi - 2\theta)}(x_1, ..., x_{n-1}, -x_n)) 5\pi/4 \leq \theta \leq 7\pi/4,
$$

and by setting for $1 \le t \le 2$

$$
H_t(\phi(x_1, ..., x_n, \theta)) = h_0(\rho_{(\theta(t-1))}(x_1, ..., x_n)) \qquad -\pi/4 \leq \theta \leq \pi/4,
$$

\n
$$
= h_0(\rho_{(\theta(t-1)+(2\theta-\frac{\pi}{2})(2-t)}(x_1, ..., x_n)) \qquad \pi/4 \leq \theta \leq 3\pi/4,
$$

\n
$$
= h_0(\rho_{(\theta(t-1)+\pi(2-t)}(x_1, ..., x_n)) \qquad 3\pi/4 \leq \theta \leq 5\pi/4,
$$

\n
$$
= h_0(\rho_{(\theta(t-1)+(2\theta+\frac{\pi}{2})(2-t)})(x_1, ..., x_n)) \qquad 5\pi/4 \leq \theta \leq 7\pi/4,
$$

then H_0 is homotopic to H_2 which is given by

$$
H_2(\phi(x_1,\ldots,x_n,\theta))=h_0(\rho_{\theta 0}(x_1,\ldots,x_n)).
$$

Let $\omega: E^n \to S^n$ be a map given by

$$
\omega(x_1, ..., x_n) = (2x_1, ..., 2x_n, \mu_-) \quad \text{for} \quad \sum x_i^2 \leq 1/4,
$$

= $(1-2x_1, ..., 1-2x_n, \mu_+)$ for $1/4 \leq \sum x_i^2 \leq 1$,

where $\mu_- = -\left(1-4\sum x_i^2\right)^{\frac{1}{2}}$ and $\mu_+ = (1-\sum (1-2x_i)^2)^{\frac{1}{2}}$. Then $\omega |E^n - S^{n-1}$ is a homeomorphism, and there is a map $h' : S^n \rightarrow X$ such that $h' \circ \omega = h_0$, and h' represents $\pm a$. Let $\bar{\mu}_n$ be the map given by

$$
\bar{\mu}_n(\phi(x_1,\ldots,x_n,\theta))=\omega(r_\theta(x_1,\ldots,x_n)),
$$

then $H_2=h'\circ \bar{\mu}_n$.

For $n=2$, $\bar{\mu}_2$: $S^3 \rightarrow S^2$ is the Hopf construction of a mapping $\bar{\mu}_2 |\phi(S^1) \times S^1\rangle$ of type (c_1, c_1) , where $S^1{}_{\frac{1}{2}} = \{(x_1, x_2) | x_1^2 + x_2^2 = 1/2\}$, and $\phi | S^1{}_{\frac{1}{2}} \times S^1$ is a homeomorphism. Therefore the Hopf invariant of $\bar{\mu}_2$ is $\pm t_4$ and $\bar{\mu}_2$ represents $\pm \eta_2 \in \pi_3(S^2)$.

For $n>2$, $\bar{\mu}_n$: $S^{n+1} \rightarrow S^n$ maps hemispheres E^{n+1} and E^{n+1} into hemispheres E_{+1}^n and E_{-1}^n respectively, and we have $\bar{\mu}_n(x_2,...,x_{n+1}) = \bar{\mu}_{n-1}(x_2,...,x_{n+1}))$. Hence $\bar{\mu}_n$ is homotopic to $(-1)^n E(\bar{\mu}_{n-1})$, and by induction we see that $\bar{\mu}_n$ represents $\eta_n \in \pi_{n+1}(S^n)$.

Consequently we have

 $T(a) = {H_0} = {H_2} = {h' \circ \bar{\mu}_n} = \pm {a \circ \eta_n} = {a \circ \eta_n}$ in $\pi_{n+1}(X)2/\pi_{n+1}(X)$ and the proof of the theorem (5.4) is accomplished.

ii) Assume that elements $a \in \pi_r(S^s)$, $\beta \in \pi_m(S^r)$ and $\gamma \in \pi_m(S^m)$ satisfy conditions $\alpha \circ \beta = 0$, and $\beta \circ \gamma = 0$. Let $f: S^r \rightarrow S^s$, $g: S^m \rightarrow S^r$ and $h: S^n \rightarrow S^m$ be representatives of a, β and γ respectively, and let F_t : $S^m \rightarrow S^s$ and G_t : $S^n \rightarrow S^r$ be nullhomotopies of $f \circ g = F_0$ and $g \circ h = G_0$. Define a map $H: S^{n+1} \rightarrow S^s$ by the rule

(5.5)
$$
H(d_n(x,t)) = f(G_t(x)) \qquad 0 \le t \le 1,
$$

$$
= F_{-t}(h(x)) \qquad -1 \le t \le 0.
$$

The construction of H depends on the choice of f, g, h, F_t and G_t . Let H' be another construction as above with respect to f', g', h', F', and G_t' , and let f_t , g_t and h_t be homotopies from $f = f_0$, $g = g_0$ and $h = h_0$ to $f' = f_1$, $g' = g_1$ and $h' = h_1$ respectively. Define a homotopy $H_{\tau}: S^{n+1} \to S^s$ by

$$
H_{\tau}(d_n(x,t)) = f_{\tau}(G_{(2t-\tau)/(2-\tau)}(x)) \qquad 0 \leq \tau/2 \leq t \leq 1,
$$

\n
$$
= f_{\tau}(g_{\tau+2t}(h_{\tau+2t}(x))) \qquad 0 \leq t \leq \tau/2 \leq 1,
$$

\n
$$
= f_{\tau+2t}(g_{\tau+2t}(h_{\tau}(x))) \qquad -1 \leq -\tau/2 \leq t \leq 0,
$$

\n
$$
= F_{(\tau+2t)/(\tau-2)}(h_{\tau}(x)) \qquad -1 \leq t \leq -\tau/2 \leq 0,
$$

then $H_0 = H$ and $H_1 | S^n = H' | S^n$. Define two maps H_+ and $H_- : S^{n+1} \to S^s$ by

$$
H_{+}(d_{n}(x,t)) = H_{1}(d_{n}(x,t)) \qquad 0 \le t \le 1,
$$

\n
$$
= H'(d_{n}(x,-t)) \qquad -1 \le t \le 0,
$$

\n
$$
H_{-}(d_{n}(x,t)) = H'(d_{n}(x,-t)) \qquad 0 \le t \le 1,
$$

\n
$$
= H_{1}(d_{n}(x,t)) \qquad -1 \le t \le 0,
$$

and

then H_+ represents an element of $a \circ \pi_{n+1}(S^r)$ and H_- represents an element of $\pi_{m+1}(S^s) \circ E(\gamma)$, where $\alpha \circ \pi_{n+1}(S^s)$ and $\pi_{m+1}(S^r) \circ E(\beta)$ are subgroups of $\pi_{n+1}(S^s)$ consisted of the elements of the forms $a \circ \zeta$ and $\xi \circ E(\beta)$ $(\zeta \in \pi_{n+1}(S^s), \xi \in \pi_{n+1}(S^s))$ respectively. As is easily seen, the sum $H_{+}+(H'+H_{-})$ is homotopic to H_{1} , and therefore

(5.6) the class of H in $\pi_{n+1}(S^s)/a \circ \pi_{n+1}(S^r) + \pi_{m+1}(S^s) \circ E(\tau)$ depends only on α, β and γ , and it is denoted by $\{\alpha, \beta, \gamma\}.$

Theorem (5.7) If $a \in \{ \pi_n(S^r) \}$ and if $2 \leq n \leq 2r-2$, then $\{2_r, a, 2_n\} = T(a) = \{a \circ \eta_n\}$ in $\pi_{n+1}(S^r)/2\pi_{n+1}(S^r)$.

Since the suspension homomorphism $E: \pi_{n-1}(S^{r-1}) \to \pi_n(S^r)$ is an isomor-

70

phism onto for $n < 2r-2$, there is an element *a'* of $\pi_{n-1}(S^{r-1})$ such that $E(a') = a'$. and $2a' = 0$. By (2.5) we have $2c_r \circ a = (c_r + c_r) \circ E(a') = E(a') + E(a') = 2a = 0$. Let $f': (S^{n-1}, y_*) \rightarrow (S^{r-1}, y_*)$ be a representative of a' , and let $g_t': (S^{n-1}, y_*)$ $\rightarrow (S^{r-1},y_*)$ be a nullhomotopy of $f' \circ 2_{n-1} = g_0'$, where $2_m: S^m \rightarrow S^m(m>1)$ is a map of degree 2 given by

$$
2_m(d_{m-1}(x,t)) = d_{m-1}(x, 2t-1) \qquad 0 \le t \le 1,
$$

= $d_{m-1}(x, 2t+1) \qquad -1 \le t \le 0.$

Set $f = Ef'$ and $g_t = Eg_t'$, then f represents a and g_t is a nullhomotopy of $f \circ E2_{n-1}=g_0$. Let $f_t: (S^n, y_*) \to (S^r, y_*)$ be a nullhomotopy of $2r \circ f = f_0$. Then $\{2\ell_r, \alpha, 2\ell_n\}$ is tepresented by a map $H: (S^{n+1}, y_*) \rightarrow (S^r, y_*)$ given by

$$
H(d_n(x,t)) = 2r(g_t(x)) \qquad 0 \le t \le 1,
$$

= $f_{-t}(E2_{n-1}(x)) -1 \le t \le 0.$

Now we shall calculate the composite map $H \circ \psi_{n+1} : (I^{n+1}, I^{n+1}) \to (S^r, \nu_*)$ which is a representative of $\{2\ell_r, a, 2\ell_n\}$. Since $\psi_{m+1}(x_1, \ldots, x_{m+1}) = d_m(\psi_m(x_1, \ldots, x_m))$ x_m), $2x_{m+1}-1$ and $2_m(d_{m-1}(x,t))=2_m(d_{m-1}(x,t+1))$ for $-1\leq t\leq 0$, we have

$$
H(\psi_{n+1}(x_1, ..., x_{n+1})) = H(d_n(\psi_n(x_1, ..., x_n), 2x_{n+1}-1))
$$

\n
$$
=2_r(Eg'_{2t-1}(d_{n-1}(\psi_{n-1}(x_1, ..., x_{n-1}), 2x_n-1)) = 2_r(d_{r-1}(g'_{2t-1}(\psi_{n-1}(x_1, ..., x_{n-1}), 2x_n-1))
$$

\n
$$
=2_r(d_{r-1}(g'_{2t-1}(\psi_{n-1}(x_1, ..., x_{n-1})), 2x_n+1))
$$
 for $0 \le x_n \le 1/2$ and $1/2 \le x_{n+1} = t \le 1$,
\n
$$
H(\psi_{n+1}(x_1, ..., x_{n+1})) = H(d_n(\psi_n(x_1, ..., x_n), 2x_{n+1}-1))
$$

\n
$$
= f_{1-2t}(E2_{n-1}(d_{n-1}(\psi_{n-1}(x_1, ..., x_{n-1}), 2x_n-1)))
$$

\n
$$
= f_{1-2t}(d_{n-1}(2_{n-1}(d_{n-2}(\psi_{n-2}(x_1, ..., x_{n-2}), 2x_{n-1}-1)), 2x_n-1))
$$

\n
$$
= f_{1-2t}(d_{n-1}(2_{n-1}(d_{n-2}(\psi_{n-2}(x_1, ..., x_{n-2}), 2x_{n-1}+1)), 2x_n-1))
$$

\n
$$
= f_{1-2t}(d_{n-1}(2_{n-1}(d_{n-2}(\psi_{n-2}(x_1, ..., x_{n-2}), 2x_{n-1}+1)), 2x_n-1))
$$

\n
$$
= H(\psi_{n+1}(x_1, ..., x_{n-1}+1/2, x_n, x_{n+1}))
$$
 for $0 \le x_{n-1} \le 1/2$ and $0 \le x_{n-1} = t \le 1/2$.
\nand
\n
$$
H(\psi_{n+1}(x_1, ..., x_{n-2}, x_{n-1}/2, x_n/2, 1/2))
$$

\n
$$
= H(d_n(\psi_n(x_1, ..., x_{n-2}, x_{n-1}/2,
$$

Therefore *H* satisfies the conditions (A_1) , (A_2) and (A_3) , and represents $T(a)$. Consequently we obtain $\{2\iota_r, a, 2\iota_n\} = \{H\} = T(a)$ in $\pi_{n+1}(S^r)/2\pi_{n+1}(S^r)$.

Lemma (5.8) *If elements* $a \in \pi_r(S^s)$, $\beta \in \pi_m(S^r)$, $\gamma \in \pi_n(S^r)$ *and* $\delta \in \pi_l(S^m)$ *satisfy* $a \circ \beta = 0$, $\beta \circ \gamma = 0$, and $\gamma \circ \delta = 0$, then $u \circ {\beta, \gamma, \delta} = {u, \beta, \gamma} \circ E(-\delta)$ *in* $\pi_{l+1}(S^s)/a \circ \pi_{n+1}(S^r) \circ E(\delta)$.

In the Iemma, $\alpha \circ {\beta, \gamma, \delta}$ and $\{\alpha, \beta, \gamma\} \circ E(-\delta)$ are classes of $\alpha \circ \zeta$ and $\xi \circ E(-\delta)$ (for elements $\zeta \in {\{\beta, \gamma, \delta\}}$ and $\xi \in {\{\alpha, \beta, \gamma\}}$) respectively in the factor group $\pi_{l+1}(S^s)/a \circ (\beta \circ \pi_{l+1}(S^m) + \pi_{n+1}(S^r) \circ E(\delta)) = \pi_{l+1}(S^s)/a \circ \pi_{n+1}(S^r) \circ E(\delta)$ $=\pi_{l+1}(S^s)/(a\circ \pi_{n+1}(S^r)+\pi_{m+1}(S^s)\circ E(\gamma))\circ E(-\delta)$. Let *f, g, h* and *k* be representatives of α , β , γ and δ , and let F_t , G_t and H_t be nullhomotopies of $f \circ g$, $g \circ h$ and $h \circ k$ respectively. Consider a homotopy $K_{\tau} : S^{l+1} \to S^s$ which is given by

$$
K_{\tau}(d_i(x,t)) = f(G_t(k(x))) \qquad 0 \leq t \leq 1,
$$

= $F_{t(\tau-1)}(H_{-t\tau}(x)) \qquad -1 \leq t \leq 0,$

then K_0 represents $\{a, \beta, \gamma\} \circ E(-\delta)$ and K_1 represents $a \circ \{\beta, \gamma, \delta\}$, and it follows from this that we have the lemma.

iii) In this section we shall use the notations of the previous section and assume that $a \circ \beta = 0$, and $\beta \circ \gamma = 0$.

Let $K_{\alpha}^{r+1} = S^s \cup e^{r+1}$ be a cell complex, in which e^{r+1} is attached to S^{*s*} by a characteristic map $\tilde{a}: (E^{r+1}, S^r) \to (K^{r+1}, S^s)$ such that $\tilde{a} | S^r = f$ represents *a*. Define a mapping, $\tilde{g}: S^{m+1} \to K^{r+1}_{\alpha}$ by setting

$$
\tilde{g}(d_m(x,t)) = \tilde{a}(d_m(g(x),t)) \qquad 0 \le t \le 1,
$$

= $F_{-t}(x) \qquad -1 \le t \le 0,$

then $\tilde{\varrho}$ represents an element $\tilde{\beta}$ of $\pi_{m+1}(K^{r+1}_{\alpha}).$

Lemma (5.9) $\tilde{g} \circ E(h)$ is homotopic to a mapping $S^{n+1} \rightarrow S^s$ which represents $\{\alpha, \beta, \gamma\}.$

The lemma follows from a homotopy H_{τ} given by

$$
H_{\tau}(d_n(x,t) = \tilde{a}(d_n(G_{t\tau}(x),t)) \qquad 0 \leq t \leq 1,
$$

= $F_{-t}(h(x)) \qquad -1 \leq t \leq 0.$

iv) For example, consider an element $\zeta \in \pi_{r+3}(S^r)$ of $\{\eta_r, 2\ell_{r+1}, \eta_{r+1}\}\)$, then from (5.8) we have $2\zeta = \zeta \circ 2\zeta_{r+3} = \eta_r \circ \xi$ for an element ξ of $\{2\zeta_{r+1}, \eta_{r+1}, 2\zeta_{r+2}\}\$, and from (5.7) $\{2r_{+1}, r_{r+1}, 2r_{+2}\} = r_{r+1} \circ r_{r+2}$ in $\pi_{r+3}(S^{r+1})$ ($r \geq 3$). Therefore

Lemma (5.10) *There is an element* ζ *of* $\pi_{r+3}(S^r)$ *such that* $2\zeta = \gamma_r \circ \gamma_{r+1} \circ \gamma_{r+2} = 0$, and ζ has order 4. $(r \geq 3)$.

Chapter 6. Eilenberg-MacLane complex.

Let $K(\Pi, n)$ be the complex of a (abelian) group Π which is defined and treated by S. Eilenberg and S. MacLane [7]. A q -cell of $K(\Pi, n)$ is an n dimensional cocycle $\sigma^q \in Z_n(\mathcal{A}_q; \Pi)$ of the *q*-dimensional ordered simplex \mathcal{A}_q . The *suspension homomorphism* $S: H_q(K(\Pi, n)) \to H_{q+1}(K(\Pi, n+1))$ is given by setting $S_{\sigma}^{q} = T_{\sigma}^{q} - \sigma_{0}^{q+1}$, where $\sigma_{0}^{q+1}(A) = 0 \in \Pi$ and T_{σ}^{q} is defined for each $(n+1)$ dimensional ordered subsimplex $(r_0, ..., r_{n+1})$ of $\Delta_{q+1} = (0, ..., q+1)$ such as

$$
T\sigma^{q}(\r_0,\ldots,r_{n+1}) = \sigma^{q}(\r_0,\ldots,r_n)
$$
 if $r_{n+1} = q+1$,
= 0 if $r_{n+1} < q+1$.

S. Eilenberg and S. MacLane reduced the complex $K(\Pi, n)$ to $A(\Pi, n)$ and calculated the following results for the infinite cycle group Z ,

 $H_{n+1}(K(Z, n)) = 0 \quad n \ge 1$, $H_{n+2}(K(Z,n)) = Z_2$ $n\!\ge\!3$, $H_{n+1}(\Lambda \setminus \{1\})$
 $H_{n+3}(K(Z,n)) = 0 \quad n \geq 4$, $H_{n+4}(K(Z, n)) = Z_2 + Z_3$ $n \ge 5$,
 $H_{n+6}(K(Z, n)) = Z_2 + Z_2$ $n \ge 7$, (6.1) $H_{n+5}(K(Z,n)) = 0$ $n \ge 6$, $H_{n+7}(K(Z,n)) = 0 \quad n \ge 8$, $H_{n+6}(K(Z,n)) = Z_2 + Z_2 + Z_3 + Z_5 \quad n \ge 9$, $H_{n+9}(K(Z,n)) = Z_2 \quad n \ge 10$.

In particular, $H_{n+4}(K(Z,n))$ are calculated for lower dimensions:

 (6.2) $H_6(K(Z,2))=Z$, $H_7(K(Z,3))=Z_3$, $H_8(K(Z,4))=Z+Z_3$ and the suspension homomorphism $S: H_6(K(Z,2)) \to H_7(K(Z,3))$ is onto and the $(n-3)$ -fold suspension $S^{n-3}: H_7(K(Z,3)) \to H_{n+4}(K(Z,n))$ is an isomorphism into.

Let K_n be a CW-complex such that its $(n+1)$ -skeleton is an *n*-sphere Sⁿ and homotopy groups $\pi_i(K_n)$ for $i>n$ vanish. The existence of such a complex was shown by J.H.C. Whitehead [24]. Furthermore we may assume that the $(n+k)$ -skeleton K_n^{n+k} of K_n is a finite cell complex, for the homotopy groups of a finite complex are finitely generated $(cf, [14])$. Therefore the singular homology groups of K_n coincide to the usual homology groups.

Consider the suspended space $'K = E(K_n)$ of K_n with reference point y_k $\in S^n \subset K_n$, then 'K is also a cell complex and its $(n+2)$ -skeleton is S^{n+1} .

Let $\chi: (E^{n+k+1}, S^{n+k}) \to (K^{n+k} \vee e^{n+k+1}, K^{n+k})$ be a characteristic map of a cell $e^{n+k+1} \in K$, and let a mapping $f: 'K^{n+k} \to K^{n+k}_{n+k}(k \geq 2)$ be given, then the composite map $f \circ (\chi | S^{n+k})$ represents an element of $\pi_{n+k}(K^{n+k}_{n+k})$. Since $\pi_{n+k}(K_{n+1}^{n+k+1}) = \pi_{n+k}(K_{n+1}) = 0$ for $k \geq 2$, there is a mapping $\chi' : (E^{n+k+1}, S^{n+k}) \to$ $(K_{n+1}^{n+k+1}, K_{n+1}^{n+k})$ such that $\chi' | S^{n+k} = f \circ (\chi | S^{n+k}).$ A mapping $\chi' \circ \chi^{-1}$ defines an exte sion of f over e^{n+k+1} . By induction we obtain a mapping

$$
f_0\colon E(K_n)\to K_{n+1}
$$

such that $f_0|S^n$ is the identical map and f_0 maps the $(n+k)$ -skeleton of $E(K_n)$ into the $(n+k)$ -skeleton of K_{n+1} .

Let $S_{n-1}(K_n)$ be a subcomplex of the singular complex $S(K_n)$ of K_n consisted of the simplexes $T^q: A_q \to K_n$ such that T maps the $(n-1)$ -subsimplex of Δ_q into y_* . Define a *suspended* simplex $E'(T^q)$: $\Delta_{q+1} \to E(K_n)$ of T^q by setting $E'(T^q)(\lambda_0,\ldots,\lambda_{q+1})=d(T(\lambda_0,\ldots,\lambda_q), 2\lambda_{q+1}-1)$ for the barycentric representative $(\lambda_0, ..., \lambda_{q+1})$ of a point of Λ_{q+1} . Define a chain transformation $S': S_{n-1}(K_n) \to S_n(K_{n+1})$ by setting $S'(T^q) = f_0^*(E'(T^q)) - T_0^{q+1}$ where $T_0^{q+1}(A_{q+1})$ $y = y_{k}$, then we obtain a suspension homomorphism $S' : H^{q}(S_{n-1}(K_{n})) \rightarrow$ $H_{q+1}(S_n(K_{n+1})).$

Lemma (6.3) Let $\kappa_n: K(Z, n) \to S_{n-1}(K_n) \subset S(K_n)$ be the natural chain equivalence given in [6], then we can choose a natural chain equivalence $\kappa_{n+1}: K(Z,n+1) \to S_n(K_{n+1})$ *such that* $S' \circ \kappa_n = \kappa_{n+1} \circ S$.

Therefore we have a commutative diagram

$$
H_q(K(Z,n)) \xrightarrow{S} H_{q+1}(K(Z,n+1))
$$

\n
$$
\downarrow \kappa_n^*
$$

\n
$$
H_q(K_n)
$$

\n
$$
\xrightarrow{S'} H_{q+1}(K_{n+1})
$$

\n
$$
\xrightarrow{E} H_{q+1}(E(K_n))
$$

\n
$$
H_{q+1}(E(K_n))
$$

where κ_n^* , κ_{n+1}^* and *E* are isomorphisms.

Now we shall prove an important lemma :

Lemma (6.4) $H_{n+k+1}(K(Z,n)) \approx \pi_{n+k}(K_n^{n+k-1})/\partial \pi_{n+k+1}(K_n^{n+k}, K_n^{n+k-1})$ $(k\geq 1)$. ln the following diagram

$$
\pi_{n+k+2}(K_{n}^{n+k+2}, K_{n}^{n+k+1}) \xrightarrow{\partial_{2}} \frac{\partial_{3} \nearrow}{\partial_{3} \nearrow} \qquad \qquad \left\{\n\begin{array}{l}\n\partial_{1} \\
\partial_{1} \\
\pi_{n+k+1}(K_{n}^{n+k+1}, K_{n}^{n+k}) \rightarrow \pi_{n+k+1}(K_{n}^{n+k+2}, K_{n}^{n+k}) \rightarrow \pi_{n+k+1}(K_{n}^{n+k+2}, K_{n}^{n+k}) \rightarrow \pi_{n+k+1}(K_{n}^{n+k+2}, K_{n}^{n+k+2}, K_{n}^{n+k+1}) \\
\vdots \\
\pi_{n+k+1}(K_{n}^{n+k+2}) \rightarrow \pi_{n+k+1}(K_{n}^{n+k+2}, K_{n}^{n+k-1}) \rightarrow \pi_{n+k}(K_{n}^{n+k-1}) \rightarrow \pi_{n+k}(K_{n}^{n+k+2}) \\
\vdots \\
\pi_{n+k+1}(K_{n}^{n+k}, K_{n}^{n+k-1})\n\end{array}\n\right\}
$$

the exactness of each direct sequences and the commutativity relations hold. By a simple algebraic Iemma of T. Kudo [13, II, lemma 1], there is an isomorphism: *kernel* ∂_3 *l kernel i* $\check{\chi} \approx$ *kernel j*₃ */ kernel j*₁. Since $\pi_{n+k+1}(K_{n}^{n+k+2}, K_{n}^{n+k+1}) = 0$, $\pi_{n+k+1}(K_{n}^{n+k+2}) = \pi_{n+k+1}(K_{n}) = 0$ and $\pi_{n+k}(K_{n}^{n+k+1}) = \pi_{n+k}(K_{n}) = 0$, we have $H_{n+k+1}(K_n)=\text{kernel } \partial_3/\text{image } \partial_2=\text{kernel } \partial_3/\text{kernel } i_2^* \approx \text{kernel } j_3/\text{kernel } j_1=\pi_{n+k+1}$ $(K^{n+k}_{n}, K^{n+k-1}_{n})/image \ i \leq \pi_{n+k}(K^{n+k-1}_{n})/image \ \theta$, and the proof ot lemma is established.

Remark that in the lemma (6.4), K_n^{n+k} is the $(n+k)$ -skeleton of K_n , but we may assume that K^{n+k}_{n} is an $(n+k)$ -demensional complex such that its $(n+1)$ skeleton is S^n and $\pi_i(K^{n+k}) = 0$ for $n \leq i \leq n+k$, because we can construct a complex K_n whose $(n+k)$ -skeleton is K_n^{n+k} .

For $n>3$, we define a cell complex K_n^{n+3} as follows.

 $(6.5)_1$ $K_n^{n+3} = S^{n}e^{n+2}e^{n+3}$.

 $(6.5)_2$ eⁿ⁺² is attached to Sⁿ by a characteristic map $\tilde{\eta}_n$: $(E^{n+2}, S^{n+1}) \rightarrow (S^{n} \cup$ e^{n+2} , S^n) such that $\tilde{\eta}_n|S^{n+1}$ represents $\eta_n \in \pi_{n+1}(S^n)$ and $E(\tilde{\eta}_n|S^{n+1})=\tilde{\eta}_{n+1}|S^{n+2}$, then we have $E(K_{n+2}^{n+2})=K_{n+1}^{n+3}$ for $n\geq 2$.

 (6.5) ₃ e^{n+3} is attached to $S^{n\vee}e^{n+2}=K_{n+2}^{n+2}$ by a characteristic map $\tilde{\zeta}_n$: (E^{n+3}, S^{n+2}) $\rightarrow (K_{n+2}^{n+2} \cup e^{n+3}, K_{n+3}^{n+3})$ where $\tilde{\zeta}_n | S^{n+2}$ is given as follows. For $n=3$, let $\overline{2}:(E_+^5, S_+^3)$ $\rightarrow (E^5, S^4)$ be a mapping of degree 2, then there is a mapping $h: E^5 \rightarrow S^3$ such that $h\,S^4 = (\tilde{\gamma}_3 \circ \overline{2})\,S^4$ for $2\eta_n = 0$. The mapping $\tilde{\zeta}_3 \,S^5$ is defined by setting $\tilde{\zeta}_3 |E^5 = \tilde{\eta}_3 \circ \overline{2}$ and $\tilde{\zeta}_3 |E^5 = h$. For $n>3$, $\tilde{\zeta}_n |S^{n+2}$ is defined by setting $\tilde{\zeta}_n |S^{n+2}$

 $=E(\tilde{\zeta}_{n-1}|S^{n+1})$ inductively, then $E(K_{n+1}^{n+3})=K_{n+1}^{n+4}$. It is easily verified that a generator $\tilde{\zeta}_n$ of $\pi_{n+2}(K_n^{n+2})$ is represented by $\zeta_n|S^{n+2}$ for $n\geq 3$, and that

$$
(6.6) \t\t \pi_{n+1}(K_n^{n+2})=0 \text{ and } \pi_{n+2}(K_n^{n+3})=0 \text{ for } n \geq 3.
$$

By (5.9), $(\tilde{\zeta}_n | S^{n+2}) \circ \eta_{n+2}$ is homotopic to an representative ζ of $\{\eta_n, 2\zeta_{n+1}, \eta_{n+1}\},$ in K_{n+2}^{n+2} and by (5.10) we have $2\zeta = \gamma_n \circ \gamma_{n+1} \circ \gamma_{+2}$. Since a generator of the image of $\partial: \pi_{n+4}(K_{n+2}^{n+2}, S^n) \to \pi_{n+3}(S^n)$ is $\pi_n \circ \pi_{n+1} \circ \pi_{n+2}$, and a generator of the image of $\partial: \pi_{n+4}(K_{n}^{n+3}, K_{n}^{n+2}) \rightarrow \pi_{n+3}(K_{n}^{n+2})$ is ζ , and since they are not trival, we obtain

(6.7) *The boundary homomorphisms* $\hat{\sigma}$: $\pi_{n+4}(K_{n}^{n+3}, K_{n}^{n+2}) \rightarrow \pi_{n+3}(K_{n}^{n+2})$ *and* $\hat{\theta}: \pi_{n+4}(K^{n+2}_n, S^n) \to \pi_{n+3}(S^n)$ are isomorphisms into for $n \geq 3$.

Chapter 7. The group $\pi_{n+3}(S^n)$.

Applying the lemma (6.4) to the complex K_n^{n+3} of (6.5), we have from (6.1) $Z_2+Z_3 \approx \pi_{n+4}(K_n^{n+2})/\partial(\pi_{n+4}(K_n^{n+3}, K_n^{n+2}))$ for $n\geq 5$. By (6.7), $\hat{\theta}: \pi_{n+4}(K_{n}^{n+3}, K_{n}^{n+2}) \to \pi_{n+3}(K_{n}^{n+2})$ is isomorphic and $\pi_{n+3}(K_{n}^{n+2})$ must have 12 elements. In the exact sequence $\pi_{n+4}(K_{n}^{n+2}, S^n) \longrightarrow \pi_{n+3}(S^n) \longrightarrow$ j ∂' $\pi_{n+3}(K^{n+2}_n) \longrightarrow \pi_{n+3}(K^{n+2}_n, S^n) \longrightarrow \pi_{n+2}(S^n)$, ∂' is isomorphism onto and hence i^* is onto, while (6.7) shows that ∂ is isomorphism into and therefore $\pi_{n+3}(S^n)$ must have 24 elements. By (4.3) $\pi_6(S^3)$ has 12 elements and by (5.10) it contains an element of order four, therefore $\pi_6(S^3)$ is cyclic group of order 12. The only element of order 2 in $\pi_6(S^3)$ is $\gamma_3 \circ \gamma_4 \circ \gamma_5$ and its Hopf invariant is trivial, then α_3 must have order 4 or 12 for $H(\alpha_3)=\gamma_6=0$. Since $\alpha_n=2\nu_n$ for $n\geq 5$, ν_n has order 8 or 24, and we obtain.

Proposition (7.1) $\pi_6(S^3) = Z_{12}, \pi_7(S^4) = Z + Z_{12}$ and $\pi_{n+3}(S^n) = Z_{24}$ for $n \ge 5$.

Now we shall calculate generators of these groups.

Let M^{2^n} be the complex projective space, and let $M^{2^n} = S^{2 \cup} e^{4 \cup ... \cup} e^{2^n}$ be its cell decomposition as in (4. iv) with characteristic maps \tilde{p}_{n-1} : (E^{2n}, S^{2n-1}) $\rightarrow (M^{2n}, M^{2n-2})$ such that $p_{n-1} = \tilde{p}_{n-1} | S^{2n-1}$ are fibre maps with fibre S^1 . Then p_n induces isomorphisms $p_n^* : \pi_p(S^{2n+1}, S^1) \to \pi_p(M^{2n})$. Let K_2 be the limit space $\bigcup M^{2^n}$, then $M^{2^n}=K_2^{2^n}$ and K_2^4 is the complex given in (6.5), and the homotopy groups of K_2 are trivial except $\pi_2(K_2)=Z$. Next we construct a complex K_3^7 whose *i*-th homotopy groups vanish for $3*i* < 7$. In the exact sequence: $\pi_7(K_3^5, S^3) \longrightarrow \pi_6(S^3) \longrightarrow \pi_6(K_3^5) \longrightarrow \pi_6(K_3^5, S) \longrightarrow \pi_5(S^3)$, ∂ and ∂' are isomorphisms into and $\pi_0(S^3)\approx Z_{12}$, hence $\pi_0(K_3^5)\approx Z_6$ and its generator is represented by a mapping $g: S^{6} \rightarrow S^3$ which represents a generator of $\pi_6(S^3)$. Define $K_3^7 = K_3^6 \rightarrow e^7$ with characteristic mapping \tilde{g} : $(E^7, S^6) \rightarrow (S^{3} \rightarrow e^7, S^3)$ such that $\tilde{g}|S^3 = g$, then $\pi_0(K_3)=0$ for $3\lt i\lt 7$, and we can construct the complex K_3 such that its 7-skeleton is K_3^6 .

Let $f_0: E(K_2) \rightarrow K_3$ be a mapping given in Chapter 6, then (6.3) and (6.2) shows that $f_0^*: H_7(E(K_2)) = Z \rightarrow H_7(K_3) = Z_3$ is onto, and therefore f_0 maps $E(e^6)$ onto e^7 with degree *k*, where *k* is prime to 3. This implies that $E\tilde{p}_2$: S^6 $\rightarrow K_3^5=E(M^4)$ represents an element of degree 3 or 6 in $\pi_6(K_3^5)$. Consider a diagram

$$
\pi_5(S^2) \longrightarrow \pi_5(K_2^4) \xrightarrow{j} \pi_5(K_2^4, S^2) \longrightarrow \pi_4(S^2)
$$

\n
$$
\downarrow E \qquad \qquad \downarrow E'
$$

\n
$$
\pi_6(S^3) \longrightarrow \pi_6(K_3^5) \longrightarrow \pi_6(K_3^5, S^3).
$$

From (3.14), $\pi_6(K_2^4, S^2)$ has direct factor isomorphic to Z, and its generator is the relative product $\lceil a_2, a_3 \rceil$ for generators $a_2 \in \pi_2(S^2)$ and $a_4 \in \pi_4(K_2^4, S^2)$. Since $\pi_5(K_2^4) \approx \pi_5(S^5) = Z$, $\pi_4(S^2) = Z_2$ and $[\iota_2, \eta_2] = 0^{10}$ there is an element γ of $\pi_5(K_2^4)$ such that $j(\gamma)=[\ell_2, \ell_4]$ and $E(\gamma)$ is an element of $\pi_6(K_3^5)$ which has order 3 or 6. By lemma (2.32) α_3 is an element of $\pi_6(S^3)$ such that $i^*(\alpha_3) = E(\gamma)$. Consequently a_3 must have order 12 and generate $\pi_6(S^3)$. By (4.3) we have that ν_n has order 24 and generates $\pi_{n+3}(S^n)$ for $n \geq 5$. We have

Theorem (7.2) i) $\pi_6(S^3) \approx Z_{12}$ *and its generator is* a_3 ,

ii) $\pi_7(S^4) \approx Z + Z_{12}$ *and its generators are* ν_4 *and* a_4 ,

iii) $\pi_{n+3}(S^n) \approx Z_{24}$ *for n* ≥ 5 *and its generator is* ν_n .

And also we have relations

 (7.3) $6\nu_n = 3a_n = \zeta_n \circ \eta_{n+2}$ in $K_n^{n+2}, 6\nu_n \in {\eta_n, 2\zeta_{n+1}, \eta_{n+1}}$ and $12\nu_n = 6a_n =$ $\eta_n \circ \eta_{n+1} \circ \eta_{n+2}$ *for* $n \ge 5$.

Chapter 8. Caluculations in higher dimensions.

i) In this chapter, our calculations are teated for sufficiently large values of n . such that the exision theorem (1.23) holds, for example we may assume $n>10$.

Define a cell complex $K_{n}^{n+5} = K_{n}^{n+3} \cup e^{n+4} \cup e^{n+5} \cup e_1^{n+6} \cup e_2^{n+6}$ as follows.

 (8.1) $K_n^{n+3} = S^{n} \circ e^{n+2} \circ e^{n+3}$ is defined as in (6.5).

 $(8.1)_2$ e^{n+4} is attaced to $S^n \subset K^{n+3}_n$ by a characteristic map $\tilde{\nu}_n$: $(E^{n+4}, S^{n+3}) \rightarrow$ $(S^{n\cup}e^{n+4}, S^n)$ such that $\tilde{\nu}_n|S^{n+3}$ represents the generator ν_n of $\pi_{n+3}(S^n)$.

 (8.1) ₃ e^{n+5} is attached to K_{n+1}^{n+1} by a characteristic may $\tilde{\xi}_n$: $(E^{n+5}, S^{n+4}) \rightarrow$ $(K_{n}^{n+5}, K_{n}^{n+4})$ as follows, set $\tilde{\xi}_{n}|E_{++}^{n+4} = \tilde{\nu}_{n} \circ \tilde{6}$ where $E_{++}^{n+4} = d_{n+3}(S^{n+3} \times [1/2, 1])$ and $\tilde{6}$: $(E_{++}^{n+4}, E_{++}^{n+4}) \rightarrow (E_{++}^{n+4}, S_{++}^{n+3})$ is a mapping of degree 6, and set $\tilde{\xi}_n | E_{-}^{n+4}$ $=\widetilde{\zeta}_n \circ \overline{\eta}_{n+3}$ where $\overline{\eta}_{n+3}$: $(E^{n+4}, S^{n+3}) \to (E^{n+3}, S^{n+2})$ represents generator $\partial^{-1} \eta_{n+2}$ of π_{n+4} (E^{n+3} , S^{n+2}), then we can extend the mapping $\hat{\xi}_n$ over the subset E^{n+4}_{+} -Int. E^{n+4}_{+} into K^{n+2}_{n} for $6\nu_n = \zeta_n \circ \gamma_{n+2}$ in K^{n+2}_{n} .

 $(8.1)₄$ e_1^{n+5} is attaced to $S^{n\cup}eⁿ⁺⁴ \subset K_{n+5}$ by a characteristic map $\check{\eta}_{n+4}: (Eⁿ⁺⁵, Sⁿ⁺⁵)$ $\rightarrow (K^{n+6}_n, K^{n+5}_n)$ as follows, set $\tilde{\eta}_{n+4}|E^{n+5}_+\tilde{\nu}_n\circ\tilde{\eta}_{n+4}$ where $\overline{\eta}_{n+4}: (E^{n+5}_+, S^{n+4})\rightarrow$ (E^{n+4}, S^{n+3}) represents generator $\partial^{-1}\eta_{n+3}$ of $\pi_{n+5}(E^{n+4}, S^{n+3})$, and extend the mapping $\tilde{\gamma}_{n+1}|S^{n+4}: S^{n+4} \to S^n$ over E^{n+5}_- such that $\eta_{n+4}(E^{n+5}_-) \subset S^n$ for $\nu_n \circ \eta_{n+3} = 0$.

¹⁰⁾ Since $g: S^3 \times S^2 \to S^2$ in iii) of Ch. 4 has type (η_1, ι_2) , we have $[\iota_2, \eta_2] = [\eta_2, \iota_2] = 0$ by (2.26).

 (8.1) ₅ e_2^{n+6} is attached to $S^{n\cup}e^{n+2}\subset K_n^{n+5}$ by a characteristic may $\tilde{\nu}_{n+2}$: (E^{n+6},E^{n+6}) $S^{n+5}) \rightarrow (K^{n+6}_n, K^{n+5}_n)$ as follows, set $\tilde{\nu}_{n+2} | E^{n+5}_+ = \tilde{\gamma}_n \circ \nu_{n+2}$ where $\tilde{\nu}_{n+2} : (E^{n+5}_+, S^{n+4})$ $\rightarrow (E^{n+2}, S^{n+1})$ represents the generator $\partial^{-1} \nu_{n+1}$ of $\pi_{n+5}(E^{n+2}, S^{n+1})$, and extend the mapping $\tilde{\nu}_{n+2}|S^{n+4}:S^{n+4}\to S^n$ over E^{n+5} such that $\tilde{\nu}_{n+2}(E^{n+5})\subset S^n$ for $\eta_n \circ \nu_{n+1} = 0.$

For convenience, we shall use the following notations in the chapter: $\pi_r^t = \pi_{n+r}(K_n^{n+t}), \pi_r = \pi_{n+r}(S^n)$ and $C^t(r-t) = \pi_{n+r}(K_n^{n+t}, K_n^{n+t-1}).$ By (1.27), $C^t(r-t)$ is isomorphic to the $(n+t)$ -dimensional chain group with coefficent group π_{r-t} for sufficiently large n .

In a diagram

subsequences $\cdots \rightarrow \pi_r^{s-1} \xrightarrow{i_r^s} \pi_r^s \xrightarrow{j_r^s} C^s(\mathbf{r}-\mathbf{s}) \xrightarrow{\partial_r^s} \cdots \rightarrow \pi_{s-1}^{s-1} \rightarrow \pi_{s-1}^s \rightarrow 0$ are exact, and the composite homomorphisms $C^{s}(\gamma - s) \rightarrow \pi_{r-1}^{s-1} \rightarrow C^{s-1}(\gamma - s)$ are the boundary homomorphism of the chain groups.

We already know that $\pi_3^1 = \pi_3 = Z_{24}$, $\pi_3^2 = Z_{12}$, $\pi_3^3 = Z_6$ and the injection homomorphisms: $\pi_3 \longrightarrow \pi_3^2 \longrightarrow \pi_3^3$ are onto,

ii) The image of ∂_4^4 is generated by $\partial {\tilde{\nu}_n} = \nu_n$, and ν_n is the generator of π_3 , π_3^2 and π_3^3 , hence ∂_4^4 is onto and $\pi_3^4=0$. The complex K_n^{n+4} has the homotopy groups $\pi_i(K_n^{n+4})=0$ for $n \le i \le n+4$ and we have from (6.4) and (6.1)

 $0 = H_{n+5}(K_n) \approx \pi_4^3 / \text{image } \partial_5^4$.

Hence ∂_5^4 is onto and i_4^4 is trivial. The image of ∂_5^4 is generated by $\nu_n \circ \gamma_{n+3} = 0$, μ_1 therefore we have $\pi_4^3 = 0$. The image of ∂_5^3 is generated by $\zeta_n \circ \gamma_{n+2} \circ \gamma_{n+3}$ ¹²⁾ $=6\nu_n \circ \eta_{n+3}=0$ and hence $\pi_4^2=0$. The image of ∂_5^2 is generated by $\eta_n \circ \nu_{n+1}=0^{11}$ and hence $\pi_4 = 0$. Consequently we have

12) Cf. (7. 3).

¹¹⁾ Cf. (4. 4) and (4. 5).

Proposition (8.3) $\pi_{n+4}(S^n) = 0$ for $n \ge 6$.

iii) Since $\pi_4^3=0$, π_4^4 is isomorphic to the kernel of ∂_4^4 . $\pi_3^3=Z_6$, $C^4(0)=Z$ and ∂_4^4 is onto, so we have that a generator of ∂_4^4 is represented by a mapping of degree 6. Let an element ξ_n of π_4^4 be presented by $\tilde{\xi}_n | S^{n+4}$, then $j_4^4(\xi_n)$ is represented by a mapping of degree 6 and therefore $j_4^4(\xi_n)$ generates the kernel of ∂_{μ}^4 . Consequently we have that ξ_n generates π_4^4 and ∂_{ξ}^5 is onto, hence $\pi_4^5 = 0$. Applying (6.4) and (6.1) to the complex K_n^{n+5} which has the homotopy groups $\pi_i(K_n^{n+5})=0$ for $n \leq i \leq n+5$, we have

$$
Z_2+Z_2=H_{n+6}(K_n)\approx \pi_5^4/image\ \partial_6^5.
$$

The image of ∂_0^5 is generated by $\xi_n \circ \eta_{n+5}$. Since incidence number $[e^{n+5}:e^{n+4}]$ =6, we have $j_5^4(\xi_n \circ \eta_{n+5})$ =0, hence there is an element ξ' of π_5^3 such that $i_5^4(\xi')=\xi_n\circ\eta_{n+5}$. From the structure of the mapping $\tilde{\xi}_n$, we have easily that the *imag* $j_5^3(\xi')$ is the non-zero element of $C^3 = Z_2$, hence $\xi_n \circ \gamma_{n+5} = 0$, *image* $\partial_6^5 = Z_2$ and the group π_5^4 must have form $Z_2 + Z_2 + Z_2$ or $Z_2 + Z_4$. Let $\eta' \in \pi_5^4$ be represented by, $\tilde{\eta}_{n+4}|S^{n+5}$, then $j_5^4(\gamma')$ is the generator of $C^4(1)=Z_2$. If $2\gamma'+0$, we have $2\eta' = \xi_n \circ \eta_{n+5}$. The mapping $\tilde{\eta}_{n+4} | S^{n+5}$, however, does not cover the cell e^{n+3} , therefore we have $2\eta' = 0$ in K_n^{n+4} and $\pi_5^4 = Z_2 + Z_2 + Z_3$. Since the image of ∂_6^4 is generated by $\nu_n \circ \eta_{n+3} \circ \eta_{n+4} = 0$, we have $\pi_5^3 = Z_2 + Z_2$, j_5^3 is onto and image $i_3^3 = Z_2$. Let ν_1 be a generator of $C^3(3) = Z_{24}$. Since the incidence number $\lceil e^{n+3} : e^{n+2} \rceil = 2$, we can chose a generator ν_2 of $C^2 = Z_{24}$ such that $j_5^2 \circ \partial(\nu_1) = 2\nu_2$, hence *image* $\partial_0^3 = Z_{24}$ or Z_{12} . Since $12(\zeta_n \circ \nu_{n+2}) = \zeta_n \circ 12\nu_{n+2} = \zeta_n \circ \gamma_{n+2} \circ \gamma_{n+3} \circ \gamma_{n+4}$ ¹²⁾ $=6\nu_n \circ \gamma_{n+3} \circ \gamma_{n+4}=0$ in K_n^{n+4} , we have *image* $\partial_0^3 = Z_{12}$ and $\pi_5^2/Z_{12} = Z_2$. Since ∂_5^3 is trivial, j_5^2 is onto and therefore isomorphism onto, It is easily seen that a generator ν' of $\pi_5^2 = Z_{24}$ is represented by the mapping $\tilde{\nu}_{n+2} | S^{n+5}$. Since $\pi_4 = 0$, we have $C^2(4)=0$ and

Proposition (8.4) $\pi_{n+5}(S^n) = 0$ for $n \ge 7$.

iv) The generators of $\pi_5^5 = Z_2 + Z_2$ are $i_5^5(\gamma')$ and $i_5^5 \circ i_5^4 \circ i_5^3(\nu')$, and they are also the image of ∂_0^6 . Hence $\pi_5^6 = 0$ and K_n^{n+6} has the homotopy groups $\pi_i(K_n^{n+6}) = 0^{13}$ for $n \le i \le n+6$. From (6.4) and (6.1) we have

$$
0=H_{n+7}(K_n)=\pi_0^5/image\ \partial_7^6,
$$

and ∂^6_i is onto. An analogeous consideration as in iii) and the fact $2\nu_n \circ \nu_{n+3} = 0$ show that

image $\partial_7^6 = Z_2 + Z_2$ or $Z_2 = \{ \eta' \circ \eta_{n+5}, \nu' \circ \eta_{n+5} \}$, *image* $j_6^5 = 0$, image $\hat{\theta}_7^5 = Z_2 = {\xi_n \circ \eta_{n+4} \circ \eta_{n+5}}$ image $j_6^4 = Z_2$, *image* $\hat{\theta}_7^{\dagger} = Z_2$ or $0 = {\nu_n \circ \nu_{n+3}}$, *image* $j_6^3 = Z_2$, image $\partial_7^3 = image$ $i_6^2 = image$ $\partial_7^2 = 0$,

and that there are elements $a_1 \in \pi_6^4$ and $a_2 \in \pi_6^3$ such that $i_6^6(\mu_1) = \eta' \circ \eta_{n+5}$, $i_6^4(\mu_2)$

```
13) Cf. (4.6).
```
 $=\xi_n \circ \eta_{n+4} \circ \eta_{n+5}, \; j_6^4(\alpha_1) \neq 0 \; \text{and} \; j_6^3(\alpha_2) \neq 0.$ Consequently we have

Proposition (8.5) $\pi_{n+6}(S^n) = 0$ or Z_2 or $Z_2 + Z_2$ for $n \ge 8$.

v) To prove the non-triviality of π_6 , we construct a complex K_n^{n+7} whose homotopy groups $\pi_i(K_n^{n+7})$ vanish for $n \lt i \lt n+7$. If we assume $\pi_6 = 0$, we can prove that the group $H_{n+8}(K_n) = \pi_7^5 / image$ *a*⁸_{*a*} must contain a group of 8-element and this contradict to (6.1) .

Proposition (8.6) $\pi_{n+6}(S^n) = Z_2$ *or* $Z_2 + Z_2$ *for* $n \geq 8$ *, and the generators of which are* $\nu_n \circ \nu_{n+3}$ and an element of $\{\eta_n, \nu_{n+1}, \eta_{n+4}\}.$ Fur ther calculations show

Proposition (8.7) If $n \geq 9$ we have $\pi_{n+7}(S^n) = Z_{15} + G$ where G is a group *of* 2^k *elements* $(3 \leq k \leq 8)$.

ii) *If* $n \geq 10$, *we have that* $\pi_{n+8}(S^n)$ *is a group of* 2^k *elements.*

Appendix 1. The homotopy groups of the suspended space of the projective plane.

Let Y^2 be the real projective plane, and let $Y^2 = S^1 \cup e^2$ be its cell decomposition in which the cell e^2 is attached to S^1 by a mapping of degree 2. Let Y^{n+1} be the $(n-1)$ -fold suspended space of Y^2 , then $Y^{n+1}=S^{n}{{\cup}^{\omega}}^{n+1}$ is also a cell complex with a characteristic mapping $\tilde{\omega}$: $(E^{n+1}, S^n) \rightarrow (Y^{n+1}, S^n)$ such that $\tilde{\omega}$ $S_{\ell} = \omega$ is a mapping of degree 2. By (1.26) the characteristic mapping $\tilde{\omega}$ induces the isomorphism $\tilde{\omega}^*$: $\pi_p(E^{n+1}, S^n) \to \pi_p(Y^{n+1}, S^n)$ for $p \leq 2n-2$. Since the boundary homomorphism $\partial : \pi_p(E^{n+1}, S^n) \to \pi_{p-1}(S^n)$ is isomorphism, we obtain an exact sequence $\cdots \longrightarrow {\overset{\omega^*}{\longrightarrow}} \pi_p(S^n) \overset{i^*}{\longrightarrow} \pi_p(Y^{n+1}) \overset{\Delta}{\longrightarrow} \pi_{p-1}(S^n) \longrightarrow {\overset{\omega^*}{\longrightarrow}} \pi_{p-1}(S^n) \longrightarrow \cdots$ by setting $\Delta = \partial \circ \omega^{*-1} \circ j$ for $p \leq 2n-2$. Since $E : \pi_{p-2}(S^{n-1}) \to \pi_{p-1}(S^n)$ is onto for $p \leq 2n-1$, we have $\omega^*(a) = 2n \circ a = 2n \circ E' = 2Ea' = 2a$, and therefore the kernel of ω^* is the subgroup $\sqrt{r_{p-1}(S^n)}$ and the image of i^* is isomorphic to $\pi_p(S^n)/2\pi_p(S^n)$.

Lemma *If* γ *is an element of* $\pi_p(Y^{n+1})$ *such that* $\Delta(\gamma) = a \in \pi_{p-1}(S^n)$, *then* $2\tilde{\ }$ = $i^*(a \circ \eta_n)$.

The lemma follows from (5.9) and (5.7) . Applying this lemma to the results of $\pi_n(S^r)$ we have

Theorem i)

\n
$$
\begin{array}{ll}\n\pi_n & (Y^{n+1}) = Z_2 & n \geq 1, \\
\text{ii}) & \pi_{n+1}(Y^{n+1}) = Z_2 & n \geq 3, \\
\text{iii)} & \pi_{n+2}(Y^{n+1}) = Z_4 & n \geq 4, \\
\text{iv)} & \pi_{n+3}(Y^{n+1}) = Z_2 + Z_2 & n \geq 5, \\
\text{v)} & \pi_{n+4}(Y^{n+1}) = Z_2 & n \geq 6, \\
\text{vi)} & \pi_{n+5}(Y^{n+1}) = 0 & n \geq 7, \\
\text{vii)} & \pi_{n+6}(Y^{n+1}) = Z_2 & \text{or } Z_2 + Z_2 & n \geq 8.\n\end{array}
$$

Appendix 2. Lower dimensional cases

Recently P. Sree, [16] has provided that there is a homomorphism: $\pi_{n-2}(S^{2r-3})$ $\rightarrow \pi_n(S^r; E_+^s, E_-^r)$ and which is onto for $n \leq 3r-4$ and isomorphic for $n < 3r-4$. By (3.13) $\pi_n(S^r; E^r_+, E^r_-)$ has a direct factor isomorphic to $\pi_{n+1}(S^{2r})$ for $n \leq 3r-4$. Therefore the homomorphism $P : \pi_{n-r+1}(E_{-}^{r}, S^{r-1}) \to \pi_n(S^{r}; E_{+}^{r}, E_{-}^{r})$ given by $P(a) = [a, c_r]_t$ is isomorphism onto for $n \leq 3r-4$, where c_r is a generator of $\pi_r(E^r_+, S^{r-1})$. The exctness of the sequence $\pi_{n+2}(S^{r+1}; E^{r+1}_+, E^{r+1}_-) \longrightarrow {\pi_n(S^r)} \longrightarrow E$ $\pi_{n+1}(S^{r+1})$ shows that the kernel of suspension homomorphism $E: \pi_n(S^s) \to$ $\pi_{n+1}(S^{r+1})$ is generated by the Whitehead product $\left[a, c_r\right]$ $(a \in \pi_{n-r+1}(S^r))$ for $n\leq 3r-3$.

The following list of special Whitehead product is verified $(n\leq 3r-3)$

 $[\gamma_6, \iota_6] = 0$ and $[\iota_7, \iota_7] = 0$ follow from (2.26) and the fact that there are mappings of types (γ_6, t_6) and (t_7, t_7) . By (7.3), (2.23) and (4.6) we have $[\gamma_5 \circ \gamma_6, t_5]$ $= v_5 \circ r_8 \circ r_9 \circ r_{10} = v_5 \circ 12v_8 = 12v_5 \circ v_8 = 0.$ Since $H[\epsilon_6, \epsilon_6] = 2\epsilon_{12} = 0$ we have $[\epsilon_6, \epsilon_6] = 0.$ The fact $\lceil \eta_4, \iota_4 \rceil = \alpha_4 \circ \eta_7 + 0$ and $\lceil \iota_5, \iota_5 \rceil = \nu_5 \circ \eta_8 + 0$ is already verified in (4.4) and (4.5). From (2.23) we have $[\eta_4 \circ \eta_5, \iota_4] = a_4 \circ \eta_7 \circ \eta_8$ and $[\eta_5, \iota_5] = \nu_5 \circ \eta_8 \circ \eta_7$. Since $H(a_3 \circ \eta_6 \circ \eta_7) = \eta_6 \circ \eta_7 \circ \eta_8 = 0$ and $H(\nu_4 \circ \eta_7 \circ \eta_8) = \eta_8 \circ \eta_9 = 0$, we have by $(4.2)'$ $E(\alpha_3 \circ \eta_6 \circ \eta_7) \neq 0$ and $E(\nu_4 \circ \eta_7 \circ \eta_8) \neq 0$.

Therefore the exactness of the sequence $\cdots \pi_{n+1}(S^r) \longrightarrow {\pi_{n+2}(S^{r+1})} \longrightarrow$ $\pi_{n+2}(S^{r+1}; E^{r+1}, E^{r+1}) \longrightarrow \pi_n(S^r) \longrightarrow \pi_{n+1}(S^{r+1}) \longrightarrow \cdots$ leads the following reselts;

 $E: \pi_8(S^4) \to \pi_9(S^5)$ is onto and its kernel is generated by $\eta_4 \circ \nu_5$, $i)$

 $E: \pi_9(S^5) \to \pi_{10}(S^6)$ is onto and its kernel is generated by $\nu_5 \circ \eta_8$, $ii)$

 $E: \pi_{10}(S^6) \rightarrow \pi_{11}(S^7)$ is onto its kernel is generated by $\eta_4 \circ \nu_5 \circ \eta_8$, iii)

 $E: \pi_{10}(S^5) \rightarrow \pi_{11}(S^6)$ maps into the subgroup of $\pi_{11}(S^6)$ which is generated $iv)$

by the elements of the Hopf invariants 0, and the kernel of E is generated by $\nu_5 \circ \eta_8 \circ \eta_9$.

 $E: \pi_{11}(S^6) \rightarrow \pi_{12}(S^7)$ is onto and its kernel is generated by $\lceil \iota_6, \iota_6 \rceil$, V)

- $E: \pi_{11}(S^5) \rightarrow \pi_{12}(S^6)$ is isomorphism onto, $\rm vi$)
- vii) $E: \pi_{12}(S^6) \rightarrow \pi_{13}(S^7)$ is isomorphism onto,
- viii) $E: \pi_{13}(S^7) \rightarrow \pi_{14}(S^8)$ is isomorphism onto.

Summarizing the results of $\pi_n(S^r)$ we obtain;

- a) $\pi_n(S^n) = Z$ for $n \ge 1$, $\pi_n(S^1) = 0$ for $n > 1$ and $\pi_n(S^r) = 0$ for $n < r$.
- b) $\pi_3(S^2) = Z = {\eta_2}$ and $\pi_{n+1}(S^n) = Z_2 = {\eta_n}$ for $n \ge 3$,

c) $\pi_{n+2}(S^n) = Z_2 = {\pi_n \circ \pi_{n+1}}$ *for* $n \geq 2$,

d) $\pi_5(S^2) = Z_2 = {\gamma_2 \circ \gamma_3 \circ \gamma_4}, \ \pi_6(S^3) = Z_{12} = {\omega_3}, \ \pi_7(S^4) = Z + Z_{12} = {\omega_4} + {\omega_4}$ *and* $\pi_{n+3}(S^n) = Z_{24} = \{v_n\}$ *for n* ≥ 5 ,

e) $\pi_6(S^2)=Z_2=\{\gamma_2\circ\mu_3\}, \pi_7(S^3)=Z_2=\{\gamma_3\circ\mu_4\}, \pi_8(S^4)=Z_2+Z_2=\{\gamma_4\circ\mu_5\} + \{\nu_4\circ\eta_7\},\$ $\pi_9(S^5) = Z_2 = {\nu_5 \circ \eta_8}$ *and* $\pi_{n+4}(S^n) = for$ $n \ge 6$.

f) $\pi_7(S^2) = Z_2 = \{\gamma_2 \circ \gamma_3 \circ \nu_4\}, \pi_8(S^3) = Z_2 = \{\gamma_3 \circ \nu_4 \circ \gamma_7\}, \pi_9(S^4) = Z_2 + Z_2 = \{\gamma_4 \circ \nu_5 \circ \gamma_8\}$ $+ \{\nu_4 \circ \eta_7 \circ \eta_8\}, \ \pi_{10}(S^5) = Z_2 = {\{\nu_5 \circ \eta_8 \circ \eta_9\}}, \ \pi_{11}(S^6) = Z = [\tau_6, \tau_6] \ and \ \pi_{n+5}(S^n) = 0 \ for$ *n*≥7.

g) $\pi_{n+6}(S^n) = Z_2 = \{\nu_n \circ \nu_{n+3}\}$ *or* $=Z_2 + Z_2 = \{\nu_n \circ \nu_{n+3}\} + \{\eta_n, \nu_{n+1}, \eta_{n+4}\}$ *for* $n \ge 5$. The essentiality of $\nu_n \circ \nu_{n+3}$ is follows from (4.2).

References

- [1] M. G. Barratt and G. F. Paecher, *A note on* $\pi_r(V_n,m)$, Pro. Nat. Acad. Sci. U. S. A. 38 (1952), 119-121.
- [2] A. L. Blakers and W. S. Massey, *The homotopy groups of a triad* l, Ann. of Math. 53 (1951), 161-205.
- [3] A. L. Blakers and W. S. Massey, *The homotopy groups of a triad Il,* Ann. of Math. 55 (1952), 192-201.
- [4] H. Carten and J. P. Serre, *Espace fibrês et groupes d'homotopie* l, *II.* C. R. 234 (1952), 288-290, 393-395.
- [5] B. Eckmann. *Zur Homotopietheorie gefaserter Räume*, Comm. Math. Helv. 14 (1941), 234-256.
- [6] S. Eilenberg and S. MacLane, *Relations between homo/ogy and homotopy groups of spaces,* Ann. of Math. 46 (1945), 480-509.
- [7 J S. Eilenberg and S. MacLane, *Cohomology theory of abelian groups and homotopy theory* l, *II,* Ill, Pro. Nat. Acad. Sei. U. S. A. 36 (1950), 443-447, 657-663, 37 (1951) 307-310.
- [8 J H. Freudenthal, *Über die Klasse der Sphiiren abbildungen,* Comp. Math 5 (1937) 299-314.
- [9] P. Hilton, *Suspension theorems and the generalized Hopf invariant*, Proc. London Math. Soc. 1 (1951), 463-493.
- [10] H. Hopf, *Über die Abbildungen der dreidmensionalen Spharen auf die Kugel/liiche,* Math, Ann. 104 (1931), 637-665.
- [11] H. Hopf, *Über die Abbildungen von Sp.lzaren auf Spharen niedrigerer Dimen:ion,* Fund. Math. 25 (1935), 427-440.
- [12] W. Hurewicz and N. E. Steenrod, *Homotopy relations in fibre spaces*, Proc. Nat. Acad. Sei. U. S. A. 27 (1941), 60-64.
- [13] T. Kudo, *Homological structure of fibre bundles,* jour. Inst. Poly, Osaka City Univ. 2-2 (1952), 101-140.
- [14] J. P. Serre, *Homologie singuliêre des espaces fibrês,* Ann. of Math. 54 (1951) 425-505.
- [15] J. P. Serre, *Sur les groupes d'Eilenberg-MacLane,* C. R. 234 (1952) 1243-1245.
- [16] J. P. Serre, *Sur la suspension de Freudenthal*, C. R. 234 (1952), 1340-1342.
- [17] N. E. Steenrod, *Theory of fibre hundle,* Princeton Univ. Press.
- [18] H. Toda, *Sorne relations in homotopy groups of spheres,* Jour. Inst. Poly. Osaka City Univ. 2-2 (1952) 71-80.
- [19] G. W. Whitehead, *Homotopy properties of the real orthogonal groups,* Ann, of Math. 43 (1942), 132-146.
- [20] G. W. Whitehead, *On the homotopy groups of spheres and rotation g• oups,* Ann. of Math. 43 (1942), 634-640.

- [21] G. W. Whitehead, *On products in homotopy groups*, Ann. of Math. 47 (1946), 460-475.
- [22] G. W. Whitehead, *A generaliz-ation of the Hopf invariant,* Ann. of Math. 51 (1950), 192-237.
- [23] G. G. Whitehead, *The* $(n+2)^{nd}$ *homotopy group of the n*-sphere, Ann. of Math. 52 (1950), 245-247.
- [24] *].* H. C. Whitegead, *On adding relations to homotopy groups,* Ann. of Math. 42 (1941), 409-428.