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~ 1. Introduction 

Let Y be an arcwise connected and simply connected topological space 

whose second homotopy group bas a finite number of genetators. Let K be a 

4-dimensional finite complex. H. Whitney (10) gave an algebraic criterion for that 

a mapping 1 of the 2-section K 2 into Y be extendable over K. On the other band, 

}. H. C. Whitehead gave many useful theorems on the investigation of homotopy 

type, and also defined the Pontrjagin squares (7,8). We shall restate the Whitney's 

result in terms of the Pontrjagin squares, and prove this result by using White­

head's theorems. The method is analogous to the Steenrod's (4). We shall also give 

another definition of the Pontrjagin squares. I offer here my sincere thanks to 

Prof. A. Komatu, Messrs. T. Kudo and H. Uehara who gave me many valuable 

suggestions. 

§ 2. Notations 

(2. 1) Let K be a finite cell complex, whose cells are oriented. Let cr(K, 

A), zr(K,A), Br(K, A) and Hr(K, A) denote respectively the groups of r-A­

cochains, r-A-cocycles, r-A-coboundaries and r-A-cohomology classes. We shall 

denote by {u} the cohc.mology class containing u, an element of zr(K, A). When 

cocycles u and v are cohomologous, we write u-v. When K1 and K2 are finite 

cell complexes and 1 is a cellular map of K1 into K2, we denote by J -t< the homo­

morphism induced by 1 of CCK2, A), ... , Hr(K2, A) into cr(K1, A), ... , Hr(Kh 

A), respectively. Let I o be the additive group of integers. A latin small letter 

attached with the symbol-- such as u, means an integral cochain. 

(2. 2) Throughout this paper, we suppose that a topological spsce Y is an 

arcwise connected, simply connected, Hausdorff space whose 2-dimensional homo­

topy group n2CY) bas a finite number of generators. Let y* be a fixed point in 

Y. Maps always mean continuous maps. Let X, X', Y, Y' be topological spacEs 

such that X'CX and Y'CY. The notation/: (X, X')~(Y, Y') means that 1 
is a map of X into Y satisfying the condition 1 (X' )CY'. When maps 1, g: 

X~Y are homotopie, we write l~g. 

~ 3. The Pontrjagin squares 

(3. 1) Let A and A' be abelian groups and r a map of A into A' satisfying 

the following conditions : 



32 Minoru NAKAOKA 

1) r(a) =re -a), 

2) r(a+b)=r(a)+r(b)+(a,b), a,bEA, 

where (a, b) is a bilinear function defined on AxA with values in A'. Then, in 

the similar way as in (7, p. 61), we get the following properties: i) r(na)=n2r(a), 

where n is an integer and aEA. ii) J'(a1 +a2+···+av)=:EtY(at)+:Et<ïCat,aJ), 

where a 1 E A(i=1, 2, ... , p). iii) 2r(a)=(a, a). iv) If ma=O, then (m2 , 2m)i'(a) 

=0, where (p, q) denotes the greatest common measure of integers p and q. 

(3. 2) We shall here recall the definition and sorne properties of the Pontr· 

jagin squares which were given by J, H. C. Whitehead (8). 

Let K be a finite simplicial complex, and {ë1 , ... ,ëq} a canonical basis for C' 

(K, I 0 ). Let {A, A', r} be a system given in (3. 1). Let u E zr(K, A). Then, 

using the canonical basis, we may represent u by :E1 ~ 1Utët, where Ut E A. The 

Pontrjagin square of u is given by 

pu = :Eti'(ut)Pët + :Et<;(Ut,UJ)étUëJ, 

where 1Jct=ctUët+ê;U 1oët and r is even. We have the following properties. 

i) When we pass from cocycles to cohomology classes, Il induces a map \13 
of Hr(K, A) into H 2r(K, A') which is independent of the choice of an order of 

vertices in K and a canonical basis of C'(K, I o). 

ii) \13 is natural, that is to say, when g deno.tes a simplicial map of finite 

simplicial complex~ g: K1~K2, the commutativity ho.lds in the diagram: 

i.e., g*\]3=\]3g*. 

iii) If Ul' U2' ... 'Ut E zr(K, A), 

p(u1 +u2 + ... +ut)~:EtPUt + :Et<JU;Uu;, 

wbere U is the eup product given by considering the function (a, b) in the defini­

tion of r as a group pairing of A with itself to A'. 

iv) 2pu~uUu, where u E zr(K, A). 
•. 

When X is a topological space, using the Cech cohomology theory, we can define 

\13: Hr(X ,A)~H2r(X, A') in the usual way. And we can see that the similar 

properties hold. \13 is a topological invariant and is called the Pontrjagin squares. 

(3. 3) When A bas a finite number of generators, we shall give another 

definition of the Pontrjagin squares. Let {a1 ... , at} be a system of independent 

generators of A. Using this system, any u E zr(K, A) may be written in the form 

of :E1! 1ut a.. It is easily seen that Üt is a cocycle mod. mt, where mt is the 

order of at . No.w we define 
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1-J'u=Z::erCat) 1-Jut+l.:t<JCai, aJ)zitUü1 , 

where 1-JÛ;=ÛeUÜe+u;Uioüi and r is even. Then we have the 

Proposition. If u E zr(K, A), 

in Z 2r(K, A'). 
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Proof. Since u E zr(K, A), Üt is a cocycle mod. m; and Üta; E zr(K, A). It 

follows from iii) of (3. 2) that 

pu=tJ(l:e!Iu;at)~ l:tP(u;at) + ~;<;(ù;at)U(üJa1). 

From the definition of the eup products, 

ûta,Uü1a1 =Ca;, a1)u;UÜ1 • 

Therefore it remains to prove that p(u;a1)~r(a;)1-Ju; for any i. Let oc;=n;d; 

(i=l, ... ,q;n;I1Zi+I), where n;de=O if z'>p, and (d1 , ... ,dp) is part of a 

canonical basis for cr+I(K, l o). Let ue=l:1t2;iiJ where t2tJ is an integer. Then 

alitai= l:tt2tj1Zjdjai =0. 

It follows that for any j, t2eJnta;=O, hence mtlt2tJ1Z;. 

Thus t2;1c1 is a cocycle mod. mt. Therefore, by (7,(4. 7), p. 61), 

pu; =p(l:JQiJëJ) ~ l.:JP( t2tJëJ) + ~;<~:( QiJCJU !J;"'c.,c) 

mod. (m~. 2mt). 

Since (m~ , 2m.)Y(a;)=O, p(Q;Jë1)=t2rJPëJ, Q~1r(a;)=r(t2tJa;) and 2Y(a;)=Ca; • at), 

it turns out that 

r(at)Put~ L:1Y(a;)pC.fJt1ë1) + l:J<~:r(a;)( t2;JëJUt2i~cë~c) 
= l:1Y(t2t1at)pë; + l:Kk(!J;Jat, t2;~;a;)cJUc"'. 

By the definition of p, the right hand is 

p(l:J!J;Jatc;) = p(iita;). 

This completes the proof. 

From this proposition it is seen that the operation \15' in cohomology classes induced 

by p' coïncides with the Pontrjagin square \15. Since \15 is independent on the 

choice of independent generators of A, so is \15' • 

~4. Relations between rc2(Y) and rc3(Y) 

( 4. 1) Let Sr be an oriented 2-sphere, and Si VS~\/ ... V S1 a space consisting 

of the collection of Si, S~ , ... , Si intersecting in the unique point e0 • Let E2 be 

an oriented closed 2-cube and [3,: (E2 , É2)--+(S~, e0 ) be a map of degree +1 such 

that /3t I(E2 - È 2 ) is a homeomorphism of EL È 2 onto S~ -e0• We define a map 

Wij of the boundary Etj =Er x .Ë} + E~ xE} of éiJ =mx E} onto s~v S] as follows: 

{{3;(x) 
WiJ(X, y)= {3;(y) 

(x, y) E E~ xÈ}, 
(x, y) E If; xE]_ 
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Let 

be a map such that pjSi, pjS] represent the elements at. a1 of nz(Y), respect­

ively. Then the element of rr3(Y) represented PWtJ: Etr~Y is the Whitehead 

product atoa1 (5,6]. The Whitehead product is bilinear. 

(4. 2) Let r;: Ê 4--+S2 be the Hopf map (i.e., a map with the Hopf invarient 

+ 1), and a: 5 2-+ Y a map representing a given element a E nz(Y ). The corres­

pondence r;.~r;.r; induces a map r;* of n2CY) into rrs(Y ). Then r;* has the following 

properties (5,8,9] : 

r;*( -a)=r;*(a) a E n2(Y), 

§ 5. The extension theorem 

Let K =K4 be a 4-dimensional finite cell complex whose cells af are oriented, 

KP the p-section of K and fa map of K 2 into Y. Since nr(Y )=0, there exists 

a normal map !' such that /'""'"'/. For a map /', the difference cochain d 2(!') 
=d2(f',*)EC2(K, rr2(Y)) is defined as usual, where *denotes a constant map. 

Since d 2(!') is independent on the choice of !', we shall define d 2(f)=d2(f'). 

Clearly od2(!)=0 if and only if fis extendable over K 3• 

Let us assume that fis extendable over KS, and /: K3~Y be an arbitrary 

extension of f over K 3• Then the 4-dimensional .obstruction cocycle c4(.1) E Z4 

(K, n3(Y)) is to be defined. lt is weil known that the cohomology class {c4(])} 

does not depend on the choice of an extension /, but only on /(2]. Therefore we 

may denote this class by {z4(/)}. Then the necessary and sufficient conditions 

for that f can be extended over K 4 are od2Cf)=O and {z4(/)}=0. 

(5. 2) By ( 4. 2), it is seen that {nz(Y), rrs(Y), r;*} is a system satisfying 

the conditions of (3. 1). And since nz(Y) bas a finite number of generators, we 

obtain from (3. 2) or (3. 3) the Pontrjagin square of this system: 

\)S=~W: H 2(K, rrz(Y))--+H4(K, n3(Y)). 

Then our main theorem is stated as follows. 

Theorenz 1. If f: K 2--+Y is extendable over K 3 , 

The proof will be given in ~ 6 and ~ 7. 

From this theorem, we get 

Theorem 2. (Extension theorem) The necessary and sut]icient conditions for 
that a map !: K 2--+Y be extendable over K are od2(!)=0 and pd2(!)-0 

Remark: Since \)5=\)5', our result is different from the Whitney's (lOJ only in 

the respect that the latter contains sorne terms including U 2 • However, it is 

easily seen by the following proposition, that these ter ms are coboundar ies which 
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vanish away in cohomology classes. 

Proposition. If u E ZP(K, l 0 ) and p--i is odd, 2uUtu-O. 

Proof. See C 4, p. 299J. 

Thus our result coïncides with the Whitney's. 

?; 6. Reduced complex 
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(6. 1) We assumed that rrz(Y) bas a finite number of generators. Let a1, 

a2 , ••• , ac be its independent generators, where the order of at is mt. We may 

suppose that mt> 1 or mt=O according as i<s or i>s, and mi lmi+l. We note 

that the integers t, s and the system {m1, mz, ... , mt} are invariants of rrz(Y), 

bence of topological space Y. We shall construct the special 4-dimensional cell 

complex R which is called the reduced comple:x R for Y (7]. 

Let êf be a p-dimensional oriented closed cube, and ef its interior, when P>O. 

R=R4 is the cell complex, which satisfies the following conditions: 

( i ) R 1=R0 =a single point e0• 

(ii) R 2 =R1+ei+ ··· +e1, where e~U=1, 2, ... , t) is attached to R 1 by a 

map Ê~~e0 • Thus e~+e0 is a 2-sphere s~. and R2 =Si\/S~\I ... vs;. 
(iii) R3=R2 +ei+e~+ ··· +e~,where e~(i=1, 2, ... , s) is attached to R 2 by a 

map É~~s~ of degree mi(>1). 

(iv) R4=R3 +ei+e~+ ··· +d+ei2 +e]\+ ··· +eit+e:3 + ··· +et-1t, where et(i 
=1, 2, ... , t) is attached to R 2 by the Hopf map "f/t: Êt~s~. and et1 Ci<j, z', j 

=1, 2, ... , t) is attached to R 2 by the mapwiJ: êtr~S~\IS] defined in (4.1). 

(6.2) Let h: R2~Ybe a map such that hiS~: S~~y represents aiErrz(Y). 

Then since c3(h)=O, h has an extension Jz: R3~Y. We shall prove Theorem 1 

for R 4 and h. Let er, ei, ei1 be integral cochains which take 1 as coefficient on 

e~, ef, et; respectively. Since e] (j"Ç;i) is a cocycle mod. mt, e~Ue] is a cocycle 

mod. mt and 1J e~ is a cocycle mod. (mi, 2mt). And, from (7, Theorem 5, p. 78J, 

we have 
eiUe]-et; 

-z -4 p e; -et 

mod. mt Ci<j) , 
med. cm:. 2mi) . 

Since d 2(h)=l.:.tatei and ate~ E Z 2(R, rrz(Y)), it follows from (3.2) that 

1Jd2( h)-Z:.i\:l( aie;)+ :Eï<Jaie~ ua Je] 
= :Et1J*(at)1Je: + 2.:,;< ;( atoa1 )e~Ue]. 

Noting that (mL 2mi) r;*(a;)=O and m;(atoa1)=0, we have 

pd2(h) ~ :Etr;*(a;)et+ :Ei<;(aioa;)et1 • 

On the other hand, by the difinition, 

Th us 

i. e., 

ct(h) = Z:.ïr;*(ai)et + 2.:-K ;(a; ca; )ei1 • 

pd 2(h)-c4(n), 

~{d2(h)} = {z4(h)}. Q.E.D. 
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Remark. The above-mentioned reduced complex is a special case of reduced 

complexes which were given• by }. H. C. Whitehead (7J. 

(6.3) Here we shall note sorne properties o.f homotopy groups of R which 

will be needed in the following parts. Let [3, be a map which was defined in 

(4.1), and bi, b/ be respectively an element of rc2(R2), an element of rc2(R3), 

both of which are represented by f3t. Let i : R2~R3 be an identity map, i* the 

homomorphism of rc3(R2 ) into rcs(R3) induced by i. Then i* is onto (5. Lemma 

3J. On the other hand, rc3(R2 ) is a free abelian group which is generated by 

r;*(b1) (i=1, 2, ... ,t) and btob;U<j. i,j=1,2, ... ,t) [1,7J. Therefore rc~(R3)is 

generated by r;~bï') (i =1, 2, ... , t) and b/ ob/ Ci<j, i, j =1, 2, ... , t). 

~ 7. Proof of Theorem l 

(7. 1) Let 1: K2~Y be an arbitrary map. Since rc1(Y)=O, there exists a 

normal map /' such that !'=!. Let t1~ be an arbitrary oriented 2-cell. We shall 

denote by L:f- 1c"tat an element of rc2(Y) which is represented by l' \O"~, where 

Ckt is an integer. In each O"~, choose t disjoint closed 2-cubes "Ei, "E~ • ... , "E't, 
oriented in agreement with O"~. Let g : K2~R2 be a map such that gi"Ei : 
(kEi, k.ËD~S7, e0 ) is a map of degree c"t for any k, i and g(K2 - U"ED=e0• 

k,i 
It is clear that hg=!', bence hgO<f. Therefote d2(!)=d2(hg). 

Now suppose that 1 can be extended over K 3• It fo.llows from the homotopy 

extension property that hg has an extension. Since rc1(Y)=O, it is seen (2J that 

{z4Cf)} = {z4(hg)}. 

From these arguments, without loss of generality, we may suppose that 1 is 
hg for the purpose of proving Theorem 1. 

(7. 2) Suppose that !=hg: K2~Y has an extension over K 3• Let t1J be an 

arbitrary oriented 3-cell of K, and Ô"J=L:~cskt1~, where el, is the incidence number 

between O"J and t1t Then h \oj, 1 la} represent L: e~cktbt E rc2(R2), :E dc1ctat 
k,i k' t 

E rc2(Y) respectively. Since 1 is extendable over K 3 , 

L:"e~ckt =0 mod. mt 

for any i =1, 2, ... , t. Therefore, L:"stc"t=O if i>s, and L:"'s~c";=nfmt (nf: integer) 

if i<s. 
In t1J, choo.se s closed 3-cubes lEy, JE~, ... , JE~ oriented in agreement with 

t1~, having only a single point PJ in common. Let JE~=JEl'~JE~'~ ... '~lEJ if s>O 

and JE~=PJ if s=O. Let cJlJ: (JEJ, P;)~(R3 , e0 ) be a map such that cJlJ jJEr: 

(lEî, J.ËV--)-(cl, ÉD is a map of degœe n{. Let JQ3 be a 3-cube such that JE! 
C 1Q3C lnt. t1]. JQ3 is oriented in agreement with o"J. Let q(p) be a point which 

a straight line PJ P interesects with 1Q3, where p is an arbitrary point of JE!. 
Map all points of pq(p) to cpJ(p)ER2, and JQLJE*-UPE JË~pq(p) on e0• Then 

we get an extension of c/!J, rjj: JQL~R3 , such that éPJ!JQ3 : jQ3~R2 represents an 

element L:tnfm,b; of rc2(R2 ). On the other hand, g \a) also re presents L: el,c";bt 
''"' 
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=~~nfmtbt. Therefo.re g 1.1] and c/J; I1Q3 are homotopie in R 2 • Using this homotopy, 

we obtain a mapping g1 : o}-~R3 , which is an extension of 1[;1 and gl.:iJ. Let g: 
K3~R3 be a map such that ildJ=g;, then g is an extension of g, and !=lût is 

an extension of /. 

(7. 3) Let di be an arbitrary oriented 4-cell. Then, from (6. 3), an element 

of rr3(R3 ) which is represented by a map g 1 ai have a form 

~~n-rh(b:)+ I:t.c;Tbb:ab;, 

where r~. r~J are integers. 

Now choose in dz4 t~t+ l_2 1 d 4 b 1E 4 1E 4 1E 4 1E 4 1E 4 1F 4 2 c ose -cu es 1, •.. , n 12 , 13, •.. , 1t• 23 , 

... , 1Et-l t• oriented in agreement with df·, with a single point p/ in common. 

Let 1E1r.= 1Et" ... " 1Ef"1Et2" 1EÎ3'\ ... YlEf_ 1 t· Let rp1 :(lE~,p/)~(R4,e0) be a map 

such that rpzl 1Ei: (lE{, 1Èt)--~(8t. éi), rpz \1Et1 : (lEt1, 1Èf/)~(éi1 • 8t1) are maps of 

degree Tf, F~1 respectively. Let 1Q4 be an 4-cube which is oriented in agreement 

with dt and satisfies the condition lE~C 1Q4C Int. dt. Using the similar argument 

as in (6. 2), we can construct an extension of rp 1, <Pz: 1Q4~R such that 1 ~[ 1Q4 

represents ~~F~1h(b/)+ I:i<Jn;b/ ob/ E rr3(R3). On the other band, since g\.14 

also represents it, cp I1Èt and g 1 o-t are homotopie in R 3• Using this homotopy, we 

can get a map g1 : d~~R4 which is an extention ôf g[at and (/;1• Let g: K4~R4 

be a map such that gldt=gz, then g is an extension of g. 
Now using the general theory of continuous extension by HuC3J, we can see that 

{c4(ng )} = g-l'{c4(h)}, 

{d2(hg)} =g*{d2(h)}. 

Since {z4(/)}={c4(Ji,g)}, {c4(h)}=~{d2(h)} and~ is natural, we have 

{z4(!)} = {c4(ng)} =/f""{c4(Ji)} =g*~{d2(h)} 

=~g*{d2(h)} =lll{d2(hg)} =~{d2(!)}. 

Thus we have completed the proof of Theorem 1. 
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