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0. Introdnetion. In this paper, we shall deal with arbitrary topological
groups by means of their Marko ff -extensions: the definition of an Marko ff -
extension is given in Section 1.

Generally speaking, though the representation theory in matric-algebras plays
an important role in studying topological groups,!> it becames occationally
meaning-less for some type of groups, which have no usual (nen-trivial)
representations ; as well known, minimally almost periodic groups are those.
However, the Markoff-extension seems to be useful for any topological groups.

Section 2 is devoted to an exposition of the relation between the represen-
tation of a topological group and those of its Markoff-extension. In Section 3,
we shall concern the duality theorem of any topological groups, which we would
rather call the co-duality theorem. Our theorem coincides with the famous one
of Tannaka and Krein2 in maximally almost periodic cases at all, but even if
a group is minimally almost periodic, ours may remain still useful.

This duality theorem is, on the other hand, considered as the representation
theorem in B-algebra, and the process from Theorem 4 to Theorem 5 gives one
proof for the Tannaka-Krein’s duality theorem.

The space of almost periodic functions is considerd as a commutative B*-
algebra. This investigation is done in Section 4.

Finally, in Section 5, we shall try the theorem of K. Iwasawa?® concerning
the group-rings as an interesting application of Markoff-extensions.

1. Preliminary theorem. We begin with the noted theorem of A. Markoff
and S. Kakutani on free topological groups.# That is stated as follows: For
any completely regular topological space T', there exists a free topological group
F with the following properties ;

1) Recently, Banach representation theory has been developed as in 13), 19), 20), etc. But
in them, groups are restricted in locally compact case.

2) T. Tannaka 24), and M. Krein 10).

3) K. Iwasawa 5) and 6).

4) A. Matkoff 11) and S. Kakutani 8).
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«) T'C[F],

B8) T generates F algebraically,

7) any continuous mapping ¢ of T' into any topological group ® is extended
up to the continuous homomorphism @ of F into ® such that

o(x)=¢(x)onT,
where [F] is the set of all elements of F with the same topology as F.

Now we always assume that G is a topological group, then G is a uniform
space with that topology, due to A. Weil,?> and is completely regular; so is the
topological space [G], where the brackets are used in the above sense.

We shall next consider a continuous mapping ¢ of [G] into G such that

¢(x)eeter = ¥uece  (identity mapping),

that is,

a1 $([GD =G-

Then according to the Markoff and Kakutani’s theorem mentioned above, we
can obtain’ a free topological group F such that;

(1.2) [G] generates F algebraically,

1.3) ¢(F)CG,
and

(14) [GIC[F].

Combining (1.1) with (1.3), we have

G = ¢([GDCTH(FICG»

that is,

(1.5) ¢(F) =G

Since F is a free topological group, F is maximally almost periodic (max,
a. p.); this fact is due to T. Nakayama.®> Then we conclude:

Theorem 1.7 For any topological group G, there exists at least one max-
a- p. topological group G, which has the following properties:

«) There exists a continuous homomorphism ¢ of Go onto G-

B) [GICGo and [G] is the group-generator of Go-

7) ¢ is invariant on [G], i-e.

#(x) =2 x€[G].

For a given topological group G, we can consider the family of all such Gy
and denote it by II,. Then it is certain that II; is not empty. For G, G; of

5) A. Weil 26).

6) T. Nakayama 14).

7) P. Samuel has proved that any topological group is the image of a free topological group;
in P. Samuel 17).
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I, if Gy is topologically homomorphic to G2, one writes G2:==G;. Thus Il4
forms a partly orderd set by this binary operation >, whose greatest extreme is
the free topological group.

Each element of IT, is called an Marko ff -extension of G, and if G(,:Gf, for
every Go with Gong, Go is called irreducible, while the rest reducible. A max.
a, p. topological group is obviously the irreducible Markoff-extension of itself.

Theorem 2. The homomorphism ¢, which is continuous, of an Marko ff-
extension Go of G onto G is further a open mapding.

Proof. Let H, be the kernel of homomorphism ¢. The natural mapping ¢ g
from Go to Go/ H, being topological, 7.e. continuous and open, an open set UoCGo
is mapped to an open set Un,CGo/Ho by ¢r, and Vo =¢§;(UH0) is also open
in Go-

Putting V¢ [G] = V¢, we shall prove that V¢ is open in [G]CG,. For an
arbitrary x € V¢, there exists an open neighborhood U(x) in G and also in [G];
while x being an element of V,, there must be an open set V(x) in V.

Since W(x) = V(%) "U(x) is not empty, W(x) must be an open set contained
in V¢. Thus, V¢ is open and hence

HUo) =¢(Vo) = (V)

must be open in G.

Corollary. Go/H, is topologically isomorphic to G, in the symbols;
(1.6) Go/Ho=G.

2. Representations and :x-Representations. Let Go be an (irreducible or
reducible) Markoff-extension of G and H, the kernel of the homomorphism ¢,

¢<GO> = G, i-e.
¢<H0) = €

where ¢ is the unit of G. We call such H, the Markoff-kernel of G,. Let
H,» be the restclass containg x, while H, the restclass which corresponds to «,
with respect to the factor-group Go/Ho,. Then we have immediately that H¢,
=H,.

We shall distinguish the group-operation of G, from that of G, writing che
former by x¢- %0 in Go and the latter by xy in G. while we denote the inverse of
%0 € Go by x;7! and that of x€ G in usual way, i.e. by x~1. Then we have
@n Hy-Hy = Hypy = Hyy = Heany -

We next denote the set of such elements, di fferences in a sense, that
(2.2) OCx1s X2s s Xn) = X0 L Xy XY XL X2 L X

A
for x,€G : n, k=1,2,..., by Hy, calling it the essential Markoff-kernel of Gy.
A
Obviously, HoC Ho. Furthermore we hold ;
lemma 1. I—AIO is the generator of H,.
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Proof. [G] being the group-generator of G, each xo€ H, is represented as

2.3) X0 =%1"%2...%n; %x€G,

and

(24) X1%2...%0 = €.

Then we see that

(25) %o = (%1 X2...%0 ) (X0 L+ 255 27 110, . 200 ) L

= .0 %1, X2r... » Xn)
A A
and 0(x1, %2 ...» %n) € Ho; that is, for each %, € H,,

we have
/\‘_1 A A
(2.5) %o = e-xg, %0€ Hy.
A
H, being a subset of H,, we have also
A Aroy Ar A . AAp
(2,6) %o=e-%o %o € Ho ; i-e. € = xo-%y»

and we see consequently xo = afc\o-%-?c[;“l. This proves the Lemma.

Let D(x0)» %0 € Go » be a continuous (irreducible) unitary -equivalent represen-
cation of Gy, i.e. a continuous normal representation in the sense of J, von
Neumann.®> Such D(xp) does not necessarily become a representation of G.
Then, we shall investigate the necessary and sufficient condition for D(x¢), in
order that it might be a continuous normal representation of G. If D(x0) is an
algebraic representation of G, the continuity of it on G is easily proved. Hence,
it is sufficient to restrict our treatments to purely algebraic ones.

Theorem 3. For a normal (irreducible) representation of Go» an Marko ff -
extension of G, the following three conditions are mutually equivalent ;

1) D(x0) = E for all x0€ Hy,

ii) D(x0) =E for all xo€ I/:\[o,

iii) D(x) is a normal (irreducible) representation of G,

where E is unit matrix with same dimension as D(xo) -

Proof of ii)iii.). iii)—ii) is clear. We show that, if D(x¢), x0€ Go, has
the property ii), D(x), x € G, forms a representation of G, We have easily

D(((x )) = D(y~t-x—t-xy)
=D(y~)D(x~)D(xy) = D(y)D(x)D(xy) = E ,
that is,
2.7 D(xy) = D(x)D(y)
for every x, y€ G, and consequently iii) is satisfied, providing D(e) = E,
Proof of i)ii). i)—ii) is clear. If ii) is fulfilled for D(x0), from Lemma

1, we have for every xo€ Ho
AN A A
X0 = X1°%2 ... ¥n ; %€ Ho -

Then we have,

8) J. von Neunann 15).
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D(x0) = D(x)OD(%2) ... D(xa)
=E-E..E =E.

Thus ii)—1i) is proved. This completes the proof of the theorem.

We now come to the desirable condition, under which the (irreducible)
normal representation of G, becomes that of G, but we shall pursue the study of
representations of G further.

If G has a continuous normal (irreducible) representation D(x), x ¢ G, putting
2.8 Do(x0) = D(x) for all xo€ H,,
it is easy to see that such Do(xo)> x0€ Go, is a continuous normal (irreducible)
representstion of Dy, and the condition (2.8) is characterised by only condition
such that,

(29) Do(xo0) = E for all xo¢ Ho.
These facts enable us to establish

Corollary. A necessary and sufficient condition for a topological group G
to have a continuous normal (irreducible) representation is that one of its
Marko ff -extension Go has a continuous normal (irreducible) representation
Do(%0), such that

D(x0)=E on Iu/l\o (or equivalenty on Ho)
where Ho is the essential Marko ff-kernel of Go-

Some topological groups have not any non-trivial representations, even when
they are locally bicompact or further Lie-groups; minimally a. p. groups are
those.

Now we shall define a new operation of matrices. Let G, be an Markoff-
extension of G and D(xe) a continuous normal (irreducible) representation of
Go- Markoff-kernel H, and H, (=x-H,) are defined as above. Then we define

(2.10) D(x0yxD(y0) = D(x0)D( y0)4(x, ),
where xo€ Hy» Yo € Hy and
(2-11) A(xp xz,...,xn)=D(5(x1, X2 ... y%n))-

For any x, y ¢ G, we have immediately
D(x)%D(y) = D(x)D(y)4(x> ¥)

= D(x)D(D(y = -x~texy)

= D(x-y-y~t-x"txp) = D(xp).
Thus D(x) becomes a kind of representation of G with respect to the operationx,
and, it is cartain, this representation is continuous. We call it a srepresentation
of G hased on Gg.

Theorem 4. A :u—representation D(x) of G based on G coincides with the

usual one, if and only if
i) A%, ¥) = E for all x, v€ G,
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or equivalently
i) D(x%0) = E on the(essential or not) Marko ff -kerner of Go -

All these facts together with the approximation theorem of Weierstrass-
Neumann bring us the considerations about a. p. functions on G.

Again, let Gy be an markoff-extension of G, and A(G,) the space of all
continuous complex-valued a. p. functions on G,, which becomes a B¥-algebra
as we see in the following.

If there exists such f¢ A(Gs), i-e. a. p. function in Gy, that all for xo, x(', €H,
and x€G,

(212) f(x0) = f(%0)»

the collection of all such f is denoted by A%Go) . It may consist of only constant
functions for some Gy, and if f¢ AA(GO), the translation of f by G, fa(xo) =
f(a-x0) for g€ G, must be contained in Af\(Go), too.

Now, we put, for f¢ A(Go),
(2,13) F(x) = f(%0)agecns -
Then we have:

Corollary. For any f¢€ fl(Go), 7 is a- p. on G. Conversely, if f is a- p. on G,
Fo(x0)» %0 € Gos which is defined by (2.13);

JSo(x0) = F(x) on each H,,
is a- p- on Go-

We complehend, consequently, that if G1==G» in II¢, there are no more a. p.
functions on G. than on G;. Especially, a. p. functions on G are contained in
those on Go, Go€ Il 4, in the above sense.

The totality of 7, f¢ A(Gy), coincides with A(G), i-e.

A
214 A(Gy) = A(G),
A
and if G is min. a. p., A(Goy) consists of only constant functions on G,. With
regard to the mean of an a. p. function, we may suppose and easily prove that

(215) . M,[7(x)]e = Mxo[f (%0)]s0 »
for every fe A(Go) -

3. Duality theorem and B-algebra.?” Let G be a topological group and Gy
an Markoff-extension of G respectively. M(G,) is complex B-space of all
bounded functions on G, with uniform norm || || = sup.|f(x0)| ; F€ M(Go)s %o € Gos
while D(Gy) a normed subspacz of M(G,) which is the set of all finite linear
aggregates of the elements of all irreducible mutually non-equivalent continuous
normal representations D“(xo) = (D¢(%)), i.e. the set of all Fourier polynomials
of D?(x0)» where {D“} is a complete (mutually non-equivalent) representation
system of finite degrees of Gy.

9) About B-algebras, see E. Hille 4), W. Ambrose 1), I. Kaplansky 9), etc.
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Now we see immediately that M(G,) itself is regarded as a B-algebra, while
D(Go) a normed subring. It is obvious that both M(G,) and D(G,) have the
same algebraic unit 7 with | 7| =1.

Further, S is the total operator ring on D(G,) with the norm |S| =

sup. | S-f |, that is, the set of all bounded linear operators on D(Gy), then &
Iri<1

itself is also a B-algebra, where D(G,) means the completion of D(G,) by uniform

norm in M(G,); D(G,) coincides with the set of ail continuous a. p. functions
on Go» A(Gy). Next, we consider the set of all regular elements S of &, which
have in addition
3D D S(f-8) =558

ii) S(f) = S(f), (bar means the conjugation)
and denote that by &. & is obviously a subset of S, but not a subalgebra.
However, & forms a group contained in S. In fact we have

(32) 81-S7H(f-8) = S1-S51(S2-S71(f)-S2-S7%(g)) = S1-S5-S2(S33(Sf )-S7 (g
=S1(S7H(f)-S;%(&)) = S1S7 X f )-S187 (&)
(83)  S1-S71(F) = S1-S5(SaS; () = S1-S51-82(S71(f)) = Si(S7 1 )
=S5:-Sz(/)

Lemma 2. For each S¢&, |S| =1.
Proof. From (3.1), i), we have for unit function 1 € A(G,)

(3.4) S(1)=1,

and 1 =12 =]8(1)|<L[|S]- On the other hand, for every f¢cA(G,) with

| £ <1, we have - .
ISCHOT=1SHSCHI=1SCfHSUHI

=[S(f-HIZLIST.

and hence | S| 2< | S|, that is | S| < 1. This completes the proof of Lemma.

© is not void, since every S,, or .S is contained in &, where S, or 4,S

is a translation operator such that

(3.5 Saol f) = =f(%o-a0) resp. o S(f) = S(as'-x0)

for ao, x0€ Go. Denoting the totality of such S, or apS by Sg, OF ¢,S, we see

that &g, or ¢,© is a group which is algebraically isomorphic to G,. The

isomorphism is directly ontained from the maximal almost-periodicity of G .

Though & has norm-topology, we introduce another topology, z.e. a weak topology

in & such that a neighborhood U f2 ... fu;¢) is defined as

U30<f1’ fz, fn ie)

(3.8) = {Slf I SCf )= Se(Sf) [<eb

for j:“]» 2:... s N

From Lemma 2, we have
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3D Is(fHl=1,

for every S€ & and f with | f| < 1. If S==S’, there exists f, with | fo | <1 such
that S(fo)=4=S'( fo). Then, due to A. Tychonoff,1> & turns out to a bicompact
group with the weak topology, and &g, is algebraically isomorphic and continuous
image of G,. According to the normal subgroup (the Markoff-kernel) H, of Gy,
there exists a normal subgroup Sj)go of &g, such that @go/@go is the algebraically
isomorphic and continuous image of Go/Ho ; i-e.

(3.8) : G=Go/Ho = S¢y/Ds,-
(a1 isomorph.) (al. isomorph.)
homeomorph. continuous.

Denoting the commutor of ¢® in S by &,, we conciude:

Theorem 5. (Generalized Duality and Representation Theorem) With the
definition above, we hold ; for any topological group G,

i) &, is a bicompact group in a B-algebra (operaor-algebra),

ii) there exists an algebraically isomorphic and continuous mapping ¢ of
G onto S¢ such that 9+xSq is a dense sub-group of S for a suitable normal
sub-group 9 of DS (i.e.=Cgp).

iii) if G is max. a- p-» ¢ is a continuous isomorphism of G onto a dense
sub-group S¢ of ©o, and if G is bicompact, G is continuously isomorphic to S,
itself. )

Here, AxB means a group-extension & of B by I, such that G/A="=2.

To completes the proof of this theorem, it remains for us to prove the
denseness of PxSy in &,. iii) is a direct result of it. However, we shall remark
it soon after.

For each S¢€ &,, we put
(39) S(f)=(S-f)e); for fc A(Gy), e=unit of Gy,
and get the set &, of such linear functionals S.
Lemma 3. &, is algebraically isomorphic to S.
If Si=1:S; in &y, there exist f€ A(Gy) and x, € Gy such that
(S1-f Xx0) == (Sa-f Xx0) >
and putting Se-f= g,
S« @) = (Si-gXe) = (Si-Seof Xe)
= Si-f(%0-¢) = Si-f (x0), for i =1, 2.
It implies that S~1<g>‘\‘~§z< g) from (3.8), thus &, and S, are one-to-one corres-
ponding.

Now we define the product in €, by

10) An excellent proof has been obtained by C. Chevalley and O. Frink, Bull. A.S.S. 47 (1941).
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————

(3.10) 5,-5; = S:-S:»
and get the algebraic isomorphism between €, and &,, j.e. €, is a group which
is isomorphic to &,.
Particularly, (3.9) is realized for D(ux,) as the form such that
(3.11) 5,-854(Dis) = %SI(Dik>§2<Dk1) )
where D(xo)=(Di(x0)) -

We next introduce a weak topology in &, by such the way that ; a neighbor-

hood U~§0 (S1s for-oos fu; &) is defined as

(312) U5, = 1S 1305 -8 Ml <e},

Jor 7 =1, 2,..., n. Then the correspondence of &, onto éo is continuous and éo
is bicompact. Of course, the inverse correspondence of &, onto &, is also continu-
ous 7.e. ©;, and éo are isomorphic.

Then we can modify the Theorem 5 as follows:

Theorem. 6. Usual Duality Theorem) For any topological G, there exists
an algebraically isomorphic and continuous mapping ¢ of G onto S, for which
9484 is a dense subgroup of a bicompact group So for suitable Hs- If G is
max- a- p., J(G)-——C%G and if G is bicompact, %(G)———éo-

Proof of the denseness of égo———ﬁg*@g in ©: As G, is max. a. ., from
Theorem 7 later, we have

(313) A(G)~C(&,) (in norm-preserving fashion).

If égo is not dense in &,, there exists a point @ in éo—@go (@Go being
the closure of égo). By Uryschn’s theorem, there exists a function f¢ C(@go)
such that

(3.14) Flpy=| B e=eo

L0, if ¢ is in &g, .
But this is contradictory with (3.13). Thus, the denseness is proved, and more-
over that in Theorem 5 is also complectely verified.

Remark 1: This duality theorem is of the Tannaka-Krein’s type and if G
max. a. p., it is exactly the Tannaka-Krein’s one.ll

But in general cases, the homomorphism are just in the opposite directions
one another; in Tanaka-Krein’s theorem the direction of homomorphic mapping
is of G to G° (=a certain group of functionals on A(G)), while that of ours is

of G'(=&,) to G.

11) T. Tannaka 25) and M. Krein 10), loc. cit. An excellent and plain proof is shown by
K. Yosida 27). Also see 1. E. Segal 20).
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For this reason, Tannaka-Krein’s theorem concerns with the very case that G
has a representation, but even when G is minimally a. p., our theorem has still
a meaning.

Remark 2: The bicompact group &, is directiy characterized by the set of
all linear multiplicative bounded functionals on A (G,), which is denoted by R&.
Using a neighbourhood Ugo(f‘}fg,‘.., IR e) for Je R, f0€ A(Go) with [f] <1, j
=1, 2,..., n, such that
(3.15) U'go = {0 €R [o(/D— e SDI<e}s
® turns to be a weakly bicompact Handdroff space. We can easily verify that such
neighbourhood system {U,,} is equivalent to that of {U,}, which is definedby
(3.16) Upo(Sf1s foroos fas €)

= o e Rle(fD— e (fDI<et s
where f;¢ A(Gy) for j=1, 2,..., n, whosz norm is not necessarily <1. This
implies that f(¢)=¢(f), f€ A(Go), ¢ € R, is (uniformiy) continuous on §.

From Lemma 4 stated later, we have A(Go)=C(R) where C(R) is the
B-algebra of all continuous functions on . This fact together with Theorem

7 later implies

(317) C(Ey) ~C(®)
in an algebraic and norm preserving fashion. From (3.15), it foliows that & is
homeomorphic to C%o .

The linear multiplicative bounded functionals are studied by Ve §mu1ian, I
Gelfand, E. Hille, etc.!2> Our further investigations of them will appear in
another paper.

Remark 3. For a locally compact group, its irreducible representation
theorem is given by Gzlfand-Raikov, I. E. Segal, G. Mautner, and H. Yogizawa,1®
But our representation (Theorem 5) is complete only if the group is max a. p.
The gap hetween these two representatious has been filled up in any case.

4. B¥-algebra of a. p. functions. The space of all continuous a. p. functions
on G, A(G), is not only a B-algebra, hut also a commutative B*;a]gebra with
the norm conditiond;

4.1 Wfrxl=1r
(4.2) LAl =1r*]
that is, a B*-algebra in the sense of C. E. Rickart and I. Kaplansky.1¥ Asg *-
operation, we have only to put f* = 7 (conjugate)

.

DA

12) V. Smulian 23), and E. Hille, Proc. Nat. Acad. Sci., 30 (1944) and 4).
13) 1. Gejfand and D. Raikov, Math Sbhornik, 13 (1944).

I. E. Segal 20), G. Mautner 12), and H. Yoshizawa 28).
14) C. E. Rickart 16) and I. Kaplansky 9).
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Suppose that Go is max. a. p. and C%Go, C%o have the same meaning as in the

preceding. Then, for S¢ &, the function
(43) fH=Kf)  feAG

is a (uniformly) continuous function on &,. Thus, A(G,) is a subring of C(Sy),
the B*-algebra of all continuous complex-valued functions on S,.

Lemma 4. (Stone-Rickart) If for every pair of points S, S’ in a bicompact
space ©, there exists an element f of the subring o of C(&) such that f(s)
=1 (s")s then Ne=C(S).

Originally, G. Silov1s proved this Lemma under the condition that © is
hicompact and metric. and later M. H. Stonel® proved for real C(&).

Theorem 7. For max- a- p- Go,» we have

(4.4) A(Go) = C(&y).

Denoting the set of all maximal ideals of A(Ge) by M, Gelfand-Neumark1®
proved that

4.5) C(Ms) = A(Go) »
Then, we have
Corollary. we hold for max. a. p. Go,
(4.6) C(Ep) = C(Mg,) -
Again, let G, be an Markoff-extension of G. As in the preceding mentioned,

we hold R -
4.7 A(G) = A(Go)CA(Go) = €(&0) -

Now, according to Silov and Rickart, we decompose &, to the direct sets
(the continuous decomposition in the sense of P. Alexandroff)

(4.8) o=@ I(s)»
where .
(49 L(s) = {s’ | f € A(G,) impiles f(s) = f(s')}.

Denoting the unit of C;‘;o by s., we see immediately that L(s,)=L, is a closed
normal subgroup of C%o such that
(4.10) Q@ ~ G/ L,

where € = {L(s)}, and moreover LoC9s (the closure of £, in &,). Owing to
Rickart, we have

(4.11) C(2) ~ A(Go)

15) G. Silov 22).

16) M. H. Stone 24).

17) Gelfiand and §Iov, Rec. Math,, N. S. 9 (1941) and C. Rickart 16), loc. cit.
18) I. Gelfand-M. Neumark 3).
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and hence
(4.12) C(&/ L) = C(2) = A(Gy) = AG) -

Consequently, we come to the extended formula of Theorem 7 as follows;

Theorem 8. For any topological group G, there exists a bicompbact
topological group ®g such that

A(G) = C(8)
in the norm preserving fashion: With the same definitions of ©o and Lo as in
the preceding, O¢ is written in the form; Se=So/Lo -

This theorem together with the preceding theorem has the same meaning as
the representation theorem of a commutative B*-algebra in the sense of I. E.
Segail®, I. Kaplansky2?®, and R. V. Kadison2?, which is written in the form :
A(G)=C(X) for a suitable bicompact Hausdorff space X.

Next we consider a Lebesgue integral on &, with respect to the Haar’s
measure s on it;

(413 W= 7%a) dmiad.

for every f¢ A(G) with the corresponding f° in C (@) and S dm(a) = 1.

G itself being considered as the group of measure-preserving automorphisms o*®
[S¢], for each ay€ G, we have

(4.14) HSaf )= foaa) dm(a)

= | fa) amlaz'a) = | foX@ddm(a) = (1),

that is, u(Saof ) = u(f). It is clear that, for f~(x) = f(x~1), we hold x(f-)
= pu(f). These implies that u(f) satiffies the all properties of a mean value
in A(G), and from the uniqueness of mean values2?’, we get

Corellary. The mean value 1 f) of an element (a. p- function) of A(G)
is represented in the form:;

K= e amia).

Theorem 8, with the Corollary, has been otherwise prouved in I. E. Segal 19).

5. Application to locally compact cases. Group-algebras. In this section, we
shall restrict ourselves in the case that G is locally bicompact. We begin by
defining the group-algebra L(G) of G in the sense of L. E. Segal?® with respect to
the right-invariant Harr’s measure on G ; the multiplication and the norm are
respectively defined as follows:

19) I E. Segal 20), about C*-algebras.

20) I. Kaplansky 9), loc. cit.

21) R. v. Kadison 7).

22) J. von Neumann 15), S. Bochner and J. von Neumann 2), and further W Maak 12).
23) 1. E. Segal 18), 19).
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rxg={ 1y g ay and 171 =17l

2
o

Let Go be an Markoff extension of G, and D(x,) a complex irreducible con-
tinuous normal representation of Go. Then 4(X1> X2s...»%n); %15 X2s---»%2) €G,
is a continuous function on GXG:-xG (x times); cf. (2.11). Now we define that

DCX D)X DCf )
(5.1) = ([ [ A Ao e fuCond>- Dy D o D)

GY GX e G
[ERg—
n

dxldxz ... d%Xn>
= SSSle(xQ'sz(xz)an<x)4(x1, X2 ... Xn)

GXGXee XG

et
n

dxidx ... d%ns

where f;. € L(G), fu-D(xx)=rfulxx)-D(xx)-
Since 4(x)=1 for x¢€ G, we see immediately that, when » =1,

(5:2) D(f) = 7GOD() dx.
and for complex numbers «, 3, ’

(5.3) D(af+Bg)=uD(f)+BD(g)
GXY) IDHIT=M?111,

where | D | means the usual norm of matrices, i.e. | D | =(X|D;;|2)V2, and M?
i,)

depends upon D only. (5.4) comes from the fact that each |D;;| is bounded.
We generate a normed ring R,(L(G)), or briefly R,(L), from D( ), fe L(G),
by the usual addition of matrices and the multiplication (5.3).
Then we assert:
Theorem 9. R,(L) iS continuously homomorphic to ILG).
To prove the theorem, we have only to show thar D(f)xD(g)=D(fx g).
In fact, we hold;

D(f)xD(g) =\ \F(x)-g(x)D(x)D(») 4 x, ) dxdy

Q{,}

;
|

Qre R

Fxy=Dg(»D(xy~ DDA xy~1, y)dxdy

X

i

Sf(xy"1>g(y)D(xy‘1-y>D(y"1-<xy"1)'71x>dxdy

X

i

D(x)\ f(xy~Vg(y)dydx

ﬁL/ﬁ

Ixg(x)D(x)dx = D(fx g).

)
§
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Let ¢(x1, x2) be a complex continuous function on GXG, then we have
Lemma 5. If we hold

(55) [ [ A fuanean xdandz. =0

a@x6G
for arbitrary fr€(G), k=1, 2, it must be ¢(x1, %2) for any %z €G-
Remark. This lemma is easily extended to the case that ¢(xi, xa2,...s %n)
is continuous on GXGX ... G, and

(5.6) S SS A(x1) folwe) - falmn)d(x1s %25 oon s Xn)

GXGX e X G
dxy dxs ... dxn = 0
Proof of Lemma. ¢ being real at first, the set Py of such points in GXG
that ¢< o is open. For any points p(x;, x2)€ Py, we can select a neighborhood
of xx, Ur = U(x1), in G, such that the open rectangle U;xU2C Py -
For each Uy, we can find a neighbourhood V=V (x;)C Uy, whose closure
V' is bicompact, then V,xV2CPy.
Now we define a characteristic function f, of (the compact carrier) V4, as

fx in (5.7), such that
(5.7 79— [1on Vi
10 on G--Vy

then it is necessarily that each f, belongs to L(G) and

|

Gx

fg(xl)fg(xﬂ‘ﬁ(xls x2,)dx1d %

D Gy

= { {91 22) s dx>0
let;z X
This is contradictory with (5.7); that is, Py is necessarily of measure 0 on
G xG. Withrespect to Ny which is the set of such points that ¢<0, we go analo-
gously as above, adopting a negative characteristic function as f¢, and at last
hold that Ny is also of measure 0. Thus ¢ =0 identically: If ¢ is complex,
decomposing it to ¢1+i¢, (¢1 and ¢, are real), we can leasily obtain the Lemma.
Now, we put
(5,8) Op(x15> %2) = D(x1) X D(x2)— D(%1)D(%2) »
for 1, x2€ G, and @p=(¢f). If D(/D)XD(f)=D(f1DD(f2) for any fe€L(G),
k =1, 2, we have
S Sfl(xl)fz(x2)wl)<xl’ x2) dxidx2 =0,
GX @&
and, from Lemma 5, we assert that ¢,=0 (0-matrix with same degree as D), i.e.
D(x1)D(x2)d(%15 x2) = D(x1)D(%2) »
namely
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(G2 A(x15 x2) = E.
Owing to Section 2, (5.9) shows that such D(x) is nothing but the representation
of G.

Then we get easily the equality D(f1)XD(f2)X - x D{(f2)=D(f1)D(f2)-..L{f2)
for arbitrary f3<¢(G) and »; k=1, 2,..., n.

Theorem of Iwasawa.2® The continuous normal representations of G
and the continuous representations of L(G) are one-to-one corresponding by the
relation

D(f) = | 7D

G

All these circumstances convince us of some analogy between the x-operaticn
in the representation of G and the x-operation in that of L(G) and corresponding
to the corollary in Section 2, we hold

Theorem 10. A x-representation of Rp(L(G)) coincides with the usual one,
that is, the representation by the matric-algebra, if and only if D(x) is a con-
tinuous normal representation of G. Ewvery finite rep. of L(G) is a special
x-rep. as ubove.

Remark: A shorter proof of the Iwasawa’s theorem will soon appear
elsewhere.
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