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1 wish to show that the distribution of zero points of a function which is rela

ted to Riemann's ~-function, is in a state just as Riemann expected conceming 

~-function. § 1. Introduction. § 2. Definitions of functions necessary to the proofs, 

and relations between them. § 3. Necessary Theorems 1, 2, 3, 4 and 5. § 4. Re

sults deduced from the Theorems 1, 2, 3, 4 and 5. ?; S. Proof of the conclusion. 

?; 6. Proofs of the Theorems 1 and 2. 

§ 1. Riemann's Ç-function1l is defi.ned as 

This is a lso represented as 

~(z)=2 [ rp(t)cosztdt, 

where rf;( t) is even with respect to t and is given by the following series : 

Prof. Pôlya2l brought forth a function 

Ç*(z )=2 C rJ;*(t) cos zt dt, 

where J_t __ !)_t 
rJ;*(t)=4n2(e 2 +e 2 )exp(-n(e2t+e-2t)), 

and proved that Ç*(z) has infi.nitely many zero points and they are all on the real 

axis. 

In arder to develop his idea, let us consider as follows. By using an even 

function cf;(t), we defi.ne a function G(z) as 

G(z)= [,., cJ;(t) e.e dt, (1) 

then G(z) is even with respect to z. Here we assume that G(z) and ~(z) are in 

the following relation : 

(2) 
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In order that this relation may be satisfied, the function cJ;(t) which has not yet 

been determined, must satisfy the relation 

From this, we obtain 

(3) 

which can be written as 

cJ;(t)= Ï; n4 exp(-n2n(é+e-t))(l-R(n2n,t)), (4) 
n~1 

where R(n2n, t)'s are even and 

R(n2n, t)=l-1 (1-2:n2) / (1+e -{t )l exp (n2n e-t), 

. when t is positive. These functions R(n2n, t)'s tend to zero when t tends to plus 

cr minus infinity, but the tendency of going to zero is not uniform with respect to n. 

Now we define functions 

c/J2Ct)= :E' n4 exp( -n2n(é+e-t)), 

cJ;s(t)= i: n3 exp ( -n2rc(é+e-t)), 
n~1 

where the summation :E' of cJ;2(t) is identical with that of 

ç2(z)= II (1-p-•)- 1 = :E' n-•, 
P<N 

N being a certain fixed positive constant, and P's are prime numbers. 

In the same way as the functions G(z) and ~(z) were constructed from cJ;(t), 

functions G1(z), ~1Ct), G2(z), ~2(t) and G3(z), ~3(t) are constructed from cJ;1(t), 

cJ;2(t) and cJ;3(t) respectively. Hereafter, we always put as z=x+z'y, and let A be 

a fixed positive constant and o be a positive constant smaller than 1/5. ffi/ and 

:5'1 denote the real and imaginary parts of a function 1 respectively. Then we 

obtain the following results. 

Theorem I. The !unction ~2(z) has z'nfinitely many zero points in a strz'p 

-A<y<A. And these zero. points are all on the real axis z'n a domain, where the 
absolute value of x is large enough. And the number of the zero poz'nts which are 

in O<x~T is 

T )2n·log T )2n -T )2n+O (1). 

Theorem II. The !unction ~s(z) has infinitely many zero points in a strip 

- A:S:y<A. And these zero points are all on the real axis in a domain, where 

the absolute value of x is large enough. And the number of the zero points zvhich 
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are in O~x~T is 

T /2rr·log T /2rr-T /2rr+O (1). 

In the present paper, we shall prove the Theorem I. With respect to ~lz ), 
we obtain no result. The Theorem Il can be proved on the whole as the Theorem I 

is done. 

§ 2. The following functions and the relations between 'them are often necessary 

on the way to the proofs. For details, see, for example, Watson (3). 

1. co ( 1 )V+2m lv(z)= ~0 (-l)m :p· /m!r(J,I+m+l). 

When k is any constant 

]v(z e"'"'')=e~;v.,.t Jv(z), 

] -v(z el;"'t )=e-kv"'i] -vCz ). 

2. 

When k is any constant, 

3. 

Iv(z ek"'')=e"v"'1lv(z). 

lv(z )=le ~fv .. t] vCz e :) . ( -rr<arg z < ~ rr) 
e 2v"'1 Jv(z e -2"'') ( ~ rr<arg z::::;rr). 

H~D(z)= ii -vCz)- e-v"1 lv(z)~ Ji sin ).ITC, 

H~2)(z)= II -v(z) -ev"' Jv(z)~ J-i sin ).ITC. 

When lzl is su:fficiently small and J,l is real and positive, 

( 1 )-v HVYz)-1/rC -J,I+ 1) i sin J,ITC· .2-z . 

When J,l is finite and 1 z 1 increases, 

H~1)(z)-(2/rrz)i- exp (i(z- ~ J,lrr-f)· ( -rr<arg z<2rr) 

1. 1 ' ~ 
Kv(z) = 2 rriLv(z)-lv(z)1/sin).ITC 

1 . _21 V"'!H(1)(. ) 
= 2 1CZ e v Z'Z 

= 7 exp ( -z cosh t-J,it) dt. 1 ~00 
2 -oo 

When k is any constant, 

Kv(z ek"i )=e-l;v"t Kv(z ). 

Wh en J,l is fini te and 1 z 1 increases, 

1 

Kv(z)-(rr/2z)2- e-•. (largzl<~ rr) 

(5) 

(6) 

(7) 

(8) 

(9) 
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This function occupies a central position in the proofs hereafter. 
1 1 

5. When z=4=0 and tJ.h p.z are such arbitrary real numbers as -2 n<!J.l> tt2<-2-n, 

co +i(rc- arg z+-11-2) 

H~1l(z)=J. Î exp (z sinh t-Jd) dt. TCZ J 
-co +i(arg z+p.1) 

~3. We are going to state the Theorems 1, 2, 3, 4 and 5 below. The proofs of 

them can be obtained by using the method of the steepest descent and will be 

given in ~6. These results have many similar points to Watson (3), pp. 235-268. 

Theorem 1. Put as z=iacosh r, then the following asymptotz"c expansion can 

be obtained when y tends to plus infinity: 

H?l(ia)~( exp (z(tanh ï -ï)-! ni)/ ~r:_~--:-z:; ta~~-;- ~o Amr( m+ ~-) /r( ~-) 
( 1 )m · ,-2ztanhï 

+(exp ( -z(tanh Ï-ï)-n;')/ ~ ~ niz tanh Ï .. ~0 Amr(m+ {) /r(}) 
• ( ~ z tanh r r. 

~+Il 
This expansion holds valid uniformly for x,y and a such as O<a~y-y 3 , 

- A;S;x;s:;A. ï =a+ i[3 satisfies the following condition 

a<O, o~<În for x:?:O, 

a:::=_o, 1 02;f'>-2TC for .x<o. 

And Ao=1, A-]_j)_ h2 ï A=~3~-_JJ_ th2 ï- 385 th4 ï 
1 - 8- 24 cot ' 2 128 576 co 3456 co ' · · · 

Theorem 2. Put as z=z"acoshï, then the asymptotic formula 

H~1l(ia)--)s TC exp (z(tanh r -ï))tanh r exp (; tanh3 r)K+(;) tanh3 ï e-1"') 

+v~ TC exp ( -z(tanh ï -ï))tanh r exp (-; tanh3 r)K}(- ~ tanh3 r) 
holds valid when y tends to infinity, where ï is in the same domain as in the 

1 l 
Theorem 1. And y-y-a+ll::::_a:::=_y-y-4. 

Theorem 3. Put as z=ia(l-e), then the asymptotic formula 

tl) • 2 00 ~(m+l)"! • • 1 ( ( 1 1 )/( 1 , ) 1 -(m+l) Hz (ta)~- 3TCE0 e 3 Bm(eta)sm3 m+1)nr 3m+-3 (fta 3 

holds valid when y tends to infinity. Here Bo(w)=1, Br(w)=w, Bz(w)= ~ w2 -lo• 
1 1 

... , and Y -Y 4 <a <Y+ Y 4-. r 1 

Theorem4. lnthe interval y+y4<a<'y+y3 +13 , put as z=z'acosr, then the 
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asyr.nptotic forr.nula 

1tl 

H~1)(ia)-~~- exp (iz(tan 7-ï))tanr exp (- ~ iztan3 7)H~}( ~ z tan3 r) 

holds valid when y tends to infinity. [fwe put as r=a+i{j, the position ofr is 

decided as 

for 

for 

_!_+ô h h Theorem 5. ln the z"nterval y-t- y 3 ;;;a< co, put as z = ia cos r, t en t e 
asyr.nptotic forr.nula 

H~1l(ia)-exp (iz(tan 7 -ï)- ~ rri) 1 ~ ~ rrz tan 7 · J~o Amr( t.n+ ~) /r( ~) 
'1 )m x (2 iztanr 

holds valid when y tends to infinity. Here, Ao=l, A 1 = ~ +2: cot2 r, .... 

§ 4. Fror.n the Theorem 1, we obtain the formula 

2Kz(a)-~~IT e1t:•f(;)"et<~>(2:r exp(f(a)) 

+ (;) _, e-t<t>(:;) -• exp (- f(a))} B(z) (1 +O(y --ï ô)~, } 
h 1 - v~-w ere r/J=ylogyjrr-y-4 rr, B(z)=Vz : z2 +a2 , and 

f(a)=z-J/z2 +a2 +z log ~(z+Vz2+li2)-zlog 2.z. 
t t 

Proof. From the definition of Kz(a) and the Theorem 1, we obtain 

1t!·s ( 1 )/ ; 1 2K.(a)-rri e 2 texp z(tanh r-ï)-4 rri '\ -2 rriztanh r · Cl+Q) 

where 

+exp(-2(tanh7-ï)-~ rrï)/ ~~ rriztanh7·(1-Q), 

Q= -1/8 z·coth r -5/24 z·cotb3 r. 

And from (5 ), we obtain 

tanh r= --J/z2 +a2 /z, 

On the other band, 

(10) 

(11) 
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exp (vz2 +aLz log _J_ (z+J/z2+a2) _1_ ni). 
ta 4 

(2n) -z · z 1 . ' 
=- exp(z-zlog-.+zlogn--nt-/(a)). 

a t 4 , 
And 

ni exp ( -z+ z log~- z log n- 4
1 nt')/,../ 1 niz= ,j2n ( L) "'eï<~>(1 +of,l)), 

z . ' 2 v y .ni y 

' z 1 !/ ~-----. ~;c- ' )-"' ( ( 1 )) ni exp (z-z log-~-+z log n---4 ni .. j _lniz = 2n (X e- 11> 1+0,-- , 
t 1 ' 2 y \n - y 

l (; 

tanh i'=O (y- 3 +2), 
3 ' 

z tanh3 r =0 (y 20 ). 

Using the above ones, we directly obtain the result (lü). 

2. When a is finite and y tends to infinity, 

Proof. When a is finite and y tends to infinity, 

vz2 +a2 =z+O (z- 1 ), 

t =log a--log 2y- i tan x}y+O (y- 2), 

tan- 1 xjy=x}y+O (y- 3 ), niz/2 · tanh i'= -rriz/2+0 (z- 2). 

Using the above, we obtain 

(12) 

(13) 

. ( (t h" .. ) 1 ·)/ ;--r-. - --- 12n ('y)"' 1q,(2n\•(1 O( 1)) nz exp z an 1 _, -·:rm -v -2mztanhi'=,Yy- rr e -a-) + y- ' 

ni exp ( -z(tanh r-n-{- ni.)/~} niztanh t= J~ (;) _., e-iw(~) -•(1+0 (y- 1)). 

Thus the result (13) is obtained. 

3. The absolute value of exp(/(~)) is decreasing or increasing with respect 
l 

to a in the interval (0, y--y'4-) according as x is positive or negative respectively, 

and 

\exp (!(a))\-~-"' for 

Especially, when a is fixed and y tends to infinity, 

exp (!(a))=1+0 (z- 1). 

Proof. From dl }da= -a(z+J/z2+az)-I, 

(14) 

we can easily see that the real part of dl }da is negative or positive according as 

x is positive or negative respectively. Accordingly, the absolute value of exp (/(a)) 

is decreasing or increasing with respect to a according as x is positive or negative 

respectively. And from the expansion 

we obtain 

f(a)=z- vz2+a2 +z log (1 + vz2+{z2 jz) -z log 2 
1 =z- 2- (z 2+a2 )jz- ... -z log 2, 
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!ll(!(a)) ~I_~-xlog2. 
a=y-y4 

When a is fixed and y tends to infinity, !(a)=O (1/z), and we obtain the desired 

result 
exp (f(a))=1+0 (ljz). 

4. From the Theorem 2, we obtain the !ollowing asymptotic formula. 

2K.(a)~ !?jr_ /{!_ ~ ( L). re et"' (2nja)" exp (!(a)) ocih 
'Y Y' L'n: 

+ (~-)-re e-i<b (2n/a)-• exp (- 1 (a)) O(y~)} , 
l 05) 

where Landau's notation 0 is unz'!ormly bounded with respect ta all values of a in 
l +o _l_ 

(y-y-3 ' y-y4 ). 

Proof. Using the relation (11), we obtain 

H~1l(ia)~(2nja)" exp ( -z+z log z/z' -z log n- t ni+ !(a))/ v niz}2 

xC- 2i )J/z/6n tanh r exp ( 1~ tanh3 r )K; ( -:} tanh3 r e- 1") 

+ (2n/a)-• exp (z -- z log z}t" +z log n- ! ni- !(a))/ v -niz/2 

x 2ij/ -z/6n tanh r exp ( -} tanh3 r)Kt(-; tanh3 r). 

(16) 

_ __!_+~ 

When a= y- y'', tanh r =0 (y 2 2 ). So that z tanh3 r/3 tends to infinity or to 
l+o _]_ 

zero when y tends to infinity, according as a=y- y 3 or a=y- y 4 respectively. 

That is, the absolute value of z tanh3 r /3 varies from a sufficiently large value to 
~l~+(j . _!_ 

a sufficiently small value, when a moves from y~- y 3 to y- y 4 • When it is 

sufficiently large, we use the formula (8) and (9): 

Th us 

(17) 

When the absolute value is sufficiently small, we use the formula (5): 

Kv(z/3·tanh3 r r11t)~const. 1/Vz~ tanh r, 
l 

so that, the left band side of (17) is of 0 (y 6). 
l 

In the same way we can prove that the fourth term of (16) is of 0 (y6). 

Using these results and (12), we obtain the formula (15). In this formula Landau's 

notation 0 is uniformly bounded with respect to all values of a. 
l l+o 

5. When y+ y 4 <a<Y+ y 3 , we obtain the /ollowing formula 
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(-,,.(Y'"' (2:rr)• . 1 2K.(a)-.y 2; e 2 n) eï<P a exp (f(a))O(y 6), (18) 

where Landau's notation 0 is unilormly bounded with respect ta all values of a. 

Proof. From the relation z=iacosr, we obtain 

tan ï=iJ/z2 +a2 jz, (19) 

and 

2K.(a)-rci e"~·(2:rr/a)" exp ( -z+z logz/i-z log :rr- ~ :rri) exp (f(a))Jviiz/2 
----- ~i (1) 

x v rciz/6 e 12 tan r exp (- iz/3·tan3 r) H .1__ (z/3·tan3 r). 
3 

1 " 
When a=y+ y", tan ï=v2y-z-+z-. Accordingly, z tan3 r /3 tends to infinity or to 

l+ô .1__ 
zero when y tends to infinity, according as a=y+ y 3 or a=y+ y 4 respectively. 

Using the formulae (5) and (6), we obtain 

--- ~'lt_! (l) l 
v :rriz/6 e 12 tan ï exp ( -iz/3·tan3 ï)H l (z/3·tan3 ï)=O (y 6 ). 

3 

Here Landau's notation 0 is uniformly bounded with respect to all values of a. 
6. The absolute value of exp(/(a)) is decreasing with respect ta a in the 

1 1 1 

interval (y+y4, y+y3+ 15 ), and lexp(/(a))l-2-"', when a=y+y4. 
l+a 

Proof. When a=y+y", z+vz2 +a2-y~2-+iy, so tbat ffi(d!jda) is always nega-

tive irrespective of x being positive or negative. And 

[)RJ(a)] .l=[mcz-(z2 +a2)/2z-z log 2+ ... )] __!_=-x log2. 
a=y+y4 a=y+y4 

1 

7. When y+ y 3+ "<a<~. we obtain the lollowing asymptoti c formula when 

y tends to in:/inity: 

2K.(a)-~~ e "';• ( ~ r ef<P(2:rrja)• exp (/(a)) B(z). (20) 

And the absolnte value of exp (/(a)) is decreasing, and its approximate value 
l 

lora =y+ys-+ô is 2-"', and is equal to exp {(-vk~i+tan- 1 vkL:::l)y} for 

a=ky(k>l). 

The proof is similar to that of the formula (10). 

§ 5. Before we prove the Theorem J, we rewrite the relation (2) as follows. 

Put $(iz)/2:rr2 as r;(z), then the relation (2) becomes 

r;(z)=G(z/2 -9/4)+ G(z/2+9/4), (21) 
or, as G(z) is even, 

r;(z)=G(9/4-z/2)+ G(9/4+z/2), (22) 
and we obtain 

r;(iy)=2!RG(9/4+ iy /2), (23) 
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From this relation, the purely imaginary zero points of r;(z) are obtained as the 

ordinates which make G(9/4+iyj2) be zero, i.e., make arg G(9/4+iy/2) be cidd 

number times of n/2. 

We consider a sufficiently long section ç-z*(z) consisting of first N' terms of 

ç-2(z), then we can find a certain fixed positive constant a such as !Cz*(z)\2a>O 

in ~ - e::::X~A.. here e is a fixed positive constant smaller than {-. Because, the 

absolute value of ç-z(z) is greaterthan a certain positive constant in ~ -e<x<A. 

And we can assume that the absolute value of R is sufficiently small compared 

with that of Cz*(z), when we put as 

Cz(z)=çz*(z)+R. 

~2(iz)/2n2 is written as r;z(z), and we construct functions c/Jz*(t), Gz*(z), ~z*(z) 

and r;2*(z) corresponding to rf'z(t), Gz(z), ~z(z) and r;2(z) respectively. Then we 

obtain the following Lemma. 

Lemma. The function ~z*(z) has in:/initely many zero points in the strip 

- A;:;:;;y<A, and these zero points are all on the real axis in a domain, where the 

absolute value of x is su!Hct"ently large. And the number of zero points which 

are in O~~T is 
T j2n·log T /2rr -T j2n+O (1). 

Proof. From the definition, 

Gz*(z-)= roo c/Jz*(t) e•t dt=2 L,1<n4K. (2n2rr), 

where the summation L,.J< denotes the sum with respect to n's which are in the 

series of ( 2*(z). Hence, using the formula (13), we obtain 

r;z*(z )=Gz-l<(z/2+9/4)+ Gz*(z/2 -9/4)~ 

J4n exp ( -rry /4+ rri/2·(x/2+9/4)) 1(:[,Jf+f- e"b(; )L,.J<n-•-i-+ (Jn) -f-f-
y -t.P ( __!) z+!2.1 

xe 2 L.*n z S 

+ /47c exp ( -ny /4+ ni/2·(x/2 -9/4)) S(L){--f /'( f )L.*n ->+1f + (~ r ~-+t 
'V y v 1 1 l 2n 2n, 

xe-«<1>(2) L.*n"-2s. 

(24) 

Let e' be any small positive number and y be sufficiently large, then, in e' ::::_x:::::;A, 

the first term in the former braces is predominant compared with the remaining 

three terms, and, in -A::::X<-e', the second term in the latter braces is predomi

nant compared with the other terms. Accordingly, in e' <x~A or -A. <x~- e', 

we obtain the following asymptoiic formula when y tends to infinity. 

; 2*(z): fJ~~ exp ( -ny /2+rri/2·(x/2+9/4)) (in)f+f- et<h(-n L.*n:-•-+ l 
r!__ ~ 9 (11) 1 C2s) 

+'V 4; exp ( -rry/2+rri/2·(x/2-9/4)) (~) --z-+T e-•<h 2 L.*n"-2l~l 
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Especially, in e' <x<.A,, we obtain 

1Jz*(z): {J~ exp( -rr:y}2+rr:i/2·(x/2+9/4)) (i'rr:)'t+: e'<t>(f):E*n-·-+} ~1. (26) 

1 

And the absolute value of :2:* n -•-2 is grea ter than a in O~<A, so that we can 

conclude as: However small the positive number e' may be, 1Jz*(z) bas no zero 

point in the strips e' <x<A and -A <x<-e', when y is sufficiently large. 

In the next place, we examine wh ether the formula (25) holds valid in - e' < 

x<e' or not. 

W e consider a rectangle whose vertices are Ao(A, Yo), A,,( A, y,), B,.(- A, y,) 

and Bo(- A,, Yo), where Yo is smaller than y,, and assume that Yo is sufficiently 

large and fixed, so that the asymptotic formula (24) is valid sufficiently strictly 

on the boundary of the rectangle. Under these assumptions, Yo and y, are deter

mined as follows: Let i be a positive nurnber, so as z'(N' +2)<rr:/4, and both y 0 

and y,. satisfy the simultaneous inequalities 

IY log n 1< c (mad 2rr:) 

l~(yj2)!<c (mod2rr:) 
(27) 

where n's are those which are in the series of Cz*(z). The fact that such Yo and 

y, are found infinitly, can be proved by using Dirichlet's Theorem. Dirichlet's 

Theorem: Let X1. Xz, x 3, ••• , XN be N given positive numbers and y be an arbitrary 

positive integer. Then we can fmd an integer t( <yN) and N integers {3 1, {3 2 , ••• , 

i3N such that inequalities 

hold volid. 

In this Theorem, we use log n, y /2rr: and c /2rr: in place of Xq, t and 1/ y re-

spectively, then it can be concluded that we can find an integer y}2rr: (<(2rr:/c)N) 

and N integers {3q such as 

IY/2rr:·logn-{3q!<c!2rr:, q=l, 2, 3, ... ,N. 

These inequalities are written as 

!ylogn!<c (mod2rr:). (28) 

On the other band, cp( y /2) varies very quickly when a sufficiently large y varies. 

Accordingly we can find such y's that the inequality !~(y /2) 1< c (mod 2rr:) holds 

valid within the limit of validity of the inequalities (28). These y's are found 

infinitly and they. tend to fnfinity. 

If Yo and y, are both y's which satisfy the inequalities (27), the asymptotic 

formula (25) holds good on the boundary of the rectangle A 0.A,,.B,B0 • In order to 

prove this, we rean·ange the right band side of (24) as 
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and write the former braces as 

91'1:( y)-"'- 11>( 3I_) S ~~-z _!J.'<:l(y) ~:v -211>( l) c-. ~l+Z~ 
e a 2rc 2 e 2 li:* n 2 + e 4 2rc e 2 2::* n 2 5 . 

As (N' +2) 1 <rcj4, on AoBo and AnBn, 

- rcj4< are e - 2 t<t{ f) 2::* n ~f+Z <rcj4. 

So that the abeolute value of the sum in the last braces is greater than 1. Accor· 

dingly, the former term on the right band side of (29) is predominant compared 

with the latter term on AoBo and AnBn, i.e., the approximate formula (25) holds 

valid along the boundary of the rectangle A0AnBnB0• Of course, J7z*(z) bas no 

zero point on its boundary. 

Let us now consider the variation of arg 172*Cz) for one round of z along the 

boundary of the rectangle. 

On the abscissa x=A, the former term of the denominator of (25) is predomi· 

nant compared with the second term, so that the variation of arg 'l72*(z) is nearly 

equal to that of the argument of the former term, i.e., tu 

S ~ -zl 
2rcO,..=variation of lç6(yj2)+argi;*n 2 J. 

Let us put the variation of arg !72~'(z) as 2rr0n+en. The variation of arg172*(z) 

along BnBo is also 2n:On + e,... The variation of arg !7z*(z) along AnBn can be 
· rciA ' h 1 · ffi · tl 11 ·t· b B wntten as -- 2 -+<no w ere e,.. 1s su nen y sma .. pœ1 lVe num er. ecause, 

the factors of the denominator of (25) which contribute to the variation of the 

argument are e'f(::', eim(f), L:*n-•-+, e-i<t{:) and I:*n·-t,and the variations of 

the arguments of the latter four terms are nearly equal to zero when ' in (27) is 

sufficiently small. In the sa me way, the variation of the argment along B 0A 0 can 

be written as n:iAj2 + eo. 

Accordingly, the total variation of arg !7z*(z) along the boundary of the rec· 

tangle is 

Consequently, the total number of the zero points contained in this rectangle is 

l/2rr·(4rc0n+2en1 +en1 +eo). (30) 
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On the other band, it can be seen from (23) that the purely imaginary zero points 

of '1{ 2*(z) are given as iy's which satisfy the condition 

argG2*(9/4+iy/2)=n/2xodd numbers. (31) 

And 

G2*(9/4+ iy }2)~ )47r exp ( -ny }4+9ni}8) 5(X){- e1q, ( { )L:* n -~u--}+ (2X) --~-
' Y (v) 11 ·1 Î 2n n, 

- i<l> 2 "'* 2+>V Xe ~ n , 

so that the variation of argG2*(9/4+iy/2) is determined by the former term in 

the braces. That is, if we put as 

nl?n=variation of {~(y /2)+ arg L:n --}-;v1 , 
then the variation of argG2*(9/4+iy/2) is equal to m'J,.+en", where the absolute 

value of en" is sufficiently small. 

Accordingly, the total number of non pur ely imaginary zero points of '1{ 2*( z) 

in the rectangle is equal to 

2fJn+ en}n+ l/2n·en1 -!?,.-en" }n, 

i.e., 

1/n {variation of (argL:*n -~--A-i 11 -argL:*n --}-w)} +en}n+en' }2n-en" /n. (32) 

And L:*n-• bas no zero point in a rectangle Ao(A,yo), A,(A,y .. ), c .. (~. y,.), 

C 0 ( ~ , y 0 ), so that the variation of arg L:* n --}-tv is equal to the sum of argco-.Ao 

L:* n-•, argAo->An L:* n-• and argAn-.Cn L:* n-•. According to the first inequali

ties of (27), the sum of the variations of argcù-.Ao L:* n-• and argAn-.Cn L:* n-• 

is sufficiently small. 

So that the value of (32) is sufficiently small, and it is a non negative integer. 

Accordingly it must be zero. 

That is, 'l{t(z) bas only purely imaginary zero points in a domain, where the 

imaginary part of z is sufficiently large. 

The variation of arg L:* n-f-tv is nearly equal to that of arg L:* n -+-A-iv, 

~nd the latter is finite for ail values of y, when A=3/2. Accordingly, the variation 
_ _}___ill 

of arg L:* n 2 is 0(1), and the total number of the zero points which lie be-

tween Yo and y,. is ~(y .. /2)+0(1), where Yo is fixed and Yn increases. Thus we 

have proved that the total number of the zero points of 'll!(z ), which lie in 

-A<x<A, OS.y<T, is 

T /2n·log T /2n-T }2n+O(l), 

and the number of non purely imaginary zero points is at most finite. Q.E.D. 
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Proof of the Theorem 1. 

In the summations 

Gz(z)=2:E K.(2nZn), 

77z(z)=2 2::: n4K_z+ 9(2nZn)+2 2::: n4K_. _x(2nZn), 
(33) 

z 4 2 4 

n runs all n's which are in the series of (z(z). We partition the-se n's into five 
_l_+o L l+n 1_ l 1 

parts as: l<n:Ç((y-y 3 /2rr)Z), C(y-y 3 /2rr)2)+1::=:n::::J(y-y 4 /2n)Z), 

C(y- y+/2rrY~-)+ l::S=n::=:((y+ y}/2rr)l), C(y+y{ /2n}h+ l:sn<C(y+ y-l+n /2n}h, 
l l 

((y+ yT+I> /2n)2 )+ 1 <n<=, where (a) is the integral part of a number a. 
Corresponding to these ranges of n, we have the following asymptotic formulae: 

where 

Gz(z)~~fj_e "'z1"(g1 + g2+ gg+ g4+ gs), 
y 

772(z )~~4rr exp (ni /2(z/2+9/4))(h1 +hz+ h3+ h1+ hs) y 

+~~exp (rri /2(z/2-9/4))(hl' +hz'+ h3' +hl+ h 5'), 

g 1 ={(y /rr )"'eï'i>CVli;n- 2"+ 4 exp ( f(2n2rr))+ (y /rr f'"e-ï<bC1Il2::;n2"+ 4 exp (- f(2n2n)} B(z ), 
l 1 

g 2 =(y /rr)ei<~>:En- 2"+ 4 exp ( f(2n 2rr))O(y 6 J +(y /rr)-'"e-i<bC?I)I;n2"+ 4 exp (- f(2n2n))0(y 6), 

g 3=kVi:En ~. k= -i/Î/~rr(l/3)rr--} 
1 

g 4=(y Jrr)'"ei<b I;n-Z"+4 exp (/(2n2rr)) 0 (y -6-), 

g 5 =(y(rr)"'eï"' I;n-2"+ 4 exp (/(2n2n)) B (z), (34) 

'" 9 irh( 11 ) _l__z - 4 
h1 =(y(2rr)?:+4 e 2 :En-z exp(/(2n2nJ)Bn(z/2+9/4), B,.(z)='=Vz: vzz+4n4rrz 

+(y/2rr)-f- ~e- 11'(~ ):En 127+" exp (- f(2n2n)) Bn (z /2+9/ 4)=hcp +hep say, 

h 2 =(y /2n}~-+~-/<b( ~):En-; -• exp (/(2n2n)) 0 (y~) 

+(y /2n)-f--f e-i<b :En !l+Z exp (1(2n2n)) 0 (y~ )=h~1 l + h~2 ) say, 
10 

h3 =kvy ;2:En3, 
"' 9 1 1 

h 4 =(y /2n)2-+ -1 e1 <~> :En--z:- • exp (/(2n2n )) 0 (y-6 ), 

"' 9 1 
h 5 =(y /2rr)2 +4- et<~> :En--z-• exp (/(2n2n)) En ('Z/2+ 9/4 ), 

'" 9 17 
hi' =(y /2n)2 ___ 4et<~> :En -z-• exp (/(2n2rr )) En (z/2 -9/4) 

'" 9 1 
+(y /2n)- 2+--4e-t<~> I;n--2+Z exp(- f(2n2n)) En (z/2-9/4)=h'i1 l + h'C2l, 

"' 9 17 1 1 
hz' =(y(2rr)2-4 ei<b :En -z-• exp (/(2n2rr)) 0 (y-6) 

"' 9 1 1 
+ (y/2rr)-z+ 4 e-t1> :En- z:+Z exp (- f(2n2n)) 0 (y6- ):=h'~1l + h'~2 l, 

--- 10 
h/=kvy/2:EnT, 
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(35) 

Under the last ten series, h1 is predominant in x2:0 compared with the other eight 

series other than h1', and h1' is predominant in x<O compared with the other eight 

series other than h1. We shall briefly examine these conclusions below. Here we 

must notice that iJ<l/5. 

( 1 ) hin is predominant compared with hi2'. 
W e compare the absolute values of 

1 
:En-z--e exp (/(2n2rr)) B .. (z/2+9/4) 

and ' 9 17 
(y j2rr)_.,_T :En Tu exp (- /(2n2rr)) B,. (z/2+9/4). 

(36) 

(37) 

l_+ô .l+ô The absolute value of B,.(z) is greatest for a=y-ya when O<a<y--ya -and 
..l__.Q_ • _.,_~_.Q_ !l+., 

its order is O(y 6 4 ). Renee the order of (37) 1s O(y a 4 :En 2 ). And, as 

\ 
1 17 17 ., 

the maximum of 2n2rr s y-y3+8, the order of :EnT+"' is O(y4+T). Sothat(37) 

tends to zero, when y tends to infinity. On the other band, the series of (36) tends 
1 

to :En-2-•, as we shaH see later. Accordingly, hi1' is predominant compared 

with hi2'. 

( 2 ) hi1' is predominant compared with h~1'. 
1 1 

The function which is to be compaed with (36), is :En_T-"exp(/(2n2rr))O(y6). 
1 

The number of terms of this series does not surpass O(y-6+8). So that the order 
1 

of the above function is O(y_4_"'+8), and it tends to zero when y tends to infinity. 

( 3 ) hi1' is predominant compared with h~2'. 

Instead of (37), we may consider the series 

The order of this series is O(y-t-f+a). 

( 4 ) hi1' is predominant compared with ha . 
1 ., 

In this case we obtain O(y-u--2-). 

( 5 ) hl_1) is predominant compared with h4 . 

This case can be treated in the same way as in (2). 

( 6 ) hi1' is predominant compared with hs . 
1 

In this case, we may consider the series :En-2-• exp (/(2n2rr)) B,. (z/2+9/4) in· 
1 3 "' 

stead of (36). And we obtain O(y-4+4ô-T). 
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( 7 ) hl_1l is predominant compared with h'i1l. 

1 ., ô 
In this case, we obtain O(y_12_T __ 4). 

( 8) hj_1l is predominant compared with h'~n. 
1 '" In this case, we obtain O(y_12_T). 

( 9) hl_1l is predominant compared with h'~2 l. 

1 '" In this case, we obtain O(y-li-2). 

(10) hl_1l is predominant compared with hl and h5'. 

Accordingly, we obtain the following asymptotic expansion in - A~x~A: 

7J2(z)-V4nfy exp (ni/2·(z/2+9[4))(yj2n}T+f e'm(fJ 
1 

x~n-2-z exp Cf(2n2rr)) B,. (z/2+9[4) 

+V4n[ y exp (nif2·(z/2-9[4))(y[2n)-~-+-} e_tm(fJ 
1 

x~n-Tu exp (- f(2n 2n)) B .. (z/2-9/4), 

) 
where 

(38) 

We divide the above summation into two parts: ~*+ ~', where ~* consists of 

fust N' terms, and ~' consists of the remaining terms. 

When y tends to infinity, we can see, from (13 ), tl?-at 

1 
~*-~*n-2-z. 

In the next place, we consider the remaining part ~'. The absolute value of this 

part is small compared with that of ~*. when the number of terms of ~* is 

sufficiently large. 

Eventually, joining together these results, we can conclude that the absolute 

value of r; 2(z) is nearly equal to that of 7J2*Cz) on the boundary of the rectangle 

given in the Lemma, when Yo is sufficiently large. Then, acc.ording to Rouché's 

Theorem, the number of zero points of 7J2Cz) in the rectangle, is equal to that of 

7J2*Cz) in the same rectangle. 

On the other band, r;2Ciy) becomes zero for y's which satisfy the relation 

arg G2(9/4+iy/2)=rr/2Xodd number. And, from the fact that hl_1l in (35) is pre

dominant compared with hl_2l, h2, h3 , h1 and hs. we obtain 

G2(9/4+ iy /2)-V4nfy exp ( -ny /4+9rri/8)(y/2rr)~-eim(~) 
1 

x~n-2-;;11 exp(f(2n2rr))B .. (z/2+9/4). (39) 

As we have already seen, the summation in the right hand side is written as 
1 

~*n -2-;:11 + R, and the absolute value of R is sufficiently small compared with that 

of the former term. And the variation of 



54 Osamu MIY AT AKE 

1 
is nearly equal to that of arg 2:*n_2- 111 • 

So that the number of the purely imaginary zero points of r,>2(z) is equal to 

that of r,> 2*(z). Consequently, ail zero points of r,>z(z) are all on the imaginary 

axis, when y is sufficiently large. And the number of the zero points which lie 

in 0 -::;y ~T, is 

T /2rr·log T /2rr--T /2rr+O(l). 

\'-3 6. Proofs of the Theorems 1 and 2. 

1. Proof of the Theorem 1. 

ia sinh t-zt=z sech r sinh t-zt 

=z sech r sinh r- r z -izG(t, r) sech r, 
where 

G(t, r)=i(sinh t-tcosh r -sinh r + r cosh r). 

Accordingly 

Hi1l(ia)=1/rri ·exp (z(tanh r- r)) L (z, r), 

where oo+~ 

L(z, n= Loo:~ exp (- izG(t, n sech n dt. 
2 

The stationary points of G(t, r) are ±r +2hrri, h=O, ±1, ±2, ... 

When we put as t=u+ iv, Debye's contour 

:JG(t, r) = 0 , 

which passes through r' is given by 

sinh u cosh v=u cosh a cosh j3- v sinh a sin j3 + sinh a cos j3 -a cosh a cos i3 

(40) 

+/3sinhasinj3. (41) 

Let us trace this curve. W e introduce a new real variable w, and consider the 

curve ( 41) as the projection of the intersection of a surface w=sinh u cos v and a 

plane w = u cosh a cos i3- v sinh a sin i3 + sinh a cos i3- u. cosh r1. cos j3 + j3 sinh u. sin j3. 

Let P 0 and Q be the points of intersection of the above plane with the u- and 

v-axes respectively. Then Po and Q are both on the negative sides of the origin. 

Because, as a-::;o and O<fJ<rr/2 when x>O, the coefficients of u and v are both 

positive, and the constant term is also positive. Let Pn12 be the point of inter

section of the above plane with the axis v=nrr/2, w=O. Then the above curve 

(41) has two branches. One of them starts from ( -=, -rr/2+0) and terminates 

at ( -=, 3rr/2+0). We name this branch as ro. 
ro: ( -=, -rr/2+0)--+r--+P l --+P 2_ --+( -=, 3rr/2+0). 

2 2 

The other branch starts from ( -=, rr/2-0) and passes the following several points 
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and terminates at (oo, -(2n+l)rr/2-0). We name this branchas rn. 
rn: ( -oo, rr/2-0)--+r--+Q--+P _Jl_ --+······--+P _2,_Jl_ --+(oo, -(2n+ l)rr/2-0), 

2 2 

where n is a finite positive integer which is determined according to a, {3. 

Instead of ( 40 ), we consider an equation 

~G(t, -r) = 0. 

The contour which corresponds to this equation is symmetric with that of ( 40) 

with respect to the origin. Let Co be a branch which is symmetric with ro. 
Co: ( +oo, rr/2-0)--+-r--)( +oo, -3rr/2-0) 

In general, a branch of the contour 

~G(t, -r-2hrri) =o. 
is given by 

C~~,: ( +oo, -2hrr+rr/2-0)--+-r-2hrri->( +oo, -2hrr-3rr/2-0). 

Accordingly 

L(z,n=(J +[ +······+[ lexp(-i:?G(t,r)sechr)dt (42) 
rn .le, .lcol 

In the first place, we consider the first integral in the parentheses. 

W e put as C:=- G(t, r), then, as 

!RG(t, r)= -cash u sin v+u sinh r1. sin {3+ v cosh r1. cos {3+cosh a sin {3 

- {3 cosh a cos {3 -~ sinh a sin {3, 

r:;, starts from the origin and tends to plus infinity, when t on rn starts from r and 

tends to -oo+rri(2 orto oo+(-2nrr-3rr(2)i. So that, two t's correspond to one 

real number r:;,. Let t1 be the one which is in (r, -oo+(-2rr-3rr/2)i) and t2 be 

the other one which is in (- oo + rrz"j2, r). Then 

( . exp (- izG(t, r) sech r)dt=J"" exp (ize;, sech r)(dtifdr:;,-dt2jdr:;,)dr:;,. JIn o 

Next we shall discuss the expansion of t1 and tz in the descending powers of r:;,. 

Since r:;, and dr:;,jdt vanish when t=r, it follows that the expansion of r:;, in powers 

of t-r begins with a term in (t-r)2 ; by reverting this expansion, we obtain 

expansions of the for,ms 

tz-r= r; ( -l)m+lam/m+l (;}cn>+l), 
m~o 

and these expansions are val id for sufficiently small values of 1 r:;, 1. 

Mmeover 

fCO+,O+) -lcm+l) J"Cr+) 1 (m+l) 
am=1(2rri·J dtddC:·C: 2 dr:;,=l/2rri· dt/(2 . 

The double circuit in the Ç-plane is necessary in order to dispose of the fractiona1 

powers of r:;, ; and a single circuit round r in the t-plane corresponds to the 
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double circuit round the origin in the (-plane. From the last contour integral, it 
1 

foJlOWS that a,. is the coefficicient of ljt- T in the expansion Of czCm+ 11 in ascen-

ding powers of t-r; we are thus enabled to calculate the coefficients am's. 

Write t-r=T and we obtain 

where c0 =-i/2!sinhr, c1=-i/3!cosh,r, c2=-i/4!sinhT,., 

Therefore a,. is the coefficient of Tm in the expansion of 
_-lcm+1) 

{co+c1T+c2T2+ ···} 2 . 

The coefficient in this expansion will be called a0(m), a1(m), az(m), ... , ::md so we 

ob tain 1 1 
ao(m)=co -zCm+ll, al(m)=co -zCm+1) { -(m+ l)cl/2-l!co}, ... 

By substitution we find that 

1 
ao=ao(O)=c0 -z, 

al =a1(1)=co -t{lf3·coth r1' 
a2=az(l)=co -t 11/8-5/24·coth2 r~' 
a3='a3(1)=co -f )2/15·coth r -4/27 ·coth3 r(' 

a4=a4(1)=co -t 13/128-77 /576·coth2 r -385/3456·coth4 r(' 

using these coefficients, we obtain 

and so the asymptotic expansion 

~rn exp( -izG(t, T)sechr)dt~~t2mr(m+ ~ )( -izsech r) -m--f (43) 

1 

is obtained when positive y is large. Here ao=( -i/2·sinh n-z. And, as 
l 

ao=Ctl-T/(2)~~+0• argao is a negative acute angle, so that we have O<arg 

( -i sinh r)<rc. Accordingly we obtain 

L'n exp ( -izG(t, r)sech r)dt~e-"/-1 v-rciz/2 tanh r ~l(m+ ~) /r( ~) 
xA.,.j(-z/2·tanhr)"'. (44) 

Here arg( -rciz/2·tanh r)=rc/2+arg( -isinh r), andA0 =l,A1= ~ ( ~ -5/24·cothzr), 

Az=3/128-77/576·coth2 T-385/3456·coth4 T, ...... In general, A.,. is a polynomial of 

coth2 Y of them-th degree. (Watson(3), pp. 242-243). Accordingly, Am/( -z/2 tanhrJ"' 

( JLma 1 +a 
=0 y- 2 ). Thus the formula (44) holds valid in O;'?;a:'Sy-yT . 
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Similarly, we obtain 

Jco exp ( -izG(t, r)sech r)dt=e~ 1 vniz/2·tanh r-,~0r(m+~) /r({) 
x Am/(z/2 tanh rr. 

here, arg(niz/2·tanh r)=n/2+arg(i sinh r) and O>arg(i sinh ï)>-rr. 

Concerning the contour C~c, we obtain 

J exp (- izG(t, ï) sech r)dt=e2~c-T';•l exp ( -izG(t, r) sech ï)dt. 
C~c Jco 

So that it can be neglected compared with that of C 0 • Thus we obtain the 

Theorem 1. 

2. Proof of the Theorem 2. 

We consider the case x~O only. 

As has been proved above, 

H;n(ia)~1/m"·(f + f, )exp(iasinht-zt)dt. Jco JIn 
In the first place, we consider the integral taken along rn. W e put as 

G(t,i')= -TCosh r, where r= -i tanh r (cosh w-1)-i(sinh w-w), w=t- r. ( 45) 
1 ~o 1 

ln the interval y-yT' ~a~y-y4, cosh7=zjia tends to 1, so that ris in the 

neighbourhood of the origin. As the inequalities da.jda>O and d[3jda>O hold 

valid, r statts from - oo +(rr/2+0)i and moves towards upper right, when a in· 
l l 

creases from zero to y-y4. When a=y-y4, we obtain 

3 5 
rl=-v2y-e-, [3=xy-8/v2, 

:md so we obtain arg r ~n(y~ + co). 

Expanding the right ha nd side of ( 45) in powers of w, we obtain 

r= -i tanh r-wj2-iw3 j3!' 

and, neglecting the infinitesimal w3 , we obtain u2 -v2 =0 from .;'Sr=O. And a 

branch u+v=O is adopted. 

Instead of the integral 

J eizr dW= ~ .;)r=û exp (-ar COSh 7)dW, (46) 

we consider an integral 

) exp (-ar cosh r)dw, (47) 

whete r= -i/2· W2tanh r --i/6· W3, and the path of integration is ~)'r=O. When 

we put as W =U +iV and tanh r =-h+ ik, the contour .;'Sr=O is given by 

-h(UL V 2)-2kUV + 1/3·(UL3UV2)=0, 
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Putting as k=O, we obtain 

(48) 
5?ti 

One of the branches of this curve starts from roe 6, passes the origin and then 

tends to h-ioo. This branch contacts with ~-r=O in the tv-plane at the origin. 

So that we may consider the integral ( 47) instead of the integral ( 46). Thus we 

can carry out the following calculations. 

Jexp (-ar cosh r)dw- )exp (-a-r cosh r)dW 

(f -tanh y ~ -tanh v -ioo) 
s"t+ ' exp( -ar cosh r)dW 

-tany+ooe 6 • -tanhy 

s (0 51<! 5"! 

=- exp(z/3•tanh3 r)lJ O e 6 exp (izf; 3 j6- C 6f;z tanh2 r j2)df; 

+ i [exp (izt; 3 /6+ izt; tanh2 r)dt;1 

=-exp (z/3·tanh3 r) eT}: 1/m! ( -e-6 z/2·tanh2 r)m exp (z"z/6·f; 3)t;mdt; f 5"'! 00 5"! ) 00 

m=O o 

+ i E}lm! (iz/2·tanh2 rr[ exp (iz/6·t; 3 )t;mdt;1 

=-exp (z/3·tanh3 r)x 

[ 1/3·/;t L~ 1/(3k-1)! ·(- e:;_~t ) 3k- 1 ·(z/2)3k-I(tanh2 r)3k- 1(6i jzfi'(k) 

+ i3 1/(3k)!·( -/;1 )3k(z/2)3k(tanh2 rY''(6i/zl++rck+ 1/3) 
lc=Q 

+ Ëo 1/(3k+ 1)! ·( -/-~!)3k+ 1(z/2)3k+l(tanh2 r)3k+ 1(6i /zf+fr(k+ 2/3)1 

+ i /3L~ 1/(3k-1)H3k-l.(z/2)3k-l(tanh2 r)3k- 1(6i/z)ki'(k) 

00 le 1 
+ 2:: 1/(3k)! i 3k(z/2)31c(tanh2 r)3k(6i/z) +3I'(k+ 1/3) 

k=O 

+ t:o 1/(3k+ 1)! i 3k+l(z/2)3k+l(tanh2 nsk+l(6i/zf++rck+2/3) 1]. 
The coefficients of zsk- 1, z3k and .,slc+l are zero, v:r exp (3}2·krri+2/3·rri) and 

v3 exp(3/2·krd+5/6·rri) respectively. Thus the above series becomes as 

Using the formulae of § 2, the above formula is 

1 .,.;j '1<i ) 

-exp (z/3·tanh3 r)2rri/3·tanh r e Tf -l(z/3·tanh3 r) -e- 3 I _ 1 (z/3·tanh3 nt 
3 3 J 

=-exp (z/3·tanh3 r)·2i/v 3 ·tanh 7KL(z/3·tanh3 "/e-1"). 
3 
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Thus we have 

1/rri · Î exp (ia sinh t-zt)dt= -2/v 3 rr·tanh r exp (z/3·tanh3 1 J l'n 

+z(tanh r- r))Kl(z/3·tanh3 re- 1"'). 
3 

Similarly, we ob tain 

1/rri. r exp (ia sinh t-zt)dt= -2/v-frr·tanh r exp ( -z/3 tanh3 r 
Jco 

-z(tanh r -r))K_!_( -z/3·tanh3 r). 
s Q.E.D. 

As the proofs of the Theorem 3, 4 and 5 have already been given in Watson (3), 

we may omit them. 
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