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Introduction

Let A be a fibre bundle over B and with fibre /. We assume
that B is a finite complex and F is an orientable manifold, although
the latter assumption is unnecessary for almost all cases. The struc-
ture group which acts on F is always denoted by G.

Our main concern is then to determine the homological characters
of A assuming that we already know the homological characters of
B, F and certain invariants characteristic to the fibre bundle ».

In §§ 2-5 our main tool is established. It is given in an improv-
ed form of the one originated by J. Leray (9.

In § 6 a theorem is proved which may bz regarded as a theoretical
answer to our main problem as long as we are concerned with Betti
numbers, showing that certain subgroups of the Kronecker product of
H(B) and H(F) are characteristic to the fibre bundle.

In § 7 relations between our groups and intuition are given by
examples.

In § 8 Gysin’s th2orems are proved as an application of our method.

In § 9-10 two Samelson's theorems? are utterly generalized.
Accordinz to one of thse generalized theorems a homology sphere of
an odd dimension has a remarkable property : Every fibre bundle over
an odd dimensional homology sphere, having a compact connected Lie
group as its structure group, is a product bundle in the homological
point of view. This has numerous applications as can be recognized
by the Samelson’s paper . Moreover this leads us to conjecture that
every I'-manifold (ih particular, every compact connected Lie group *)
would have the same property.

1) It is announced that this problem has been solved successfully by G. Hirsch in
another form, (6].

2) Satz IV, and Satz VI of [13). We refer to these theorems as the first and the
second tHeorem respectively.

3) Note that in our case A need not be a Lie group any more and the theorem applies
to Stiefel manifolds for example.

4) In this conjecture is included the following theorem: Let A be a compact connected
Lie group and F its closed normal subgroup then 4()—Rx()-PBr(2), wheer B=A/F.
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In the appendix it is proved that an equivalence class of fibre
bundles may be regarded as a fibre bundle over some mapping space ®
§ 1. Let A be a fibre bundle over a complex B with fibre F'.
We shall denote by B‘® the g¢-section of B, and by A‘“ the part of
A over B Then the (q, ¢/, ¢")-homology sequence (abreviated as:
(¢, @', ¢")-H. S.) is the homology sequence of the triple® (A®, A,

A(q”))’ where ¢>>q'>>¢q" :
(LY H(A®, A9 o A, ATy BT B A, A

_— — 3

N 75 " H"(A:q), A(q’)) .
As is well known the above sequence is exact®, in the sence that the
kernel of each homomorphism is identical with the image of the pre-
ceeding one.
For simplicity we shall write (¢, ¢"), (¢, ¢'), (@), (¢) instead of
(@+1, ¢, ¢, (¢, ¢, ¢-1), (d'+1,q, ¢ —1), (g, g—1, —1) respectively.
We put € (p—q)=H"(A“, A", and define its subgroups 3i(p—q)
B, (p—q) by ¥
B¢(p—q)=[the kernel-image in €'(p—¢) of the [¢—1, ¢—k—2)—H.S.],
k=-1,0,1, 2, ...;
B (p—q)=_th> kernel-image in €‘p—q) of the (¢+k+2, ¢)—H.S.],
k=-2, -1, 0, 1, ....

Clearly 3i=38:.1=8¢s2="+., By=B;,,=B,.=... for sufficiently large J:
we shall denote them by 8;, B; respectively. We see also that
12 €=3.23828>..28,08,>..D8/>Y;>B",> B’ ,—0.

Theorem 1.2 By(»)/Bi, ) ~ B¢ w—k—1)/80:%"" (p—k—1), k=
-1, 0,1, ....

Proof : We have only to examine th> following diagram:
HQ+P+1(A(QHN-I)’ AC"I))

Ve
(__HI)HZ(A(Q)’ A(Q—l))(_Hp+lI+~l(‘l4(q+k+2), A(q))(__HP+Q+](A(ﬂ+k+2)’ A(Q—l))<_
4 .
K

]l, % & 4
Hl‘l'll‘ (A - 1-2), Atﬂl Pl))

5) In this paper |J-and-)-product observations arc scarcely given. They will appear
later.

6) Cf. for instance, [14].

7y We put H?=0 for p<0.

8) The meanings of these notations will be made clear iater (43).

9) This and the next theorems are analoguous to those obtained by J. Leray (9} for
cohomology groups.
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In the same way we can prove the following theorem. Before we
state Theorem 2, we shall make the following definition :

H™%=[ the image of the injection of H”*‘(4V) into H”'(4)).
Clearly we have
(1.4) HP+(A)=H%?*"OH "1 [ DOH" >, . OH? % " OH 1 ~1=(),
Theorem 2.

Bu0)/By(p)~H" /H 1 71,

§ 2. Similar treatment is possible for the cohomology groups H.
Moreover, if we use suitable coefficient groups, for instance!® group
R of rationals, for both homology and cohomology, the corresponding
groups €'(p), H”**(A) are dual to €%(p), H**%(A) respectively, and the
corresponding subgroups By(p), 3:(»), H”? are annihilators of 3(»),
Bi(p), H™" respectively.!’

§ 3. Let A be the principal fibre bundle !> of A, and let 2® the
part of %A over B’. For any simplex o; of B let ¢;: o,— be an
arbitrarily chosen slicing map of o, into o, the existence of which is
assured by the well-known Felbau’s theorem.

Since for complexes various homology theories coincide, and since
o is a product bundle, we have
(3.1) H’(¢, &§)~H""%(¢)~H"""(£)~H"%(F), where £ is a point of o.

Let us consider these isomorpliisms more precisely.

@i H?-(£)—H"%(¢) is induced by the injection mapping £ —c.
wy: H"-"(F)—>H”-(£) is induced by the homeomorphic mapping ¢(£):
F—E oy H“(F)- H"(, &) is induced by the mapping 6: Fxo—
o, defined by

0y, v)=p@)y, x€o, yerF.
The image of a”“¢ H”-*(F) under w; is denote by a’-%o ;. Similarly
denoting by z”°* a cycle of F, we denote by z" %o ¢, the cycle ("%,
o) of > mod &. Further the cycle 62”7, &) of & is denoted by 2270 &.

10) We shall assume that the coefficient group of H? and II? is always )i unless
otherwise mentioned, although in most cases any other cofficient groups will equally do.

11) To avoid repetition we omit the precicse definitions of the groups for cohomology,
but the last statements enable us to understand what their precise definitions should be.

12) (1), (2).

13) Generally we shall denote by @ the part of A over ¢, where ¢ is any subset of B.

14) 1In th3s case ¢ is assumed to lie in the interior of o.
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ws: H(5, )-H""%(£)™ is as follows. Since any relative cycle
¢’ of & mod & is a chain of & with boundary disjoint from £ we may
consider the intersecticn (c”- &), =(c” - £) of .¢” with & in +. It has
dimension p—q and may be regarded as a cycle of E. w, can be ob-
tained by assigning ¢” to (¢ - £).

§ 4. J. Leray’s homology theory.'>> Let us consider linear forms
ziala‘;, where o; are the g-simplexes of B and &,€ H” (»;). The to-
tality of them clearly forms an additive group which we call Leray’s
g-chain group. and is denoted by L‘(p).

We then define Leray’s boundary homomorphism 1, , : L*(p)—L*~(p)
by L, »(3 a.fr;’)zz(z[a'}": o) (@):3-1) o ', where (&),9-1 is the inver-
se image of &, of the injection homomorphism H"(¢ % 1)—»H"@r,)(whxch
is an isomorphism in this case). Cleary I, ,,.l, »=0, and this enables
us to develope a homology theory with respect to L(p) and I, ,. The
resulting homology theory is a special case of the one introduced by
J. Leray and coincides to Steenrod’s homology theory with local coef-
ficients 0.

§ 5. We can now explain the meanings of €'(p—gq), 3 By etc.
Let us start from ‘the obvious isomorphisms :

(5.1)  H'(A™, A"V ~ 3 H* (51, &~ P> H? (&) ~ SH (R,
The first term is €(p—q) by definition; the second may be identified
with L'(p—q); the last may be identified with C*(B, H” *(F)).

The isomorphism g,: C*(B, H” '(F))—»E8*(p—q) is given by

(5.2) n(2a )= S, o of, where a,€ H"~(F),
The 1somorphxsm Ia: Cq(B H?-"(F)—>L'(p—q) is given by
(56.3) L2 (2 V5 O'z) 2 (01020, )0'¢

Between oy, and I, »_, there ex1sts a relation given by
-1 [¢-1)

Theorem 3. (5.3) L Gy T =Ls lg, p_gla-

Proof : For any 3Ya,0, a,€ H”*(F), the coefficient on oy of 1 ey’

(S eo)=1 %0 a5 (S a0 )=k 7, S a0 i s easily verified to

be b;=2 (of: o5 g)” (53 N} -1eiES Da,, while the coefficient ¢n a‘f, !
of ?32 g, v quz(Z am)—xz @ q- 1(2 (o10,a,) o L) ——EIz (Z (01020, )O" 1)0'1

15) Cf. (9.
16) Cf. [15), (16).
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is also b;, since w,w, is independent of the choice of £ and (01050, )oe-1
is represented by the cyle gof(f;'_l)ai.

Theorem 3 can also be stated as

Theorem 8. o) ) : C'p—q@)-C""(p—q) is (when properly meant).
identical with 1, ,_,: L (p—q)—L"Yp—q).

From now on we shall assume that the structure group G is a con-
nected Lie group. Then, in the proof of Theorem 3 b=\ c\: o} la,,
and hence we have

Theorem 4. (If G is connected), both ar;:lu and 1, ,_, are identical
with the ordinary boundary homomorphism

CB, H" Y(F))—~C"Y(B, H""(F)).

Thus we may identify €Y(p—q) with C*B, H"~(F)) and may re-
gard a'f_"ll/' as the ordinary boundary homomorphism operating on the
chains of B.

Theorem 5. 3'(p—q@)=3%(p—q), B",(0—q)=B(p—q) are the q-cycle
group, the g-boundary group respectively of B with coefficients in H” ¢
(F).

Corollary 1. If the q-th Belti number of B wvamnishes: b'(B)=0,
then 3'=81=..=3,=9;...=8" ="

§ 6. The grups ., K;, and their invariance. As we have seen in
the preceding paragraphs, the groups 3‘®@—¢) and B‘(»p—¢q) are ordi-
nary q-cycle gyoup and ¢-boundary group respectively of B. The
factor group H(p—q)=3%(p—q)/B*(p—q) is therefore the ¢-homology
group of B and is independent of the manner of subdividing B. We
are now going to show that our groups 3¢ and B; are also invariant
under subdivision if they are considered modulo 8°.

We define

Hip— =B —0)/B'w—a), 9,=3./B";
K —O=Bi(p—¢)/B"(p— ), K=D,/B".

Let dim B=n and B’ a subdivision of B. Various groups for B’
will be denoted by '®;, '9;, etc. Further we use the following denot-
ing way: for example, we mean by A" the part of A over the
g-saction of the subdivision (induced by B—B') of the (n—1)-section
B*1,

Lemma 1. For q<n—1, eny cycle ¢” of A"? mod A1/ @® jg
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homologous in A"V to o cycle of AV D mod ATV 4F,

Proof: ¢” can be decomposed as ¢’=c¢, +¢, +...+¢,, where ¢,
AT cf(o?. The lemma follows from the obvious fact that the
statement of the lemma is true for each c.

HP(A(‘I)’ A(q~1))lHn(A(q), A(q~k—2))le(A(q>)ﬁHn-z—l(ACQ+k+2)’ A(G))
o |6 o - e

HPCAI{Q)’A’(Q*l))lHI’(AI(Q)’Ar’(Q—k—2)>lHI?(AI(Q,‘)ﬁH7’+ l(Al{q .Lk+2)’ A/(Q)')
ﬁHP-}](A(‘H‘l), ACQ‘)
16

E)HIM-(AI(G‘PI)’ AICQ))’
whare v, B8, ¢ are induced by the identity mappings, and « is the
boundary homorphism. Clearly commutativity relations hold in the
diagram, and hence 4 induces homorphisms

(6.1) D —q) —'Dulp— @),

(6.2) Kilp—a) - 'Ki(p—0).

Lemma 2. The homomorphism (6.1) is onto.

Proof : Assuming that the lemma is already proved for B with
dim B<n—1, we shall prove it for B with dim B=mn.

Let ¢” e H"(A'@, A/ %) whre k>0. By Lemma 1 there exists
a chain d”CCA’®*-1 such that "= —¢”—¢”-! for some ¢” -} A~ Dn-k-2),
The chain ¢”+d” clearly belongs to H?(A'®, A®~1/@-¥-2 and the image
v(e”+d”) in H"(A"%, A'?"V) is identical with v(c¢"), since d*C A"V,

(i) The case ¢<<n—1. By Lemma 1 there exists a chain e’
A"®D guch that ¢i=c”+d”—e"*}C A 1”®,  The element ¢,, when
regarded as belonging to H"(A™-Pr Aw-1/a-k-23" ig mapped by vy
into ve; €,.,3iP—q), ,13i(p—q) is the group 3; for (B"-Y).

Now let 0: ,_9i—'®! be induced by &: A" @ 4", and let
0: 9, 'H" be induced by 6: AP A®-17®_ g is onto, because
O(re)=v0c,=y(c" +d" —e" Y=y(c") —y(e"") =v(¢") mod 'B'(p—q), and
ve” may be any element of '3%p—q). On the other haod @ is onto
since B"-! is at most (n—1)-dimensional. Thus 6=66 is proved to
be onto.

(ii) The case g==n. In this case A™"'=A’"". Since (¢"+d")=c?"!
CAM-e=k-Lhy Lemma 1 there exists a chain e’ A 2™ %1 guch
that e?—cr-1CCA™-2’"-#-1 Repeating the same argument we see that
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for a suitable f7C A/ F=V fr ¢ ICTA™ =2, Then ¢,=¢"-+d"—f" is an

n 1, »
element of H?(A™, A™""*2) and hence ve) € Bu(p—n) and 0(701)——- vOc,
=qci=yc". Thus 6: Hi—'Dy is onto in this casa also. Quite similar-
ly we can prove -

Lemma 3. R:(p—q)—'R:(»—q) is onto.

Theorem 10. (Invariance of O, and 'Ky under subdivision). The
homomorphisms (6.1) and (6.2) are isomorphisms onto.

Proof: Let ¢e 8, and let 0¢e'B(p—q). Since ¢ €3, and since
the theorem is true for k=0, 6¢ € 'B(p—q) implies ¢ € B(p—¢q). This
means that 0: 9r—'9; is an isomorphism. But, since we already
know that @ is onto, the theorem is proved. ‘

It can be proved !> that $; and &; (in particular . ani1 ®)) are
invariants of the equivalence class of fibre bundles.
Theorem 11.

H'(A)~ 3 9,0)/%5),

where ©(p), £(p) are subgroups of O'(p)=H*(B, H"(F)) ~H(B)Q H'(F')**,
which are charactaristic to the equivalence class of A.

§ 7. Intuitive meanings of He(p—q) and K (p—q) in their special
cases. (i) The case: p=q. In this cas2 9, B; are all subgroups of
the homology group HYB)=9%0) of the base space. 93(0) is the
image of the projection = : H‘(A)—H(B).

(ii) The case: ¢=0. In this case 9;, B; are all subgioups of the
homology group H”"(F)=9°(p) of th2 fibre. Sgi(p) is the kernel of the
injection «: H”(F)—H"(A).

(iii) The case: p—g=d=dim F. In th’s case Di(d), Ri(d) are all
subgrours of the homology gioup H'B)=9"d). Ri(d) is the kernel
of the Hopf’s inverse homorphism =': H*B)—H* (A).

§ 8. Gysin’s theorem.

Lemma 4. If F is a homology d-sphere,

BYd)=B,-.(d) > By (d)=By(d) ;
840)=38:-.(0) > 85 (0) =34(0).

17> By the standard methed proving the invariance of Betti groups.
18) MXN is the Kronecker product of M and N,
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Proof : By Theorem 1, we have
BD)/ By (D)~ B3 " (d—k—1)/8: " (d—k—1).
The left hand side of this isomorphism vanishes if 1<<d—k—1<d-1,
i.e. 0<<k<d—2. In the same way we can prove the sacond relation.
Theorem 12. If F is a homology d-sphese, we have
KD =HT(0)/9," (0.
Proof : By Theorem 1, we have

B, (d)/B-2()~ 8,1 (0)/85 " (0).
By Lemma 4 it becomes
K~ B(d)/B (@)~ B (0)/9 T 1(0) = HT*13(0)/9, ().

Lemma 5. 3%(d)=38;(d).

Lemma 6. If H?*(A4)=0, 35(p)=3(p).

Lemma 7. If H"(A)=0, &(d)=H"(d).

The prcof of Lemma 5 is similar to the one of Lemma 4, Lemma
6 can be proved by making use of Thaorem 2 and Lemma 5.

Theorem 13. If F and B are homology d-and n-sphere respective-
sy, then for q with 0<q<n-—1,

DU(d) = DT 0)/9 ().

Remark: By (i), (iii), § 7, we s2e that Th-orem 12, 13 are identi-
cal with those given by W. Gysin*.

§ 9. Generalization of Samelson’s second theorem.

Theorem 14. If the injection homomorphisms H?(F)—H?(A) are
all isomorphisms (p=0, 1, 2, ...), then

3 0)=3x»), B'W)=B,®).

This theorem is deduced ‘by induction from the following Theorem
14’. Let dim B=mn, 'B=¢"+B, ¢"CB. Furhter let the injection ho-
momorphisms H”(F)—H?"(A) are all isomorphisms. 7Then if the condi-
tions: for any p, ¢

(1) B'0)=8x®), B'@)=B(»),

(ii) for any bounding cycle Z% !¢ B?(B) having a slicing map
into 4, and for any a” € H”(F), the cycle a” o 2-12® is homologous to
a cycle of F in A, are satisfied for B, than the same conditions are
satisfied for 'B also.

19) W. Gysin (4).
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Remark: If the condition of Theorem 14 is satisfied for B, the
same is satisfied for any subcomplex B, of B.

Proof of Theorem 14'. We shall first show that under the assum-
ptions of the theorem the relation 3*(»)=3(p) holds.

Let ¢{=Ya,0;+as" be an element of '3"(p—mn), then 3 a5, +as"
=0, and hence as"=—3"a,5; € B~ (p—n)=B, (p—n). But, since H*-"
(F) is a finite dimensional vector space over the field of rational num-
bers, the last relation implies that ¢”"~0 in B when a=-0 (the case

=0 is trivial !).

By assumption (ii) it follows that a o ¢"~b""! in A, where b”"! is
a cycle of F. This b?-! can not <0 in F, since otherwise @ o "~0 in
'A, which contradicts the relation (@ o ) in'A=a o ¢"x0 in 'A. Thus
b”~! must ~0 in F, and eence ¢ o ¢"~0 in A, hence (9.1) aos"+ 2@,
o 6y~0 in A.

Now consider tha following diagram:

(A4, A" HA, 40
/((;”—)1\\\ //a,;n—)l

K
H?-1(A"-D)

n / n-—
I N
Hu—l(A)/ H"’I(A("‘D, A(ﬂ—z))‘

Commutativity relations hold in this diagram, and chain a o ¢*+ Ya,
o &, represents the element 'ay"\¢ of H?"1(A-%). Relation (9.1) implies
that By ay,t=0, and hence 'ay\t=a,"¢, for some &, € H'(A, A ).

(n-1) (my (n—-13, (n)

Since [boundary in B of &,)=v,.; ap 15:=Yp1 'ap&=[boundary in 'B

n-1

of £]=0, from the assumption B" (p—n)=B, (p—n) we may conclude

(n) (n)
) 'dp—1§=“p—lé‘1=0'

Thus ¢ € 3,(p—n), which proves the relation
Biw—n) = 3"(p—n).

Now since '8,=3; for ¢< n, '3'=38'=8,='3:, and, since "B/ B;_,
~/Ze 3T from the fact just proved we may conclude that B
(p—n)="B"(p—mn). Let us prove the property (ii) for 'B. Let z? 1~0
in 'B. Since the case z"-'~0 in B (in particular the case g¢<n) is
clear, we suppose g=u and z” 10 in B, 2”-1~0 in’B. Then for some
rational number m- 0 we have z"-'—m&"~0 in B. Since @~ z"!
—ma o 6"=qg o (2" '—mé")~CF* in A by the assumption (ii) and
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ao¢"~F in'A, aoz" }F in 'A, which proves the condition (ii) for
'B. Thus Theorem 14’ is proved.

§ 10. Generalization of Samelson’s first theorem. Samelson’s first
theorem can be generalized as follows.

Theorem 15. Ig B=B*"'! is an odd dimensional homology sphere,
and A a fibre bundle over B with fibre a homogeneous space F=G/U,
where G is a compact connected Lie group. Then the Kunneth equality
holds between the Poincaré polynomials of A, B and F :

PBat) = Pu®) B (D).

We shall first prove the

Lemma 7. If B=B" is o homology sphere, then for some n-simplex
o, of B, 'B=B—Int o, is acyclic.

Proof : Let 2"=3m,s, be the basic n-cycle of B, i.e. the cycle
belonging to the element 1 of H*(B, R), and let &, be an n-simlex
which appears in z" with non-vanishing coefficient m,--0. Now, let
tz;)rio.’; be any cycle of B- Int &, then it is also a cycle of B and
;ence a multiple of 3 m,o; :

Slror=s 3 m,c;+smyoy, hence clearly 3 7,0;=0.

iF0 T30 PET)
Now let 3170, " be an (n—1)-cycle of B- Int o From b, ,(B)=0
there exists a chain 3)s,0; with

(10.1) (R so0) =sio+ B o=
Since mysg+ Iz;omi&?=0 and m,y--0, by (10.1) we have 3 7,0; '=(s,/m,)
(= Smih— g sidi= 3} (—(su/mo)m, +3)5,. Hence v '~0 in B-
Int +,. Since the lower dimensional case is trivial, we have for all
q C0)
b (B-Int o)=0.

Lemma 8, Let 'B be an acyclic complex and 'A o fibre bundle over

B with fibre F'. Then each of the injection homomorphisms H(F)—H(A),

H(F)«—H(A) is an isomorphism onto. Moreover minimal elements?® in
H(F) and H('A) correspond under the above isomorphism.

21) “#~7DF ” means “# is homologous to a cycle in F”’

22) Z?e¢ H?(K), where K is a complex, is called a minimal element of H(K) if
for any (2¢ HCK) {8\Z%=-0 unless ¢=-0 or =p. This definition clearly coincide with the
ordinary one if K is a manifold. As in the case of manifold any minimal element is

mapped under a continuous mapping to a minimal element, in particular, every spherical
cycle is minimal. Cf (5], (13).
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Proof : Since for ¢>0, 3’(p)=3®), the inclusions 3P >F,()>
V() DB(p) imply B (p)=By(p). It follows that H™/H""" "1~ B (p)/
B (p)=0 (¢>0). Hence H"'"(A)=H""""=H"" "=, =H"'%° which
shows that the injection X: H(F)—H('A) is an isomorphism onto.
Similarly for X : H(F)«H('A).

To prove the second statement it is sufficient to show that if
2" € H('A) is minimal then the element X 'z” € H*(F) is also minimal,
since the converse is trivial. Let ¢” run around over all the elements
of H('A), then X¢ runs around over all the elements of H(F).

Since X (X¢* N\ X-'2")=¢"N\z", and since X is an isomorphim,
X&*N\X-12"=0 provided that ¢=-0, p, which shows that X~'z” is mini-
mal in HY(F).

Proof of Theorem 15. Let B=B>*! ba as in the theorem, and
oﬁ”l, 'B be as in Lemma 7. Let us consider the homology sequence
of the pair (4, 'A):

—H A, ) G B0 P ) Y H 4, 1) -
Y VAR U

Yp+1 Ayp Hp Yp

2v+1

Let o be a slicing map o, —% and ¢ its boundary: p=gp|&,
» (@)U, where U is the principal fibre bundle of A and ' its
part over 'B. As in § 3 the elements of H”*!(4, 'A) may be written
in the form @ o ¢, where ¢ € H*"""Y(F)). We have also «,(a o p)=ao ¢,
where ¢ is a spherical (and hence a minimal) element of H2'('A).
But, since every even dimensional minimal cycle in a compact connect-
ed Lie group G is homologous to 02®, by Lemma 8 ¢»~0in 'A. Hence
«, is a null homorphism for each p.

If follows that 3, is an isomorphism and v, is an onto-homomor-
phism. Hence H"(A)~u,+v,~H"('A)+H"(A, 'A). But H"('A)~ H"(F)
by Lemma 8, and H”(4, 'A)~C"s", HP*(F))~H"-*(F). Therefore
H"(A)~ H*(F)+H"-"(F). Comparing the ranks, we have

b"(A)=b"(F)+b"~"(F),

i.e. PBaO=A+")Br(O)=Pa()B ().

Thus the theorem is completely proved.

23) [13).
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Appendix

§ 11. Since the content of this appendix is closely related to the
paper of Chern-Sun (17, we shall often use their notations and
terminologies.

Let §*={F, G, X*, B*; y*, },*} be a fibre bundle and let B be
a complex. The mapping space {B*}” becomes a metric space which
is locally contractible?’ if B is assumed to be metric and locally
contractible. Let O be a component of {B*}* containing a given
mapping f,. According to [ 1] Theorem 2.1, to every f& corres-
ponds a fibre bundle B(f), the graph &(y» ¥*f, B) of the many valued
function +"*f : B—X*29,  B(f)’s are all equivalent among them.
This naturally leads us to the following investigation.

Let A be the graph of the many valued function Q3 f—B({)C
BxX*., We may identify A with a subset A’ of QxBxX* defined
by

{(f, b, &%) € A} fa* € 1xf(b)}.

Further let I' be the group of automophisms of B(f,) giving self-
equivalences of B(f,).

Theorem A. Let G be oo ANR, and let B be o complex. Then A
is a fibre bundle over Q with fibre B(f,) and the structure group L.

Proof: Let f, be any element of Q. Since f,: B—B* is uniform-
ly continuous, we can subdivide B into cells {6%},.0,1,2,...,. Such that
the mesh of each cell « being so small that f,(¢) is contained in a
coordinate neighbournood Us of the fibre bundle F*. Let V, be a
naighbourhood of f, in Q such that f(s)CUs for any feV, and any
o. We shall construct a sequence of neighbourhoods V, >V, >V, D...
SV, and a family {6?)%67? of mappings such that 6, is an isomor-
phic mapping B*(f,)—B%f) depending continuously on the parameter
f €V, and reducing to the identity for f=f,. Let us proceed inductive-
ly and assume that we have already constructed V,_, and 65 . We
define A (b, a¥)=\,, (&%) by 6 (b, )= (b, A,,,(a*), where feV, ,,
beB* 1, and a* € f(b). Let " be a ¢-simplex and ¢ U, be abbreviated
as ¢oe.

Since 65 is isomorphic, s, =g, 51, Ny, sbss, r,», belongs to G for

24y (7).
259 (8.
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becs?, and reduces to this identity for f=f,. Let us define Py
=1 for bes’. Since G is an ANR, the function p,,: V,., x&"+(f))
xa"-»G may be extended to a {function 'u,,: W—G, where W is a
neighbourhood of V, x&+(f)) x¢" in V., xo"
Let V,, ,oV,., be a neighbourhood of f, such that V, ,«x "W 2©,
We define 65°(b, %) for feV,, 1, bea, a*€fy(b) by
934)@: a¥)=(b, b4, r) iy, bqsf’_"l, 7@ (@%)).

If we put V,=N\V, 1, 0,0, 2*) is defined for feV, beB?, a*
GQ

€ f,(b) and gives an isomorphic mapping of Bf,) onto B*(f). Thus
the g-th step of our induction is completed. Since the 0-th step is
clear we may assure that we can construct V, and 6, : B(f)—B(f).
This being proved the theorem follows at once from the fact that O
is path-wise connected.

Corollary. For any f,, fs€Q, B(f)) and B(f,) are equivalent.*”

Corollary. H”(B(f)) is & local group on Q in the sence of N. E.
Steenrod .’

More generally

Theorem B. Let B OB, DB, >B; be subcomplexes of B, and let T(f)
be any kernel-image of the homology sequence of the triple (B,(f),
B.(f), B;(f)). Then T(f) is a local group on Q; in particular it is in-
dependent of f as an abstract group.
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