On topological groups.

By Shin-ichi Матsusніта

(received September 15, 1952)

0. **Introduction.** In this paper, we shall deal with arbitrary topological groups by means of their *Marko ff-extensions*: the definition of an *Marko ff-extension* is given in Section 1.

Generally speaking, though the representation theory in matric-algebras plays an important rôle in studying topological groups,¹⁾ it becames occationally meaning-less for some type of groups, which have no usual (nen-trivial) representations; as well known, minimally almost periodic groups are those. However, the Markoff-extension seems to be useful for any topological groups.

Section 2 is devoted to an exposition of the relation between the representation of a topological group and those of its Markoff-extension. In Section 3, we shall concern the duality theorem of any topological groups, which we would rather call the *co-duality theorem*. Our theorem coincides with the famous one of Tannaka and Krein²⁾ in maximally almost periodic cases at all, but even if a group is minimally almost periodic, ours may remain still useful.

This duality theorem is, on the other hand, considered as the representation theorem in B-algebra, and the process from Theorem 4 to Theorem 5 gives one proof for the Tannaka-Krein's duality theorem.

The space of almost periodic functions is considerd as a commutative B^* -algebra. This investigation is done in Section 4.

Finally, in Section 5, we shall try the theorem of K. Iwasawa³⁾ concerning the group-rings as an interesting application of Markoff-extensions.

1. **Preliminary theorem.** We begin with the noted theorem of A. Markoff and S. Kakutani on free topological groups.⁴⁾ That is stated as follows: For any completely regular topological space Γ , there exists a free topological group F with the following properties;

¹⁾ Recently, Banach representation theory has been developed as in 13), 19), 20), etc. But in them, groups are restricted in locally compact case.

²⁾ T. Tannaka 24), and M. Krein 10).

³⁾ K. Iwasawa 5) and 6).

⁴⁾ A. Markoff 11) and S. Kakutani 8).

- μ) $\Gamma \subset [F]$,
- β) Γ generates F algebraically,
- γ) any continuous mapping φ of Γ into any topological group $\mathbb G$ is extended up to the continuous homomorphism \emptyset of F into $\mathbb G$ such that

where [F] is the set of all elements of F with the same topology as F.

Now we always assume that G is a topological group, then G is a uniform space with that topology, due to A. Weil,⁵⁾ and is completely regular; so is the topological space $\lceil G \rceil$, where the brackets are used in the above sense.

We shall next consider a continuous mapping ϕ of $\lceil G \rceil$ into G such that

$$\phi(x)_{x \in (G)} = x_{x \in G}$$
 (identity mapping),

that is,

$$\phi([G]) = G.$$

Then according to the Markoff and Kakutani's theorem mentioned above, we can obtain a free topological group F such that;

- (1.2) $\lceil G \rceil$ generates F algebraically,
- (1.3) $\phi(F) \subset G$,

and

 $(1.4) [G] \subset [F].$

Combining (1.1) with (1.3), we have

$$G = \phi(\lceil G \rceil) \subset \phi(F) \subset G$$
,

that is.

(1.5)
$$\phi(F) = G$$
.

Since F is a free topological group, F is maximally almost periodic (max, a. p.); this fact is due to T. Nakayama.⁶⁾ Then we conclude:

Theorem 1.7) For any topological group G, there exists at least one max. a. p. topological group G, which has the following properties:

- a) There exists a continuous homomorphism ϕ of G_0 onto G_0
- β) $[G] \subset G_0$ and [G] is the group-generator of G_0 .
- γ) ϕ is invariant on [G], i.e.

$$\phi(x) = x, x \in [G].$$

For a given topological group G, we can consider the family of all such G_0 and denote it by Π_G . Then it is certain that Π_G is not empty. For G_1 , G_2 of

⁵⁾ A. Weil 26).

⁶⁾ T. Nakayama 14).

⁷⁾ P. Samuel has proved that any topological group is the image of a free topological group; in P. Samuel 17).

 II_G , if G_1 is topologically homomorphic to G_2 , one writes $G_2 \ge G_1$. Thus II_G forms a partly orderd set by this binary operation \ge , whose greatest extreme is the free topological group.

Each element of Π_{G} is called an *Marko ff-extension* of G, and if $G_0 = G'_0$ for every G_0 with $G_0 \ge G'_0$, G_0 is called *irreducible*, while the rest *reducible*. A max. a, p. topological group is obviously the irreducible Markoff-extension of itself.

Theorem 2. The homomorphism ϕ , which is continuous, of an Markoff-extension G_0 of G onto G is further a open mapping.

Proof. Let H_0 be the kernel of homomorphism ϕ . The natural mapping ϕ_{H_0} from G_0 to G_0/H_0 being topological, *i.e.* continuous and open, an open set $U_0 \subset G_0$ is mapped to an open set $U_{H_0} \subset G_0/H_0$ by ϕ_{H_0} and $V_0 = \phi_{H_0}^{-1}(U_{H_0})$ is also open in G_0 .

Putting $V_0 \cap [G] = V_G$, we shall prove that V_G is open in $[G] \subset G_0$. For an arbitrary $x \in V_G$, there exists an open neighborhood U(x) in G and also in [G]; while x being an element of V_0 , there must be an open set V(x) in V_0 .

Since $W(x) = V(x) \cap U(x)$ is not empty, W(x) must be an open set contained in V_G . Thus, V_G is open and hence

$$\phi(U_0) = \phi(V_0) = \phi(V_G)$$

must be open in G.

Corollary. G_0/H_0 is topologically isomorphic to G, in the symbols;

$$(1.6) G_0/H_0 \cong G.$$

2. Representations and *-Representations. Let G_0 be an (irreducible or reducible) Markoff-extension of G and H_0 the kernel of the homomorphism ϕ , $\phi(G_0) = G$, *i.e.*

$$\phi(H_0) = e$$

where e is the unit of G. We call such H_0 the Markoff-kernel of G_0 . Let $H_{(x)}$ be the restclass containg x, while H_x the restclass which corresponds to x, with respect to the factor-group G_0/H_0 . Then we have immediately that $H_{(x)} = H_x$.

We shall distinguish the group-operation of G_0 from that of G, writing the former by $x_0 \cdot y_0$ in G_0 and the latter by xy in G, while we denote the inverse of $x_0 \in G_0$ by x_0^{-1} and that of $x \in G$ in usual way, *i.e.* by x^{-1} . Then we have

$$(2.1) H_x \cdot H_y = H_{x \cdot y} = H_{xy} = H_{(xy)}.$$

We next denote the set of such elements, differences in a sense, that

(2.2)
$$\hat{o}(x_1, x_2, \dots, x_n) = x_n^{-1} \cdot x_{n-1}^{-1} \dots x_1^{-1} \cdot x_1 x_2 \dots x_n$$

for $x_k \in G$: n, k=1, 2, ..., by \hat{H}_0 , calling it the essential Markoff-kernel of G_0 . Obviously, $\hat{H}_0 \subset H_0$. Furthermore we hold;

lemma 1. \hat{H}_0 is the generator of H_0 .

Proof. [G] being the group-generator of G_0 , each $x_0 \in H_0$ is represented as

$$(2.3) x_0 = x_1 \cdot x_2 \dots x_n; x_k \in G,$$

and

$$(2.4) x_1 x_2 \dots x_n = e.$$

Then we see that

(2.5)
$$x_0 = (x_1 x_2...x_n) \cdot (x_n^{-1} \cdot x_{n-1}^{-1} ... x_1^{-1} x_1 x_1 x_2... x_n)^{-1}$$

$$= e \cdot \delta^{-1}(x_1, x_2, ..., x_n)$$

and $\delta(x_1, x_2, ..., x_n) \in \hat{H}_0$; that is, for each $x_0 \in \hat{H}_0$, we have

$$(2.5) x_0 = e \cdot \overset{\wedge}{x_0} \cdot \overset{-1}{x_0} \cdot \overset{\wedge}{x_0} \in \overset{\wedge}{H_0}.$$

 $\stackrel{\wedge}{H_0}$ being a subset of H_0 , we have also

(2,6)
$$\hat{x}_0 = e \cdot \hat{x}_0' \cdot -1 \quad \hat{x}_0' \in \hat{H}_0 \; ; \; i.e. \; e = \hat{x}_0 \cdot \hat{x}_0' \; ,$$

and we see consequently $x_0 = \stackrel{\wedge}{x_0} \cdot \stackrel{\wedge}{x_0} \cdot \stackrel{\wedge}{x_0} \cdot \stackrel{\wedge}{x_0} = 1$. This proves the Lemma.

Let $D(x_0)$, $x_0 \in G_0$, be a continuous (irreducible) unitary equivalent representation of G_0 , *i.e.* a continuous normal representation in the sense of J, von Neumann.⁸⁾ Such $D(x_0)$ does not necessarily become a representation of G. Then, we shall investigate the necessary and sufficient condition for $D(x_0)$, in order that it might be a continuous normal representation of G. If $D(x_0)$ is an algebraic representation of G, the continuity of it on G is easily proved. Hence, it is sufficient to restrict our treatments to purely algebraic ones.

Theorem 3. For a normal (irreducible) representation of G_0 , an Markoff-extension of G, the following three conditions are mutually equivalent;

- i) $D(x_0) = E$ for all $x_0 \in H_0$,
- ii) $D(x_0) = E$ for all $x_0 \in \stackrel{\wedge}{H}_0$,
- iii) D(x) is a normal (irreducible) representation of G,

where E is unit matrix with same dimension as $D(x_0)$.

Proof of ii) \rightleftarrows iii.). iii) \rightarrow ii) is clear. We show that, if $D(x_0)$, $x_0 \in G_0$, has the property ii), D(x), $x \in G$, forms a representation of G, We have easily

$$\begin{split} &D(\delta((x,y)) = D(y^{\cdot - 1} \cdot x^{\cdot - 1} \cdot xy) \\ &= D(y^{\cdot - 1})D(x^{\cdot - 1})D(xy) = D(y)^{-1}D(x)^{-1}D(xy) = E \text{ ,} \end{split}$$

that is,

(2.7)
$$D(xy) = D(x)D(y)$$

for every $x, y \in G$, and consequently iii) is satisfied, providing D(e) = E,

Proof of i) \rightleftharpoons ii). i) \rightarrow ii) is clear. If ii) is fulfilled for $D(x_0)$, from Lemma 1, we have for every $x_0 \in H_0$

$$x_0 = \overset{\wedge}{x_1} \cdot \overset{\wedge}{x_2} \dots \overset{\wedge}{x_n} ; \overset{\wedge}{x_k} \in H_0.$$

Then we have,

⁸⁾ J. von Neunann 15).

$$D(\overset{\wedge}{x_0}) = D(\overset{\wedge}{x_1})D(\overset{\wedge}{x_2}) \dots D(\overset{\wedge}{x_n})$$

= $E \cdot E \dots E = E$.

Thus ii)→i) is proved. This completes the proof of the theorem.

We now come to the desirable condition, under which the (irreducible) normal representation of G_0 becomes that of G, but we shall pursue the study of representations of G further.

If G has a continuous normal (irreducible) representation D(x), $x \in G$, putting

$$(2.8) D_0(x_0) = D(x) \text{for all } x_0 \in H_x,$$

it is easy to see that such $D_0(x_0)$, $x_0 \in G_0$, is a continuous normal (irreducible) representation of D_0 , and the condition (2.8) is characterised by only condition such that,

$$(2.9) D_0(x_0) = E \text{for all } x_0 \in \overset{\wedge}{H_0}.$$

These facts enable us to establish

Corollary. A necessary and sufficient condition for a topological group G to have a continuous normal (irreducible) representation is that one of its Markoff-extension G_0 has a continuous normal (irreducible) representation $D_0(x_0)$, such that

$$D(x_0) = E$$
 on $\hat{H_0}$ (or equivalenty on H_0)

where $\stackrel{\wedge}{H}_0$ is the essential Marko ff-kernel of G_0 .

Some topological groups have not any non-trivial representations, even when they are locally bicompact or further Lie-groups; minimally a. p. groups are those.

Now we shall define a new operation of matrices. Let G_0 be an Markoff-extension of G and $D(x_0)$ a continuous normal (irreducible) representation of G_0 . Markoff-kernel H_0 and H_x ($=x\cdot H_0$) are defined as above. Then we define

(2.10)
$$D(x_0)*D(y_0) = D(x_0)D(y_0)\Delta(x, y),$$

where $x_0 \in H_x$, $y_0 \in H_y$ and

(2.11)
$$\Delta(x_1, x_2, ..., x_n) = D(\delta(x_1, x_2, ..., x_n)).$$

For any $x, y \in G$, we have immediately

$$D(x)*D(y) = D(x)D(y)\Delta(x, y)$$

$$= D(x)D(y)D(y^{-1} \cdot x^{-1} \cdot xy)$$

$$= D(x \cdot y \cdot y^{-1} \cdot x^{-1} \cdot xy) = D(xy).$$

Thus D(x) becomes a kind of representation of G with respect to the operation*, and, it is certain, this representation is continuous. We call it a *-representation of G based on G_0 .

Theorem 4. A *-representation D(x) of G based on G_0 coincides with the usual one, if and only if

i)
$$\Delta(x, y) = E \text{ for all } x, y \in G,$$

or equivalently

ii) $D(x_0) = E$ on the (essential or not) Markoff-kerner of G_0 .

All these facts together with the approximation theorem of Weierstrass-Neumann bring us the considerations about a.p. functions on G.

Again, let G_0 be an markoff-extension of G, and $A(G_0)$ the space of all continuous complex-valued a. p. functions on G_0 , which becomes a B*-algebra as we see in the following.

If there exists such $f \in \mathbf{A}(G_0)$, *i.e.* a. p. function in G_0 , that all for x_0 , $x_0' \in H_x$ and $x \in G$,

$$(2.12) f(x_0) = f(x'_0),$$

the collection of all such f is denoted by $A(G_0)$. It may consist of only constant functions for some G_0 , and if $f \in A(G_0)$, the translation of f by G, $fa(x_0) = f(a \cdot x_0)$ for $a \in G$, must be contained in $A(G_0)$, too.

Now, we put, for $f \in \hat{A}(G_0)$,

(2.13)
$$\tilde{f}(x) = f(x_0)_{x_0 \in Hx}.$$

Then we have:

Corollary. For any $f \in \stackrel{\wedge}{A}(G_0)$, \tilde{f} is a. p. on G. Conversely, if f is a. p. on G, $f_0(x_0)$, $x_0 \in G_0$, which is defined by (2.13);

$$f_0(x_0) = \tilde{f}(x)$$
 on each H_x ,

is a. p. on G_0 .

We complehend, consequently, that if $G_1 \ge G_2$ in Π_G , there are no more a. p. functions on G_2 than on G_1 . Especially, a. p. functions on G are contained in those on G_0 , $G_0 \in \Pi_G$, in the above sense.

The totality of \tilde{f} , $f \in A(G_0)$, coincides with A(G), i.e.

$$(2.14) \qquad \qquad \stackrel{\wedge}{A}(G_0) \cong A(G),$$

and if G is min. a. p., $\hat{A(G_0)}$ consists of only constant functions on G_0 . With regard to the mean of an a. p. function, we may suppose and easily prove that

$$(2.15) M_x[\tilde{f}(x)]_G = Mx_0[f(x_0)]_{Go},$$
 for every $f \in \stackrel{\wedge}{A(G_0)}$.

3. Duality theorem and B-algebra.⁹⁾ Let G be a topological group and G_0 an Markoff-extension of G respectively. $M(G_0)$ is complex B-space of all bounded functions on G_0 with uniform norm $\|f\| = \sup_i |f(x_0)|$; $f \in M(G_0)$, $x_0 \in G_0$, while $D(G_0)$ a normed subspace of $M(G_0)$ which is the set of all finite linear aggregates of the elements of all irreducible mutually non-equivalent continuous normal representations $D^{\omega}(x_0) = (D^{\omega}_{ij}(x_0))$, *i.e.* the set of all Fourier polynomials of $D^{\omega}_{ij}(x_0)$, where $\{D^{\omega}\}$ is a complete (mutually non-equivalent) representation system of finite degrees of G_0 .

⁹⁾ About B-algebras, see E. Hille 4), W. Ambrose 1), I. Kaplansky 9), etc.

Now we see immediately that $M(G_0)$ itself is regarded as a B-algebra, while $D(G_0)$ a normed subring. It is obvious that both $M(G_0)$ and $D(G_0)$ have the same algebraic unit I with ||I|| = 1.

Further, **S** is the total operator ring on $\overline{D}(G_0)$ with the norm $|S| = \sup_{\|\mathcal{F}\| \leq 1} \|S \cdot f\|$, that is, the set of all bounded linear operators on $D(G_0)$, then \mathfrak{S}

itself is also a B-algebra, where $\overline{D}(G_0)$ means the completion of $\overline{D}(G_0)$ by uniform norm in $M(G_0)$; $\overline{D}(G_0)$ coincides with the set of all continuous a. p. functions on G_0 , $A(G_0)$. Next, we consider the set of all regular elements S of \mathfrak{S} , which have in addition

(3.1) i)
$$S(f \cdot g) = S(f) \cdot S(g)$$
,
ii) $S(\bar{f}) = \overline{S(f)}$, (bar means the conjugation)

and denote that by \mathfrak{S} . \mathfrak{S} is obviously a subset of S, but not a subalgebra. However, \mathfrak{S} forms a group contained in S. In fact we have

$$(3.2) \quad S_{1} \cdot S_{2}^{-1}(f \cdot g) = S_{1} \cdot S_{2}^{-1}(S_{2} \cdot S_{2}^{-1}(f) \cdot S_{2} \cdot S_{2}^{-1}(g)) = S_{1} \cdot S_{2}^{-1} \cdot S_{2}(S_{2}^{-1}(f) \cdot S_{2}^{-1}(g))$$

$$= S_{1}(S_{2}^{-1}(f) \cdot S_{2}^{-1}(g)) = S_{1}S_{2}^{-1}(f) \cdot S_{1}S_{2}^{-1}(g),$$

$$(3.3) S_{1} \cdot S_{2}^{-1}(\overline{f}) = S_{1} \cdot S_{2}^{-1}(\overline{S_{2}S_{2}^{-1}(f)}) = S_{1} \cdot S_{2}^{-1} \cdot S_{2}(\overline{S_{2}^{-1}(f)}) = \overline{S_{1}(S_{2}^{-1}f)}) = \overline{S_{1}(S_{2}^{-1}f)} = \overline{S_{1}(S_{2}^{-1}f)}$$

$$= \overline{S_{1} \cdot S_{2}^{-1}(f)}$$

Lemma 2. For each $S \in \mathfrak{S}$, ||S|| = 1.

Proof. From (3.1), i), we have for unit function $\mathbf{1} \in A(G_0)$

$$S(1) = 1,$$

and $1 = ||I|| = ||S(I)|| \le ||S||$. On the other hand, for every $f \in A(G_0)$ with $||f|| \le 1$, we have

$$|| S(f) || = || S(f) \cdot \overline{S(f)} || = || S(f)S(\overline{f}) ||$$

$$= || S(f \cdot \overline{f}) || \le || S ||.$$

and hence $||S||^2 \le ||S||$, that is $||S|| \le 1$. This completes the proof of Lemma. \odot is not void, since every S_{a_0} or ${}_{a_0}S$ is contained in \odot , where S_a or ${}_{a_0}S$ is a translation operator such that

(3.5)
$$S_{a_0}(f) = f(x_0 \cdot a_0) \text{ resp. } a_0 S(f) = f(a_0^{-1} \cdot x_0)$$

for a_0 , $x_0 \in G_0$. Denoting the totality of such S_{a_0} or a_0S by \mathfrak{S}_{G_0} or $G_0\mathfrak{S}$, we see that \mathfrak{S}_{G_0} or $G_0\mathfrak{S}$ is a group which is algebraically isomorphic to G_0 . The isomorphism is directly ontained from the maximal almost-periodicity of G_0 . Though \mathfrak{S} has norm-topology, we introduce another topology, *i.e.* a weak topology in \mathfrak{S} such that a neighborhood $U_{s_0}(f_2,\ldots,f_n\,;\,\varepsilon)$ is defined as

(3.6)
$$U_{s_0}(f_1, f_2, ..., f_n; \varepsilon) = \{S \mid || S(f_j) - S_0(f_j) || < \varepsilon \},$$

for j=1, 2, ..., n.

From Lemma 2, we have

(3.7)
$$||S(f)|| \leq 1$$
,

for every $S \in \mathfrak{S}$ and f with $||f|| \leq 1$. If $S \neq S'$, there exists f_0 with $||f_0|| \leq 1$ such that $S(f_0) \neq S'(f_0)$. Then, due to A. Tychonoff, $S' \in S'$ turns out to a bicompact group with the weak topology, and S_{σ_0} is algebraically isomorphic and continuous image of G_0 . According to the normal subgroup (the Markoff-kernel) H_0 of G_0 , there exists a normal subgroup S_{σ_0} of S_{σ_0} such that $S_{\sigma_0}/S_{\sigma_0}$ is the algebraically isomorphic and continuous image of G_0/H_0 ; *i.e.*

(3.8)
$$G \cong G_0/H_0 \quad \stackrel{>}{\approx} \mathfrak{S}_{e_0}/\mathfrak{H}_{e_0}.$$
 (a. isomorph.) (al. isomorph.) homeomorph. continuous.

Denoting the commutor of $G_0 \otimes$ in S by G_0 , we conclude:

Theorem 5. (Generalized Duality and Representation Theorem) With the definition above, we hold; for any topological group G,

- i) \mathfrak{S}_0 is a bicompact group in a B-algebra (operaor-algebra),
- ii) there exists an algebraically isomorphic and continuous mapping ϕ of G onto \mathfrak{S}_G such that $\mathfrak{D}*\mathfrak{S}_G$ is a dense sub-group of \mathfrak{S}_0 for a suitable normal sub-group \mathfrak{D} of $\mathfrak{D}*\mathfrak{S}_G$ (i.e.= \mathfrak{S}_{G_0}).
- iii) if G is max. a. p., ϕ is a continuous isomorphism of G onto a dense sub-group \mathfrak{S}_G of \mathfrak{S}_0 , and if G is bicompact, G is continuously isomorphic to \mathfrak{S}_0 itself.

Here, $\mathfrak{A}*\mathfrak{B}$ means a group-extension \mathfrak{B} of \mathfrak{B} by \mathfrak{A} , such that $\mathfrak{B}/\mathfrak{A}=\mathfrak{B}$.

To completes the proof of this theorem, it remains for us to prove the denseness of $\mathfrak{S}*\mathfrak{S}_{\sigma}$ in \mathfrak{S}_{0} . iii) is a direct result of it. However, we shall remark it soon after.

For each $S \in \mathfrak{S}_0$, we put

(3.9)
$$\tilde{S}(f) = (S \cdot f)(e)$$
; for $f \in A(G_0)$, $e = \text{unit of } G_0$, and get the set $\tilde{\mathfrak{S}}_0$ of such linear functionals \tilde{S} .

Lemma 3. $\tilde{\mathfrak{S}}_0$ is algebraically isomorphic to \mathfrak{S}_0 .

If $S_1 = S_2$ in S_0 , there exist $f \in A(G_0)$ and $x_0 \in G_0$ such that

$$(S_1 \cdot f)(x_0) + (S_2 \cdot f)(x_0),$$

and putting $S_{x_0} \cdot f = g$,

$$\tilde{S}_{i}(g) = (S_{i} \cdot g)(e) = (S_{i} \cdot S_{x_{0}} f)(e)$$

= $S_{i} \cdot f(x_{0} \cdot e) = S_{i} \cdot f(x_{0})$, for $i = 1, 2$.

It implies that $\tilde{S}_1(g) = \tilde{S}_2(g)$ from (3.8), thus $\tilde{\mathfrak{S}}_0$ and \mathfrak{S}_0 are one-to-one corresponding.

Now we define the product in $\widetilde{\mathfrak{S}}_0$ by

¹⁰⁾ An excellent proof has been obtained by C. Chevalley and O. Frink, Bull. A. S. S. 47 (1941).

$$(3.10) \widetilde{S}_1 \cdot \widetilde{S}_2 = \widetilde{S_1 \cdot S_2},$$

and get the algebraic isomorphism between $\tilde{\mathfrak{S}}_0$ and \mathfrak{S}_0 , *i.e.* $\tilde{\mathfrak{S}}_0$ is a group which is isomorphic to \mathfrak{S}_0 .

Particularly, (3.9) is realized for $D(x_0)$ as the form such that

(3.11)
$$\tilde{S}_1 \cdot \tilde{S}_2(D_{ij}) = \sum_k \tilde{S}_1(D_{ik}) \tilde{S}_2(D_{kj})$$
,

where $D(x_0)=(D_{ij}(x_0))$.

We next introduce a weak topology in \mathfrak{S}_0 by such the way that ; a neighborhood $\widetilde{U}_{\mathfrak{S}_0}$ $(f_1, f_2, \dots, f_n; \varepsilon)$ is defined as

(3.12)
$$\widetilde{U}_{\widetilde{s}_0} = \{ S \Big| |\widetilde{S}(f_j) - \widetilde{S}_0(f_j)| < \varepsilon \},$$

for j=1, 2, ..., n. Then the correspondence of \mathfrak{S}_0 onto \mathfrak{S}_0 is continuous and \mathfrak{S}_0 is bicompact. Of course, the inverse correspondence of \mathfrak{S}_0 onto \mathfrak{S}_0 is also continuous *i.e.* \mathfrak{S}_0 and \mathfrak{S}_0 are isomorphic.

Then we can modify the Theorem 5 as follows:

Theorem. 6. Usual Duality Theorem) For any topological G, there exists an algebraically isomorphic and continuous mapping $\widetilde{\phi}$ of G onto $\widetilde{\mathfrak{S}}_G$, for which $\widetilde{\mathfrak{S}}_G * \widetilde{\mathfrak{S}}_G$ is a dense subgroup of a bicompact group $\widetilde{\mathfrak{S}}_0$ for suitable $\widetilde{\mathfrak{S}}_G$. If G is max. a. p., $\widetilde{\phi}(G) = \widetilde{\mathfrak{S}}_G$ and if G is bicompact, $\widetilde{\phi}(G) = \widetilde{\mathfrak{S}}_0$.

Proof of the denseness of $\widetilde{\mathfrak{S}}_{g_0} = \widetilde{\mathfrak{S}}_{g} * \widetilde{\mathfrak{S}}_{g}$ in $\widetilde{\mathfrak{S}}_{0}$: As G_0 is max. a. p., from Theorem 7 later, we have

(3.13)
$$A(G_0) \cong C(\tilde{\mathfrak{S}}_0)$$
 (in norm-preserving fashion).

If $\widetilde{\mathfrak{S}}_{\sigma_0}$ is not dense in $\widetilde{\mathfrak{S}}_0$, there exists a point φ_0 in $\widetilde{\mathfrak{S}}_0 - \overline{\mathfrak{S}}_{\sigma_0}$ ($\overline{\mathfrak{S}}_{\sigma_0}$ being the closure of $\widetilde{\mathfrak{S}}_{\sigma_0}$). By Urysohn's theorem, there exists a function $f \in C(\widetilde{\mathfrak{S}}_0)$ such that

(3.14)
$$f(\varphi) = \begin{cases} 1, & \text{if } \varphi = \varphi_0, \\ 0, & \text{if } \varphi \text{ is in } \overline{\mathfrak{G}}_{g_0}. \end{cases}$$

But this is contradictory with (3.13). Thus, the denseness is proved, and moreover that in Theorem 5 is also complectely verified.

Remark 1: This duality theorem is of the Tannaka-Krein's type and if G max. a. p., it is exactly the Tannaka-Krein's one.¹¹⁾

But in general cases, the homomorphism are just in the opposite directions one another; in Tanaka-Krein's theorem the direction of homomorphic mapping is of G to G^0 (=a certain group of functionals on A(G)), while that of ours is of $G^0(=\widetilde{\otimes}_{G_0})$ to G.

¹¹⁾ T. Tannaka 25) and M. Krein 10), loc. cit. An excellent and plain proof is shown by K. Yosida 27). Also see I. E. Segal 20).

For this reason, Tannaka-Krein's theorem concerns with the very case that G has a representation, but even when G is minimally a.p., our theorem has still a meaning.

Remark 2: The bicompact group \mathfrak{S}_0 is directly characterized by the set of all linear multiplicative bounded functionals on $A(G_0)$, which is denoted by \Re . Using a neighbourhood $U^0_{\varphi_0}(f^0_1f^0_2,\ldots,f^0_n;\varepsilon)$ for $\varphi^0_j\in\Re$, $f^0_j\in A(G_0)$ with $\|f^0_j\|\leq 1$, $j=1,2,\ldots,n$, such that

$$(3.15) U^0\varphi_0 = \{\varphi \in \Re \left| |\varphi(f_j^0) - \varphi_0(f_j^0)| < \varepsilon \},$$

 \Re turns to be a weakly bicompact Handdroff space. We can easily verify that such neighbourhood system $\{U_{\varphi_0}\}$ is equivalent to that of $\{U_{\varphi_0}\}$, which is definedby

(3.16)
$$U_{\varphi_0}(f_1, f_2, \dots, f_n; \varepsilon) = \{ \varphi \in \Re \mid |\varphi(f_j) - \varphi_0(f_j)| < \varepsilon \},$$

where $f_j \in A(G_0)$ for j = 1, 2, ..., n, whose norm is not necessarily ≤ 1 . This implies that $f(\varphi) = \varphi(f)$, $f \in A(G_0)$, $\varphi \in \Re$, is (uniformly) continuous on \Re .

From Lemma 4 stated later, we have $A(G_0) \equiv C(\Re)$ where $C(\Re)$ is the *B*-algebra of all continuous functions on \Re . This fact together with Theorem 7 later implies

$$(3.17) C(\tilde{\mathfrak{S}}_0) \simeq C(\Re)$$

in an algebraic and norm preserving fashion. From (3.15), it follows that \Re is homeomorphic to $\tilde{\mathfrak{S}}_0$.

The linear multiplicative bounded functionals are studied by V_{\bullet} Šmulian, I. Gelfand, E. Hille, etc.¹²⁾ Our further investigations of them will appear in another paper.

Remark 3. For a locally compact group, its irreducible representation theorem is given by Gelfand-Raikov, I. E. Segal, G. Mautner, and H. Yosizawa, ¹³⁾ But our representation (Theorem 5) is complete only if the group is max a. p. The gap between these two representations has been filled up in any case.

4. **B*-algebra of a. p. functions.** The space of all continuous a. p. functions on G, A(G), is not only a B-algebra, but also a commutative B^* -algebra with the norm conditiond;

$$|| f \cdot f^* || = || f || \cdot || f^* ||,$$

$$||f|| = ||f^*||$$

that is, a B*-algebra in the sense of C. E. Rickart and I. Kaplansky.¹⁴⁾ As *-operation, we have only to put $f^* = \bar{f}$ (conjugate)

¹²⁾ V. Smulian 23), and E. Hille, Proc. Nat. Acad. Sci., 30 (1944) and 4).

I. Ge_Ifand and D. Raikov, Math Sbornik, 13 (1944).I. E. Segal 20), G. Mautner 12), and H. Yoshizawa 28).

¹⁴⁾ C. E. Rickart 16) and I. Kaplansky 9).

Suppose that G_0 is max. a. p. and $\widetilde{\mathfrak{S}}_{G_0}$, $\widetilde{\mathfrak{S}}_0$ have the same meaning as in the preceding. Then, for $S \in \mathfrak{S}_0$, the function

(4.3)
$$f(\tilde{s}) = \tilde{s}(f), \quad f \in A(G_0)$$

is a (uniformly) continuous function on $\tilde{\mathfrak{S}}_0$. Thus, $A(G_0)$ is a subring of $C(\mathfrak{S}_0)$, the B*-algebra of all continuous complex-valued functions on $\tilde{\mathfrak{S}}_0$.

Lemma 4. (Stone-Rickart) If for every pair of points S, S' in a bicompact space \mathfrak{S} , there exists an element f of the subring \mathfrak{N}_0 of $\mathbf{C}(\mathfrak{S})$ such that $f(s) \Rightarrow f(s')$, then $\mathfrak{N}_0 \equiv \mathbf{C}(\mathfrak{S})$.

Originally, G. Šilov¹⁵⁾ proved this Lemma under the condition that \mathfrak{S} is bicompact and metric and later M. H. Stone¹⁶⁾ proved for real $C(\mathfrak{S})$.

Theorem 7. For max. a. p. G_0 , we have

$$(4.4) A(G_0) \cong C(\tilde{\mathfrak{S}}_0).$$

Denoting the set of all maximal ideals of $A(G_0)$ by \mathfrak{M}_{G_0} , Gelfand-Neumark¹⁸⁾ proved that

$$(4.5) C(\mathfrak{M}_{G_0}) \cong A(G_0),$$

Then, we have

Corollary. we hold for max. a. p. G_0 ,

$$(4.6) C(\tilde{\mathfrak{S}}_0) \simeq C(\mathfrak{M}_{g_0}).$$

Again, let G_0 be an Markoff-extension of G. As in the preceding mentioned, we hold

$$(4.7) A(G) \simeq \stackrel{\wedge}{A}(G_0) \subset A(G_0) = C(\tilde{\mathfrak{S}}_0).$$

Now, according to Silov and Rickart, we decompose \mathfrak{S}_0 to the direct sets (the continuous decomposition in the sense of P. Alexandroff)

$$(4.8) \tilde{\mathfrak{S}}_0 = \Sigma \oplus L(s),$$

where

(4.9)
$$L(s) = \{s' \mid f \in A(G_0) \text{ impiles } f(s) = f(s')\}.$$

Denoting the unit of $\widetilde{\mathfrak{S}}_0$ by s_e , we see immediately that $L(s_e) = L_0$ is a closed normal subgroup of $\widetilde{\mathfrak{S}}_0$ such that

$$\mathfrak{L} \cong \widetilde{\mathfrak{S}}_0/L_0$$

where $\mathfrak{L} \equiv \{L(s)\}$, and moreover $L_0 \subset \overline{\mathfrak{D}}_G$ (the closure of \mathfrak{D}_G in \mathfrak{S}_0). Owing to Rickart, we have

$$\mathbf{C}(\mathfrak{L}) \cong \overset{\wedge}{\mathbf{A}}(G_0)$$

¹⁵⁾ G. Šilov 22).

¹⁶⁾ M. H. Stone 24).

¹⁷⁾ Gelfiand and Silov, Rec. Math., N. S. 9 (1941) and C. Rickart 16), loc. cit.

¹⁸⁾ I. Gelfand-M. Neumark 3).

and hence

$$(4.12) C(\tilde{\mathfrak{S}}_0/L_0) = C(\mathfrak{L}) \simeq \bigwedge^{\wedge} (G_0) \simeq A(G).$$

Consequently, we come to the extended formula of Theorem 7 as follows;

Theorem 8. For any topological group G, there exists a bicompact topological group \mathfrak{G}_G such that

$$A(G) \simeq C(\mathfrak{G}_G)$$

in the norm preserving fashion: With the same definitions of \mathfrak{S}_0 and L_0 as in the preceding, \mathfrak{S}_G is written in the form; $\mathfrak{S}_G = \mathfrak{S}_0/L_0$.

This theorem together with the preceding theorem has the same meaning as the representation theorem of a commutative B*-algebra in the sense of I. E. Segai¹⁹⁾, I. Kaplansky²⁰⁾, and R. V. Kadison²¹⁾, which is written in the form; $A(G) \cong C(X)$ for a suitable bicompact Hausdorff space X.

Next we consider a Lebesgue integral on $\mathfrak{G}_{\mathcal{G}}$ with respect to the Haar's measure m on it;

(4.13)
$$\mu(f) = \int f^{0}(a) dm(a),$$

for every $f \in A(G)$ with the corresponding f^0 in C (\mathfrak{G}_G) and $\int dm(a) = 1$.

G itself being considered as the group of measure-preserving automorphisms $o = [\mathfrak{G}_{\sigma}]$, for each $a_0 \in G$, we have

(4.14)
$$\mu(S_{a_0} \cdot f) = \int f^0(a_0 a) dm(a)$$
$$= \int f_0(a) dm(a_0^{-1} a) = \int f^0(a) dm(a) = \mu(f),$$

that is, $\mu(S_{a_0}f) = \mu(f)$. It is clear that, for $f^-(x) = f(x^{-1})$, we hold $\mu(f^-) = \mu(f)$. These implies that $\mu(f)$ satisfies the all properties of a mean value in A(G), and from the uniqueness of mean values²², we get

Corellary. The mean value $\mu(f)$ of an element (a. p. function) of A(G) is represented in the form;

$$\mu(f) = \int_{\mathfrak{G}_G} f(a) \, d\mathbf{m}(a).$$

Theorem 8, with the Corollary, has been otherwise prouved in I. E. Segal 19).

5. Application to locally compact cases. Group-algebras. In this section, we shall restrict ourselves in the case that G is locally bicompact. We begin by defining the group-algebra L(G) of G in the sense of I. E. Segal²³⁾ with respect to the right-invariant Harr's measure on G; the multiplication and the norm are respectively defined as follows:

¹⁹⁾ I. E. Segal 20), about C*-algebras.

²⁰⁾ I. Kaplansky 9), 1oc. cit.

²¹⁾ R. v. Kadison 7).

²²⁾ J. von Neumann 15), S. Bochner and J. von Neumann 2), and further W Maak 12).

²³⁾ I. E. Segal 18), 19).

$$f \times g = \int_{a} f(xy^{-1}) \ g(y) \ dy$$
 and $||f|| = \int_{a} |f(x)| dx$.

Let G_0 be an Markoff extension of G, and $D(x_0)$ a complex irreducible continuous normal representation of G_0 . Then $\Delta(x_1, x_2, ..., x_n)$; $x_1, x_2, ..., x_n) \in G$, is a continuous function on $G \times G \cdots \times G$ (n times); cf. (2.11). Now we define that

(5.1)
$$D(f_{1}) \times D(f_{2}) \times \cdots \times D(f_{n})$$

$$= \underbrace{\iint_{G \times G \times \cdots \times G}} f_{1}(x_{1}) \cdot f_{2}(x_{2}) \dots f_{n}(x_{n}) \cdot D(x_{1}) * D(x_{2}) * \cdots * D(x_{n})$$

$$dx_{1}dx_{2} \dots dx_{n},$$

$$= \underbrace{\iint_{G \times G \times \cdots \times G}} f_{1}D(x_{1}) \cdot f_{2}D(x_{2}) \dots f_{n}D(x) \Delta(x_{1}, x_{2}, \dots, x_{n})$$

 $dx_1dx = dx_2$

where $f_k \in L(G)$, $f_k \cdot D(x_k) = f_k(x_k) \cdot D(x_k)$.

Since $\Delta(x)=1$ for $x \in G$, we see immediately that, when n=1,

(5.2)
$$D(f) = \int_{a}^{b} f(x)D(x) dx.$$

and for complex numbers α , β ,

(5.3)
$$D(af+\beta g) = aD(f) + \beta D(g)$$

$$||D(f)|| \leq M^{D}. ||f||,$$

where ||D|| means the usual norm of matrices, i.e. $||D|| = (\sum_{i,j} |D_{ij}|^2)^{1/2}$, and M^D depends upon D only. (5.4) comes from the fact that each $|D_{ij}|$ is bounded.

We generate a normed ring $\mathbf{R}_D(\mathbf{L}(G))$, or briefly $\mathbf{R}_D(\mathbf{L})$, from D(f), $f \in \mathbf{L}(G)$, by the usual addition of matrices and the multiplication (5.3).

Then we assert:

Theorem 9. $R_D(L)$ is continuously homomorphic to L(G).

To prove the theorem, we have only to show that $D(f) \times D(g) = D(f \times g)$. In fact, we hold;

$$D(f) \times D(g) = \int_{G \times G} f(x) \cdot g(x) D(x) D(y) \Delta(x, y) \, dx dy$$

$$= \int_{G \times G} f(xy^{-1}) g(y) D(xy^{-1}) D(y) \Delta(xy^{-1}, y) dx dy$$

$$= \int_{G \times G} f(xy^{-1}) g(y) D(xy^{-1} \cdot y) D(y^{-1} \cdot (xy^{-1}) \cdot x) dx dy$$

$$= \int_{G} D(x) \int_{G} f(xy^{-1}) g(y) dy dx$$

$$= \int_{G} f \times g(x) D(x) dx = D(f \times g).$$

Let $\psi(x_1, x_2)$ be a complex continuous function on $G \times G$, then we have Lemma 5. If we hold

(5.5)
$$\int_{G \times G} f_1(x_1) f_2(x_2) \psi(x_1, x_2) dx_1 dx_2 = 0$$

for arbitrary $f_k \in (G)$, k=1, 2, it must be $\psi(x_1, x_2)$ for any $x_k \in G$.

Remark. This lemma is easily extended to the case that $\psi(x_1, x_2, ..., x_n)$ is continuous on $G \times G \times ... G$, and

(5.6)
$$\int_{G \times G \times \cdots \times G} \int f_1(\mathbf{x}_1) \ f_2(\mathbf{x}_2) \cdots f_n(\mathbf{x}_n) \psi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$$

 $dx_1 dx_2 \dots dx_n = 0$

Proof of Lemma. ψ being real at first, the set P_{ψ} of such points in $G \times G$ that $\psi < 0$ is open. For any points $p(x_1, x_2) \in P_{\psi}$, we can select a neighborhood of x_k , $U_k = U(x_k)$, in G, such that the open rectangle $U_1 \times U_2 \subset P_{\psi}$.

For each U_k , we can find a neighbourhood $V_k = V(x_k) \subset U_k$, whose closure \overline{V}_k is bicompact, then $\overline{V}_1 \times \overline{V}_2 \subset \overline{P}_{\psi}$.

Now we define a characteristic function f_0 of (the compact carrier) \overline{V}_k , as f_k in (5.7), such that

$$f_k^0 = \begin{cases} 1 \text{ on } \overline{V}_k \\ 0 \text{ on } G - \overline{V}_k \end{cases}$$

then it is necessarily that each f_0 belongs to L(G) and

$$\int_{G \times G} \int_{1}^{0} f_{1}^{0}(x_{1}) f_{2}^{0}(x_{2}) \psi(x_{1}, x_{2}) dx_{1} dx_{2}$$

$$= \int_{V_{1} \times V_{2}} \psi(x_{1}, x_{2}) dx_{1}, dx_{2} > 0$$

This is contradictory with (5.7); that is, P_{ψ} is necessarily of measure 0 on $G\times G$. With respect to N_{ψ} which is the set of such points that $\psi<0$, we go analogously as above, adopting a negative characteristic function as f_k^0 , and at last hold that N_{ψ} is also of measure 0. Thus $\psi=0$ identically: If ψ is complex, decomposing it to $\psi_1+i\psi_2$ (ψ_1 and ψ_2 are real), we can leasily obtain the Lemma.

Now, we put

(5,8)
$$\Phi_D(x_1, x_2) = D(x_1) \times D(x_2) - D(x_1)D(x_2),$$

for $x_1, x_2 \in G$, and $\phi_D = (\phi_{ij}^D)$. If $D(f_1) \times D(f_2) = D(f_1)D(f_2)$ for any $f_k \in L(G)$, k = 1, 2, we have

$$\int\limits_{G\times G} \int f_1(x_1) f_2(x_2) \Phi_D(x_1, x_2) \ dx_1 dx_2 = 0 ,$$

and, from Lemma 5, we assert that $\phi_D=0$ (0-matrix with same degree as D), *i.e.*

$$D(x_1)D(x_2)\Delta(x_1,x_2) = D(x_1)D(x_2)$$
,

namely

$$\Delta(x_1, x_2) = E.$$

Owing to Section 2, (5.9) shows that such D(x) is nothing but the representation of G.

Then we get easily the equality $D(f_1) \times D(f_2) \times \cdots \times D(f_n) = D(f_1)D(f_2) \cdots D(f_n)$ for arbitrary $f_k \in (G)$ and n; $k=1, 2, \ldots, n$.

Theorem of Iwasawa.²⁴⁾ The continuous normal representations of G and the continuous representations of L(G) are one-to-one corresponding by the relation

$$D(f) = \int_{a} f(x)D(x)dx.^{25}$$

All these circumstances convince us of some analogy between the *-operation in the representation of G and the \times -operation in that of L(G) and corresponding to the corollary in Section 2, we hold

Theorem 10. $A \times$ -representation of $R_D(L(G))$ coincides with the usual one, that is, the representation by the matric-algebra, if and only if D(x) is a continuous normal representation of G. Every finite rep. of L(G) is a special \times -rep. as above.

Remark: A shorter proof of the Iwasawa's theorem will soon appear elsewhere.

References

- W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer Math. Soc., 57 (1945).
- 2) S. Bochner and J. von Neumann, Almost periodic functions in groups, II, Trans. Amer. Math. Soc., 37 (1935).
- 3) Gelfand and M. Neumark, On the imbedding of normed rings etc. Rec. Math. (1941).
- 4) E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloquim Publications, 31, New York (1948).
- K. Iwasawa, note in Zenkoku Shijo Sugaku Danwakai, written in Japanese, 246, Ser. 1, Osaka (1942).
- 6) K. Iwasawa, On group rings of topological groups, proc. Imp. Acad., 20 (1944).
- 7) R. V. Kadison, A representation theory for commutative topological algebra, (1950)
- 8) S. Kakutani, Free topological groups and infinite direct product spaces, Proc. Imp. Acad., 20 (1944).
- 9) I. Kaplansky, Normed algebras, Duke Math. J., vol 16 (1949).
- 10) M. Krein, On positive functionals on almost periodic functions, C. R. URSS, 30 (1941).
- 11) A. Markoff, On free topological group, C. R. URSS, 31 (1941).
- 12) W. Maak, Fastperiodishe Functionen, (1951)
- 13) **F. I. Mautner.** Unitary representations of locally compact groups, Ann, of Math. 51 (1950).
- 14) T. Nakayama, Note on free topological groups, Proc. Imp. Acad., 19 (1943).
- 15) J. von Neumann, Almost periodic functions in groups, I Trans. Amer. Math. Soc., 36 (1934).

²⁴⁾ K. Iwasawa 5) and 6)

²⁵⁾ Thees results may be extended to $L^{(1,P)}(G)$ without difficulty, for $p \ge 2$.

- 16) C. E. Rickart, Banach algebra with an adjoint operation, Ann. of Math., 47 (1946).
- 17) P. Samuel, Universal mappings and free topological groups, Bull A. M. S. 54 (1948).
- I. E. Segal, The group ring of locality compact groups, I, Proc. Nat. Acad, Sci., U. S. A. (1940).
- I. E. Segal, The group-algebra of a locally compact group, Trans. Amer. Math. Soc., 61 (1947)
- 20) I. E. Segal, Irreducible representations of operator algebras, Buil. Amer. Math. Soc., 53 (1947).
- 21) I. E. Segal, Two-sided ideals in operator algebras, Ann. of Math., vol. 50 (1949).
- 22) G. Silov, Ideals and subrings of the rings of coctinuous functions, C. R. URSS, 27 (1939).
- V. Šmulian, On multiplicative linear functionals in certain special normed rings, C. R. URSS, 26 (1940).
- 24) **M. H. Stone**, Application of the theory of Booleanr ings to general topology, Trans. Amer. Math. Soc., vol 41 (1937).
- 25) T. Tannaka, Über den Dualitätssatz der nichtkommutativen topologischen Gruppen, Tôhoku Math. Jrl., 45 (1938).
- 26) A. Weil, Sur les espaces à structure uniform sur la topologie générale, Actualités scientifiques et Ind., Paris (1938).
- 27) K. Yoshida, On the duality theorem of non-commutative compact groups, Proc. Imp. Acad. 19 (1943).
- 28) H. Yosizawa, Unitary representations of locally compact groups, Osaka Math. Journ., 1 (1949).