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I wish to show that the distribution of zero points of a function which is rela-
ted to Riemann’s &-function, is in a state just as Riemann expected concerning
&-function. $§1. Introduction. $2. Definitions of functions necessary to the proofs,
and relations between them. $3. Necessary Theorems 1,2, 3,4 and 5. §4. Re-
sults deduced from the Theorems 1, 2, 3, 4 and 5. §5. Proof of the conclusion.
§6. Proofs of the Theorems 1 and 2.

§1. Riemann’s &-function®’ is defined as

= 3B ot deer ).

This is also represented as

&(z)=2 X: #(2) cos zt dt,

where ¢(#) is even with respect to ¢ and is given by the following series:
5 [ood
¢(H)=2ne? " Z‘i (2r €2 n2—3)n? exp (—nir e2%).
Nn=
Prof. Polya2 brought forth a function

&¥(z)=2 S: ¢*(t) cos zt dt,

where 9, -2,
¢ (t)=4n2(e? +e 2 Dexp(—n(e¥+e~?")),
and proved that £¥(z) has infinitely many zero points and they are all on the real
axis.

In order to develop his idea, let us consider as follows. By using an even
function ¢(¢), we define a function G(z) as

6= sy e ar, (1)

then G(z) is even with respect to z. Here we assume that G(z) and £(z) are in
the following relation :

£(2)=2n2 {G(—;—iz—%)JrG(é—inr%)% . (2)
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In order that this relation may be satisfied, the function ¢(¢) which has not yet

been determined, must satisfy the relation

An2(28) (e'%‘ + e%t Y=¢(t).

From this, we obtain
ot)= 3 {(1—%—5e-’)/(1+e‘%")} nt exp (—wPm ), (3)
which can be written as
W)= 35 exp (—nin(e +e7) (1= ROntr, 1)), (4)
where R(n2r, t)’s are even and
R(n2x, t)=1—{(1—2%l§)/(1+e_%t)} exp (n2we?),

- when ¢ is positive. These functions R(n?rm, #)’s tend to zero when ¢ tends to plus
cr minus infinity, but the tendency of going to zero is not uniform with respect to 7.

Now we define functions

()= gl n*exp (—n2a(ef+e7%)),
do()= 3 n*exp (—n2n(e’+e?)),
¢3(t)= i n? exp (—n2n(ef+e~ ")),

N=1

where the summation X/ of ¢2(#) is identical with that of
Cz<2)'=_=pgN(1—P”)‘1= > nt,

N being a certain fixed positive constant, and p’s are prime numbers.

In the same way as the functions G(z) and &(z) were constructed from ¢(2),
functions Gi(z), §1(2), Go(2), &2(t) and Gs(2), £5(¢) are constructed from ¢1(2),
¢2(2) and ¢3(¢) respectively. Hereafter, we always put as z=x+17y, and let A be
a fixed positive constant and ¢ be a positive constant smaller than 1/5. R/ and
Jf denote the real and imaginary parts of a function f respectively. Then we
obtain the following results.

Theorem I, The function §,(2) has infinitely many zero points in a strip
—AZy<A. And these zero.poinis are all on the real axisin a domain, where the
absolute value of x is large enough. And the number of the zero points which are
in 0Zx<T is

T/2r-10g T [2n —T /27 +0 (1).

Theorem II. The function £(z) has infinitely many zero points in a strip
—AZy<A. And these zero points ave all on the real axis in a domain, where
the absolute value of x islarge enough. And the number of the zevo points which
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are in 0<x<T is
T/2rx-log T [2rn—T /27+0 (1).

In the present paper, we shall prove the Theorem I. With respect to &:i(z),
we obtain no result. The Theorem II can be proved on the whole as the Theorem I

is done.

$2. The following functions and the relations between them are often necessary

on the way to the proofs. For details, see, for example, Watson (31.
L Jo@= 3 (=" ( ) Jm TGt ma 1),

When % is any constant

Jv(z e’““)=e’°‘”‘i]v(z),
.]—v(z eka:i>=e—kwci]_v(z)_

2. I(z)= ”i_‘. ( ) * m/m!I‘(u+m+1).

\

When %k is any constant,
I,(z &)=, (2).

1 SV il 1
1,(2)= ]v(zez) (In<arg2§§rz)
3. “W]v(ﬁe b (§n<arg2§n).
H{P(z)= %J—v(Z)“ e""‘i]v(z)z /i sinym,
HP()= {J—v<2> —e”"‘]v(2>$/—i sin yr.

When |z| is sufficiently small and v is real and positive,

HP(2)~1/p(—v+1)isin un:-(%—z)_v. ) (5)
When v is finite and |z| increases,
H<1)(z)~(2/7r2)2 exp ( (z—%vn—-}). (—n<argz<2r) (6)
- K(2) =% )T I()] [sin v
=% wie 2 " HV(i2)
1

2
When k& is any constant,
K, (z ™) =¢"""K (2). (8)

When v is finite and |z| increases,

= gw exp (—z cosh{—vt) di. (7)

K2)~(n/22)% e, [largz]<3 = (9)
\ 2
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This function occupies a central position in the proofs hereafter.
5. When 270 and s, #2 are such arbitrary real numbers as ——é—- n<p, u2<‘;‘ 7,
o 4-i(n—arg z+us)
H31)<2)=% S exp (z sinh £ —vt) dt.
— oo fi(arg z4-u1)

§3. We are going to state the Theorems 1,2, 3,4 and 5 below. The proofs of
them can be obtained by using the method of the steepest descent and will be
given in §6. These results have many similar points to Watson (3], pp. 235-268.

Theorem 1. Put as z=iacosh7, then the following asymptotic expansion can
be obtained when y tends to plus infinity :

. (—32 tanh T)

(exp( z(tanh 7 —/)—— /\/"”2 tanh r L AmI‘(ﬁH— /F

. (iz tanh T) .

2
Thzs expansion holds valid uniformly for x,y and a such as 0<a<y- y3+8,
<xLA. T=a+iB satisfies the following condition

=<0, 0_£_B<~—21—7r for x>0,
4=0, ogﬁ>~ln for  x<0.
And 4 4 A1=1 5 ) coth? T, As— 128 57776

Theorem 2. Put as z=iacosh7, then the asymptotic formula

385

3456 coth* 7, .

oth? 7' —

2
( » [ = —im
H,D(za)~——,/3 exp (z(tanh 7 —7)) tanh 7" exp (3 tanh?® /)K1 (3 ) tanh® 7 e-? )
2 » , z 3 )
+l/3~ﬂexp(—z(tanh4 —7))tanh /exp( 3 tanh® T)K 1 ( —3 tanh f)

holds valid when y tends to infinity, where 1 is in the same domain as in the

1 1
Theorem 1. And y—y3 °<a<y—y*t.
Theorem 3. Put as z=ia(1—c¢), then the asymptotic formula

0 l m r.3 .1,
Hé”(ia)~-§% Z]o PR ' Bu(eia) sin%(m%—l) r:]j‘(—%m#%)/(-éia) gD

holds valid when v tends to infinity. Here Blw)=1, B(w)=w, Bz(W}—-—wz_glﬁ,
.., and y— y4<a<y+y

Theorem 4. In the interval y+y - <a<y+ y , put as z=iacos?, then the
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asymptotic formula

i

H;D(ia)~‘-e/%—,» exp (Zz(tan7—7)) tan7 exp (~ % iz tan3 T)H(ID(% z tan3 7’)
1

holds valid when y tends to infinity. I1f we put as ¥ =a+iPB, the position of T is
decided as
0=a, 0§B<‘2Ln for x>0,

0=, 0;2_B>—J-n for  x<0.

1,
Theorem 5. [In the interval y+y3 ° \a< o, put as z =iacos i, then the
asymptotic formula

H®P(Ga)~exp (iz(tan -7 ,__41._ nz)/ﬂ/w . mf:jo AmI‘<m+ %)/F(%)

x (% iztan7)"

holds valid when y tends to infinity. Here, Ao=1, A1=%+%c0t‘~’ Tyt
$4. From the Theorem 1, we obtain the formula
= gz ‘
2](7,(“)‘V /v/z_q e ? {(%) ei¢(2 ) exp <f<a)) l
y
IO . (10
+(%) e'id’(;n) exp(—f(a))} B(z)(1+0(y 2 ), J

where ¢=ylogy/rr—y— m, B(z)=1"2 : ¥22+a?, and

fla)y=z— |/22+a2+210g—(2+|/22+a2) zlogzz

Proof. From the definition of K:(a2) and the Theorem 1, we obtain

’n:zz

2K.(a)~nie? {exp (z(tanhl -D-7 m)/v —"MZtanhT a+e)
+exp (—2(tanh 7‘—7’)—Zni /1/5 niztanh7 - (1-Q),
where Q=—1/8z-coth?” —5/24 z-coth® 7.
And from (5), we obtain
tanh 7= /27 F @z, "=ﬂlog2.1—a(2+l/27+—a2). an
On the other hand,
exp (—Vm+z log Z.ld(z+1/m)~%-ni>
=/ )

<7 exp (-—z+z log % —zlog n—% ni+ f(a)),
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exp (1/22+d§~z log %‘2 (z+|/22+a2)<—i— m’)

=(2;”)_zexp (yz—-zlog %-leogrc—% ni -—f(a)) .

And
7t exp (~z+zlog —;——-glog nw% m)/w/%-;;= W/%,E (%)wei¢<1+0<}1_))’

7l exp (z—zlog zi.+z 10gn——7§-ni)/4//—% iz = \/2% (‘%)—xe‘”’<1+0(%)), (12)

1,8

- 33
tanh7=0(y 3 T2 Dy ztanh®7=0(y2 ).
Using the above ones, we directly obtain the result (10).
2. When a is finite and y tends to infinity,

2K ()~ 4 /2’r w{(ﬁ”‘eﬂf—”«)ﬂ(%f e-it (2”) }(1+0(y‘l)). (13)

T a
Proof. When « is finite and ¥ tends to infinity,
V2 tra?=z+0(z"1),

7=loga—log2y—itanx/y+0(y~2),
tan"lx/y=x/y+0(y~3), niz/2 tanh?=—miz/2+0(z"2).

Using the above, we obtain

i exp (Ctanh 1) ori) /o ~ & i tanh 7= o/ 27 (2) e (3 Lr0 2y,
N . SRR __l ) /1 . B ? _y_\ 16 2\ 7 .
it exp( 2(tanh7—7) 4 7”)/1/77‘!14 tanh/—-=\/}—( ] (a} A+0Cy~H).

Thus the result (13) is obtained.
3. The absolute value of exp (f(a)) is decreasing or increasing with respect

1
to a in the interval (0, y--y*) according as x is positive or negative respectively,

and
1

lexp(fCa))|~2-® for a=y-—y*i. (14)
Especially, when a is fixed and vy tends to infinity,
exp (f(@))=1+0(z"1).
Proof. From dfjda=—a(z+1/ 22+ a2)7 Y,

we can easily see that the real part of df/da is negative or positive according as
x is positive or negative respectively. Accordingly, the absolute value of exp (f(a))
is decreasing or increasing with respect to @ according as x is positive or negative
respectively. And from the expansion
fla)=z— 1/22+a2+210g(1+1/ 21 g2/z)—2log 2
=2~~§ (z%+a?))z— ... —zlog 2,

we obtain
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E)l(f(a))azyﬂy,}r~ —xlog2.

When « is fixed and y tends to infinity, f(¢)=0(1/z), and we obtain the desired
result
exp (f(a))=1+0(1/2).

4. From the Theorem 2, we obtain the following asymptotic formula.

2K Cy~ /25 6% (1) et anfar exp (@0 ) 5

[ 2) et rjayt exp (=7 @0
where Landau’s notation O is uni formly bounded with respect to all values of a in

1,

1
(y—y3 7 y—y*).
Proof. Using the relation (11), we obtain

HY(Ga)~(2r]a) exp (—z+z]0gz/i—zlogn—% 73 +f(a))/;/niz/2

. _— z 2 .
x(—21)/6x tanh T exp (§ tanh? T) K_;_ (§ tanh3 7 e””‘)
/ . 1. S (16)
+Q2r/a)~% exp kz—zlogz/z%—z log m—g i —f(a))/l/-—niz/Z

X 24} —2 /67 tanh 7" exp <——'§—tanh3 T>K 1 (—%tanﬁ 7’) .

3

1 a
_1l,e
2 2

When a=y—y% tanh7=0(y ). So that ztanh®7/3 tends to infinity or to

1 1
zero when ¥ tends to infinity, according as a=y—y3 8 or a=y—y* respectively.

That is, the absolute value of z tanh®7/3 varies from a sufficiently large value to
1 1

a sufficiently small value, when ¢ moves from y-—y?2 *e to y—y*. When it is

sufficiently large, we use the formula (8) and (9):

z . -z " — 2
Kv<§ tanh?® 7 e““>~const-exp (——3— tanh3j )/1/2 tanh27.
Thus ' 15
(=24 z[6r tanh T exp (z/3-tanh3 1) K 1 (z/3-tanh® 7 e=1")=0(y ¢ ). (17)
3

When the absolute value is sufficiently small, we use the formula (5):
K (z/3-tanh® 7 e~ ™ )~const. 1/13/; tanh 7,

so that, the left hand side of (17) is of 0( y%). .

In the same way we can prove that the fourth term of (16) is of O(yT).
Using these results and (12), we obtain the formula (15). In this formula Landau’s
notation 0 is uniformly bounded with respect to all values of a.

1 1 s
5. When y+y* <a<y+y3 °, we obtain the following formula
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2[&',(111)-“/27r eu;(;’; Ve (2 ) exp (f(a.)) OCy%), (18)

a

where Landaw’s notation 0 is uniformly bounded with respect to all values of a.
Proof. From the relation z=iacos7, we obtain

tanT =iy 71 @)2, T=i log ;1& Gy +ad), (19)
and
2K, (a)~ni e%ij@n:ﬁai)” exp (—z+z logz/i—z log n—% ni) exp (f(@)) ]y wiz[2
Xy miz]6 e{; tan7 exp (—7z/3-tan37) H;)Czj?»-tang' ).

1, a

When a=y+y% tan7=1"2 : y_?+ 2. Accordingly, ztan®7/3 tends to infinity or to
1. s 1
zero when ¥ tends to infinity, according as a=y+y?3 " or a= y+y* respectively.

Using the formulae (5) ana (6), we obtain
5w [¢5) 1
V' niz/6e1? tan7 exp (—iz/3-tan®7) H% (z/3-tan3 7)=0(y%).

Here Landau’s notation 0 is uniformly bounded with respect to all values of a.
6. The absolute value of exp(f(a)) is decreasing with respect to a in the

1 1 1
interval (y+y*, y+y3+a), and |exp (F(a))|~2-2, when a=y+y*.
1+a

Proof. When a=y+y% 2+ 22 +a%*~y 2 +iy, so that R(df/da) is always nega-
tive irrespective of x being positive or negative. And

1 = —(z2 2 -
[Sif(a)]a=y+yT [fR(z (22+a?)/2z—z log 2+ ... >]a—-y-|—y4 —xlog 2.
1.
7. When y+y3 "<a<co, we obtain the following asymptotic formula when
y tends to infunity :

2K,,.(a)“1/ ZyE e {{—)z ¢ (21 )@y exp (F(a)) B(z). (20)

And the absolnte value of exp(f(a)) is decreasing, and its approximate value
1 . .
Jor a =y+y3+6 is 2%, and is equal to exp {(—1 B2—1+tan-1 VEE=1)y} for

a=ky(k>1).
The proof is similar to that of the formula (10).

§5. Before we prove the Theorem I, we rewrite the relation (2) as follows.
Put £(iz)/2n? as %(z), then the relation (2) becomes
w(2)=G(2/2—-9/4)+ G(2/2+9/4), 1)
ot, as G(2) is even,
7W(2)=G(9/4—2/2)+G(9/4 +2/2), (22)
and we obtain
2(iy)=2RG(9/4+iy/2), (23)



On the Distribution of Zero Foints of a Function which is related to 47
Riemann’s t-Function

From this relation, the purely imaginary zero points of 7(z) are obtained as the
ordinates which make G(9/4+iy/2) be zero, i.e., make arg G(9/4+:y/2) be odd
number times of m/2.

We consider a sufficiently long section ¢9*(z) consisting of first N/ terms of
¢2(2), then we can find a certain fixed positive constant ¢ such as |£*(z)|=0>0

in %—egng, here ¢ is a fixed positive constant smaller than 5 Because, the
absolute value of ¢2(z) is greater than a certain positive constant in %—egng.

And we can assume that the absolute value of R is sufficiently small compared
with that of £2*(z), when we put as
C(2)=c*(2)+R.

€,(iz)/2n? is written as 72(z), and we construct functions ¢2*(2), Gy*(2), §2%(2)
and 72%(z) corresponding to ¢a(2), G2(2), &2(z) and %2(z) respectively. Then we
obtain the following Lemma.

Lemma. The function £55(z) has infinitely many zero points in the strip
—A<y<A, and these zero points are all on the real axis in a domain, where the
absolute value of x is sufficiently large. And the number of zero points which
are in 0<x<T is .

T/2x-log T [2n—T 27 +0 (1).
Proof. From the definition,
Ger= |7 4ty et dt=2 3 wK. (2w,

where the summation 33* denotes the sum with respect to #’s which are in the
series of £2%(z). Hence, using the formula (13), we obtain

725(2) =G (z/2+9/4)+ Gz*(2/2 -9/4)~

‘/4” exp(—ny/A+ni[2- (x/2+9/4)) {( 4 ) (" )Z*n z—%_‘_ (%r)'%'%
xe () yrn “—3 21)
\ 2 _z .9
I—,V/‘Ly‘ exp ( irry/4+ i [2-(x/2-9/4)) {(2{;) 2 ( )Z* (2%) 2t
Xe ( 2 ) Z*n ?} . J

Let ¢/ be any small positive number and y be sufficiently large, then, in ¢/ <x<A,
the first term in the former braces is predominant compared with the remaining
three terms, and, in —A<x<—¢’, the second term in the latter braces is predomi-
nant compared with the other terms. Accordingly, in ¢/ <x<A or —A<x<—¢,
we obtain the following asymptotlic formula when ¥ tends to infinity.

- Ar Z2.9 w(X —z- L
7552 {4/ exp -y 2w f2-Crf2004) (32) 4 03D ™

s v (25)
9

+ﬁ7i exp (—my 2+ [2-(x[2-9/0) (5,) ) };*nz"é‘%q
y
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Especially, in ¢/<x<A, we obtain

105> (B exp (—rpemif2-Calz01a0) ()4 e 31 c26)

And the absolute value of X * n—z_% is greater than ¢ in 0<x< A, so that we can
conclude as: However small the positive number ¢’ may be, 72%(z) has no zero
point in the strips ¢/ <x<A and —A<x<—¢/, when y is sufficiently large.

In the next place, we examine whether the formula (25) holds valid in —¢’'<
x<¢’ or not.

We consider a rectangle whose vertices are A¢(A, ¥0), An(A, 1), Bu(—A, yn)
and Bo(—A, ¥0), where ¥ is smaller than y», and assume that y, is sufficiently
large and fixed, so that the asymptotic formula (24) is valid sufficiently strictly
on the boundary of the rectangle. Under these assumptions, ¥o and y» are deter-
mined as follows: Let ¢ be a positive number, so as i(N’+2)<r/4, and both y,
and yn satisfy the simultaneous inequalities

|y logn|<¢ (mod2r)
l¢(¥/2)]<¢ (mod2r)
where #’s are those which are in the series of £2*(z). The fact that such y, and

yn are found infinitly, can be proved by using Dirichlet’s Theorem. Dirichlet’s

@7

Theorem : Let x1, X2, X3, ... ,X» be N given positive numbers and y be an arbitrary
positive integer. Then we can find an integer {(<y”) and N integers 81, B2, ...,

B such that inequalities
|txq —Be|<1/y, ¢=1,2,3,...,N.

hold volid.
In this Theorem, we use log#n, ¥/2z and ¢/2r in place of xq, { and 1/y re-

spectively, then it can be concluded that we can find an integer y/2x (<(2n/¢)¥)
and N integers 8¢ such as
|y/2r-logn—B¢|<t/2r, q=1,2,3,...,N.

These inequalities are written as
lylogn|<e (mod2r). (28)

On the other hand, ¢(¥/2) varies very quickly when a sufficiently large y varies.
Accordingly we can find such »’s that the inequality [¢(y/2)|< ¢ (mod2r) holds
valid within the limit of validity of the inequalities (28). These ¥’s are found
infinitly and they tend to fnfinity. -

If yo and y» are both y's which satisfy the inequalities (27), thé asymptotic
formula (25) holds gocd on the boundary of the rectangle A¢AnBrBo. In order to
prove this, we rearrange the right hand side of (24) as
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vz*(z)~4/4” exp (—ny/d+mix/4) (l) { e%r_l(.zln)% (2 "—%_z“_%ﬁ(é%z)_%
id>( )Z* E—-Q—z}

SO (i B (Y . - )
+ 4"exp( ny/4+mx/4)(~-) 4{98(2'%) 2, M’(Z)Z*”2+ ‘e 8‘\“2{;)
Xe ( )E*n2 3}’

and write the former braces as

97 2 A N S _9ni -z _ Y I S
ea(zlﬂ)zetdx(z){z*n 2 e 4(2!7;) p 2108(2)2*” 2+}‘

As (N’+2)¢<n/4, on AoBy and AnBn,

_ v 1
—rja<aree ¥ F) T s,

So that the absolute value of the sum in the last braces is greater than 1. Accor-
dingly, the former term on the right hand side of (29) is predominant compared
with the latter term on A¢By and AxBhn, i. e., the approximate formula (25) holds
valid along the boundary of the rectangle AoAnBnBo. Of course, 72%(z) has no
zero point on its boundary.

Let us now consider the variation of arg 72*(z) for one round of z along the
boundary of the rectangle.

On the abscissa x=A, the former term of the denominator of (25) is predomi-
nant compared with the second term, so that the variation of arg »:*(z) is nearly
equal to that of the argument of the former term, i.e., to

2nll,=variation of s(¢(y/2)+ argY¥n 2 _z% .
Let us put the variation of arg .%(2) as 2nll,+ex. The variation of arg72*(2)
along BnBo is also 2nfl,+e, The variation of arg».*(z) along A,B, can be
written as - 75-2A+ €4 Where s,,, is sufficiently small positive number. Because,

the factors of the denominator of (25) which contribute to the variation of the
juifd (i) e S -w( Y ) Loz=L
argument are ¢ *,e 27,3 kn " 2,e 2/ and >z 2, and the variations of

the arguments of the latter four terms are nearly equal to zero when ¢ in (27) is
sufficiently small. In the same way, the variation of the argment along BoA, can
be written as ni A/2+ eo.
Accordingly, the total variation of argy,*(z) along the boundary of the rec-
tangle is
Anlln+2en+ea’ + 2o,

Consequently, the total number of the zero points contained in this rectangle is

1/27-(Anbn+2en’ + e’ +20). 30)
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On the other hand, it can be seen from (23) that the purely imaginary zero points
of 72¥(2) are given as Z¥’s which satisfy the condition
arg Go¥(9/4+iy/2)=n/2xX 0dd numbers. (31)
And
Go5(9/A+iy[2)~ w/ AT exp (—my/4+97i)8) {(g’;)% o (E s =0y (237’1)3
o (%)2* n%hw%

’

so that the variation of arg G2*(9/4+:y/2) is determined by the former term in

the braces. That is, if we put as
-1
n¥a=variation of {¢(y/2)+arg§]n 2 w} s

then the variation of arg Go*(9/4+iy/2) is equal to nds+ea”, where the absclute
value of ex” is sufficiently small.
Accordingly, the total number of non purely imaginary zero points of 72*(z)
in the rectangle is equal to
Wnten]n+1/2n-e0" —On—en" [,

i. e,

1 ) —L-w)
1/% 'lvariation of (arg>*n 2 —arg2>*n 2 )J +en/mten [2r—en" [m. (32)

And T*n~% has no zero point in a rectangle Ao(A4, y0), Au(A, yn), Cn(‘%, y,,),
-1
Co(%, yo), so that the variation of arg X*z ? " is equal to the sum of argg 4
Skn=?, arga,,a,2Fn"° and argy,.,c, 2Fn7%  According to the first inequali-
ties of (27), the sum of the variations of argc ., 4, 2*#~° and argy,. ,c, X*n"*
is sufficiently small.
So that the value of (32) is sufficiently small, and it is a non negative integer.

Accordingly it must be zero.
That is, 75(z) has only purely imaginary zero points in a domain, where the
imaginary part of z is sufficiently large. '

S -1_ .
The variation of arg > *n 2 " s nearly equal to that of arg S*n 2 4 “’,

and the latter is finite for all values of ¥, when A=3/2. Accordingly, the variation

-1 _
of arg > *n 2 is 0(1), and the total number of the zero points which lie be-
tween ¥ and ¥» is ¢(¥n/2)+0(1), where ¥o is fixed and y» increases. Thus we

124

have proved that the total number of the zero points of 1}>§(z), which lie in
T/2r-10g T [2n—T [27+0(1),

and the number of non purely imaginary zero points is at most finite. Q.E.D.



On the Distribution of Zevo Points of a Function which is related to 51
Riemann’s - Function

Proof of the Theorem 1.
In the summations

Gy(2)=23] K, (2n’n),

33
72(2)=22 0K+ , 0o QnZn)+23 %4K_§,_%(2%27T), )
CR

n runs all #’s which are in the series of ¢2(z). ‘We partition these #’s into five
parts as: 1=n<((y—y3 203, -y 2P0 TIr1 S n<((y-y* 207,
(=% [20)2 I 10 (o +y T 208, ((y ot [20) 2 0+ 1m0Cyty3 "2 /2wy,
(y +yr3l*+3/27r)%‘] +1<n<co, where (a] is the integral part of a number a.

Corresponding to these ranges of »#, we have the following asymptotic formulae:

Gz(z)~x/%eziﬁ(g1+g2+g3+g4+ gs)s
77&2)~4/‘% exp (i [2(2/2+9/4))( I + iy + hg+ By Bs)
+ 1/47” exp (ni [2(2/2—9/))( Iy + By +hs' + ! +h5'),

where
g1= {(y [n)e P Tn-2+4 exp ( f(2n2n))+ (y /n) %~ ¥ D2 +4 exp ( — £(2nn )} B(z),
2:=(y/m)et*2n"2** exp (f(2n27r))0(y%) +(y/a)= e~ 1 n2 + texp (— f(2nm))0(y ;—),
go=l/ 303, k=—i/V/3TUnS

go=(y/n ) Tn~2+* exp (f(2n2n))0( y';_),

gs=(y[n)ei? Tn~2+4 exp (f(2n2n)) B (2), (1)
By =Cofony e 3 S 5 exp( f@ntm))\ B2l 2+ 94, Balzy=1 s s T iin?
+<y/2n>-%—%e"%(§> S exp (= F(2n2n)) Bn (2 [2-+9/4)=hY+ D say,
=2 F 5 S exp (S(2mPm))0 (50

+(p[2m) " F h et T s exp (F(2n2m)) 0 (v )=h$H + 2 say,

hy =ty 32505,

ha=(y/2m) 54 e ™ 2 exp (/) 0 (3o,

hs =(y/27) 5+ 16 S0~ 3 " exp (f(2m2n)) Bn (2/2+9/4),

Iy =(y/2m)5 4

/

™~

L gld Zn%’—z exp (f(n2n)) Bn (2/2-9/4)

+(yf2m) T it T “exp(— f(2n?n)) B (2/2—9/4)Eh’(11)+h'§2),
hy! =(y/2n)%_%e“” ang—z exp (f(2n2n))0 (y'él_)

(of2m) T e T exp (— Fmn)) 0 (o )=HD + P,
h' =k 3/2 5%,
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I =C2m) T4 e Xime " exp (f(2n2m))0 (o),

‘h5/=(y[2n)‘g“19‘etd’ Z‘n%-' exp (f(2n%n)) Bn (2/2-9/4). (35)
Under the last ten series, /; is predominant in x>0 compared with the other eight
series other than 7/, and /iy’ is predominant in *<0 compared with the other eight
series other than /;. We shall briefly examine these conclusions below. Here we
must notice that 6<1/5.

(1) NP is predominant compared with /$».

We compare the absolute values of

S exp (f(2n2r)) Bn (2/2+9/4) (36)
and 0 17 '
3/2n) " 2 e T exp (— F(2n21)) Bn (2/24+9/4). (37

1 1.«
The absolute value of Bn(z) is greatest for a=y—y3 " when 0<e<y-—-y3 "% «and

. 1. 38 . .13 8 17, 5

its order is 0(y6 ~4). Hence the order of (37) is 0y~ 3 4 Xz ). And, as

. \'l L3 — Yim 17 =
the maximum of 2n2zVMs y—y 3 °, the order of 2.#2  is 0(y ¢ 2). Sothat (37)
tends to zero, when ¥ tends to infinity. On the other hand, the series of (36) tends

1 -
to % 2%, as we shall see later. Accordingly, A{" is predominant compared
with A{®.
(2) h{P is predominant compared with Y.

1_ 1
The function which is to be compaed with (36), is 37272 ~~ exp (f(2n27))0 (6 ).
1

The number of terms of this series does not surpass 0( y"?+5). So that the order

1 -
of the above function is 0(y~ ¢ “8), and it tends to zero when y tends to infinity.

(3) h{ is predominant compared with 25>,

Instead of (37), we may consider the series
o2 17, ., 1
2r) T2 Xnz exp(—f(n2r))0 (y6).

The order of this series is O(y"Tl_%“LB).

(4) h§® is predominant compared with /5.

In this case we obtain 0( y'Tli“g").

(5) hY is predominant compared with /.

This case can be treated in the same way as in (2).

(6) h{® is predominant compared with /s .

In this case, we may consider the series Zn_%—zexp (f(2n2r)) B, (2/2+9/4) in-
stead of (36). And we obtain 0(y 31573,
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(7)) h§P is predominant compared with V.

In this case, we obtain 0C y”l%"‘z“%),

(8) h{Y is predominant compared with A/$P.

In this case, we obtain 0 y"flz“‘z‘).

(9) h§Y is predominant compared with //{®.

In this case, we obtain 0( y’ﬁ“%).

(10) h§¥ is predominant compared with /. and hs’.

Accordingly, we obtain the following asymptotic expansion in —A<x<A:

12(2)~V Ay exp (mi [2-(2/24+9[4))(y[2r) s * 1 ¢ *F)

X Zn_%d exp (f(2n2n)) Bn (2/2+9/4)
1 B[y exp (i [2- (229 ))(y[2m) 5+
X Zn"zl‘” exp (— F(2n2r)) Bn (2/2—9/4),

emias(%)

where ,
2n<onr<(y[2)—(y[2)5 "2,
We divide the above summation into two parts: 2 %+23/, where > * consists of
first N’ terms, and >/ consists of the remaining terms.
When y tends to infinity, we can see, from (13), that

z

SV~ ST
In the next place, we consider the remaining part 23/. The absolute value of this
part is small compared with that of > % when the number of terms of 2°* is
sufficiently large.

Eventually, joining together these results, we can conclude that the absolute
value of 72(2) is nearly equal to that of %9*(z) on the boundary of the rectangle
given in the Lemma, when y, is sufficiently large. Then, according to Rouché’s
Theorem, the number of zero points of 7:(z) in the rectangle, is equal to that of
72¥(2) in the same rectangle.

On the other hand, 7%2(Z¥) becomes zero for ¥’s which satisfy the relation
arg Go(9/4+iy[2)=n/2%X odd number. And, from the fact that 2{" in (35) is pre-
dominant compared with 2$®, h,, s, By and h5, we obtain

. i . 2 ia(Y)
Go(9/4+iy]2)~V Ar]y exp (—ny [4+97i [8)(y[2n)a e 2
1 .
x 32 ¥ exp (f(2n2n)) Bn (2/2+9/4). 39
As we have already seen, the summation in the right hand side is written as

)
T 2 "+ R, and the absolute value of R is sufficiently small compared with that
of the former term. And the variation of



54 Osamu MIYATAKE

arg Zn‘%—w exp (f(2nr)) By (2/2+9/4)

1 p—
is nearly equal to that of arg> *n~ 2 w,

So that the number of the purely imaginary zero points of 7.(z) is equal to
that of 72%(z). Consequently, all zero points of %2(z) are all on the imaginary
axis, when y is sufficiently large. And the number of the zero points which lie
in 0<y<T, is

T/[2r-log T [2x—T [2m+0(1).

§6. Proofs of the Theorems 1 and 2.
1. Proof of the Theorem 1.
ia éinh t—zt=z sech¥ sinh{—=z¢
=zgech? sinh7—72—72G({,7)sech7,

where
G(t,7)=1(sinh {—¢ cosh ¥ —sinh 7'+ 7 cosh 7).
Accordingly
HY(Ga)=1/ni-exp (z(tanh T —7)) L (z2,7),
where w0t Bt
L(z, T >=S ‘Mexp (—42G(4, T)sech 7) dt.
-0+ 2t
2

The stationary points of G(¢,7) are 7 +2hni, =0, £1, £2, ...
When we put as t=u-+iv, Debye’s contour
JG{,17)=0, (40)
which passes through 7, is given by
sinh # cosh v=u cosh « cosh 8 — v sinh « sin 8+ sinh « cos 8 —« cosh « cos 3

+ 3 sinh « sin 3. 4D
Let us trace this curve. We introduce a new real variable w, and consider the
curve (41) as the projection of the intersection of a surface w=sinhuzcosv and a
plane w = u cosh « cos 3 —v sinh « sin 8+ sinh « cos 8 —« cosh « cos §-+ 3 sinh « sin 8.
Let Po and @ be the points of intersection of the above plane with the #— and
v-axes respectively. Then Py and @ are both on the negative sides of the origin.
Because, as «<<0 and 0=<3<w/2 when x=0, the coefficients of # and v are both
positive, and the constant term is also positive. Let P2 be the point of inter-
section of the above plane with the axis v=nn/2, w=0. Then the above curve
(41) has two branches. One of them starts from (—co, —7/2+0) and terminates
at (—co, 37/2+0). We name this branch as I'o .

To: (—oo, —/24+0)>7T>P1—>P3—>(—0c0,37/2-+0).
2 2

The other branch starts from (—co,7/2~0) and passes the following several points
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and terminates at (0, —(2n+1)7/2—0). We name this branch as I'x.

Ta: (—oo, n/2—0)—>7——>Q-+P__;L—> ------ —)P_zn_%—é(m, —Cnr+1r/2-0),
where 7 is a finite positive integer which is determined according to «, 8.

Instead of (40), we consider an equation

JG(t, —=7)=0. .
The contour which corresponds to this equation is symmetric with that of (40)
with respect to the origin. Let C, be a branch which is symmetric with T%.
Co: (+0,1/2—0)>—T—>(+co, —=37/2-0)

In general, a branch of the contour

SG(t, —7—2hri)=0.
is given by

Cr: (+00, —2hn+m/2—0)—>—7—2hni—>(+o0, —2hn—3m/2—0).
Accordingly
Liz,7)=[{| +{ 4+t \ — e , 42
(z,7) (L,n+gcn+ +SC01 exp (—izG(t,7)sech7) dt 42)

In the first place, we consider the first integral in the parentheses.
We put as &=—G(¢,7), then, as
RG(¢, )= —cosh u sin v+ u sinh « sin 8+ v cosh « cos 8+ cosh « sin 8
—B cosh « cos B —a sinh a sin 3,
¢ starts from the origin and tends to plus infinity, when ¢ on T'» starts from 7 and
tends to —oo+7wi/2 or to oo +(—2nr—37/2)i. So that, two ’s correspond to one
real number ¢. Let £; be the one which is in (7, —co+(—27—3n/2){) and {; be
the other one which is in (—oo+#Z/2,7). Then

XP exp (—izG(t, T)sech T )dt=j exp (i2C sech T')(dt1/dC — dty)dOHdE.
% 0

Next we shall discuss the expansion of {; and #; in the descending powers of &.
Since ¢ and d¢/dt vanish when {=7, it follows that the expansion of ¢ in powers
of {—7 begins with a term in (#—7)%; by reverting this expansion, we obtain

expansions of the forms

z1—7'=m§0a,,./m+1 x| gy §0<—1>m+1am/m+1 Thanl
and these expansions are valid for sufficiently small values of |¢].
Mot eover

a,,,=1/27ri-§(0+’0+)dtl/dC'C-%(m+l)dc=1/2ﬂi'j(n) dt/C%(mH) )

The double circuit in the ¢-plane is necessary in order to dispose of the fractional
powers of ¢; and a single circuit round 7 in the #{-plane corresponds to the
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double circuit round the origin in the {-plane. From the last contour integral, it

1
follows that @, is the coefficicient of 1/{—7 in the expansion of C“T(m+D in ascen-

ding powers of {—7; we are thus enabled to calculate the coefficients an’s.
Write t—7=7 and we obtain

¢=T¥co+erT+ T2+ ),
where co=—17/2!sinh7, ¢c;=—-7/3!cosh’, ca=—17/4!sinh 7, ...
Therefore a.,, is the coefficient of 7™ in the expansion of
-Lomsny
{Co+01T+CzT2+'“} 2 .
The coefficient in this expansion will be called ao(m), ar(m), a:(m), ..., and so we

obtain 1.
alm)=co 2™V am(m)=co 2<"‘“>{ (m+1)er/2-1c0}, ...

By substitution we find that

{1/3-c0th 7‘§
%1/8 5/24-coth? T,
9/15-coth 7 —4/27-coth?® I }

g
l
“2 13/128-77/576- coth? 7'~ 385/3456-coth* 4,

using these coefficients, we obtain
el m—L
d<f1—fz)/d§=”§odmc z,

and so the asymptotic expansion

. o3 1 . o\ ~-m-L
- exp(—i2G(t,7)sech ) di~2 aml‘(m+-)(—zz sech f) 2 (43)
n m=0 2/\

1
is obtained when positive y is large. Here @y=(—7/2-sinh7) 2. And, as
1
ay=[t1—7/C2 Jz»10, argao is a negative acute angle, so that we have 0<arg

(—isinh7)<m. Accordingly we obtain

i X 0
Sl‘ exp (—72G(t,7) sech T)dt~e“7/l/—n'iz/2 tanh 7 EOI‘(MH— %)/I‘ (i )
X Am/(—2/2-tanh 7)™, (44)
Here arg( —niz/2-tanh 7)=n/2+arg(—isinh7), and Ao=1 Al—l( é ——5/24-c0th27’),
A>=3/128—77/576-coth? I’ —385/3456-coth* 7,...... In general, A, is a polynomial of
coth27 of the m-th degree. (Watson(3], pp. 242-243). Accordingly, An/(—2/2 tanh?)™

—=0(y~3™). Thus the formula (44) holds valid in 0<a<y— yS 3
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Similarly, we obtain

ks o /
J exp ( —12G(t,7) sech T)dt=e7/1/7riz/2-tanh 72 I‘(m+711)/I‘(-1—)
Co m=0 \ 2 2
X Am/(2/2 tanh 7)™,
here, arg (niz/2-tanh7)=r/2+arg (i sinh7) and 0 >arg (i sinh i) >—7.
Concerning the contour Cj, we obtain
jC exp ( —7zG(t,7) sech T)dt=e2’"‘i’jc exp (—2zG(t, 7)) sech i )dt.
4] 0
So that it can be neglected compared with that of Co. Thus we obtain the

Theorem 1.

2. Proof of the Theorem 2.
We consider the case x=>0 only.
As has been proved above,

Hgl)(ia)~1/ni-<gc + SI‘ >exp (iasinht—zt) di.

0 n

In the first place, we consider the integral taken along I'. We put as
G(#,7)=—r1cosh7, where r=—{ tanh 7 (coshw —1)—i(sinh w—w), w=¢—-7. (45)

1, 1
In the interval y—y3 "®<a<y—y7, coshi=z/ia tends to 1, so that 7 is in the
neighbourhood of the origin. As the inequalities da/da>0 and dB/da>0 hold
valid, 7 statts from —oo+(n/2+0){ and moves towards upper right, when & in-

1 1
creases from zero to y—y+. When a=y—y+, we obtain

3 5
a=—y"2y"%, B=xy 8/}2,

and so we obtain arg I'—>n(y—>+ o).
Expanding the right hand side of (45) in powers of w, we obtain

r=—¢tanh7-w/2—iw3/3!,
and, neglecting the infinitesimal w®, we obtain #2—v?=0 from Jr=0. And a

branch #+v=0 is adopted.
Instead of the integral

je”fdw = S 3 exp ( —ar cosh 7 )dw, (46)

we consider an integral

Kexp (—ar cosh 7)dw, €D

whete t=—7/2-W2tanh7—{/6-W?3, and the path of integration is Jr=0. When
we put as W=U+:V and tanh7=—h+ik, the contour Jr=0 is given by

~WU2-V2)—2kUV +1/3-(U*~3UV2)=0,
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Putting as 2=0, we obtain

—U2-V2)+1/3-(U*-3UV?2)=0. (48)
) 578
One of the branches of this curve starts from coe 6 , passes the origin and then

tends to i—ice. This branch contacts with St=0 in the w-plane at the origin.
So that we may consider the integral (47) instead of the integral (46). Thus we
can carry out the following calculations.

jexp (—ar cosh T)dw~$exp (—arcosh7)dwWw

i+
—tanytoe 6

—tanhy —tanh'{—ioo
(S g > exp (—ar cosh7)dW
J —tanhy

@ Ll 57
= —exp(z/3-tanh? T){jo esT exp (i283/6—e 6 £z tanh?27/2)d§

+ ireXp (i28%/6+i2¢ tanh2 7 )d&}
0
= —exp (z/3.tanh3 T>{e§€1i01/m! ( ——es"ﬁﬂz/Z-tanW T)mSo exp (iZ/G' $3>Emd5

+i iol/m! (é2/2-tanh? T)"‘So exp UZ/G-E:")E"'dE}

= —exp (2/3-tanh37)x

[1/3-e57m{.

+ E 1/(BB)!-(C —e%m)s’”(z/2)3’“(tanh2 T)sk(Gi/z)k'k‘;‘I‘(k+ 1/3)

1(3h—1)1-(— 6 Y=1.(2 /2)%=1(tanh? 7)%-1(67 [2)T(k)

LLI8

o

(=}

3B+ DI-(~e's I(z/2)5 1 tanh? T)"”“*‘(Gi/Z)k"L'%I‘(kﬂL2/3>}

+1i /3{
+ glx 3B 15z /2)(tanh? TOR(6i [ ) 3 T(k+1/3)

<

S1/(3k—1)1-4%-1.(2/2)%-1(tanh? 7 )%*~1(63 [2)*1'(k)

k=

=

+ 331 J(3k+ 1)1 i38+1(2[2)3%+1(tanh? ¥ )¥*+1(64 /z)"*%r<k+2 /3) u )

The coefficients of 2%%-1, 23% and 2%+! are zero, 3 exp (3/2-kri+2/3-7i) and
V3 exp (3/2-kri+5/6-7i) respectively. Thus the above series becomes as

579 27
—exp(z/3-tanh® ¥ )2r/3-tanh TeT{I_%(zlf)’-tanha —e 3 I%(z/3-tanh3 7‘)} .
Using the formulae of $2, the above formula is
Ei13 ng
—exp (2/3-tanh® ¥ )2ni /3-tanh T{eTI_L(zB-tanh”"' T)—e 31 1(z/3-tanh® 7‘)%
3 3

= —exp (z/3-tanh37)-2{/1” 3 -tanh 7’K%7(2/3-tanh3 Te ™).
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Thus we have
1/xi - Sl’ exp (fasinht—zt)dt=-2/}” 3 x-tanh 7 exp (z/3-tanh® 7
+z(tanh 7‘—)’))K%(z/3~tanh3 Te~i™).
Similarly, we obtain
1/ni- SC exp (fasinht—zt)dt= -2/} 3 w-tanh 7 exp ( —2/3 tanh® 7
0
—z(tanh7—7))K 1 (—2z/3-tanh3 7).
8 Q.E.D.
As the proofs of the Theorem 3, 4 and 5 have already been given in Watson (3],

we may omit them.
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