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1. Let D be a bounded domain in the 3-dimensional euclidean 

space, B its boundary, f a real continuous function defined on B and 

P a continuous extension of f onto D. Let p(M) denote the distance 

from a point M of D to B and consider a continuous function 1·(M) 

defined in D satisfying: O<r(M)<p(M), ME D. 

... ' 
Given a sequence of positive numbet s :\,. such that 1 ?:.:\1 ~:\2 .::> 
we put À 111'(M)=1·,(M) and 

Let now 

(1) 

=:=A~)(U,_ 1)=A~' 1J(P) 

(n=1, 2, ... , D0=P). 

If :\;=1(i=1, 2, ... ) and p(M)=r(M) in D, the sequence of U,(M) 

converges to the generalized solution n:Cf) of the Dirichlet Problem 
for D corresponding to the boundary distribution f D. But if :\c40 

very fast, it may be possible that U,(M) does not converge to H~(f). 

A question then arises naturally: Under what condition the sequen

ce of U,(M) converges to H~(.f) for any f on B? 

This question bas been solvecl in my preceding paper (N) 2l. The 

answer is as follows. 
Theorem 1. In order that the sequence of U"(M) defined by (1) 

converge to H~(f) in D !01· any !, it is necessa1·y and sufficient that 

the series ~ :\! should be divergent. If ~ :\: dive1·ges, the convergence 

1) F. W. Perkins, Sur la résolution du problème de Dirichlet par des médialions 
réit~rées, C. R. Paris, t. 184 (1927). 

2) M. lnoue, Sur la méthode des médiations réitérées dans le problème de Dirichlet, 
Memoirs of the Fac. of Sei., Kyüsyü Univ., V. 5, No. 1 (1950). 
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of U, is uniform over any closed subset of D. 

The proof of this theorem is based upon the following fact: 

Let V b~ the bounded function (univocally determined) satisfying 
~ V=-1 in D and vanishing Ot;J. B, except at points of a set of capa

city zero. Then 

(2') Ar"' n(V) ---+0 ,,[ u 

provided -~ ;\,~ is divergent, where-: means the uniform convergence 
over any closed subset of D. Using this notation we can state the 

00 2 
Theorem 1 as follows: If 2] :;\1 diverges, 

(3) 

for any continuous function f on B. 

Remark. Given a function W in D and a function g on B. If 

W(P)-g(Q) as P---+Q, P E D, Q E B, we shall say that W takes g at Q 

and write W(Q)=g(Q). If W takes f on B, excèpt at points of a 

set of capacity zero, we shall say that W takes f almost everywhere 

on B. 
2. Let rp be a bounded continuous function in D. Then there exists 

one and only one function U bounded and continuous in D, such that 

U takes f almost everywhere on B and satisfies 

~ U(M)=l}r;J }~[A:,;'\U)-U(M) ]=rp(M) 

for every M of D, where 

A~~)(U)= 4}ha J J J U(P)dcvl'" 
~iTP-z.a 

As is weil known, 

(4) U(M)=H~ Cf)- 4: J ~ ~ G(P, M)rp(P)dcor, 
D 

where G(P, M) is Green's function for D with pole at M. If rp satis
fies the Holder's condition at M, ~U=rp holds at M. Renee if rp has 

continuous partial derivatives of the first orcler in D, ~U=~V=<p 
holds everywhere in D. 

We now define the sequence of functions U,(M) by 

(5) 1"'11) • 1 2 
U,(M) = A"'1 (Un_ 1)- ÏÔ cp(M)1·,(1vl) 

(n=1, 2, ... , V 0=Ji'). 
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Then Un(M) is written in the form 

say. 
The main theorem obtained in (N) is stated as follows. 

'l'heorem 2. If the se1·ies iJ :\~ is dive1·gent and :\,-0, the sequen

ce of Un defined by (5) converges uniformly over any closed subset of 

D to the function U f01· any f on B. 

Hence if this condition is satisfied, we see from (3) and (4) that 

(6) s:(<p)--;: 4: .\' j ~ G(P, M) <p(P)dwp. 
D 

The purpose of this paper is to establish an analogous theorem 

for a more general equation ~U=cU +<p (or ~U=cU +<p). 

Recall here a lemma proved in (N) of which we shall make use 

la ter. 
Lemma 1. If U is regula1· a) in D, it holds 

1 A~)(U)-U(M) 1 <-~~ ~.::1 ~U(P) 1, h<p(M). 

3. Let c( cO) and cp b~ bounded continuous functions in D and 

suppose that there exists a bounded regular function U in D, satisfy. 

ing the following conditions: 

a) U takes f almost everywhere on B; 

b) D..U=cU +<p in D. 

For example, if c and qJ have continuous partial derivatives of the 
first order in D, such a function exists 4 \ 

Th en 

- . 10 [ (tt) J ~U(M)= ~.l~h2 AAr (U)-U(M) 

=~U(M)=c(M)U(M) + cp(M), ME D. 

3) vVe say that U is regular, if U bas continuons partial derivatives of the second order. 
4) W. Flischel, Die erste Randwertaufgabe der allgemeinen se!bstadjungierte elliptis

chen Differentialgleichung zweiter Ordnung in Raum fiir beliebige Gebiete, Math. Zeit. 34 
(1932). 

G. Tautz, Reguliire Randpunkte beim verallgemeinerten Dirichletschen Problems, 
Math. Zeit. 39 (1935). 
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Renee putting 

10 [ (lt) l fi?: A, (U)-U(M) =c(M)U(M)+rp(M)+a(M, h), 

we see that a(M, h)--+0 as h--+0 for every M of D. Further by virtue 

of Lemma 1, 

1 a(M, h) 1 ::;3l.u.b.l c{P)U(P) + rp(P) 1· 
l'EV 

Therefore a(M, h) is bounded and continuous in (M, h). 

Now U(M) may be written in the form 

10 C"l rp(M)h 2 a(M, h)h 2 

U(M) 10+c(M)h2A.v (U)-10+c(M)h 2 -10+c(M)h2' 

Applying this relation in succession for h=1·,, 1',.-u ... , 1\, we have 

U ) A[n. 1) u ) n ( ) s" (7) (M = ,11 ( , c -SM rp, c - "'' (a, c), 

where 

A~;\u, c) __ 1_0--: Ar"'(U) 
2 M ' 

10+c(M)1'n(M) 

A r,, "''(U )=Ac"''(A'"- 1"'( (Ar"'J(U ) ) ) ) M , C - JI , ., , C , C , .. C , C 

and 

,n _a(M, 1'n)1'~(M) n-l en, tH ( a(P, 1'1)1'~ ) 
SM (n:, c)= 2 + ~ A,ll - 2 , c . 

10+c(M)r11 (M) t~l 10+c(P)1';(P) 

Suppose that ~ :\~ is divergent and :\1-0. Since c :-~0, 

1 S~(a, c) 1-s;I,.(M) +Jn(M), 

where 

and 

Jn(M)=l0LA~·"'(\a(P, 1'•-1)\1·:_.) + ... +A:;· 2)(1a(P, r1)11'~)], 
s being an integer such that n>s>l. 

It is readily seen by Theorem 1 that Jn(M)-;o as n-oo. Putting 

ô=Maxr(M) and Maxla(M, h)l=a.(M), 
olfED lt~i<8 i) 

a. becomes a bounded continuous function in D. So referring to (6), 

we have 
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--;: u.(M)=--i·;; f ~, f G(P, M) a,(P) d(J)p, 
/) 

But a,.?:an+Jn>s) and a,.-o as n-oo. Renee a .. (M)Ï:O in D. The

refore u, --;:o as s-DO. Thereby it follows that 

s:ca, c) -:o. 
We thus obtain from (7), 

(8) A c,.. 1J U ) ,, ( -u 
M ( , c -S,u cp, c) u (M). 

4. Let now the function Un(M) be defined by 
2 

U (M)=Ar")(U c)- cp(M)r"(M) 
n M n-11 2 

lO+c(M)rn (M) 

(9) 

(n=l, 2, ... , U0=F). 

Then Un(M) may be written 

Un(M)=A~;· 1) (F, c)-S~~(9'J, c). 

Our purpose is to prove that un-;:u. To prove this, it obviously 

suffices to show that A:;· n(F- U, c)-,: O. To this end we will consider 

a sequence of functions A:· ll(w, c), w(M) being a bounded continuous 

function defined in D, vanishing almost everywhere on B. Put w(Q) 

= lim. sup. w(P), Q being a boundary point of D. Then the set Ee 
P-'>Q 

of all boundary points Q at which ~(Q) ;;?-é for an arbitrary positive 

constant é, is closed and of capacity zero. Covering Ee by a finite 
numb~r of regular surfaces S21 we denote by vJM) the conductor 

potential of the fi~ite body (not necessarily connected) boundèd by S" 

Since E'- is of capacity zero, we can find S'- such that O<v.(M)<é on 
a given closed subset R of D. Suppose that 1 oJ 1 ~K in D. Then, for 

a suitable positive constant L'-, 

w(M)<LeV(M)+KvJM)+é, ME D. 

From this it follows that 

'"' lJ( ) L A(n· l)(V ) x· ACn• lJ ) AM w, c < e M , c + .M (V0 c +é. 

On account of the superharmonicity of v,, 

A Cn• lJ ( ) ...-ACn• 1J( ) ...- (M)< 
M v., C '- .M Ve :::::::Ve é on R. 

On the other band, by virtue of (2), 

Therefore 
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A{n• IJ( / 2) R 
.11 w, c)~(K+ é ·on_ , 

for all sufficiently large n. A similar reasoning gives 

-A;;· 1 (w, c)<CK +2)é on R, 

for ail sufficiently large n. Consequently, since é is arbitrary, 

Acn. 1)( ) - 0 M W, C U • 

Observing this fact we know that 

A;;· 13(F-U, c) -;:q, 
and so 

10 U . _ Ac ... 1J ri' " ( ) -U(M) ·5 ( ) ,(M)- 11 ( .. , c)-S"u cp, c u • 

Thus we obtain 
Theorem 3. Let c(;?O) and cp be bounded continuous functions in D. 

If there exists a bounded regular function U (univocally determined if 

it exists) taking f almost evm·ywhere on B and satisfying llU=cU +cp 

in D, and if the se1·ies 'iJ À: is dive1·gent and Àt-0, then the sequence 

of U,. defined by (9) converges uniformly to U over any closed subset of 

D for any f. 
In the way we can state the following uniqueness theorem : 
Theorem 4. Let c(::-:0) be a bounded continuous function in D. If 

a bounded 1·egula1' function U vani.~he.<~ almost eve1·ywhe1·e on B antl 

satisjies llU=cU in D, U must be identically ze1·o. 

5. Now we return to the general case where c( ,?0) and cp are 

quite .arbitrary bounded and continuous functions. Then the existence 

of U which satisfies a) and b) is not necessarily admitted. 

The function U" defined by (9) is the sum of A~;· l)(F, c)'and -s::r 
((p, c). First we are concerned with A~;· 0 (F, c). We can always find 

two bounded functions Qn,(?O) and cm(~O) having continuous partial 
derivatives of the first order, such that 

c- ml sc,.::;::,c<c,.<c+ 1 . - m 

Suppose r~o. Then clearly 

(11) Al ~tt 1 I(J;' ) 1 '/l' 1 • -- A' 'JI,t li( Ll ) 
N ' c, 0':A.lr (l', c)~ JI 1"' c, . 

Also by Theorem 3, 

5) This shows that V is univocally determined if it exists, 
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(12) rn. l~ -w AN (F, g,) u _,.(M) as n-4oo, 

(13) A:;· 1)(F, cm) --:w ,.(M) as n-oo, 

where W,. is bounded, takes f almost everywher~ on B and satisfies 

~ !f,,.=~,.W m in D ; Wm is bounded, takes f almost everywhere on B 

and satisfies ~W--,.=cmW m in D. 

Here we prove the following lemma : 

I~emma 2. The1·e is a po.'litive constant dependent onl?J on c (inde

pendent of m a,nd M), such that 

(14) IWm(M)-Wm(M)I<Cfm in D. 

In fact, 

~cw,,- Wm)=~ ... (J:f-'n.-lf,.) +1,vv,., 
where 11=c,,-c,. and 1 1JI·..;;,2jm, lVm-W,. (bounded) vanishes almost 

everywhere on B. Therefrore 

W,,(M)- W m(M) = lim S~,(?JJV,., ç,) 
'N-~00 

for every M of D. · However W m(M) is bounded with respect to M and 

m; so that, for a suitable positive constant K, IWm(M)I<K holds 

for all M and for all positive integers m. Renee 

1 Jf,,(M)-W m(M) 1 < -2K lim s';, (1)= ~- K"V(M). 
m n->00 m 

We thereby find a positive constaut C desired in (14). 

On account of (11), (12), (13) and Lemma 2, we conclude that W,. 

and w,, converge uniformly as rrL-400 towards a same continuous funct-

ion, say A:,;·(F, c), and so Ar,;· u (Ji', c)--;: A:;'w, c). 

It now remains to find the properties of the fonction A:,;-(F, c) 

th us obta:nied. By Lem ma 1, 

1?1[ A·::'CWm)- Wm(M)]-[ AJ;·· CWm+P)- Wm+P(M) ]/ 

~ 2 Max)cm(P)Wm(P)-c,n+ 1,(P)fV,,.+P(P)I 
)rP~h 

(m, p=1, 2, ...... ). 

Making p-4oo, next h-0 and finally m-oo, we obtain 
_. ""oo) (oo) 

À A.u (F, c) = c(M:)Aflt (F, c). 

On the other hand, it is readily seen that A:;'3 (F, c) takes f almost 

everywhere on B. 

~hen Fis not >0, we shall put F=F+-(-F)+, where Max(P, 0) 
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=F+. The above results hold for each F+ and (-J')+, bence certainly 

for P. 
Next consider s:(cp, c). Suppose tp~O. TalŒ Qm, ëm as before and 

p,.(:>O), ;p,.(?O), bounded functions having continuous partial derivati

ves of the first order, such that 

1 . - <-·- 1 rp- ---- ;;;;;rpm ~~-CfJ~(Pm + ----
m 1n 

in D. 

Then, for any m and n, 

(15) 

Also by Theorern 3, 

(16) 

(17) 

S~,((jjm, ~m)-;: <i)m(M) as n-co, 

s;,(rp,., cm)-;/' <t>,.(M) as n-co, 

where <Pm=O alrnost everywhere on B and il <Pm=Qm<P.,,. + ;p,, in D; <t>,. 

=0 alrnost everywhere on B and .<:l~,.=c;..~,. +~m in D. Proceeding 

as before we can find a positive constant C independent of M and m, 
such that 

(18) /~,.(M)-<i),.(M)/<Cfm in D. 

On account of (15), (16), (17) and (18), we conclude that <r>,n and 

~,. converge uniforrnly as m-= towarcls a sarne continuous function, 
say s:((p, c), and so 

n _.... co 

S_"(rp, c) u 8 3, (rp, c). 

Furtherrnore with the help of Lernrna 1, 

.i s:(rp, c)=c(M)S;,(rp, c)-cp(M) 

for every M of D. It is easily ·seen that S';((p, c) vanishes almost 

everywhere on B. 

When rp is not ;?:0, we can proceed as for F and prove that the 
above results holcl in this general case. 

Putting 

A Coo) oo 

;~r (F, c)-S,Il(tp, c)=U(M), 

U(M) is bounded continuous and satisfies the following conditions: 

a) U takes f alrnost everywhere on B ; 

b') .Î U=cU +tp in D. 

Thus we obtain 
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Theorem 5. If cC~O) and cp a1·e bounclecl continuous functions in 

D, and if the series iS :\~ is dive1·gent and Àt-+0, then the sequence of 

Un definecl by (9) CO?We1•ges uniforrnly OVe?" ftnJ] closed sub~ct of D 

towa1·ds a bouncled and continuous function U taking f alrnost eve?'Y

whe?'e on B and satisfuing 

Li U=cU+<p in D. 

If c and 'P have continuous partial cle1·ivatives of the fi1·st O?"de?·, J..U= 

cU+ 'P holds eve?'JJWhen in D. 

Remark. The above reasonings and results are valid in the case 

where one takes the peripheral mean 

L~'\F)= 4;h2 ~ ~ F(P) dryp 
.1/P.h 

ïnstead of the spatial mean A:::\F). Here it is necessary to take the 

coefficient 6 instead of 10 in (5), (9), etc. 
The whole results are valid similary in the plane as in the space 

for the circumferential mean or areal mean, where the coefficieht 
must be taken 4 or 8 respectively. 

(Received July 24, 1950) 


