Journal of the Institute of Polytechnics, Osaka City University, Vol. 2, No. 2, Series A

Some Relations in Homotopy Groups of Spheres

By Hirosi Toda

(Received Dec. 15, 1951)

Introduction

It is well known that the suspension (*Einhängung*) homomorphism $E: \pi_n(S^r) \rightarrow \pi_{n+1}(S^{r+1})$ is isomorphism if n < 2r-1 [3] [1].* In recent years, G. W. Whitehead has shown that the kernel of the suspension homomorphism E is the subgroup generated by whitehead product, if n=2r-1 [9, §7].

In this paper we shall calculate some special whitehead products, and indicate some non-trivial suspension homomorphisms. For example, in cases where n=r+4 (r=2, 4, 5) and n=r+5 (r=2, 4, 5, 6) E is not isomorphic, and also we obtain non-zero elements of $\pi_{4n+10}(S^{2n+4})$ and $\pi_{4n+22}(S^{2n+8})$ (n=0, 1,), whose suspension vanish.

1. Notations

We shall use the notations analogous to those of G. W. Withehead [9, 1]. Define

$$S^{n} = \{(x_{1}, \dots, x_{n+1}) | \sum x_{i}^{2} = 1\},$$

$$E_{+}^{n} = \{x \in S^{n} | x_{n+1} \ge 0\},$$

$$I^{n} = \{(x_{1}, \dots, x_{n}) | -1 \le x_{i} \le 1\},$$

$$\dot{I}^{n} = \{(x_{1}, \dots, x_{n}) | \Pi (1 - x_{i}^{2}) = 1\},$$

$$J_{+}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \ge 0\},$$

$$y_{+} = (1, 0, \dots, 0),$$

$$S^{n} \vee S^{n} = S^{n} \times y_{+} \lor y_{+} \times S^{n} \subset S^{n} \times S^{n},$$

$$E_{-}^{n} = \{x \in S^{n} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x \in \dot{I}^{n+1} | x_{n+1} \le 0\},$$

$$U_{-}^{n} = \{x$$

as sub-spaces in the euclidean spaces of suitable dimensions.

Define the mapping $d_n: S^n \times I^1 \rightarrow S^{n+1}$ as in [9, §1], which is characterized by the following properties:

 $d_n \operatorname{maps} (S^n - y_*) \times [0, 1)$ topologically on $E_+^n - y_*$, $d_n \operatorname{maps} (S^n - y_*) \times (-1, 0]$ topologically on $E_-^n - y_*$, $d_n (S^n \times \dot{I}^{1 \cup} y_* \times I^1) = y_*$, and $d_n (x, 0) = (x, 0)$.

We also define the mapping $\varphi_n: S^n \to S^n \vee S^n$ as in [9, §1], which maps subspaces $S_0^{n-1} = \{x \in S^n | x_2 = 0\}$ to the point $y_* \times y_*$ and elsewhere topologically preserving orientation.

We denote the point $(tx_1, ..., tx_n)$ by tx, where $x = (x_1, ..., x_n)$ and t is a real number.

^{*} Numbers in blackets refer to the references cited at the end of the paper.

Let $\rho_n: S^{n-1} \to \dot{I}^n$ be the central projection such that $\rho_n(x) = x/r$, where $r = \operatorname{Max}(x_1, \ldots, x_n)$. Clearly we have $\rho_n(S^{n-2}) = \dot{I}^{n-1}$, $\rho_n(E_+^{n-1}) = J_+^{n-1}$, $\rho_n(E_-^{n-1}) = J_-^{n-1}$ and $\rho_n(y_*) = y_*$.

Define

$$\varPhi_{p,q}(x, y, t,) = \begin{cases} ((1-t)x, y) & 0 \leq t \leq 1, \\ (x, (1+t)y) & -1 \leq t \leq 0, \end{cases}$$

Then $\mathscr{O}_{p,q}$ is continuous and topological for $t \in \text{Int. } I^1$, and satisfies the conditions $\mathscr{O}_{p,q}(\dot{I}^p \times \dot{I}^q \times [0,1]) \subset I^p \times \dot{I}^q$, $\mathscr{O}_{p,q}(\dot{I}^p \times \dot{I}^q \times [-1,0]) \subset \dot{I}^p \times I^q$, $\mathscr{O}_{p,q}(x, y, -1) = (x, y)$, (1.1) $\mathscr{O}_{p,q}(x, y, 1) = (0, y)$, $\mathscr{O}_{p,q}(x, y, -1) = (x, 0)$.

With our notations we can construct some mappings:

- i) Suspension of $f: S^n \to S^r$ is given by $Ef(d_n(x, t)) = d_r(f(x), t), x \in S^n$.
- ii) Join of maps $f: I^p \to I^r$ and $g: I^q \to I^s$ is given by

$$(f*g)(\emptyset_{p,q}(x, y, t))=\emptyset_{r,s}(f(x), g(y), t), \qquad x\in I^{p}, y\in I^{q}.$$

iii) Hopf construction of $f: \dot{I}^p \times \dot{I}^q \rightarrow S^r$ is given by

(1.2)
$$Gf(\emptyset_{p,q}(x, y, t)) = d_r(f(x, y), t), \quad x \in \dot{I}^p, y \in \dot{I}^q.$$

iv) Whitehead product of $f:(I^p, \dot{I}^p) \rightarrow (X, x_*)$ and $g:(I^q, \dot{I}^q) \rightarrow (X, x_*)$ is given by

$$[f,g] (\boldsymbol{\varrho}_{p,q}(x,y,t)) = \begin{cases} f((1-t)x) & 0 \leq t \leq 1, \quad x \in \dot{I}^{p}, \\ g((1+t)y) & -1 \leq t \leq 0, \quad y \in \dot{I}^{q}, \end{cases}$$

It is easily verified that the above constructions are single valued and hence continuous, and that they coincide with those of $[9, \S 3]$.

It was shown in [9, $\S3$] that

(1.3)
$$(f * g) \circ (f' * g') = (f \circ f') * (g \circ g')$$

(1.4)
$$[f,g] \circ (f' * g') = [f \circ E(f'), g \circ E(g')].$$

We shall use the following theorems due to G. W. Whitehead [8].

$$(1.5) E[a, \beta]=0.$$

(1.6) If $f: \dot{I}^{p+q} \to X$ satisfy the condition $f(\dot{I}^p \times \dot{I}^q) = x_*$, then f is homotopic to the map $f_1 + f_2 + [g_1, g_2]$, where

$$f_1(\phi_{p,q}(x, y, t)) = f(\phi_{p,q}(x, y, (t+1)/2))$$

$$f_2(\phi_{p,q}(x, y, t)) = f(\phi_{p,q}(x, y, (t-1)/2))$$

and $g_1: (I^p, \dot{I}^p) \rightarrow (X, x_*), g_2: (I^q, \dot{I}^q) \rightarrow (X, x_*)$ are given by

$$g_1((1-t)x) = f(\emptyset_{p,q}(x, y_0, t)) \qquad 0 \le t \le 1, \ x \in \dot{I}^p,$$

$$g_2((1+t)y) = f(\emptyset_{p,q}(x_0, y, t)) \qquad -1 \le t \le 0, \ y \in \dot{I}^q,$$

for fixed points $y_0 \in \dot{I}^q$ and $x_0 \in \dot{I}^p$.

72

2. Hopf and Frendenthal invariants

For all values of n, r > 1, we can construct a Hopf homomorphism H_1 : $\pi_n(S^r) \to \pi_{n+1}(S^{2r})$. According to [9, §4] we have direct sum decomposition $\pi_n(S^r \vee S^r) \approx \pi_n(S^r) \oplus \pi_n(S^r) \oplus \pi_{n+1}(S^r \times S^r, S^r \vee S^r)$. Let

(2.1)
$$Q: \pi_n(S^r \vee S^r) \stackrel{Q}{\underset{\partial}{\Rightarrow}} \pi_{n+1}(S^r \times S^r, S^r \vee S^r)$$

be the projection, then its right inverse is boundary operator ∂ in the sense that $Q \circ \partial = identity$.

Let $\Psi_r: (E^{2r}, E^{2r}) \rightarrow (S^r \times S^r, S^r \vee S^r)$ be the map given in [9, §1], such that Ψ_r maps Int. E^{2r} topologically onto $S^r \times S^r - S^r \vee S^r$. Since $S^r \times S^r - S^r \vee S^r$ is an open cell, we can construct a map $\theta_r: (S^r \times S^r, S^r \vee S^r) \rightarrow (S^{2r}, y_*)$ such that θ_r maps $S^r \times S^r - S^r \vee S^r$ topologically onto $S^{2r} - y_*$, and the composite mapping $\theta_r \circ \Psi_r: (E^{2r}, E^{2r}) \rightarrow (S^{2r}, y_*)$ presserves orientation.

Then the composite homomorphism

(2.2) $\theta_r \circ \Psi_r \circ \partial^{-1} : \pi_n(\dot{E}^{2r}) \to \pi_{n+1}(E^{2r}, \dot{E}^{2r})$ $\to \pi_{n+1}(S^r \times S^r, S^r \vee S^r) \to \pi_{n+1}(S^{2r}, y_*).$

represents the suspension hommorphism.

Now we define the Hopf homomorphism $H_1: \pi_n(S^r) \rightarrow \pi_{n+1}(S^{2r})$ by the composite homomorphism

$$(2.3) \quad H_1 = \theta_r \circ Q \circ \varphi_r : \pi_n(S^r) \to \pi_n(S^r \vee S^r) \to \pi_{n+1}(S^r \times S^r, S^r \vee S^r) \to \pi_{n+1}(S^{2r}).$$

Let $H = \Psi_r^{-1} \circ Q \circ \varphi_r$ be the Hopf homomorphism in the sense of [9], [10], then we have $H_1 = E \circ H$ by (2.2). Since E is isomorphic for $n \leq 4r - 4$, H_1 is equivalent to H.

Also we can define *Freudenthal invariants* for all values of n, r > 1. Consider the element ξ of triad homotopy group $\pi_{n+2}(S^{r+1}; E_+^{r+1}, E_-^{r-1})$ as a nullhomotopy of suspension $\Delta(\xi) = \partial \beta_+(\xi) \in \pi_n(S^r)$, where β_+ and ∂ are boundary operators of triad and relative homotopy groups [1]. According to §6 of [9] we define two homomorphisms

 $\Lambda_{0'}, \Lambda_{0''}: \pi_{n+2}(S^{r+1}; E^{r+1}_{+}, E^{r+1}_{-}) \to \pi_{n+3}(S^{r+1} \times S^{r+1}, S^{r+1} \vee S^{r+1}),$

and define Freudenthal invariants of ξ by

(2.4) $\Lambda_1'(\xi) = \theta_{r+1} \circ \Lambda_0'(\xi) \quad \text{and} \quad \Lambda_1''(\xi) = \theta_{r+1} \circ \Lambda_0''(\xi)$

Then Λ_1' , $\Lambda_1'': \pi_{n+2}(S^{r+1}; E_+^{r+1}, E_-^{r+1}) \rightarrow \pi_{n+3}(S^{2r+2})$ are Freudenthal homomorphisms of our sense.

We shall use the following theorems similar to those of \$, 5,7 of [9] without restriction of dimension.

(2.5) Let $f: \dot{I}^p \times \dot{I}^q \rightarrow S^{n-1}$ be a map of type (a, β) , then the Hopf invariant of G(f) is given by

(2.6)
$$H_1(\{G(f)\}) = (-1)^r E(a * \beta), \\ H_1(E(a)) = 0.$$

(2.7) Let $a \in \pi_n(S^r)$, $\beta \in \pi_r(S^s)$, and let a=E(a') for some $a' \in \pi_{n-1}(S^{r-1})$ (more generally if Q(a)=0), then we have

$$H_1(\beta \circ \alpha) = H_1(\beta) \circ E(\alpha)$$
.

(2.8) If $\alpha \in \pi_n(S^r)$, $\beta \in \pi_m(S^r)$, then

$$H_1[E(\alpha), E(\beta)] = \begin{cases} 0, & \text{if } r \text{ is even,} \\ 2E(\alpha * \beta), & \text{if } r \text{ is odd.} \end{cases}$$

(2.9) If $u \in \pi_n(S^r)$, and $i_{2r} \in \pi_{2r}(S^{2r})$ represents the identity map, then

$$H_1(a) = (-1)^r i_{2r} \circ H_1(a)$$

(2.10) If
$$\xi \in \pi_{n+2}(S^{r+1}; E^{r+1}_+, E^{r+1}_-)$$
, then

$$\Lambda_1'(\xi) - \Lambda_1''(\xi) = (-1)^r EEH_1(\mathcal{A}(\xi)).$$

(2.11) If $\xi \in \pi_{n+2}(S^{r+1}; E^{r+1}_+, E^{r+1}_-)$, then

$$\Lambda_{1'}(\xi) = (-1)^{r+1} i_{2r+2} \circ \Lambda_{1''}(\xi).$$

(2.5) follows from the similar argument as the proof of Theorem 5.1 of [9] and (2.2). (2.6) is a direct consequence of the proof of Theorem 5.11 of [9].

To prove (2.7), we calculate $\varphi_s(\beta \circ \alpha)$ according to the proof of Theorem 5.19 of [9], and get the following equation

$$(\hat{o}'Q'\varphi_s(\beta))\circ \alpha = \partial Q\varphi_s(\beta\circ\alpha),$$

where ∂'_{i} , Q'_{i} , ∂_{i} , Q are the corresponding operations in (2.1). Let $\partial_{0}: \pi_{n+1}(E^{r+1}, E^{r+1}) \rightarrow \pi_{n}(S^{r})$ be the boundary homomorphism, then

$$(\partial' Q' \varphi_s(\beta)) \circ a = \partial(Q' \varphi_s(\beta) \circ \partial_0^{-1}(a)).$$

Since ∂ is an isomorphism, we have

$$Q\varphi_{s}(\beta \circ \alpha) = Q'\varphi_{s}(\beta) \circ \partial_{0}^{-1}(\alpha),$$

so that by (2.3) we have

$$H_1(\beta \circ \alpha) = \theta_s Q \varphi_s(\beta \circ \alpha) = \theta_s(Q' \varphi_s(\beta) \circ \hat{\partial}_0^{-1}(\alpha)).$$

Another direct calculation shows

$$\theta_s(Q'\varphi_s(\beta) \circ \partial_0^{-1}(\alpha)) = \theta_s Q'\varphi_s(\beta) \circ E(\alpha) = H_1(\beta) \circ E(\alpha)$$

To prove (2.8), we use the fact $\alpha * \beta = E(\gamma)$ for some γ , and $H_1[i_r, i_r] = 2i_{2r}$. Then (2.8) follows from (1.4) and (2.7).

Let $\sigma_r: (S^r \times S^r, S^r \vee S^r) \rightarrow (S^r \times S^r, S^r \vee S^r)$ be the map given by $\sigma_r(x, y) = (y, x)$, then by (4.22) of [9] we have

$$Q(\sigma_r(\alpha)) = \sigma_r Q(\alpha)$$

where $\alpha \in \pi_n(\mathbf{S}^r \vee \mathbf{S}^r)$. And further calculations show

$$(-1)^{r} i_{2r} \circ \theta_{r} Q(\alpha) = \theta_{r} \sigma_{r} Q(\alpha) = \theta_{r} Q(\sigma_{r}(\alpha)).$$

Then (2.9) and (2.11) are verified by the similar arguments of Theorem 5.49 and 7.28 of [9] respectively.

To prove the formula of (2.10) we consider the relation between the operation A in [9, §7] and θ . We can show the equation

$$\theta_{r+1} \circ A = (-1)^r EE \circ \theta_r$$
,

so that (2.10) is a direct consequence of Theorem 7.8 of [9].

3 Lemmas

If $f: \dot{I}^{p} \times \dot{I}^{q} \rightarrow S^{r-1}$ is given, we construct a right suspension $E'f: \dot{I}^{p} \times \dot{I}^{q+1} \rightarrow S^{r}$ by the rule

$$E'f(x, y_1, \dots, y_{q+1})) = \begin{cases} d_{r-1}(f(x, (y_1, \dots, y_q)), y_{q+1}) & if \ y \in \dot{I}^q \times I^1, \\ y_* & if \ y \in I^q \times \dot{I}^1. \end{cases}$$

If f is homotopic to g, then E'f is homotopic to E'g. Also we have

$$(3.1) E'f(\dot{I}^p \times J^q_+) \subset E^r_+, \ E'f(\dot{I}^p \times J^q_-) \supset E^r_-, \ E'f(\dot{I}^p \times \dot{I}^q_-) = f_q$$

and any map satisfying the condition (3.1) is homotopic to E'f.

LEMMA (3.2)
$$-G(E'f) \simeq E(G(f))$$
.
LEMMA (3.3) If $f(x, y) \equiv F(x)$, then $G(f) \simeq 0$.

Proof of (3.2). Let

$$\begin{split} K^{p+q-1} &= I^p \times I^q \times (1) \cup I^p \times I^q \times I^1 \cup I^p \times I^q \times (-1), \\ H^{p+q}_+ &= I^p \times I^q \times (1) \cup I^p \times I^q \times I^1, \\ H^{p+q}_- &= I^p \times I^q \times I^1 \cup I^p \times I^q \times (-1), \end{split}$$

be the subspaces of $\dot{I}^{p+q+1} = (I^p \times I^q \times I^1)$, then H^{p+q}_+ , H^{p+q}_- are closed (p+q)cells and we have $H^{p+q}_+ \cup H^{p+q}_- = \dot{I}^{p+q+1}$, $H^{p+q}_+ \cup H^{p+q}_- = K^{p+q-1}$.

Let us give the homeomorphism $\eta: \dot{I}^{p+q} \rightarrow K^{p+q-1}$ by

(3.4)
$$\eta(\boldsymbol{\vartheta}_{p,q}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{t})) = \begin{cases} ((-2t+2)\boldsymbol{x},\boldsymbol{y},1) & 1/2 \leq t \leq 1, \\ (\boldsymbol{x},\boldsymbol{y},2t) & -1/2 \leq t \leq 1/2, \\ (\boldsymbol{x},(2t+2)\boldsymbol{y},-1) & -1 \leq t \leq -1/2, \end{cases}$$

Then we can extend η throughout \dot{I}^{p+q+1} homeomorphically such that

(3.5)
$$\eta(J_+^{p+q}) \subset H_+^{p+q}, \quad \eta(J_-^{p+q}) \subset H_-^{p+q}$$

because K^{p+q-1} bounds the cells H^{p+q}_+ and H^{p+q}_- . As is easily seen, the map $\gamma: \dot{I}^{p+q+1} \rightarrow \dot{I}^{p+q+1}$ preserves the orientation.

Let $G(E'f): \dot{I}^{p+q+1} \rightarrow S^{r+1}$ be given. Define the map $g: \dot{I}^{p+q+1} \rightarrow S^{r+1}$ as follows,

$$g|\dot{I}^{p} \times I^{q+1} = G(E'f)|\dot{I}^{p} \times I^{q+1},$$

$$g(I^{p} \times I^{q} \times (1)) = y^{*}.$$

Then g is defined on H^{p+q}_+ such that $g(H^{p+q}_+) \subset E^{r+1}_-$ and $g(K^{p+q-1}) \subset S^r$. Since H^{p+q}_- is a cell bound by the sphere K^{p+q-1} , we can extend g over H^{p+q}_- such that $g(H^{p+q}_-) \subset E^{r+1}_+$.

Then g is homotopic to G(E'f), because g and G(E'f) coincide on $\dot{I}^p \times \dot{I}^{q+1}$, and map $I^p \times \dot{I}^{q+1}$ and $\dot{I}^p \times I^{q+1}$ to E_+^{r+1} and E_-^{r+1} respectively.

In another point of view, concider the map $g \circ \eta : \dot{I}^{p+q+1} \rightarrow S^{r+1}$, then we have by (3.5) $g \circ \eta (J_{+}^{p+q}) \subset E_{-}^{r+1}$ and $g \circ \eta (J_{+}^{p+q}) \subset E_{+}^{r+1}$.

Therefore $-(g \circ \eta)$ is homotopic to the suspension of $h=g \circ \eta | \dot{I}^{p+q}$. Since η is homotopic to the identity map, g is homotopic to -E(h). h is also given by

$$h(\emptyset_{p,q}(x, y, t)) = \begin{cases} y_{*} & 1/2 \leq t \leq 1, \\ d_{r-1}(f(x, y), 2t) & -1/2 \leq t \leq 1/2, \\ y_{*} & -1 \leq t \leq -1/2, \end{cases}$$

Then h is homotopic to the Hopf construction of f, and

$$E(G(f)) \simeq E(h) \simeq -g \simeq -G(E'f) \qquad q. e. d.$$

Proof of (3.3). Give the homotopy $f_{\tau}: \dot{I}^{p+q} \rightarrow S^r$ by

$$f_{\tau}(\boldsymbol{\varphi}_{p,q}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{t})) = d_{r-1}(F(\boldsymbol{x}),\,\boldsymbol{t}+\tau-\boldsymbol{t}\tau), \quad 0 \leq \tau \leq 1.$$

Since $\varphi_{p,q}(x, y, -1) = (x, 0)$, f_{τ} is single valued, continuous and gives the nullhomotopy of $f_0 = G(f)$. *q.e.d.*

4 Theorem

In this paragraph, we assume that n=4 or 8, and regard the points of S^{n-1} as quarternions (n=4) or Cayley numbers (n=8). Also we may regard the points of I^n as that of S^{n-1} , relating by the central projection $\rho_n: S^{n-1} \rightarrow I^n$.

Then the multiplication $\dot{I}^n \times \dot{I}^n \rightarrow \dot{I}^n$ (or S^{n-1}) can be defined, and denoted by $x \cdot y$. Let $h_n = G(f)$ be the Hopf construction of $f(x, y) = x \cdot y$, then h_n is so-called Hopf fibra map, and in our cases we have the direct sum decomposition [2] [6],

$$\pi_{2n-1}(S^n) \approx \pi_{2n-1}(S^{2n-1}) \oplus \pi_{2n-2}(S^{n-1}).$$

Let $i_n \in \pi_n(S^n)$ be the element represented by the identity map, then whitehead product $[i_n, i_n]$ belongs to $\pi_{2n-1}(S^n)$ and has the direct sum decomposition as above. The following theorem is the main result of this paper.

THEOREM (4.1)
$$[i_n, i_n] = 2\{h_n\} - E(a_{n-1}),$$

76

where $a_{n-1} \in \pi_{2n-2}(S^{n-1})$ has nonzero Hopf invariant.

More precisely $\pm a_{n-1}$ are the elements given in [1, §5] (n=4) and in [9, §8] (n=8).

It was proved in [8] that $[i_n, i_n]$ generated the kernel of suspension, $E: \pi_{2n-1}(S^n) \rightarrow \pi_{2n}(S^{n+1})$ (see also (3.49) of [9]). Hence we have

COROLLARY (4 2) $2E\{h_n\} = EE(a_{n-1}) \neq 0.$

COROLLARY (4.3) For some $k \ge 2$, k-fold suspinsion $E^k : \pi_6(S^3) \rightarrow \pi_{6+k}(S^{s+k})$ is an isomorphism into, but the image of E^k is not a direct summand.

COROLLARY (4.4)
$$(ki_n) \circ \{h_n\} = k^2 \{h_n\} - k(k-1)/2 \cdot E(a_{n-1})$$

 $(k=0, \pm 1, \pm 2, \dots)$

Proof of Theorem. Consider the map $\chi: \dot{I}^{2^n} \rightarrow \dot{I}^{2^n}$ by the rule

$$\chi(\varphi_{n,n}(x, y, t)) = \begin{cases} \varphi_{n,n}(x \cdot y, y^{-1}, 2t - 1) & 0 \leq t \leq 1, \\ \varphi_{n,n}(x \cdot y, x^{-1}, -2t - 1) & -1 \leq t \leq 0. \end{cases}$$

It is seen from (1.1) that we have $\emptyset_{n,n}(x \cdot y, y^{-1}, -1) = \emptyset_{n,n}(x \cdot y, x^{-1}, -1)$ and that $\emptyset_{n,n}(x, y, 1)$ and $\emptyset_{n,n}(x \cdot y, y^{-1}, 1)$ depend only y, and $\emptyset_{n,n}(x, y, -1)$ and $\emptyset_{n,n}(x \cdot y, x^{-1}, 1)$ depend only x. Therefore χ is single valued, hence continuous.

The composite map $h_n \circ \chi : \dot{I}^{2n} \rightarrow S^n$ is given by

$$h_n \circ \chi(\varphi_{n,n}(x, y, t)) = \begin{cases} d_{n-1}((x \cdot y) \cdot y^{-1}, 2t-1) & 0 \leq t \leq 1, \\ d_{n-1}((x \cdot y))x^{-1}, -2t-1) & -1 \leq t \leq 0, \end{cases}$$

Then $h_n \circ \chi$ satisfies the condition of (1.6), and therefore it is homotopic to the sum $F_1+F_2+[g_1, g_2]$, were

$$F_1(\emptyset_{n,n}(x, y, t)) = d_{n-1}((x \cdot y) \cdot y^{-1}, t),$$

$$F_2(\emptyset_{n,n}(x, y, t)) = d_{n-1}((x \cdot y) \cdot x^{-1}, -t).$$

To determine g_1, g_2 , we choose $x_0 = y_0 = y_*$ in (1.6), then g_1, g_2 represent the elements $i_n, -i_n$ respectively. Therefore we have

$$h_n \circ \mathfrak{X} \simeq G(f_1) + (-i_n) \circ G(f_2) - [i_n, i_n]$$

where $f_1(x, y) = (x \cdot y) \cdot y^{-1}$, $f_2(x, y) = (x \cdot y) \cdot x^{-1}$.

The following properties of quarternion and Cayley number were established,

$$(4.5) (x \cdot y) \cdot y^{-1} = x,$$

(4.6) If $y=(y_1, \ldots, y_n)$ and $(x \cdot y) \cdot x^{-1} = (y_1', \ldots, y_n')$, then $y_1 = y_1'$. According to Lemma (3.3) and (4.5), we have $F_1 = G(f_1) \simeq 0$.

To apply the Lemma (3.2) to $G(f_2)$, we must take some permutations of the coordinates of I^{2n} , but such permutations only chang the sign of $G(f_2)$.

Therefore (4.6), (3.1) and Lemma (3.3) show $G(f_2) \simeq EG(f_0)$, where f_0 is given by $f_0(x, y) = (x \cdot y) \cdot x^{-1}$ for $y \in I^{n-1}$ and $x \in I^n$ (in the multiplication we regard $y = (y_1, \ldots, y_{n-1})$ as $(0, y_1, \ldots, y_{n-1})$ in I^n).

Now $G(f_0)$ was given in [1, §5] (n=4), and [9, §8] (n=8), and it is shown that the Hopf invariants of $G(f_0)$ are essential elements of $\pi_{2n-1}(S^{2n-2})$.

Consequently we get the following equation for $a_{n-1} = \{G(f_0)\}$

$$\{h_n\} \cdot \chi = 0 + (-i_n) \circ E(a_{n-1}) - [i_n, i_n] = -E(a_{n-1}) - [i_n, i_n],\\H_1(a_{n-1}) \neq 0.$$

If the degree of χ is d, then $H_1[i_n, i_n] = 2i_{2n}$, $H_1(E(\alpha_{n-1})) = 0$ and $H_1\{h_n \circ \chi\} = di_{2n}$. Therefore d = -2, and hence $\{h_n \circ \chi\} = -2\{h_n\}$. q.e. d.

5 Non-isomorphic suspensions

It is already known that the suspension homomorphisms $E: \pi_{2r-1}(S^r) \rightarrow \pi_{2r}(S^{r+1})$ are not isomorphic in the cases $r \equiv 0 \pmod{2}$ and $r \equiv 1 \pmod{4}$ (r>1), because the whitehead products $[i_n, i_n]$ of the identity mps $i_n: S^n \rightarrow S^n$ are essential [9, §9], and $E[i_n, i_n]=0$ by (1.5).

We shall show that the suspension homomorphisms

$$E: \pi_n(S^r) \to \pi_{n+1}(S^{r+1})$$

are not isomorphic for the following values of n and r (hence $\pi_n(S^r) \neq 0$).

n	6	7	8	8	9	10	16	17	22	4 <i>k</i> +10	4 <i>k</i> +22	8k+2	8 <i>k</i> +3
r	2	2	2	4	4	4	8	8	8	2k+4	2k+8	4 <i>k</i> +1	4 <i>k</i> +1

(*k*=1, 2, ...).

In other words the boundary homomorphisms of triads

$$\beta_{+}: \pi_{n+2}(S^{r+1}; E^{r+1}_{+}, E^{r+1}_{-}) \rightarrow \pi_{n+1}(E^{r+1}_{+}, S^{r})$$

are non-trivial. (Cf. Theorem II of $[1, \S 4]$).

Let $\nu_2 = \{h_2\}$ be the generator of $\pi_3(S^2)$, then $\nu_n = E^{n-2}(\nu_2)$ is the generator of $\pi_{n+1}(S^n) \approx I_2$.

Let $\nu_4' = \{h_4\}$ be the element given by Hopf map $\{h_4\}$, and let $\nu_n = E^{n-1}(\nu_4')$ be the (n-4)-fold suspension of ν_4' .

 $\nu_8'' = \{h_8\}$ and $\nu_n'' = E^{n-8}(\nu_8'')$ can be also defined.

It is verified in [10] using the Theorems (2.10), (2.11), that the suspension $E: \pi_4(S^2) \rightarrow \pi_5(S^3)$ is isomorphism onto, and $\pi_{n+2}(S^n) \approx I_2(n \geq 2)$. We denote the generator $\nu_n \circ \nu_{n+1}$ of $\pi_{n+2}(S^n)$ by η_n , then we have $\eta_n = E^{n-2}(\eta_2)$.

Now consider the suspension $E: \pi_5(S^2) \rightarrow \pi_6(S^3)$. We have $\pi_5(S^2) \approx I_2$ and its generator is given by $\nu_2 \circ \eta_3$, and $H_1(\nu_2 \circ \eta_3) = E(\eta_3) = \eta_4$ by (2.7).

If $E\nu_2 \circ \eta_3 = 0$, there corresponds Freudenthal invariants Λ_1' , $\Lambda_1'' \in \pi_{\delta}(S^6)$, and by (2.10), (2.11) we have

$$egin{aligned} &A_1{}'-A_1{}''=(-1)^2E^2H_1(
u_2\circ\eta_3)=\eta_6\,,\ &A_1{}'=(-1)i_6\circ A_1{}''. \end{aligned}$$

78

Since $\Lambda_1''=E(\gamma)$ for some $\gamma \in \pi_7(S^5)$, we have $(-1)i_6 \circ \Lambda_1''=(-i_6) \circ E(\gamma)=-E(\gamma)$ = $-\Lambda_1'$ and $2\Lambda_1'=\eta_6$. This contradicts the fact that η_6 generates $\pi_b(S^6)$, and therefore $E(\nu_2 \circ \eta_3)=\nu_3 \circ \eta_4 \neq 0$. Denote $\nu_n \circ \eta_{n+1}=\eta_n'(n\geq 2)$, then η_n' is a non-zero element of $\pi_{n+3}(S^n)$ by (4.3).

Let α_3 , α_7 be the elements of $\pi_6(S^3)$ and $\pi_{14}(S^7)$ given in Theorem (4.1), then we have $H_1(\alpha_3) = \nu_6$, $H_1(\alpha_7) = \nu_{14}$, $E^2(\alpha_3) = 2\nu_5'$ and $E^2(\alpha_7) = 2\nu_9''$.

i) For case r=2.

Consider the elements $\nu_2 \circ a_3 \in \pi_6(S^2)$, $\nu_2 \circ a_3 \circ \nu_6 \in \pi_7(S^2)$ and $\nu_2 \circ a_3 \circ \eta_6 \in \pi_8(S^2)$. By (2.7), we have $H_1(a_3 \circ \nu_6) = \nu_6 \circ \nu_7 = \eta_6 \neq 0$, $H_1(a_3 \circ \eta_6) = \nu_6 \circ \eta_7 = \eta_7' \neq 0$. Since ν_2 induces isomorphism onto, we have $\nu_2 \circ a_3 \neq 0$, $\nu_2 \circ a_3 \circ \nu_6 \neq 0$, $\nu_2 \circ a_3 \circ \eta_6 \neq 0$.

We have $E^2(\nu_2 \circ a_3) = \nu_4 \circ E^2(a_3) = \nu^4 \circ (2\nu_5') = 2\nu_4 \circ \nu_5' = 0.$

Since $E: \pi_n(S^3) \rightarrow \pi_{n+1}(S^4)$ is an isomorphism, we have

and also
$$E(\nu_2 \circ a_3) = 0$$
,
 $E(\nu_2 \circ a_3 \circ \gamma) = 0$ for any $\gamma \in \pi_n(S^6)$.

Remark. P. Serre announced in [7] that $\pi_{2p+k-3}(S^k)$, for odd $k \ge 3$, and for prime p, has the element whose order is p. It follows directly that the suspension $E : \pi_{2p}(S^2) \to \pi_{2p+1}(S^3)$ is not isomorphic.

In the following cases it is sufficient to show the existence of non-zero whitehead roducts, because $E[\alpha, \beta]=0$.

ii) The cases r=4, 8.

Consider the whitehead product $[\nu_4, i_4] \in \pi_8(S^4)$. By (1.3), (4.1),

$$[\nu_4, i_4] = [i_4, i_4] \circ (\nu_3 * i_3) = (2\nu_4' - E(\alpha_3)) \circ E^4 \nu_3 = 2\nu_4' \circ E^4 \nu_3 - E(\alpha_3) \circ E^4 \nu_3$$

= $\nu_4' \circ 2E^4 \nu_3 - E(\alpha_3 \circ E^3 \nu_3) = E(\alpha_3 \circ \nu_6).$

Since $H_1(a_3 \circ \nu_6) = \eta_6 \neq 0$ and $E: \pi_n(S^3) \rightarrow \pi_{n+1}(S^4)$ is an isomorphism into, we have $[\nu_4, i_4] \neq 0$. Similarly we have $[\eta_4, i_4] = E(a_3 \circ \eta_6) \neq 0$, $[\nu_8, i_8] = E(a_7 \circ \nu_{10}) \neq 0$ and $[\eta_8, i_8] = E(a_7 \circ \eta_{10}) \neq 0$.

Consider the whitehead product $[\nu_4', i_4] \in \pi_{10}(S^4)$. If $[\nu_4', i_4] = 0$, by (3.72) of [9, §3] there exists a map $f: S^7 \times S^4 \rightarrow S^4$ of $type(\nu_4', i_4)$. Therefore by (2.5) $H_1(\{G(f)\}) = \nu_{10}'$, but by (2.9) $2\nu_{10}' = 0$. This contradicts to (4.2). Hence $[\nu_4', i_4] \neq 0$. Similarly $[\nu_8'', i_8] \neq 0$.

iii) The other cases.

By (2.8), (4.2),
$$H_1[\nu'_{2k+4}, i_{2k+4}] = 2\nu'_{4k+8} \neq 0,$$
$$H_1[\nu''_{2k+8}, i_{2k+3}] = 2\nu''_{4k+16} \neq 0, \quad (k = 1, 2, ...).$$

This shows that the suspension E referred to above is not isomorphic in the cases r=2k+4 and r=2k+8.

It is shown in §9 of [9] that there exists an element γ of $\pi_{\ell k}(S^{4k})$ such that $H_1(\gamma) = \gamma_{4k}, E(\gamma) = [i_{4k+1}, i_{4k+1}]$ for $k \ge 1$. By (1.2), $[\nu_{4k+1}, i_{4k+1}] = E(\gamma \circ \nu_{\ell k})$. From (2.10), (2.11) and $H_1(\gamma \circ \nu_{\ell k}) = \eta_{\ell k} \neq 0$, we have $E(\gamma \circ \nu_{\ell k}) \neq 0$. Similarly $[\eta_{4k+1}, i_{4k+1}] = E(\gamma \circ \eta_{\ell k}) \neq 0$.

REFERENCES

- 1) A. L. Bleakers and W. S. Massey. Ann. of Math. 53 (1951), pp. 161-205.
- 2) B. Eckmann. Comment. Math. Helv. 14 (1941), pp. 141-192.
- 3) H. Freudenthal. Comp. Math. 5 (1937), pp. 299-314.
- 4) H. Hopf. Math. Ann. 104 (1931), pp. 637-665.
- 5) H. Hopf. Fund. Math. 25 (1935), pp. 427-440.
- 6) W. Hurewicz and N. E. Steenrod. Proc. Nat. Akad. Sci. U. S. A. 27 (1941). pp. 60-64.
- 7) P. Serre. C. R. Paris 232 (1951), pp. 142-144.
- 8) G. W. Whitehead. Ann. of Math. 47 (1946), pp 460-475.
- 9) G. W. Whitehead. Ann. of Math. 51 (1950), pp. 192-237.
- 10) G. W. Whitehead. Ann. of Math. 52 (1950), pp. 245-247.
- 11) J. H. C. Whitehead. Ann. of Math. 42 (1941), pp. 409-428.