On a Necessary and Sulficient Condition of Metrizability

By Jun-iti NAGATA

It is well known that the second countability axiom is sufficient for a regular space to be metrizable, but it is not necessary. In this paper we shall show that some extention of the second countability axiom is necessary and sufficient for a regular space to be metrizable, and shall study sorne applications of this result.

Definition. Let *R* be a topological space and $\mathfrak{U}_a = \{U_{ab} | \beta \in B\}$ $(\alpha \in A)$ be open coverings of *R*. We call $\{\mathfrak{U}_{\alpha} | \alpha \in A\}$ an *open basis* of *R,* when each open set *N* of *R* can he represented in the form

$$
N=\sum_{U_{\alpha\beta}\subset N}U_{\alpha\beta}.
$$

 β *-Countability Axiom.* We say that *R* satisfies β -countability axiom, when there exists an open basis of R consisting of an enumerable number of nbd (=neighbourhood) finite open coverings \mathfrak{u}_n .

It is an extention of the second countability axiom.

 α -Countability Axiom, We say that R satisfies α -countability *axiom,* when there exists a collection of an enumerable number of nbd finite coverings $\{\mathfrak{U}_n | n=1, 2, \ldots\}$, $(\mathfrak{U}_n = \{U_{n\beta} | \beta \in B)$ such that for each pair of points *a, b* \in *R, a* \neq *b,* there exists $U_{n\beta} \in \mathfrak{U}_n$; $a \in U_{n\beta}$, $b \notin \overline{U}_{n\beta}$ for some *n*.

We shall say that $\{\mathfrak{U}_n\}$ satisfies the condition of α -countablity, when $\{\mathfrak{U}_n\}$ has the above property.

Remark. The fact that \mathfrak{U}_n covers R is not essential in α , β -countabilities. For when \mathfrak{u}_n does not cover R, we may consider the covering $\{R, \mathfrak{U}_n\}$ in the place of \mathfrak{U}_n .

Theorem 1. *In order that a regular space R is metrizable, it is necessary and sufficient that R satisfies the* β *-countability axiom.*

Proof. Since the necessity is obvious from the theorem of A. H. Stone¹⁾, we prove only the sufficiency.

1. Let R be a regular space satisfying the β -countability axiom.

¹⁾ A. H. Stone. On Paracompactness and Product Space, Bull. of Amer. Math. 54 (1948) No. 10.

Then, in the first place we see that R is normal.

For let $\{u_n | n=1, 2, ...\}$ $(u_n = \{U_n, |\beta \in B\})$ be an open basis of R, and let F, G be disjoint closed sets of R; then for each point $a \in F$ we can choose $U_{n\beta} \in \mathfrak{U}_n$ for some *n* such that $\overline{U}_{n\beta} \cdot B = \phi$, $a \in U_{n\beta}$. We denote by $U_{n\beta}(a)$ such $U_{n\beta}$ for a.

Put $U_k = \sum_{n=1}^{k} U_{n\beta}(a)$; then it is easy to see that from the nbd finiteness of \mathfrak{u}_k , $U_k = \sum_{n \in \mathbb{Z}} \overline{U}_{n\beta}(a)$ holds. And then $\overline{U}_k \subset G^{c_2}$, $\sum_{k=1}^{\infty} U_k \supset F$ are obvious.

In the same manner we get open sets V_k such that $V_k \subset F^c$, $\sum_{k=1}^{H} V_k$ $\bigcirc G.$

Putting

$$
\begin{aligned} M_i = & U_i \cdot (\sum_{k=1}^{\prime} \overline{V}_k)^c, \quad M = \sum_{i=1}^{\infty} M_i \; ; \\ & N_i = & V_i \cdot (\sum_{k=1}^{\prime} \overline{U}_k)^c, \quad N = \sum_{i=1}^{\infty} N_i \; , \end{aligned}
$$

we see that M, N are open sets such that $M \supset F$, $N \supset G$; $M \cdot N = \phi$.

2. Next we can show that for any nbd finite covering $\mathfrak U$ of R there exists a sequence of coverings \mathfrak{u}_1 , \mathfrak{u}_2 , such that $\mathfrak{u}_1^2\lt\mathfrak{u}$, $\mathfrak{u}_2^{\scriptscriptstyle{\triangle}}\! <\!\mathfrak{u}_1$,

For let $\mathfrak{u} = \{U_{\alpha} | \alpha \in A\}$ be a nbd finite covering of R; then from the normality of R there exists an open covering $\mathfrak{B} = \{V_a | \alpha \in A\}$ such that $\overline{V}_a \subset U_a$ for every α . We construct continuous functions f_a for every α such that

$$
f_a(a)=1 \quad (a \in \overline{V}_a),
$$

\n
$$
f_a(a)=0 \quad (a \ni U'_a), \quad 0 \le f_a(a) \le 1.
$$

Let $N_i(a) = \{x \mid (\gamma \alpha) | f_a(a) - f_a(x) | \langle 1/2^i, x \in R \} (i=0, 1, 2, ...)$

and let b be an arbitrary point of $N_i(a)$; then $|f_a(a)-f_a(b)| < 1/2$ for all α . We denote by $P(b)$ a nbd of b such that $P(b) \cdot U_{\alpha} \neq \phi$ (j=1...k), $P(b) \cdot U_a = \phi(\alpha + \alpha_j)$. Since $|f_{\alpha_j}(a) - f_{\alpha_j}(b)| < 1/2$ (j=1...k), there exists **a** nbd $Q(b)$ of b such that $x \in Q(b)$ implies $|f_{a_1}(a) - f_{a_2}(x)| < 1/2$ (j=1... k).

Let $x \in P(b) \cdot Q(b)$; then from $f_a(b)=f_a(x)=0$ $(\alpha+\alpha_j)$, we get $|f_a(a)|$ $-f_a(x) \leq 1/2^i$ for all α , i.e. $P(b) \cdot Q(b) \leq N_i(a)$. Hence $N_i(a)$ is an open set. Putting $\mathfrak{N}_i = \{N_i(a) | a \in R\}$, we see that $\mathfrak{N}_{i+1}^{\wedge} \subset \mathfrak{N}_i$ (*i*=0, 1, ...) and $\Re_{\rm o} < 11$.

3. Next we shall show that R is perfectly normal.

94

²⁾ We denote by G^e the complement of G.

Let N be an arbitrary open set of R. For each point $a \in N$ there exists $U_{n\beta}(a) = U_{n\beta} \in \mathfrak{U}_n$ for some *n* such that $a \in U_{n\beta} \subset \overline{U}_{n\beta} \subset N$. From the nbd finiteness of \mathfrak{u}_n , $F_k = \sum_{n=k} \overline{U}_{n}(\overline{a})$ is closed. Since $N = \sum_{k=1}^{\infty} F_k$ is obvious, G is an F_g set, i.e. R is perfectly normal.

4. Now we shall show that R admits a countable uniformity, i.e. R is metrizable.

From the above result we can represent each $U_{n\beta}^c$ in the form $U_{n\beta}^c = \prod_{k=1}^{\infty} V_{n\beta}^{(k)}$, where $\{U_n\}(U_n = \{U_{n\beta} | \beta \in B\})$ is the open basis of R, and $V_{\nu 8}^{(k)}$ are open sets.

Let Δ be a finite subset of β : $\Delta = {\beta_1, ..., \beta_i}$. Then from the nbd finiteness of \mathfrak{U}_n , $N_{n\Delta}^{(k)} = \prod_{\beta \in \Delta} U_{n\beta} \cdot \prod_{\beta \notin \Delta} V_{n\beta}^{(k)}$ is obviously an open set.
Accordingly $\mathfrak{N}_n^{(k)} = \{N_{n\Delta}^{(k)} | \Delta$ running thru all finite subsetes of β is a nbd finite covering of R .

For let $a \in R$ be an arbitrary point of R and let $a \in U_{ns}$ ($\beta \in \Delta$), $a \notin U_{n\beta}(\beta \notin \Delta)$; then $a \in N_{n\Delta}^{(k)}$, i.e. $\Re_n^{(k)}$ covers R. The nbd finitess of $\mathfrak{N}_n^{(k)}$ is obvious.

Next let us show that for each open set N and each point $a \in N$ there exist $\mathfrak{N}_{n\Delta}^{(k)}$ such that $S(a, \mathfrak{N}_n^{(k)}) \subset N^{3}$.

Choose *n* such that for some β_0 $a \in U_{n\beta} \subset N$. Let $a \in U_{n\beta}$ ($\beta \in \Delta_0$), $a \notin U_{n\beta}$ ($\beta \notin \Delta_0$), and accordingly $\beta_0 \in \Delta_0$; then there exists k such that $a \notin V_{n\beta}^{(k)}$ for all $\beta_0 \in \Delta_0$. For these n_s k, let us consider $\mathfrak{R}_n^{(k)}$. If $a \in N_{n\Delta}^{(k)}$, then from $a \notin V_{n\beta}^{(k)}$ ($\beta \in \Delta_0$) it must be $\Delta_0 \subset \Delta$. Hence $N_{n\Delta}^{(k)} \subset U_{n\beta_0}$, i.e. $S(a, \mathfrak{N}_a^{(k)}) \subset U_{n_{\beta_0}} \subset N.$

As we saw in 2, for every $\mathfrak{N}_n^{(k)}$, there exist sequences of open coverings $\{\mathfrak{N}_{n,i}^{(k)} | i=1, 2, ...\}$ such that $\mathfrak{N}_{n,i+1}^{(k)\Delta} \subset \mathfrak{N}_{n,i}^{(k)}$. Therefore we can construct a countable uiformity containing $\{\mathfrak{R}_{n}^{(k)}|n, k=1, 2, 3, ...\}$. Since this unifomity agrees with the topology of R , R is metrizable.

Theorem 2. If a T-space R can be represented in the form $R=$ $\sum_{\alpha} S_{\alpha}$, where $\{S_{\alpha} | \alpha \in A\}$ is nbd finite and S_{α} are closed metrizable subspaces, then R is metrizable.

Proof. 1. We shall prove first that R is regular.

Let N be an arbitrary open set of R and let $a \in N$. Suppose that

³⁾ $S(a, \mathfrak{N}) = \sum_{a \in \mathbb{N} \in \mathfrak{N}} N$

 $a\in S_{\alpha i}$ (*i*=1...k), $a\notin S_{\alpha}$ ($\alpha+\alpha_i$); then from the nbd finiteness of { S_{α} }, $V(a) = \prod_{\alpha \neq a_i} S_a^c$ is an open nbd of a. From the regularity of S_{a_i} , there exists some open set $K_i(a)$ in S_{a_i} such that $a \in K_i(a) \subset \overline{K_i(a)} \subset N$.

Put $K_i(a) + S_i^2 = U_i(a)$. Then, since $U_i(a)$ are open, $U(a) = V(a) \cdot \prod_{i=1}^k$ $U_i(a)$ is an open nbd of a.

Since
$$
U(a) = \prod_{a \neq a} S_a^c \cdot \prod_{i=1}^k (K_i(a) + S_i^c) \leq \sum_{i=1}^k K_i(a),
$$

we have $U(a) \leq \sum_{n=1}^{k} \overline{K_n(a)} \leq N$. Hence R is regular.

2. Let us suppose that $\{\mathfrak{U}_n^{(a)'}|n=1, 2, ...\}$ is a countable open basis consisting of nbd finite coverings $\mathfrak{u}_{n}^{(a)} = \{U_{n,8}^{(a)} | \beta \in B\}$. We denote by $\{U_r | \gamma \in \Gamma\}$ an open covering of R such that \overline{U}_r meets a finite number of $U_{1,\beta}^{(a)'}(\alpha \in A, \beta \in B)$ only, and by \mathfrak{U}_a a nbd finite refinement of $\{U_i\}$. $S_{\alpha}|\gamma\in\Gamma\}$ in S_{α} . Considering $\mathfrak{U}_{2}^{(\alpha)} = \mathfrak{U}_{2}^{(\alpha)} \wedge \mathfrak{U}_{\alpha} = \{U_{2,\beta}^{(\alpha)} | \beta\in B\}$, we see that for each α , β , $\overline{U}_{2,\beta}^{(\alpha)}$ meets a finite number of $U_{1,\beta}^{(\alpha)'}$ ($\alpha \in A$, $B \in B$) only.

Assume that for a fixed *n* we get $\{U_{n\beta}^{(\alpha)} | \alpha \in A, \beta \in B\}$ such that for each α , β , $\overline{U}_{n\beta}^{(\alpha)}$ meets a finite number of $\overline{U}_{n-1,\beta}^{(\alpha)}$ only, and $\mathfrak{U}_n^{(\alpha)}$ $\{U_{n\beta}^{(a)}|\beta\}$ is a nbd finite open covering of S_n having the form $\mathfrak{U}_n^{(a)}$ = $\mathfrak{U}_n^{(\alpha)'} \wedge \mathfrak{U}_\alpha$; then for $n+1$ we get $\{U_{n+1,\beta}^{(\alpha)} | \alpha \in A, \beta \in B\}$ having the same property in the above manner. Thus we get sequence of coverings $\{U_{1,\beta}^{(a)}\}, \{U_{2,\beta}^{(a)}\}, \{U_{3,\beta}^{(a)}\}, \dots$ such that $\overline{U}_{n+1,\beta}^{(a)}$ meets a finite number $\overline{U}_{n8}^{(a)}$ only, and $\{\mathfrak{U}_{n}^{(a)} | n=1, 2, ...\}$ is an open basis of S_a consisting of nbd finite coverings $\mathfrak{U}_n^{(a)} = \{U_{n\beta}^{(a)} | \beta \in B\}.$

 $V^{\mathfrak{a}_0}_{n\mathfrak{b}_0} \!\! \cong \!\! (U^{\mathfrak{a}_0}_{n\mathfrak{b}_0} \!\! + S^{\mathfrak{a}}_{n_0}) \cdot \mathop{\mathrm{II}}\limits_{(\widetilde{U}^{\mathfrak{a}_1}_{n+1, \mathfrak{b})} \cap \widetilde{\cup}^{\mathfrak{a}_2}_{n_{\mathfrak{b}}}} \mathop{\mathrm{U}}\limits^{\mathfrak{a}_n}_{n+1, \mathfrak{b}'};$ 3. Put

then $V_{n,\beta}^{(\alpha)}$ is an open set of R from the nbd finiteness of $\{\overline{U}_{n+1,\beta}^{(\alpha)}\}$ and $V_{n\beta}^{(\alpha)} \cdot S_{\alpha} = U_{n\beta}^{(\alpha)}$.

Put
$$
W_{n\Delta} = \prod_{i=1}^{n} V_{n\beta(\alpha_i)}^{(\alpha_i)} \cdot \prod_{\alpha \neq \alpha_i} S_{\alpha}^e(\Delta = \{(\alpha_i/\beta(\alpha_i)) \mid i=1...k\}, \alpha_i \neq \alpha_j
$$

for $i+j$; then $\mathfrak{B}_n = \{W_{n\Delta} | \Delta \text{ running}$ thru all sets having the form of the above Δ } is obviously an open covering of R. Let us show that \mathfrak{W}_n is nbd finite.

Let $a \in R$ be an arbitrary point of R. If $a \in S_{a_i}$ (*i*=1...k) $a \notin S_a$ $(\alpha \neq \alpha_i)$ and $a \in U_{n+1, \beta(\alpha_i)}^{(\alpha_i)}(i=1...k)$; then

On a Necessary and Sufficient Condition of Metrizability

$$
a\in U(a)=\prod_{i=1}^k\, (U_{n+1,\beta(\alpha_i)}^{(\alpha_i)}+S_{\alpha_i}^c)\cdot \underset{\alpha+\alpha_i}{\Pi}\, S_a^c\subset \sum_{i=1}^k\, U_{n+1,\beta(\alpha_i)}^{(\alpha_i)}\ .
$$

Since $\overline{U}_{n+1,\beta(\alpha)}^{(a_i)}$ meets $V_{n\beta}^{(a)}$ only when $U_{n\beta}^{(a)}$. $\overline{U}_{n+1,\beta(\alpha)}^{(a_i)}$ $\neq \emptyset$, $\overline{U}_{n+1,\beta(\alpha)}^{(a_i)}$ meets a finite number of $V_{n\beta}^{(a)}$ for a fixed *n*. we denote by $V_{n\beta}^{(a_i)}(i=1...$ *l*) all $V_{n\beta}^{(\alpha)}$ which meets $U_{n+1,\beta(\alpha)}^{(\alpha)}$. Hence $W_{n\Delta} \cdot U_{n+1,\beta(\alpha)}^{(\alpha)} \neq \emptyset$ only when $\Delta \subset \{(\alpha^i, \beta(\alpha^i)) | i=1...l \},\$ i.e. $U_{n+1, \beta(\alpha_{i})}^{(\alpha_i)}$ meets a finite number of $W_{n\Delta}$ only. Therefore $\sum_{i=1}^{k} U_{n+1, \beta(\alpha_i)}^{(\alpha_i)}$ or $U(a)$ meets only a finite number of $W_{n\Delta}$, i.e. \mathfrak{B}_n is nbd finite.

4. Finally, we can show that \mathcal{R}_{∞} | $n=1, 2, ...$ } is an open basis of R. For assume that $a \in N$. N is an arbitrary open set of R and that $a \in S_{a_i}$ (i=1, ..., k), $a \notin S_a$ ($\alpha \neq \alpha_i$); $a \in U_{n \uparrow a_i}^{(a_i)} \subset N$. (i=1, ..., k). For $\Delta = \{(\alpha_i, \beta(\alpha_i)) | i = 1...k\}$, we get $a \in W_{n\Delta}$ and

$$
W_{n\Delta} = W_{n\Delta} \cdot \sum_{i=1}^{k} S_{a_i} \cdot \prod_{i=1}^{k} V_{n\beta(a_i)}^{(a_i)} \cdot \sum_{i=1}^{k} S_{a_i} = \sum_{i=1}^{k} (S_{a_i} \cdot \prod_{j=1}^{k} V_{n\beta(a_j)}^{(a_j)}) \cdot \sum_{i=1}^{k} S_{a_i} \cdot V_{n\beta(a_i)}^{(a_i)}
$$

=
$$
\sum_{i=1}^{k} U_{n\beta(a_i)}^{(a_i)} \cdot N, \text{ i.e. } \{\mathfrak{W}_n\} \text{ is an open basis of } R.
$$

Therefore from theorem $1 R$ is metrizable.

Theorem 3. In order that a fully normal space R is completely metrizable, it is necessary and sufficient that R is topologically complete and satisfies the α -countability axiom.

Proof. Since the necessity of the condition is obvious, we shall prove only the sufficiency.

Let R be a fully normal and topologically complete space satisfying the α -countability axiom. Since R is topologically complete, from N. A. Shanin's theorem⁴⁾ there exists a countable collection $\{\mathfrak{U}_{n} | n=1, 2, ...\}$ of open coverings \mathfrak{U}_{n} , which has the following property: If a maximum filter $\mathfrak{F} = \{F_a\}$ of closed sets F_a has no convergent then point, for the open covering $\mathcal{B} = \{F_a^c\}$, there exists some element $\mathcal{U}_a = \{U_a\}$ of $\{\mathfrak{O}_n\}$ such that for every β and some α , $\overline{U}_s \subset F^{\circ}_{\alpha}$.

Since R is fully normal, each \mathfrak{u}_n has a nbd refinement, which we denote by \mathfrak{u}_n' .

Denote by $\{\mathfrak{B}_n\}$ the countable collection of nbd finite open coverings satisfying the condition of α -countability. Then $\mathfrak{B}_n = \mathfrak{U}'_n \wedge \mathfrak{B}_n$ are nbd finite and $\{\mathfrak{W}_n\}$ satisfies the condition of α -countability as well

⁴⁾ N. A. Shanin, On the Theory of Bicompact Extension of Topological Spaces, C. R. URSS, 38 (1943) No. 5-6.

as the above mentioned condition satisfied by $\{ll_a\}$.

Let N be an open set of R. Then we can show that for an arbitrary point a of N there exist some \mathfrak{W}_{n_i} and some W_{n_i} (*i*=1...*k*) such that $a \in \prod_{i=1}^k W_{n_i} \subset N$, $W_{n_i} \in \mathfrak{W}_{n_i}$.

To show this, assume the contrary. If we denote by $W_1, W_2, ...$ all the elements of some \mathfrak{B}_n which contain a, then since the condition of α -countability is satisfied by $\{\mathfrak{W}_n\}, \{\mathcal{G}^c \cdot \overline{W}_n | n=1, 2, ...\}$ is a closed filter having no cluster point. We denote by $\hat{\mathcal{Q}} = \{H_{\hat{d}} | A\}$ a maximum closed filter containing $\{G^c \cdot \overline{W}_n\}$ and by \mathfrak{D}' the open covering $\{H^c_n | A\}$. Since $\hat{\varphi}$ has no convergent point, there exists an element $\mathfrak{B}_{n} = \{W_{nn}\}\$ B} of $\{\mathfrak{W}_n\}$ such that for every elements $W_{n\beta}$ of \mathfrak{W}_n and some $H_{\alpha}\overline{W}_{n\beta}$ $\langle H_a^c \in \mathfrak{D}'$ holds. Let $a \in W_m \in \mathfrak{W}_n$, $\overline{W}_m \langle H_a^c \in \mathfrak{D}'$; then \overline{W}_m , $H_a \in \mathfrak{D}'$ and $\overline{W}_m \cdot H_2 = \phi$ hold, which is a contradiction. Thus we have shown the existence of W_{n_i} such that $a \in \prod_{i=1}^{k} W_{n_i} \subset N$.

From $\mathfrak{B}_n = \{W_{n_k} | B\}$ we construct nbd open coverings $\mathfrak{B}(n_1...n_k)$ $=\bigwedge_{i=1}^k \mathfrak{W}_{n_i}$. The enumerable collection $\{\mathfrak{W}(n_1...n_k)|i=1, 2, ...\; ;\; n_i=1, 2, ...\}$...} satisfies the condition of α -countability; hence R is metrizable by theorem 1. Since R is topologically complete, by Cech's theorem ⁵⁾ R is completely metrizable.

Remark. When R is regular, β -countability axiom contains α countability axiom, but α -countability axiom does not contain the lst countability axiom. The direct product of an enumerable infinite number of unit intervals $[0, 1]$ satisfies the α -countacility axiom but it does not the 1st countability axiom, when its topology is the strong topology. This fact shows that theorem 3 is essentially different from theorem 1.

Corollary 1. Let a topological space R be the sum of S_a : $R = \sum_{a \in A} S_a$, where $\{S_a | \alpha \in A\}$ is nbd finite in R, and S_a are fully normal closed subspaces being at most of cardinal number $\pi: |S_{\alpha}| \leq \pi$. Then in order that R admits some complete uniformity being at most of cardinal uumber n , it is necessary and sufficient that R can be a meet of at most n number of open sets in some bicompact T_z -space.

Proof. Since theorem 1, 2, 3 holds obviously about uniformity of

⁵⁾ E. Čech. On Bicompact Spaces, Anns. of Math. 38 (1939).

at most power u, too, the validity of this corollary is almost obvious from theorems 1, 2, 3, the property of cardinal number, $u^2 = u$ and the extension of Cech's theorem by the author⁶⁾.

Corollary 2. In order that a regular space R is metrizable, it is necessary and sufficient that there exists a coollection ${f_a | a \in A}$ of continuous functions f_{n} such that

$$
f=\sup \sum_{i=1}^k f_{a_i}
$$
 is a continuous function,

$$
0 \le f_a(x) \le 1 \text{ for all } \alpha,
$$

and for any open set N and any point $a \in N$, there exists an element f_a of ${f_a}$:

$$
f_a(a) > 0,
$$

$$
f_a(x) = 0 \quad (x \in N^c)
$$

Proof. Necessity: We denote by $\mathfrak{U}_n = \{U_{n_a} | a \in A_n\}$ a nbd finite refinement of $\mathfrak{S}_n = \{ \{x \mid \rho(ax) > 1/2^{\alpha} \} \mid a \in R \}$, where we denote by ρ the metric of R. Since the non-negative function $\rho_{n_a}(x) = \rho(x, U_{na}^c)$ is continuous, $f_{na}(x) = \frac{1}{2^n} \cdot \frac{\rho_{na}(x)}{\sum\limits_{x \in U_{na}} \rho_{na}(x)}$ is a continuos function such that

function $0 \leq f_{n_{\alpha}}(x) \leq 1/2^{\alpha}$. Obviously $\sup_{t=1}^{k} f_{n_t \alpha_t} = 1$, and for any open set N and any point $a \in N$, $f_{u_a}(a) > 0$, $f_{u_a}(x) = 0$ $(x \in N^c)$ for U_{u_a} such that $a \in U_{n} \subset N$. Hence $\{f_{n} | n=1, 2, ..., \alpha \in A_n\}$ is the collection of continuous functions in the condition of this corollary.

Sufficiency: Let R be a regular space having such a family $\{f_n\}$ $\alpha \in A$ of continuous functions. Let us show the nbd finiteness of the open covering $\mathfrak{U}_n = \{U_{n_a} | a \in A\}$, where $U_{n_a} = \{x | f_a(x) > 1/2^n\}$.

Let a be an arbitrary point of R. Then, assume that $f_{\alpha_1}(a) + ...$ $+f_{a_k}(a)$ / $f(a)$ -1/2ⁿ⁺². We denote by $U(a)$ an open nbd of a such that $x \in U(a)$ implies $f(x) \le f(a) + 1/2^{n+1}$ and by $U_i(a)$ nbds of a such that $x \in U_i(a)$ implies $f_{a_i}(x) > f_{a_i}(a) - 1/k \cdot 2^{n+2}$. Then the nbd $V(a) = U(a)$. $\prod_{i=1}^k U_i(a)$ is disjoint from U_{n_α} , but U_{n_α} (i=1...k). For, if there would be a point $b \in V(a) \cdot U_{na}(\alpha \alpha \neq 0)$, then it would be $f(b) \leq f(a) + 1/2^{n+1}$ and $f(b) \geq \sum_{i=1}^{k} f_{a_i}(b) + f_a(b) > \sum_{i=1}^{k} f_{a_i}(a) - 1/2^{n+2} + 1/2^{n} > f(a) - 1/2^{n+1} + 1/2^{n} = f(a)$ $+1/2^{i+1}$ hold at the same time, which is a contradiction. Hench \mathfrak{u}_n is nbd

⁶⁾ On Topological Completeness, Sugaku, 2 (1949), in Japanes. The content of this paper is unpublished in foreign language.

finite.

Since $\{\mathfrak{U}_n | n=1, 2, ...\}$ is obviously an open basis of R, R satisfies the β -countability axiom. Therefore R is metrizable from theorm 1.

(Received July 24, 1950)