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$1. Introduction

Let Y be an arcwise connected and simply connected topological space
whose second homotopy group has a finite number of generators. Let K be a
4-dimensional finite complex. H. Whitney (10] gave an algebraic critericn for that
a mapping f of the 2-section K2 into Y be extendable over K. On the cther hand,
J. H. C. Whitehead gave many useful theorems on the investigation of homotopy
type, and also defined the Pontrjagin squares (7,8]. We shall restate the Whitney’s
result in terms of the Pontrjagin squares, and prove this result by using White-
head’s thecrems. The method is analogcus to the Steenrod’s (4). We shall alsc give
another definition of the Pontrjagin squares. 1 offer here my sincere thanks to
Prof. A. Komatu, Messrs. T. Kudo and H. Uehara who gave me many valuable

suggestions.

§2. Notaticns

(2. 1) Let K be a finite cell ccmplex, whose cells are oriented. Let C"(K,
A), Z"(K,A), B (K, A) and H"(K, A) denote respectively the groups of r-A-
cochains, r-A-cccycles, r—A-cobcundaries and r-A-cohomology classes. We shall
denote by {«} the cohcmology class containing #, an element of Z"(K, A). When
cocycles # and v are cchomologous, we write #~v. When K; and K, are finite
cell complexes and f is a cellular map of K; into K2, we denocte by ¥ the homo-
morphism induced by fof C(Ks, A),..., H'(K3, A) into C"(K;1, A),..., H"(K,
A), respectively. Let I, be the additive group of integers. A latin small letter
attached with the symbol -—such as u, means an integral cochain.

(2. 2) Threoughout this paper, we suppose that a topological space Y is an
arcwise connected, simply connected, Hausdorff space whose 2-dimensicnal homo-
topy group #2(Y) has a finite number of generators. Let y: be a fixed peint in
Y. Maps always mean continuous maps. Let X, X’,Y, Y’ be topological spaces
such that X’CX and Y'CY. The notation f: (X, X’")>(Y, Y’) means that f
is a map of X into Y satisfying the conditicn f(X’)CY’. When maps f, g:
XY are homotopic, we write f~g.

§3. The Pontrjagin squares
(3. 1) Tet A and A’ be abelian groups and 7 a map of A into A’ satisfying
the following conditions :
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1) 1@)=7(-a),

2) 7(a+b) =7(a)+7(b)+(a,b), a, bEA,
where (a, b) is a bilinear function defined on Ax A with values in A’. Then, in
the similar way as in (7, p. 61], we get the following properties: i) 7(na)=#%1(a),
where # is an integer and a€ A. i) T(ay+tag+--+ap,)=2(a:)+Ticsla, a5,
where a; € A(i=1,2,..., p). ii) 2r(a)=L(a, a). iv) If ma=0, then (m?, 2m)i(a)
=0, where (p, q) denotes the greatest common measure of integers p and q.

(3. 2) We shall here recall the definition and scme properties of the Pontr-
jagin squares which were given by J. H. C. Whitehead (8).

Let K be a finite simplicial complex, and {¢1,...,¢e} @ canonical basis for C”
(K, Io). Let {A,A’,7} be a system given in (3. 1). Let #u€ Z"(K, A). Then,
using the canonical basis, we may represent u by 23;2,4:C;, where i€ A. The
Pontrjagin square of u is given by

pu = 24T Cus )pce + i< Cuau3 e\ UCss

where pé;=c:\Uc:+¢é\U10c: and » is even. We have the following properties.

i) When we pass from cocycles to cohomology classes, » induces a map P
of H"(K, A) into H?"(K, A’) which is independent of the choice of an order of
vertices in K and a canonical basis of C"(K, Io).

ii) P is natural, that is to say, when g denotes a simplicial map of finite
simplicial complexes g: K1—>Kz, the commutativity holds in the diagram:

P
H(Ky,A) — H"(K,,A")
g " g*%t
H(K;, A) — H¥(K:, A’),
ie., g*P=Pg*
111) If Uy Uy ... 5 Ut € Z’(K, A),
pCur Haup+ - Fus )~ebug + 2 e us Juy

where U is the cup product given by considering the function (@, b] in the defini-
tion of 7 as a group pairing of A with itself to A’.

iv) 2pu~uJu, where u€ Z"(K, A).

When X is a topological space, using the éech cohomolegy theory, we can define
P: H'(X,A)—>H?(X, A’) in the usual way. And we can see that the similar
properties hold. %P is a topological invariant and is called the Pontrjagin squares.

(3. 3) When A has a finite number of generators, we shall give anocther
definition of the Pontrjagin squares. Let {a;..., a:} be a system of independent
generators of A. Using this system, any u€ Z"(K, A) may be written in the form
of Xl us @;. 1t is easily seen that #; is a cocycle mod. »e, where my is the
order of ;. Now we define
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Yau=2371(a) pui+Xicslar s apdu\Ju;,
where Yus=u\Uus+u;\U10u; and » is even. Then we have the
Proposition. If ueZ"(K, A),
v u~pu
in Z¥(K, A”).
Proof. Since u€ Z"(K, A), u; is a cocycle med. »; and wa; € Z7(K, A). It
follows from iii) of (3. 2) that

pu=p( Lyitias )~ asar) + 2o sCusas ) U (ugas).
From the definition of the cup products,
wa Jusa;=Cas , a3u;\Ju; .
Therefore it remains to prove that p(ua)~7(a)pu; for any i. Let dci=mnid,

(i=1,..., q; m|ne+1), where md; =0 if i>p, and (di,...,dp) is part of a
canonical basis for C""X(K, Io). Let u;=21;2;¢; where £;; is an integer. Then

51,—11:(11::—‘21.911%;(—1;(1,;:0.
1t follows that for any j, 2::a:=0, hence m|L2:m; .
Thus £2:j¢;5 is a cocycle mod. m;. Therefore, by (7,(4.7), p. 613,

s =P 3245810 ~ 9 L4365) + 2 s La 35U LinCr,)
mod. (m%; 2mi)o

Since (m? , 2m)7(a:)=0, p(L:5c;)=9%pcs, 82;7(a:)=1(La;) and 27(a)={a: > @),
it turns out that
TCa)pui~2 57 )P 24565) + 20 5T (@i ) R 55U Lirc)
=2057(Le50)0C: + 2 <1 Li3as » Linaides\Uck.
By the definition cof p, the right hand is
P2 58Q45a:i00) = p(utsas).
This completes the proof.
From this proposition it is seen that the operation ¥ in cohomology classes induced
by ¥ coincides with the Pontrjagin square P. Since P is independent on the

choice of independent generators of A, so is .

84. Relations between 72(Y) and n3(Y)

(4. 1) Let S} be an oriented 2-sphere, and S7\/S3V/ ... \/S% a space consisting
of the collection of S?, SZ,..., S? intersecting in the unique peint ¢°. Let E2 be
an oriented closed 2-cube and B;: (E2, E2)>(S?, ¢°) be a map of degree +1 such
that Bt|<E2_E2) is a homeomorphism of E?—E? onto Si—e°. We define a map
wis of the boundary &4 =E}x E}+EIxE} of &4,=E?x EY onto S2\/ S%as follows:

B %) (x, y)EEIXES,

(,L)tj<xy y)::{ﬁj(y) (x’y)EE?XE%-
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Let
0: (STV/SF, )Y, y5)

be a map such that o|S%, p|S} represent the elements a;, a; of m2(Y), respect-
ively. Then the element of n3(Y) represented pw;;: &Y is the Whitehead
product asoa; (5,6]. The Whitehead product is bilinear.

(4.2) Let p: E*>S? be the Hopf map (i.e., a map with the Hopf invarient
+1), and «: S?2->Y a map representing a given element ¢ € 72(Y). The corres-
pondence a—>uy induces a map 74 of m2(Y ) into 73(Y' ). Then 74 has the following
properties (5,8,9]:

7l —a)=1nx(@) a€n(Y),
p(@a+b)=nLa)+nsb)+acdh  a, bEnx(Y).

$5. The extension theorem

Let K=K* be a 4-dimensional finite cell complex whose cells ¢ are oriented,
K? the p-section of K and fa map of K? into Y. Since mi(Y)=0, there exists
a normal map f’ such that f’==f. For a map f’, the difference cochain d2(f’)
=d2(f’x) € C¥(K, m(Y)) is defined as usual, where * denotes a constant map.
Since d2(f’) is independent on the choice of f’/, we shall define dx(f)=d2(f’).
Clearly 6d2(f)=0 if and only if fis extendable over K3.

Let us assume that f is extendable over K3, and 7: K3>Y be an arbitrary
extension of f over K3. Then the 4-dimensional obstruction cocycle ¢*(f)¢ Z*
(K, n(Y)) is to be defined. It is well known that the cohomology class {c*(f)}
does not depend on the choice of an extension 7, but only on f(2). Therefore we
may denote this class by {z*(f)}. Then the necessary and sufficient conditions
for that f can be extended over K* are 6d2(f)=0 and {z*(f)}=0.

(5. 2) By (4. 2), it is seen that {mo(Y), 73(Y ), 74} is a system satisfying
the conditions of (3. 1). And since 73(Y) has a finite number of generators, we
obtain from (3. 2) or (3. 3) the Pontrjagin square of this system :

P=P : HAK, (Y ))>H*K, ns(Y)).
Then our main theorem is stated as follows.
Theorem 1. If f: K2>Y is extendable over K3,

{z( )} = B{ax (D} .

The proof will be given in §6 and $7.

From this theorem, we get

Theorem 2. (Extension theorem) The necessary and sufficient conditions for
that @ map f: K>>Y be extendable over K are 0d*(f)=0 and pd2(f)~0

Remark: Since $=P', our result is different from the Whitney’s (10 only in
the respect that the latter contains some terms including U:. However, it is
easily seen by the following proposition, that these terms are coboundaries which
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vanish away in cohomology classes.
Proposition. If uc€ Z°(K,I,) and p—i is odd, %Uzu~0.
Proof. See (4, p.299).

Thus our result coincides with the Whitney's.

£6. Reduced complex

(6. 1) We assumed that n(Y) has a finite number of generators. Let a1,
as,...,a be its independent generators, where the order of a; is m:. We may
suppose that #; >1 or m;=0 according as 1<s or ¢ >s, and mu|m;.1. We note
that the integers ¢, s and the system {m, m2, ..., m:} are invariants of m(Y),
hence of topological space Y. We shall construct the special 4-dimensional cell
complex R which is called the reduced complex R for Y (7).

Let &7 be a p-dimensional oriented closed cube, and e} its interior, when p >0.
R=R* ig the cell complex, which satisfies the following conditions :

(i) R'=R°=a single point €°.

(ii) R?=R'+éi+ - +e, where (=1, 2,..., {) is attached to R! by a
map &3¢, Thus €+¢° is a 2-sphere S, and R2=S3\/S2\/ ... \/ S}

(iii) R3=RZ?+ée}+e5+ - +ei,where e}(i=1, 2,..., s) is attached to R2 by a
map &3>S? of degree mi(>1).

(iv) R'*=R3+el+tes+ - +ettel,tetst - telstess+ - +eiy:, where ef(d
=1,2,..., t) is attached to R* by the Hopf map 7:: &>S?%, and e}y (i<j, i, j
=1, 2, ..., t) is attached to R? by the map ws;: €SI/ S% defined in (4.1).

(6.2) Let h: R*>Y be a map such that 2|S} : S? >Y represents a; € no(Y).
Then since c*(h)=0, & has an extension };: R3—>Y. We shall prove Theorem 1
for R* and h. Let ¢}, e}, e}, be integral cochains which take 1 as coefficient on
¢, e, ef; respectively. Since e} (j==i) isa cocycle mod. my, eiUe] is a cocycle
mod. m; and pél is a cocycle mod. (m%, 2m;). And, from (7, Theorem 5, p. 78],

we have e - ..
elUédi~ey; mod. my (i<j),

pet~ef med. (mi, 2my) .
Since dX(h)=Swaiel and el € ZXR, 72(Y)), it follows from (3.2) that
pd2(h)~Lp(@ed) + Lizsaie; Uases
=@ dpe; + i< aas)et Ues.
Noting that (m?, 2m) 94 a:)=0 and maca;)=0, we have
pd2() ~Tmsa)et + e Kaoaydels .
On the other hand, by the difinition,
=2l ae; + i< s(acaseg; -

Thus pd2(h)~c(h),
i e., Pld2()} = {z* (W} Q.E.D.
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Remark. The above-mentioned reduced complex is a special case of reduced
complexes which were given' by J. H. C. Whitehead (7).

(6.3) Here we shall note some properties of hcmotepy groups of R which
will be needed in the following parts. Let 8; be a map which was defined in
(4.1), and bs;, b’ be respectively an element of 7m(R2), an element of ma(R?),
both of which are represented by Bi:. let 7 : R2—>R? be an identity map, ix the
homomorphism of m3(R?) into w3(R3®) induced by 7. Then ixis onto (5. Lemma
33. On the other hand, n3(R2?) is a free abelian group which is generated by
23(b;) (=1, 2,...,¢t) and byobs(¢<j, ¢, j=1,2,...,¢t) (1,7]. Therefore ms(R3) is
generated by 7(b:’) (i=1,2,...,t) and b/oby/ (:<j, i,j=1,2,...,1).

§7. Proof of Theorem 1

(7.1) Let f: K2>Y be an arbitrary map. Since (Y )=0, there exists a
normal map f’ such that f/=f. Let ¢% be an arbitrary oriented 2-cell. We shall
denote by X! jcwa an element of 7(Y) which is represented by f’|s%, where
cw is an integer. In each o}, choose ¢ disjoint closed 2-cubes *E%, *EZ, ..., *EZ,
oriented in agreement with of. Let g : K>>R? be a map such that g|*E? :
(*E2, *E2)-»(S?, ¢°) is a map of degree ¢ for any k, ¢ and g(K2— U*E2)=¢".
It is clear that kg=~f’, hence hg=f. Therefore d*(f)=d*(hg). ’

Now suppose that f can be extended over K3. It follows from the homotopy
extension property that Zg has an extension. Since 71(Y)=0, it is seen (2] that
{2°( )} = {z*(hg)}.

From these arguments, without less of generality, we may suppcse that f is
hg for the purpose of proving Theorem 1.

(7.2) Suppose that f=hg : K2>Y has an extension over K3. Let ¢} be an
arbitrary oriented 3-cell of K, and &3=3:sis%, where ef is the incidence number
between ¢f and oZ. ‘Then %|d3, f|o} represent Ek,te,{ckibzénz(Rz), Z}k,ie,icmai
€ no(Y) respectively. Since f is extendable over K3,

ZkeigcktEO mod. ny

for any i=1, 2, ...,¢. Therefore, Sisice=0 if i>s, and Yieicwi=nim; (n]: integer)
if 1<s.
In o}, choose s closed 3-cubes ‘E3, 'E}, ..., E? oriented in agreement with

o5, having only a single pcint p; in common. Let JEL=JE3VIESY.. VIE} if s$>0
and ‘E}=p; if s=0. Let ¢;:(EL p,)>(R3 ¢°) be a map such that ¢;|'E?:
(E3,JE3)->(&, &) is a map of degree n]. Let Q3 be a 3-cube such that 'E}
C/Q3C Int. o} ‘Q3 is oriented in agreement with ¢3. Let g(») be a point which
a straight line p; p interesects with /@3, where p is an arbitrary point of EL.
Map all points of pg(p) to ¢;(p)€ R2, and an—fE*—upE ;ngé(T)) on ¢°. Then
we get an extension of ¢y, ¢;: /Q*>R?, such that ¢,|/Q% : /Q3->R? represents an
element 2a{m.b; of m(R2). On the other hand, g|s3 also represents ) i’keizckibi
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=Xinlmb;. Therefore 2|53 and ¢; |’Q3 are homotopic in R2. Using this homotopy,
we obtain a mapping g;: ¢}—>R?, which is an extension of ¢; and g|s. Let g:
K*->R® be a map such that gls}=gs, then g is an extension of g, and f=h& is
an extensicn of f. .

(7.3) Let o; be an arbitrary oriented 4-cell. Then, from (6. 3), an element
of m3(R?) which is represented by a map g|s; have a form

Sl by (b)) + ST ybjob)

where I'}, I'l, are integers.

Wt+1)
2

.4
Now choose in a7 closed 4-cubes 'E1, ..., 'Ef, 'EY,, 'E s ..., 'ETy Fag,

...y i1 ¢, oriented in agreement with ¢, with a single peint # in commen.
Let ‘EL="E{V.. "E{V'ELV'EY .. Et_ . Let ¢i: CEL o/ )>(R* ¢°) be a map
such that ¢:I'E}: CELED>(EL €D, ¢ 'Ely : CEY, 'Ef)->(&ly, &) are maps of
degree I'l, I'%; respectively. Let ‘Q* be an 4-cube which is oriented in agreement
with ¢} and satisfies the condition ‘E4C'Q*C Int. ¢f. Using the similar argument
as in (6.2), we can construct an extension of ¢, ¢; : 'Q*>R such that {ng‘Q“
represents S (B’ )+ i F b’ oby’ € ma(R3).  On the other hand, since g|é*
also represents it, ¢'E¥ and g|5# are homotopic in R3. Using this homotopy, we
can get a map g; : ¢i>R* which is an extention 6f g|sf and ¢;. Let g: K‘>R*
be a map such that g|sf=g;, then Z is an extension of g.
Now using the general theory of cantinuous extension by Hul3], we can see that

{c}Chgdt =g*{c (W},

{d2(hg)} =g*{d*(h)}.
Since {24(f)}={c'(hg)}, [ (M)} =%{d*(h)} and P is natural, we have

{24} = {c}(hg)} =g*{c* (B} =2*B{dx(h)}
=Pg*{d2(h)} =P{d*(hgd} =B{d*(/)}.

Thus we have completed the proof of Theorem 1.

Literatures

(1) A.L. Blakers and W.S. Massey: The homotopy groups of a triad, Ann. of Math. 52,
(195D).

[2] S. Eilenberg: Cohomology and continuous mapping, Ann. of Math., 41, (1940).

(3) S.T. Hu: Extension and classification of maps. Osaka Math. Journ., 2, (1950).

(4] N.E. Steenrod: Preducts of cocycles and extensions of mappings, Ann. of Math. 48
(1947).

[5) G. W. Whitehead: A generalization of the Hopf invariants, Ann. of Math., 51, (1950).

{6] J.H.C. Whitehead: On adding relations to homotopy groups, Ann. of Math., 42, (1941).

{7) J.H.C. Whitehead: On simply connected, 4-dimensional polyhedra, Comm. Math.

Helv., 22 (1949).

{8) J. H.C. Whitehead: A certain exact sequence, Ann. of Math. 52 (1951).

[9) H. Whitney: Relations between the second and third homotopy groups of a simply
connected space, Ann. of Math., 50 (1949).

{10] H. Whitney: An extension theorem for mappings into simply connected spaces, Ann.
of Math. 50 (1949).



