Some Relations in Homotopy Groups of Spheres

By Hirosi Toda

(Received Dec. 15, 1951)

Introduction

It is well known that the suspension (Einhängung) homomorphism $E: \pi_{n}\left(S^{r}\right) \rightarrow \pi_{n+1}\left(S^{r+1}\right)$ is isomorshism if $n<2 r-1$ [3] [1].* In recent years, G. W. Whitehead has shown that the kernel of the suspension homomorphism E is the subgroup generated by whitehead product, if $n=2 r-1$ [9, § 7].

In this paper we shall calculate some special whitehead products, and indicate some non-trivial suspension homomorphisms. For example, in cases where $n=r+4(r=2,4,5)$ and $n=r+5(r=2,4,5,6) E$ is not isomorphic, and also we obtain non-zero elements of $\pi_{4 n+10}\left(S^{2^{n+4}}\right)$ and $\pi_{4 n+22}\left(S^{2^{n+8}}\right)(n=0,1, \ldots .$.$) ,$ whose suspension vanish.

1. Notations

We shall use the notations analogous to those of G. W. Withehead [9, § 1]. Define

$$
\begin{array}{rlrl}
S^{n} & =\left\{\left(x_{1}, \ldots, x_{n+1}\right) \mid \sum x_{i}^{2}=1\right\}, & & \\
E_{+}^{n} & =\left\{x \in S^{n} \mid x_{n+1} \geq 0\right\}, & E_{-}^{n}=\left\{x \in S^{n} \mid x_{n+1} \leqq 0\right\}, \\
I^{n} & =\left\{\left(x_{1}, \ldots, x_{n}\right) \mid-1 \leqq x_{i} \leq 1\right\}, & & \\
\dot{I}^{n} & =\left\{\left(x_{1}, \ldots, x_{n}\right) \mid I\left(1-x_{i}^{2}\right)=1\right\}, & & \\
J_{+}^{n} & =\left\{x \in \dot{I}^{n+1} \mid x_{n+1} \geq 0\right\}, & J_{-}^{n}=\left\{x \in \dot{I}^{n_{+1} \mid} \mid x_{n+1} \leqq 0\right\}, \\
y_{*} & =(1,0, \ldots, 0), & 0 & =(0, \ldots, 0), \\
S^{n} \vee S^{n} & =S^{n} \times y_{*} \cup_{y_{*} \times S^{n} \subset S^{n} \times S^{n},} & &
\end{array}
$$

as sub-spaces in the euclidean spaces of suitable dimensions.
Define the mapping $d_{n}: S^{n} \times I^{1} \rightarrow S^{n+1}$ as in $[9, \S 1]$, which is characterized by the following properties:

$$
\begin{aligned}
& d_{n} \operatorname{maps}\left(S^{n}-y_{*}\right) \times[0,1) \text { topologically on } E_{+}^{n}-y_{*}, \\
& d_{n} \text { maps }\left(S^{n}-y_{*}\right) \times(-1,0] \text { topologically on } E_{-}^{n}-y_{*}, \\
& d_{n}\left(S^{n} \times \dot{I}^{1} \cup_{y_{*}} \times I^{1}\right)=y_{*}, \text { and } d_{n}(x, 0)=(x, 0) .
\end{aligned}
$$

We also define the mapping $\varphi_{n}: S^{n} \rightarrow S^{n \vee} S^{n}$ as in [9, §1], which maps subspaces $S_{0}^{n-1}=\left\{x \in S^{n} \mid x_{2}=0\right\}$ to the point $y_{*} \times y_{*}$ and elsewhere topologically preserving orientation.

We denote the point $\left(t x_{1}, \ldots, t x_{n}\right)$ by $t x$, where $x=\left(x_{1}, \ldots, x_{n}\right)$ and t is a real number.

[^0]Let $\rho_{n}: S^{n-1 \rightarrow} \dot{I}^{n}$ be the central projection such that $\rho_{n}(x)=x / r$, where $r=\operatorname{Max}\left(x_{1}, \ldots, x_{n}\right)$. Clearly we have $\rho_{n}\left(S^{n-2}\right)=\dot{I}^{n-1}, \rho_{n}\left(E_{+}^{n-1}\right)=J_{+}^{n-1}, \rho_{n}\left(E_{-}^{n-1}\right)$ $=J_{-}^{n-1}$ and $\rho_{n}\left(y_{*}\right)=y_{*}$.

Define $\quad \Phi_{p, q}: \dot{I}^{p} \times \dot{I}^{q} \times I^{1} \rightarrow \dot{I}^{p+q}=\left(I^{p} \times I^{q}\right) \quad$ by

$$
\Phi_{p, q}(x, y, t,)=\left\{\begin{array}{lr}
((1-t) x, y) & 0 \leqq t \leqq 1, \\
(x,(1+t) y) & -1 \leqq t \leqq 0,
\end{array}\right.
$$

Then $\Phi_{p, q}$ is continuous and topological for $t \in \operatorname{Int} . I^{1}$, and satisfies the conditions $\Phi_{p},{ }_{q}\left(\dot{I}^{p} \times \dot{I}^{q} \times[0,1]\right) \subset I^{p} \times \dot{I}^{q}, \Phi_{p, q}\left(\dot{I}^{p} \times \dot{I}^{q} \times[-1,0]\right) \subset \dot{I}^{p} \times I^{q}, \quad \Phi_{p, q}(x, y,-1)=(x, y)$, (1.1)

$$
\Phi_{p, q}(x, y, 1)=(0, y), \quad \Phi_{p, q}(x, y,-1)=(x, 0) .
$$

With our notations we can construct some mappings:
i) Suspension of $f: S^{n} \rightarrow S^{r}$ is given by $E f\left(d_{n}(x, t)\right)=d_{r}(f(x), t), x \in S^{n}$.
ii) Join of maps $f: I^{p} \rightarrow I^{r}$ and $g: I^{q} \rightarrow I^{s}$ is given by

$$
(f * g)\left(\varpi_{p}, q_{q}(x, y, t)\right)=\emptyset_{r, s}(f(x), g(y), t), \quad x \in I^{p}, y \in I^{q} .
$$

iii) Hopf construction of $f: \dot{I}^{p} \times \dot{I}^{q} \rightarrow S^{r}$ is given by

$$
\begin{equation*}
G f\left(\mathscr{D}_{p, x}(x, y, t)\right)=d_{r}(f(x, y), t), \quad x \in \dot{I}^{p}, y \in \dot{I}^{q} . \tag{1.2}
\end{equation*}
$$

iv) Whitehead product of $f:\left(I^{p}, \dot{I}^{p}\right) \rightarrow\left(X, x_{*}\right)$ and $g:\left(I^{q}, \dot{I}^{q}\right) \rightarrow\left(X, x_{*}\right)$ is given by

$$
[f, g]\left(\mathscr{D}_{p}, q(x, y, t)\right)=\left\{\begin{array}{lrl}
f((1-t) x) & 0 \leqq t \leqq 1, & x \in \dot{I}^{p} \\
g((1+t) y) & -1 \leqq t \leqq 0, & y \in \dot{I}^{q}
\end{array}\right.
$$

It is easily verified that the above constructions are single valued and hence continuous, and that they coincide with those of $[9, \$ 3]$.

It was shown in [9, §3] that

$$
\begin{equation*}
(f * g) \circ\left(f^{\prime} * g^{\prime}\right)=\left(f \circ f^{\prime}\right) *\left(g \circ g^{\prime}\right), \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
[f, g] \circ\left(f^{\prime} * g^{\prime}\right)=\left[f \circ E\left(f^{\prime}\right), g \circ E\left(g^{\prime}\right)\right] . \tag{1.4}
\end{equation*}
$$

We shall use the following theorems due to G. W. Whitehead [8].

$$
\begin{equation*}
E[\mu, \beta]=0 . \tag{1.5}
\end{equation*}
$$

(1.6) If $f: \dot{I}^{p+q} \rightarrow X$ satisfy the condition $f\left(\dot{I}^{p} \times \dot{I}^{q}\right)=x_{*}$, then f is homotopic to the map $f_{1}+f_{2}+\left[g_{1}, g_{2}\right]$, where

$$
\begin{aligned}
& f_{1}\left(\Phi_{p, q}(x, y, t)\right)=f\left(\bigoplus_{p, q}(x, y,(t+1) / 2)\right) \\
& f_{2}\left(\Phi_{p, q}(x, y, t)\right)=f\left(\Phi_{p, q}(x, y,(t-1) / 2)\right)
\end{aligned}
$$

and $g_{1}:\left(I^{p}, \dot{I}^{p}\right) \rightarrow\left(X, x_{*}\right), g_{2}:\left(I^{q}, \dot{I}^{q}\right) \rightarrow\left(X, x_{*}\right)$ are given by

$$
\begin{array}{lr}
g_{1}((1-t) x)=f\left(\Phi_{p}, q\left(x, y_{0}, t\right)\right) & 0 \leqq t \leqq 1, x \in \dot{I}^{p}, \\
g_{2}((1+t) y)=f\left(\Phi_{p, q}\left(x_{0}, y, t\right)\right) & -1 \leqq t \leqq 0, y \in \dot{I}^{q},
\end{array}
$$

for fixed points $y_{0} \in \dot{I}^{q}$ and $x_{0} \in \dot{I}^{p}$.

2. Hopf and Frendenthal invariants

For all values of $n, r>1$, we can construct a Hopf homomorphism H_{1} : $\pi_{n}\left(S^{r}\right) \rightarrow \pi_{n+1}\left(S^{2 r}\right)$. According to [9, $\left.\Omega_{4}\right]$ we have direct sum decomposition $\pi_{n}\left(S^{r} \vee S^{r}\right) \approx \pi_{n}\left(S^{r}\right) \oplus \pi_{n}\left(S^{r}\right) \oplus \pi_{n+1}\left(S^{r} \times S^{r}, S^{r} \vee S^{r}\right)$. Let

$$
\begin{equation*}
Q: \pi_{n}\left(S^{r} \vee S^{r}\right) \stackrel{Q}{\stackrel{Q}{\partial}} \pi_{n+1}\left(S^{r} \times S^{r}, S^{r} \vee S^{r}\right) \tag{2.1}
\end{equation*}
$$

be the projection, then its right inverse is boundary operator ∂ in the sense that $Q \circ \partial=$ identity.

Let $\Psi_{r}:\left(E^{2 r}, \dot{E^{2 r}}\right) \rightarrow\left(S^{r} \times S^{r}, S^{r} \vee S^{r}\right)$ be the map given in [9, §1], such that Ψ_{r} maps Int. $E^{2 r}$ topologically onto $S^{r} \times S^{r}-S^{r} \vee S^{r}$. Since $S^{r} \times S^{r}-S^{r \vee} S^{r}$ is an open cell, we can construct a map $\theta_{r}:\left(S^{r} \times S^{r}, S^{r \vee} S^{r}\right) \rightarrow\left(S^{2 r}, y_{*}\right)$ such that θ_{r} maps $S^{r} \times S^{r}-S^{r \vee} S^{r}$ topologically onto $S^{2 r}-y_{*}$, and the composite mapping $\theta_{r} \circ \Psi_{r}:\left(E^{2 r}, \dot{E}^{2 r}\right) \rightarrow\left(S^{2 r}, y_{*}\right)$ presserves orientation.

Then the composite homomorphism

$$
\begin{align*}
\theta_{r} \circ \Psi_{r} \circ \partial^{-1}: \pi_{n}\left(\dot{E}^{2 r}\right) & \rightarrow \pi_{n+1}\left(E^{2 r}, \dot{E}^{2 r}\right) \tag{2.2}\\
& \rightarrow \pi_{n+1}\left(S^{r} \times S^{r}, S^{r \vee} S^{r}\right) \rightarrow \pi_{n+1}\left(S^{2 r}, y_{*}\right) .
\end{align*}
$$

represents the suspension hommorphism.
Now we define the Hopf homomorphism $H_{1}: \pi_{n}\left(S^{r}\right) \rightarrow \pi_{n+1}\left(S^{2 r}\right)$ by the composite homomorphism

$$
\begin{equation*}
H_{1}=\theta_{r} \circ \boldsymbol{Q} \circ \varphi_{r}: \pi_{n}\left(S^{r}\right) \rightarrow \pi_{n}\left(S^{r} \vee S^{r}\right) \rightarrow \pi_{n+1}\left(S^{r} \times S^{r}, S^{r \vee} S^{r}\right) \rightarrow \pi_{n+1}\left(S^{2 r}\right) . \tag{2.3}
\end{equation*}
$$

Let $H=\Psi_{r}^{-1} \circ Q \circ \varphi_{r}$ be the Hopf homomorphism in the sense of [9], [10], then we have $H_{1}=E \circ H$ by (2.2). Since E is isomorphic for $n \leqq 4 r-4, H_{1}$ is equivalent to H.

Also we can define Freudenthal invariants for all values of $n, r>1$. Consider the element ξ of triad homotopy group $\pi_{n+2}\left(S^{r+1} ; E_{+}^{r+1}, E_{-}^{r-1}\right)$ as a nullhomotopy of suspension $\Delta(\xi)=\partial \beta_{+}(\xi) \in \pi n\left(S^{r}\right)$, where β_{+}and ∂ are boundary operators of triad and relative homotopy groups [1]. According to $\$ 6$ of [9] we define two homomorphisms

$$
\Lambda_{0^{\prime}}, \Lambda_{0^{\prime \prime}}: \pi_{n+2}\left(S^{r+1} ; E_{+}^{r+1}, E_{-}^{r+1}\right) \rightarrow \pi_{n+3}\left(S^{r+1} \times S^{r+1}, S^{r+1 \vee} S^{r+1}\right),
$$

and define Freudenthal invariants of ξ by

$$
\begin{equation*}
\Lambda_{1}^{\prime}(\xi)=\theta_{r+1} \circ \Lambda_{0}^{\prime}(\xi) \quad \text { and } \quad \Lambda_{1}^{\prime \prime}(\xi)=\theta_{r+1} \circ \Lambda_{0}{ }^{\prime \prime}(\xi) \tag{2.4}
\end{equation*}
$$

Then $\Lambda_{1}{ }^{\prime}, \Lambda_{1}{ }^{\prime \prime}: \pi_{n+2}\left(S^{r+1} ; E_{+}^{r+1}, E_{-}^{r+1}\right) \rightarrow \pi_{n+3}\left(S^{2 r+2}\right)$ are Freudenthal homomorphisms of our sense.

We shall use the following theorems similar to those of $\$ \subseteq 5,7$ of [9] without restriction of dimension.
(2.5) Let $f: \dot{I}^{p} \times \dot{I}^{\alpha} \rightarrow S^{n-1}$ be a map of type (μ, β), then the Hopf invariant of $G(f)$ is given by

$$
\begin{align*}
H_{1}(\{G(f)\}) & =(-1)^{r} E(\alpha * \beta), \\
H_{1}(E(\mu)) & =0 . \tag{2.6}
\end{align*}
$$

(2.7) Let $\alpha \in \pi_{n}\left(S^{r}\right), \beta \in \pi_{r}\left(S^{s}\right)$, and let $\alpha=E\left(\alpha^{\prime}\right)$ for some $\alpha^{\prime} \in \pi_{n-1}\left(S^{r-1}\right)$ (more generally if $Q(\alpha)=0)$, then we have

$$
H_{1}(\beta \circ \alpha)=H_{1}(\beta) \circ E(\alpha) .
$$

(2.8) If $\alpha \in \pi_{n}\left(S^{r}\right), \beta \in \pi_{m}\left(S^{r}\right)$, then

$$
H_{1}[E(\mu), E(\beta)]= \begin{cases}0, & \text { if } r \text { is even }, \\ 2 E(\alpha * \beta), & \text { if } r \text { is odd } .\end{cases}
$$

(2.9) If $\alpha \in \pi_{n}\left(S^{r}\right)$, and $i_{2 r} \in \pi_{2 r}\left(S^{2 r}\right)$ represents the identity map, then

$$
H_{1}(\alpha)=(-1)^{r} i_{2 r} \circ H_{1}(\alpha) .
$$

(2.10) If $\xi \in \pi_{n+2}\left(\mathrm{~S}^{r+1} ; E_{+}^{r+1}, E_{-}^{r+1}\right)$, then

$$
\Lambda_{1}^{\prime}(\xi)-\Lambda_{1}^{\prime \prime}(\xi)=(-1)^{r} E E H_{1}(\Delta(\xi)) .
$$

(2.11) If $\xi \in \pi_{n+2}\left(S^{r+1} ; E_{+}^{r+1}, E_{-}^{r+1}\right)$, then

$$
\Lambda_{1}^{\prime}(\xi)=(-1)^{r+1} i_{2 r+2} \circ \Lambda_{1}^{\prime \prime}(\xi) .
$$

(2.5) follows from the similar argument as the proof of Theorem 5.1 of [9] and (2.2). (2.6) is a direct consequence of the proof of Theorem 5.11 of [9].

To prove (2.7), we calculate $\varphi_{s}(\beta \circ \alpha)$ according to the proof of Theorem 5.19 of [9], and get the following equation

$$
\left(\hat{o}^{\prime} Q^{\prime} \varphi_{s}(\beta)\right) \circ \alpha=\partial Q \varphi_{s}(\beta \circ \alpha),
$$

where $\hat{\partial}^{\prime}, Q^{\prime}, \partial, Q$ are the corresponding operations in (2.1). Let $\partial_{0}: \pi_{n+1}\left(E^{r+1}\right.$, $\left.\dot{E}^{r+1}\right) \rightarrow \pi_{n}\left(S^{r}\right)$ be the boundary homomorphism, then

$$
\left(\partial^{\prime} Q^{\prime} \varphi_{s}(\beta)\right) \circ \alpha=\partial\left(Q^{\prime} \varphi_{s}(\beta) \circ \partial_{0}^{-1}(\alpha)\right) .
$$

Since ∂ is an isomorphism, we have

$$
Q \varphi_{s}(\beta \circ \mu)=Q^{\prime} \varphi_{s}(\beta) \circ \partial_{0}^{-1}(\mu),
$$

so that by (2.3) we have

$$
H_{1}(\beta \circ \alpha)=\theta_{s} Q \varphi_{s}(\beta \circ \alpha)=\theta_{s}\left(Q^{\prime} \varphi_{s}(\beta) \circ \hat{\alpha}_{0}^{-1}(\alpha)\right) .
$$

Another direct calculation shows

$$
\theta_{s}\left(Q^{\prime} \varphi_{s}(\beta) \circ \partial_{0}^{-1}(\alpha)\right)=\theta_{s} Q^{\prime} \varphi_{s}(\beta) \circ E(\mu)=H_{1}(\beta) \circ E(\mu) .
$$

To prove (2.8), we use the fact $\alpha * \beta=E(\gamma)$ for some γ, and $H_{1}\left[i_{r}, i_{r}\right]=2 i_{2 r}$. Then (2.8) follows from (1.4) and (2.7).

Let $\sigma_{r}:\left(S^{r} \times S^{r}, S^{r \vee} S^{r}\right) \rightarrow\left(S^{r} \times S^{r}, S^{r \vee} S^{r}\right)$ be the map given by $\sigma_{r}(x, y)=(y, x)$, then by (4.22) of [9] we have

$$
Q\left(\sigma_{r}(\alpha)\right)=\sigma_{r} Q(\kappa)
$$

where « $\in \pi_{n}\left(S^{r} \vee S^{r}\right)$. And further calculations show

$$
(-1)^{r} i_{2 r} \circ \theta_{r} Q(\kappa)=\theta_{r} \sigma_{r} Q(\kappa)=\theta_{r} Q\left(\sigma_{r}(\kappa)\right) .
$$

Then (2.9) and (2.11) are verified by the similar arguments of Theorem 5.49 and 7.28 of [9] respectively.

To prove the formula of (2.10) we consider the relation between the opera tion A in $[9, \S 7]$ and θ. We can show the equation

$$
\theta_{r+1} \circ A=(-1)^{r} E E \circ \theta_{r}
$$

so that (2.10) is a direct consequence of Theorem 7.8 of [9].

3 Lemmas

If $f: \dot{I}^{p} \times \dot{I}^{q} \rightarrow S^{r-1}$ is given, we construct a right suspension $E^{\prime} f: \dot{I}^{p} \times \dot{I}^{q+1} \rightarrow S^{r}$ by the rule

$$
\left.E^{\prime} f\left(x, y_{1}, \ldots \ldots, y_{q+1}\right)\right)= \begin{cases}d_{r-1}\left(f\left(x,\left(y_{1}, \ldots \ldots, y_{q}\right)\right), y_{q+1}\right) & \text { if } y \in \dot{I}^{q} \times I^{1} \\ y_{*} & \text { if } y \in I^{q} \times \dot{I}^{1}\end{cases}
$$

If f is homotopic to g, then $E^{\prime} f$ is homotopic to $E^{\prime} g$. Also we have

$$
\begin{equation*}
E^{\prime} f\left(\dot{I}^{p} \times J_{+}^{q}\right) \subset E_{+}^{r}, \quad E^{\prime} f\left(\dot{I}^{p} \times J_{-}^{q}\right) \supset E_{-}^{r}, E^{\prime} f \mid \dot{I}^{p} \times \dot{I}^{q}=f \tag{3.1}
\end{equation*}
$$

and any map satisfying the condition (3.1) is homotopic to $E^{\prime} f$.
LEMMA (3.2) $\quad-G\left(E^{\prime} f\right) \simeq E(G(f))$.
LEMMA (3.3) If $\quad f(x, y) \equiv F(x)$, then $G(f) \simeq 0$.
Proof of (3.2). Let

$$
\begin{aligned}
K^{p+q-1} & =I^{p} \times \dot{I}^{q} \times(1)^{\cup} \dot{I}^{p} \times \dot{I}^{q} \times I^{1} \cup \dot{I}^{p} \times I^{q} \times(-1), \\
H_{+}^{p+q} & =I^{p} \times I^{q} \times(1)^{\cup} \dot{I}^{p} \times I^{q} \times I^{1} \\
H_{-}^{p+q} & =I^{p} \times \dot{I}^{q} \times I^{1} \cup I^{p} \times I^{q} \times(-1),
\end{aligned}
$$

be the subspaces of $\dot{I}^{p+q+1}=\left(I^{p} \times I^{q} \times I^{1}\right)^{\cdot}$, then H_{+}^{p+q}, H_{-}^{p+q} are closed $(p+q)-$ cells and we have $H_{+}^{p+q} \cup H_{-}^{p+q}=\dot{I}^{p+q+1}, H_{+}^{p+q} \cap H_{-}^{p+q}=K^{p+q-1}$.

Let us give the homeomorphism $\eta: \dot{I}^{p+q} \rightarrow K^{p+q-1}$ by

$$
\eta\left(\Phi_{p}, q(x, y, t)\right)=\left\{\begin{array}{lc}
((-2 t+2) x, y, 1) & 1 / 2 \leqq t \leqq 1 \tag{3.4}\\
(x, y, 2 t) & -1 / 2 \leqq t \leqq 1 / 2 \\
(x,(2 t+2) y,-1) & -1 \leqq t \leqq-1 / 2
\end{array}\right.
$$

Then we can extend η throughout \dot{I}^{p+q+1} homeomorphically such that

$$
\begin{equation*}
\eta\left(J_{+}^{p+q}\right) \subset H_{+}^{p+q}, \quad \eta\left(J_{-}^{p+q}\right) \subset H_{-}^{p+q} \tag{3.5}
\end{equation*}
$$

because $K^{p_{+q-1}}$ bounds the cells H_{+}^{p+q} and $H_{-}^{p+q .}$ As is easily seen, the map $\eta: \dot{I}^{p+q+1} \rightarrow \dot{I}^{p+q+1}$ preserves the orientation.

Let $G\left(E^{\prime} f\right): \dot{I}^{p+q+1} \rightarrow S^{r+1}$ be given. Dafine the map $g: \dot{I}^{p+q+1} \rightarrow S^{r+1}$ as follows,

$$
\begin{aligned}
& g\left|\dot{I}^{p} \times I^{q+1}=G\left(E^{\prime} f\right)\right| \dot{I}^{p} \times I^{q+1} \\
& g\left(I^{p} \times I^{q} \times(1)\right)=y^{*}
\end{aligned}
$$

Then g is defined on H_{+}^{p+q} such that $g\left(H_{+}^{p+q}\right) \subset E_{-}^{r+1}$ and $g\left(K^{p+q-1}\right) \subset S^{r}$. Since H_{-}^{p+q} is a cell bound by the sphere K^{p+q-1}, we can extend g over H_{-}^{p+q} such that $g\left(H_{-}^{p+q}\right) \subset E_{+}^{r+1}$.

Then g is homotopic to $G\left(E^{\prime} f\right)$, because g and $G\left(E^{\prime} f\right)$ coincide on $\dot{I}^{p} \times \dot{I}^{q+1}$, and map $I^{p} \times \dot{I}^{q+1}$ and $\dot{I}^{p} \times I^{q+1}$ to E_{+}^{r+1} and E_{-}^{r+1} respectively.

In another point of view, concider the map $g \circ \eta: \dot{I}^{p+q+1} \rightarrow S^{r+1}$, then we have by (3.5) $g \circ \eta\left(J_{+}^{p+q}\right) \subset E_{-}^{r+1}$ and $g \circ \eta\left(J_{+}^{p+q}\right) \subset E_{+}^{r+1}$.
Therefore $-(g \circ \eta)$ is homotopic to the suspension of $h=g \circ \eta \mid \dot{I}^{p_{+} q}$. Since η is homotopic to the identity map, g is homotopic to $-E(h) . h$ is also given by

$$
h\left(\Phi_{p, q}(x, y, t)\right)=\left\{\begin{array}{lc}
y_{*} & 1 / 2 \leqq t \leqq 1 \\
d_{r-1}(f(x, y), 2 t) & -1 / 2 \leqq t \leqq 1 / 2 \\
y_{*} & -1 \leqq t \leqq-1 / 2
\end{array}\right.
$$

Then h is homotopic to the Hopf construction of f, and

$$
E(G(f)) \simeq E(h) \simeq-g \simeq-G\left(E^{\prime} f\right) \quad \text { q.e.d. }
$$

Proof of (3.3). Give the homotopy $f_{\tau}: \dot{I}^{p+q} \rightarrow S^{r}$ by

$$
f_{\tau}\left(\Phi_{p, q}(x, y, t)\right)=d_{r-\mathrm{J}}(F(x), t+\tau-t \tau), \quad 0 \leqq \tau \leqq 1 .
$$

Since $\mathscr{D}_{p}, q(x, y,-1)=(x, 0), f_{\tau}$ is single valued, continuous and gives the nullhomotopy of $f_{0}=G(f)$. q.e.d.

4 Theorem

In this paragraph, we assume that $n=4$ or 8 , and regard the points of S^{n-1} as quarternions $(n=4)$ or Cayley numbers $(n=8)$. Also we may regard the points of \dot{I}^{n} as that of S^{n-1}, relating by the central projection $\rho_{n}: S^{n-1} \rightarrow \dot{I}^{n}$.

Then the multiplication $\dot{I}^{n} \times \dot{I}^{n} \rightarrow \dot{I}^{n}$ (or S^{n-1}) can be defined, and denoted by $x \cdot y$. Let $h_{n}=G(f)$ be the Hopf construction of $f(x, y)=x \cdot y$, then h_{n} is so-called Hopf fibra map, and in our cases we have the direct sum decomposition [2] [6],

$$
\pi_{2 n-1}\left(S^{n}\right) \approx \pi_{2 n-1}\left(S^{2^{n-1}}\right) \oplus \pi_{2 n-2}\left(S^{n-1}\right)
$$

Let $i_{n} \in \pi_{n}\left(S^{n}\right)$ be the element represented by the idetity map, then whitehead product $\left[i_{n}, i_{n}\right]$ belongs to $\pi_{2 n-1}\left(S^{n}\right)$ and has the direct sum decomposition as above. The following theorem is the main result of this paper.

THEOREM (4.1) $\quad\left[i_{n}, i_{n}\right]=2\left\{h_{n}\right\}-E\left(\kappa_{n-1}\right)$,
where $\alpha_{n-1} \in \pi_{2 n-2}\left(S^{n-1}\right)$ has nonzero Hopf invariant.
More precisely $\pm \alpha_{n-1}$ are the elements given in $[1, \S 5](n=4)$ and in $[9, \S 8](n=8)$.

It was proved in [8] that $\left[i_{n}, i_{n}\right.$] generated the kernel of suspension, E : $\pi_{2 n-1}\left(S^{n}\right) \rightarrow \pi_{2 n}\left(S^{n+1}\right)$ (see also (3.49) of [9]). Hence we have

COROLLARY (42) . $2 E\left\{h_{n}\right\}=E E\left(\mu_{n-1}\right) \neq 0$.
COROLLARY (4.3) For some $k \geq 2$, k-fold suspinsion $E^{k}: \pi_{6}\left(S^{3}\right) \rightarrow \pi_{6+k}\left(S^{s+k}\right)$ is an isomorphism into, but the image of E^{k} is not a direct summand.

COROLLARY (4.4) $\quad\left(k i_{n}\right) \circ\left\{h_{n}\right\}=k^{2}\left\{h_{n}\right\}-k(k-1) / 2 \cdot E\left(\mu_{n-1}\right)$

$$
(k=0, \pm 1, \pm 2, \ldots \ldots)
$$

Proof of Theorem. Consider the map $\chi: \dot{I}^{2 n} \rightarrow \dot{I}^{2 n}$ by the rule

$$
\chi\left(\Phi_{n, n}(x, y, t)\right)=\left\{\begin{array}{lr}
\Phi_{n, n}\left(x \cdot y, y^{-1}, 2 t-1\right) & 0 \leqq t \leqq 1, \\
\Phi_{n}, n\left(x \cdot y, x^{-1},-2 t-1\right) & -1 \leqq t \leqq 0
\end{array}\right.
$$

It is seen from (1.1) that we have $\Phi_{n, n}\left(x \cdot y, y^{-1},-1\right)=\Phi_{n}, n\left(x \cdot y, x^{-1},-1\right)$ and that $\Phi_{n}, n(x, y, 1)$ and $\Phi_{n, n}\left(x \cdot y, y^{-1}, 1\right)$ depend only y, and $\Phi_{n}, n(x, y,-1)$ and $\oplus_{n, n}\left(x \cdot y, x^{-1}, 1\right)$ depend only x. Therefore χ is single valued, hence continuous.

The composite map $h_{n} \circ \chi: \dot{I}^{2 n} \rightarrow S^{n}$ is given by

$$
h_{n} \circ \chi\left(\oplus_{n, n}(x, y, t)\right)=\left\{\begin{array}{lr}
d_{n-1}\left((x \cdot y) \cdot y^{-1}, 2 t-1\right) & 0 \leqq t \leqq 1, \\
\left.d_{n-1}((x \cdot y)) x^{-1},-2 t-1\right) & -1 \leqq t \leqq 0,
\end{array}\right.
$$

Then $h_{n} \circ \chi$ satisfies the condition of (1.6), and therefore it is homotopic to the sum $F_{1}+F_{2}+\left[g_{1}, g_{2}\right]$, were

$$
\begin{aligned}
& F_{1}\left(\Phi_{n, n}(x, y, t)\right)=d_{n-1}\left((x \cdot y) \cdot y^{-1}, t\right), \\
& F_{2}\left(\Phi_{n}, n(x, y, t)\right)=d_{n-1}\left((x \cdot y) \cdot x^{-1},-t\right) .
\end{aligned}
$$

To determine g_{1}, g_{2}, we choose $x_{0}=y_{0}=y_{*}$ in (1.6), then g_{1}, g_{2} represent the elements $i_{n},-i_{n}$ respectively. Therefore we have

$$
h_{n} \circ \chi \simeq G\left(f_{1}\right)+\left(-i_{n}\right) \circ G\left(f_{2}\right)-\left[i_{n}, i_{n}\right] .
$$

where $f_{1}(x, y)=(x \cdot y) \cdot y^{-1}, f_{2}(x, y)=(x \cdot y) \cdot x^{-1}$.
The following properties of quarternion and Cayley number were established,

$$
\begin{equation*}
(x \cdot y) \cdot y^{-1}=x \tag{4.5}
\end{equation*}
$$

According to Lemma (3.3) and (4.5), we have $F_{1}=G\left(f_{1}\right) \simeq 0$.
To apply the Lemma (3.2) to $G\left(f_{2}\right)$, we must take some permutations of the coordinates of $I^{2 n}$, but such permutations only chang the sign of $G\left(f_{2}\right)$.

Therefore (4.6), (3.1) and Lemma (3.3) show $G\left(f_{2}\right) \simeq E G\left(f_{0}\right)$, where f_{0} is given by $f_{0}(x, y)=(x \cdot y) \cdot x^{-1}$ for $y \in \dot{I}^{n-1}$ and $x \in \dot{I}^{n}$ (in the multiplication we regard $y=\left(y_{1}, \ldots, y_{n-1}\right)$ as $\left(0, y_{1}, \ldots . ., y_{n-1}\right)$ in $\left.\dot{I}^{n}\right)$.

Now $G\left(f_{0}\right)$ was given in $[1, \S 5](n=4)$, and $[9, \S 8](n=8)$, and it is shown that the Hopf invariants of $G\left(f_{0}\right)$ are essential elements of $\pi_{2 n-1}\left(S^{2^{n-2}}\right)$.

Consequently we get the following equation for $\alpha_{n-1}=\left\{G\left(f_{0}\right)\right\}$

$$
\begin{aligned}
& \left\{h_{n}\right\} \cdot \chi=0+\left(-i_{n}\right) \circ E\left(\mu_{n-1}\right)-\left[i_{n}, i_{n}\right]=-E\left(\mu_{n-1}\right)-\left[i_{n}, i_{n}\right], \\
& H_{1}\left(\alpha_{n-1}\right) \neq 0 .
\end{aligned}
$$

If the degree of χ is d, then $H_{1}\left[i_{n}, i_{n}\right]=2 i_{2 n}, H_{1}\left(E\left(\mu_{n-1}\right)\right)=0$ and $H_{1}\left\{h_{n} \circ \alpha\right\}=d i_{2 n}$. Therefore $d=-2$, and hence $\left\{h_{n} \circ \chi\right\}=-2\left\{h_{n}\right\}$. q.e.d.

5 Non-isomorphic suspensions

It is already known that the suspension homomorphisms $E: \pi_{2 r-1}\left(S^{r}\right) \rightarrow$ $\pi 2 r\left(S^{r+1}\right)$ are not isomorphic in the cases $r \equiv 0(\bmod .2)$ and $r \equiv 1(\bmod .4)$ ($r>1$), because the whitehead products $\left[i_{n}, i_{n}\right]$ of the identity $\mathrm{mps} i_{n}: S^{n} \rightarrow S^{n}$ are essential $[9, \S 9]$, and $E\left[i_{n}, i_{n}\right]=0$ by (1.5).

We shall show that the suspension homomorphisms

$$
E: \pi_{n}\left(S^{r}\right) \rightarrow \pi_{n+1}\left(S^{r+1}\right)
$$

are not isomorphic for the following values of n and $r\left(\right.$ hence $\left.\pi_{n}\left(S^{r}\right) \neq 0\right)$.

n	6	7	8	8	9	10	16	17	22	$4 k+10$	$4 k+22$	$8 k+2$	$8 k+3$
r	2	2	2	4	4	4	8	8	8	$2 k+4$	$2 k+8$	$4 k+1$	$4 k+1$

In other words the boundary homomorphisms of triads

$$
\beta_{+}: \pi_{n+2}\left(S^{r+1} ; E_{+}^{r+1}, E_{-}^{r+1}\right) \rightarrow \pi_{n+1}\left(E_{+}^{r+1}, S^{r}\right)
$$

are non-trivial. ($C f$. Theorem II of $[1, \S 4]$).
Let $\nu_{2}=\left\{h_{2}\right\}$ be the generator of $\pi_{3}\left(S^{2}\right)$, then $\nu_{n}=E^{n-2}\left(\nu_{2}\right)$ is the generator of $\pi_{n+1}\left(S^{n}\right) \approx I_{2}$.

Let $\nu_{4}^{\prime}=\left\{h_{4}\right\}$ be the element given by Hopf map $\left\{h_{4}\right\}$, and let $\nu_{n}=E^{n_{-}-}\left(\nu_{4}^{\prime}\right)$ be the ($n-4$)-fold suspension of $\nu_{4}{ }^{\prime}$.
$\nu_{8}{ }^{\prime \prime}=\left\{h_{8}\right\}$ and $\nu_{n}{ }^{\prime \prime}=E^{n-8}\left(\nu_{8}{ }^{\prime \prime}\right)$ can be also defined.
It is verified in [10] using the Theorems (2.10), (2.11), that the suspension $E: \pi_{4}\left(S^{2}\right) \rightarrow \pi_{5}\left(S^{3}\right)$ is isomorphism onto, and $\pi_{n+2}\left(S^{n}\right) \approx I_{2}(n \geqq 2)$. We denote the generator $\nu_{n} \circ \nu_{n+1}$ of $\pi_{n+2}\left(S^{n}\right)$ by η_{n}, then we have $\eta_{n}=E^{n-2}\left(\eta_{2}\right)$.

Now consider the suspension $E: \pi_{5}\left(S^{2}\right) \rightarrow \pi_{6}\left(S^{3}\right)$. We have $\pi_{5}\left(S^{2}\right) \approx I_{2}$ and its generator is given by $\nu_{2} \circ \eta_{3}$, and $H_{1}\left(\nu_{2} \circ \eta_{3}\right)=E\left(\eta_{3}\right)=\eta_{4}$ by (2.7).

If $E \nu_{2} \circ \boldsymbol{\eta}_{3}=0$, there corresponds Freudenthal invariants $\Lambda_{1}{ }^{\prime}, \Lambda_{1}{ }^{\prime \prime} \in \pi_{6}\left(S^{6}\right)$, and by (2.10), (2.11) we have

$$
\begin{aligned}
\Lambda_{1}^{\prime}-\Lambda_{1}^{\prime \prime} & =(-1)^{2} E^{2} H_{1}\left(\nu_{2} \circ \eta_{3}\right)=\eta_{6}, \\
\Lambda_{1}^{\prime} & =(-1) i_{6} \circ \Lambda_{1}^{\prime \prime} .
\end{aligned}
$$

Since $\Lambda_{1}{ }^{\prime \prime}=E(\gamma)$ for some $\gamma \in \pi_{7}\left(S^{5}\right)$, we have $(-1) i_{6} \circ \Lambda_{1}{ }^{\prime \prime}=\left(-i_{6}\right) \circ E(\gamma)=-E(\gamma)$ $=-\Lambda_{1}{ }^{\prime}$ and $2 \Lambda_{1}^{\prime}=\eta_{6}$. This contradicts the fact that η_{6} generates $\pi_{8}\left(S^{6}\right)$, and therefore $E\left(\nu_{2} \circ \eta_{3}\right)=\nu_{3} \circ \eta_{4} \neq 0$. Denote $\nu_{n} \circ \eta_{n+1}=\eta_{n}{ }^{\prime}(n \geq 2)$, then $\eta_{n}{ }^{\prime}$ is a non-zero element of $\pi_{n+3}\left(S^{n}\right)$ by (4.3).

Let μ_{3}, α_{7} be the elements of $\pi_{6}\left(S^{3}\right)$ and $\pi_{14}\left(S^{7}\right)$ given in Theorem (4.1), then we have $H_{1}\left(\mu_{3}\right)=\nu_{6}, H_{1}\left(\mu_{7}\right)=\nu_{14}, E^{2}\left(\mu_{3}\right)=2 \nu_{5}^{\prime}$ and $E^{2}\left(\mu_{7}\right)=2 \nu_{9}{ }^{\prime \prime}$.
i) For case $r=2$.

Consider the elements $\nu_{2} \circ \mu_{3} \in \pi_{6}\left(S^{2}\right), \nu_{2} \circ \mu_{3} \circ \nu_{6} \in \pi_{7}\left(S^{2}\right)$ and $\nu_{2} \circ \mu_{3} \circ \eta_{6} \in \pi_{8}\left(S^{2}\right)$. By (2.7), we have $H_{1}\left(\mu_{3} \circ \nu_{6}\right)=\nu_{6} \circ \nu_{7}=\eta_{6} \neq 0, H_{1}\left(\mu_{3} \circ \eta_{6}\right)=\nu_{6} \circ \eta_{7}=\eta_{7}^{\prime} \neq 0$. Sinca ν_{2} induces isomorphism onto, we have $\nu_{2} \circ \mu_{3} \neq 0, \nu_{2} \circ \mu_{3} \circ \nu_{6} \neq 0, \nu_{2} \circ \mu_{3} \circ \eta_{6} \neq 0$.

We have $E^{2}\left(\nu_{2} \circ \mu_{3}\right)=\nu_{4} \circ E^{2}\left(\mu_{3}\right)=\nu^{4} \circ\left(2 \nu_{5}^{\prime}\right)=2 \nu_{4} \circ \nu_{5}^{\prime}=0$.
Since $E: \pi_{n}\left(S^{3}\right) \rightarrow \pi_{n+1}\left(S^{4}\right)$ is an isomorphism, we have
and also

$$
E\left(\nu_{2} \circ \mu_{3}\right)=0,
$$

$$
E\left(\nu_{2} \circ \mu_{3} \circ \gamma\right)=0 \quad \text { for any } \gamma \in \pi_{n}\left(S^{6}\right) .
$$

Remark. P. Serre announced in [7] that $\pi_{2 p+k-3}\left(S^{k}\right)$, for odd $k \geqq 3$, and for prime p , has the element whose order is p . It follows directly that the suspension $E: \pi_{2 p}\left(S^{2}\right) \rightarrow \pi_{2 p+1}\left(S^{3}\right)$ is not isomorphic.

In the following cases it is sufficient to show the existence of non-zero whitehead roducts, because $E[\mu, \beta]=0$.
ii) The cases $r=4,8$.

Consider the whitehead product $\left[\nu_{4}, i_{4}\right] \in \pi_{8}\left(S^{4}\right)$. By (1.3), (4.1),

$$
\begin{aligned}
{\left[\nu_{4}, i_{4}\right] } & =\left[i_{4}, i_{4}\right] \circ\left(\nu_{3} * i_{3}\right)=\left(2 \nu_{4}^{\prime}-E\left(\mu_{3}\right)\right) \circ E^{4} \nu_{3}=2 \nu_{4}^{\prime} \circ E^{4} \nu_{3}-E\left(\mu_{3}\right) \circ E^{4} \nu_{3} \\
& =\nu_{4}^{\prime} \circ 2 E^{4} \nu_{3}-E\left(\mu_{3} \circ E^{3} \nu_{3}\right)=E\left(\mu_{3} \circ \nu_{6}\right) .
\end{aligned}
$$

Since $H_{1}\left(\mu_{3} \circ \nu_{6}\right)=\eta_{6} \neq 0$ and $E: \pi_{n}\left(S^{3}\right) \rightarrow \pi_{n+1}\left(S^{4}\right)$ is an isomorphism into, we have $\left[\nu_{4}, i_{4}\right] \neq 0$. Similarly we have $\left[\eta_{4}, i_{4}\right]=E\left(\mu_{3} \circ \eta_{6}\right) \neq 0,\left[\nu_{8}, i_{8}\right]=E\left(\mu_{7} \circ \nu_{10}\right) \neq 0$ and $\left[\eta_{8}, i_{8}\right]=E\left(\mu_{7} \circ \eta_{10}\right) \neq 0$.

Consider the whitehead product $\left[\nu_{4}{ }^{\prime}, i_{4}\right] \in \pi_{10}\left(S^{4}\right)$. If $\left[\nu_{4}{ }^{\prime}, i_{4}\right]=0$, by (3.72) of $[9, \S 3]$ there exists a map $f: S^{7} \times S^{4} \rightarrow S^{4}$ of $t y p e\left(\nu_{4}{ }^{\prime}, i_{4}\right)$. Therefore by (2.5) $H_{1}(\{G(f)\})=\nu_{10^{\prime}}$, but by (2.9) $2 \nu_{10}{ }^{\prime}=0$. This contradicts to (4.2). Hence $\left[\nu_{4}^{\prime}, i_{4}\right] \neq 0$. Similarly $\left[\nu_{8}{ }^{\prime \prime} . i_{8}\right] \neq 0$.
iii) The other cases.

By (2.8), (4.2),

$$
\begin{aligned}
& H_{1}\left[\nu_{2 k+4}^{\prime}, i_{2 k+1}\right]=2 \nu_{4 k+8}^{\prime} \neq 0, \\
& H_{1}\left[\nu_{2 k+8}^{\prime \prime}, i_{2 k+3}\right]=2 \nu_{4 k+16}^{\prime \prime} \neq 0, \quad(k=1,2, \ldots) .
\end{aligned}
$$

This shows that the suspension E referred to above is not isomorphic in the cases $r=2 k+4$ and $r=2 k+8$.

It is shown in $\S 9$ of [9] that there exists an element γ of $\pi_{2_{k}}\left(S^{4 k}\right)$ such that $H_{1}(\gamma)=\gamma_{4 k}, E(\gamma)=\left[i_{4 k+1}, i_{4 k+1}\right]$ for $k \geq 1$. By (1.2), $\left[\nu_{4 k+1}, i_{4 k+1}\right]=E\left(\gamma \circ \nu_{8 k}\right)$. From (2.10), (2.11) and $H_{1}\left(\gamma \circ \nu_{8 k}\right)=\eta_{8 k} \neq 0$, we have $E\left(\gamma \circ \nu_{\varepsilon k}\right) \neq 0$. Similarly $\left[\eta_{4 k+1}, i_{4 k+1}\right]=E\left(\gamma \circ \eta_{8 k}\right) \neq 0$.

REFERENCES

1) A. L. Bleakers and W. S. Massey. Ann. of Math. 53 (1951), pp. 161-205.
2) B. Eckmann. Comment. Math. Helv. 14 (1941), pp. 141-192.
3) H. Freudenthal. Comp. Math. 5 (1937), pp. 299-314.
4) H. Hopf. Math. Ann. 104 (1931), pp. 637-665.
5) H. Hopf. Fund. Math. 25 (1935), pp. 427-440.
6) W. Hurewicz and N. E. Steenrod. Proc. Nat. Akad. Sci. U. S. A. 27 (1941). pp. 60-64.
7) P. Serre. C. R. Paris 232 (1951), pp. 142-144.
8) G. W. Whitehead. Ann. of Math. 47 (1946), pp 460-475.
9) G. W. Whitehead. Ann. of Math. 51 (1950), pp. 192-237.
10) G. W. Whitehead. Ann. of Math. 52 (1950), pp. 245-247.
11) J. H. C. Whitehead. Ann. of Math. 42 (1941), pp. 409-428.

[^0]: * Numbers in blackets refer to the references cited at the end of the paper.

