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On the Resolution of AU=cU+¢
by the Ileration of Averaging Process

By Masao INOUE

1. Let D be a bounded domain in the 3-dimensional euclidean
space, B its boundary, f a real continuous function defined on B and
F a continuous extension of f onto D. Let p(M) denote the distance
from a point M of D to B and consider a continuous function #»(M)
defined in D satisfying: 0<r(M)<p(M), M € D.

Given a sequence of positive numbers A, such that 1>\, >\, >
..., we put A, (M)=r, (M) and
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U(M)y= — 3 _ {“ F(P)lo,=AY(F).
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=AU, )=A4,""(F)
(n=1, 2, ..., U,=F).

If a,=1(i=1, 2, ...) and p(M)=r(M) in D, the sequence of U,(M)
converges to the generalized solution H,(f) of the Dirichlet Problem
for D corresponding to the boundary distribution f». But if \,—0
very fast, it may be possible that U,M) does not converge to H,(f).
A question then arises naturally: Under what condition the sequen-
ce of U, (M) converges to H,(f) for any f on B?

This question has been solved in my preceding paper (N)?®. The
answer is as follows.

Theorem 1. In order that the sequence of U,(M) defined by (1)
converge to Hu(f) in D for any f, it is necessary and sufficient that

the series ixi should be divergent. If f}xf diverges, the convergence

1) F. W. Perkins, Sur la résolution du probleme de Dirichlet par des médiations
réitérées, C. R. Paris, t. 184 (1927).

2) M. Inoue, Sur la méthode des médiations réitérées dans le probléme de Dirichlet,
Memoirs of the Fac. of Sci., Kytsyd Univ., V. 5, No. 1 (1950).
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of U, is uniform over any closed subset of D.

The proof of this theorem is based upon the following fact:
Let V b2 the bounded function (univocally determined) satisfying
AV=—1 in D and vanishing on B, except at points of a set of capa-

city zero. Then

@ AP0
provided S1* is divergent, where % means the uniform convergence
over any closed subset of D. Using this notation we can state the
Theorem 1 as follows: If S1A} diverges,

3 Ay (R H ()
for any continuous function f on B.

Remark. Given a function W in D and a function g on B. If
W(P)—g(Q) as P—Q, PecD, Q€ B, we shall say that W takes g at @
and write W(Q)=g¢g(Q). If W takes f on B, except at points of a

set of capacity zero, we shall say that W takes f almost everywhere
on B.

2. Let ¢ be a bounded continuous function in IJ. Then there exists
one and only one function U bounded and continuous in D, such that
U takes f almost everywhere on B and satisfies

A U(M)=1im 19 [A‘,Z"(U)—U(M)]=¢(M)
n>0
for every M of D, where :

AP )=, § | o,

P<

As is well known,

@) UM =H, (f)— Zl' ( S S G(P, M)p(P)do,,

T

where G(P, M) is Green’s function for D with pole at M. If ¢ satis-
fies the Holder’s condition at M, AU=¢ holds at M. Hence if ¢ has
continuous partial derivatives of the first order in D, AU=AU=¢
holds everywhere in D.
We now define the sequence of functions U, (M) by

1 2,00

1 p(M)ra(M)

(n=1, 2, ..., U=F).

(5) LU =AY (U, )—
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Then U,(M) is written in the form

UM = A5 )~ S GO0 + A7 ori) + 47 " pr)
o+ Al 2)(907‘?)]

= A ()= Si(e),
say.

The main theorem obtained in (N) is stated as follows.

Theorem 2. If the series i‘,x? is divergent and A—0, the sequen-
ce of U, defined by (5) converges uniformly over any closed subset of
D to the function U for any f on B.

Hence if this condition is satisfied, we see from (3) and (4) that

©) sinw - || |6, 10 ePuo,.

D

The purpose of this paper is to establish an analogous theorem
for a more general equation AU=cU+gp (or AU=cU + ).

Recall here a lemma proved in (N) of which we shall make use
later.

Lemma 1. If U is regular® in D, it holds

AW -V <5 Max| AUP) |, h<p(aD).

3. Let ¢( :0) and ¢ b2 bounded continuous functions in D and
suppose that there exists a bounded regular {function U in D, satisfy-
ing the following conditions:

a) U takes f almost everywhere on B ;

b) AU=cU+¢p in D.
For example, if ¢ and o have continuous partial derivatives of the
first order in D, such a function exists*.

Then

AUD=tim V[ 47 @)~ V0D)]

= AUM)=c(M)UM) + (M), M € D.

3) We say that U is regular, if U has continuous partial derivatives of the second order.
4) W. Fiischel, Die erste Randwertaufgabe der allgemeinen selbstadjungierte elliptis-
chen Differentialg'eichung zweiter Ordnung in Raum fiir beliebige Gebiete, Math. Zeit. 34
(1932).
Q

G. Tautz, Regulire Randpunkte beim verallgemeinerten Dirichletschen Problems,
Math. Zeit. 39 (1935).
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Hence putting
[A"”(U) ~U(M) |=c(MUM) + (M) + (M, k),

we see that «(M, h)—0 as A—0 for every M of D. Further by virtue
of Lemma 1,
|a(M, B)| =3 1.ub.[e(P)UP)+p(P)].
"ED
Therefore a(M, k) is bounded and continuous in (M, k).
Now U(M) may be written in the form

0w oDR:  a(M, Bk
UM =15t eanrmz™ )~ 10+ (k2 ™10 + o>

Applying this relation in succession for k=r,, 7,4, ..., 7}, We have

(7 UM)=A5""(U, ¢)—Su(p, ¢)—Sh (a, ¢),
where
AZ“ U: O)E“_—l(')‘—‘ i s
( 10+ e(M)ra(M) A (O)

AT, =T AT AT, 0, 0), )

and

S’;l (CY, C)—a(M 7 )? (M) & 'IAZ”’i”(__a(P, "'07'; C).

10+ c(M)r, ,,(M) =1 10+c(P)ri(P)

Suppose that 27&3 is divergent and »,—0. Since ¢ -0,
|Su(e, o) <I,(M)+J (M),

where I.,,<M>=1%[la<M, PP+ AT (| aP, 7,07 )

m, s+13

+Au " (aP, r)|r) |
and

TD= 10| A" (P, 7o) |7) +ot AT (@ )],
s being an integer such that » >s>>1.

It is readily seen by Theorem 1 that J,(M) %0 as n—co. Putting
6= Maxr(M) and Max|a(M, h)|=a,(M),
MED "’S)‘SB
@, becomes a bounded continuous function in D. So referring to (6),

we have

LoD < [a,(M)fr%(M) + A )+ + AT (@)
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e us(M):Z%; j f j G(P, M) a,(P) do,.

But a,>a,.,(n=5) and a,—0 as n—co. Hence a,(M)%0 in D. The-
refore u, »0 as s—oo. Thereby it follows that
Sh(a, €)% 0.
We thus obtain from (7),

8 A VU, 6)—Su(p, ¢) W UDM).
4. Let now the function U,(M) be defined by
2
©) U (My=A2U, ., ¢)— L0
10+ c(M)r, (M)
(=1, 2, ..., U=

Then U,(M) may be written
UM=AY"" (F, ¢)—=Si(p, o).

Our purpose is to prove that U, zU. To prove this, it obviously
suffices to show that A% “(F—U, ¢)% 0. To this end we will consider
a sequence of functions A’ D((o, ¢), (M) being a bounded continuous
function defined in D, vanishing almost everywhere on B. Put «(Q)
=lim1; 3up. o(P), @ being a boundary point of D. Then the set .,
of all +boundary points @ at which (Q)>& for an arbitrary positive
constant &, is closed and of capacity zero. Covering E, by a finite
numbar of regular surfaces S,, we denote by v.(M) the conductor
potential of the finite body (not necessarily connected) bounded by S..
Since E. is of capacity zero, we can find S, such that 0<7v(M)< & on
a given closed subset B of D. Suppose that |e|<K in D. Then, for
a suitable positive constant L.,

o(M)<L.V(M)+Kv (M) +& MeD.
From this it follows that

AV Yo, )<LAY V(V, )+ KAy V(v., ¢)+é.
On account of the superharmonicity of v,
AT Y (w, 0)<AY Pw)<v(M)<& on R.
On the other hand, by virtue of (2),

AV R, o< Ay P 0.
Therefore
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Ay P, <(K+2)8 "on R,
for all sufficiently large ». A similar reasoning gives

— A Y@, )< (K+2)& on R,
for all sufficiently large n. Consequently, since & is arbitrary,

AT Y, ¢) 0.

Observing this fact we know that

AL FE-U, W0,
and so

(10) UM)= A7 " (F, &)—=Sh(p, ©) « UM

Thus we obtain

Theorem 3. Let ¢(>0) and ¢ be bounded continuous functions in D.
If there exists ¢ bounded regular function U (univocally determined if
it exists) taking f almost everywhere on B and satisfying AU=cU+ ¢
in D, and if the series f}xf is divergent and A, —0, then the sequence
of U, defined by (9) converges uniformly to U over any closed subset of
D for any f.

In the way we can state the following uniqueness theorem :

Theorem 4. Let ¢(0) be a bounded continuous function in D. If
o bounded regular function U vanishes almost everywhere on B and
satisfies AU=cU in D, U must be identically zero.

5. Now we return to the general case where c¢(>>0) and ¢ are
quite .arbitrary bounded and continuous functions. Then the existence
of U which satisfies @) and b) is not necessarily admitted.

The function U, defined by (9) is the sum of A5 “(F, ¢)'and —S
(@, ¢). First we are concerned with A} "(F, ¢). We can always find
two bounded functions ¢,(=>0) and ¢,(>>0) having continuous partial
derivatives of the first order, such that

C— — ;;cn3>;0§“6113 gc + :“1”.
m - m
Suppose F>0. Then clearly
(11 AW, ) =AY, 0= AL (e,

Also by Theorem 3,

5) This shows that U is univocally determined if it exists.
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(1z) . AV VF, e) W Wo(M) as n—co,

(13) AV, C,) % Wa(M) as n—co,
where. W,, is bounded, takes f almost everywhere on B and satisfies
AW,=¢, W, in D; W, is bounded, takes f almost everywhere on B
and satisfies AW,,—=¢,W.. in D.

Here we prove the following lemma:

Lemma 2. There is a positive constant dependent only on ¢ (inde-
pendent of m and M), such that

(14) |WulM)—TW, (M) |<C/m i D,

In fact,

A(Wm“ Em):gm(Wm“‘ H_/,m) + 7)Wm’

where 5=¢,,—¢, and |y|<2/m, W,—W, (bounded) vanishes almost
everywhere on B. Therefore

Wm(M)‘— Wm(M) = Inirg Sﬁi ("I—Ivm) Qm)

for every M of D. However W,(M) is bounded with respect to M and
m; so that, for a suitable positive constant K, |W.(M)|< K holds
for all M and for all positive integers m. Hence

WMD) — 7)< 2K 1im 8%, ()= 2 KV
m nsoe m
We thereby find a positive constaut C desired in (14).
On account of (11), (12), (13) and Lemma 2, we conclude that ,,

and W, converge uniformly as m-—>oo towards a same continuous funct-

s 1)

ion, say Ay (F, ¢), and so Ay "(F, ¢) W Ax (F, ¢).
Tt now remains to find the properties of the function A, (F, ¢)
thus obtanied. By Lemma 1,
W4k ar —waon | <[4l W -wnon|

< 2 Max | 6,(P)Wu(P)—Cus o(PYW 1 »(P)]|

MP<h
(m, p=1, 2, ...... ).
Making p—oe, next 2—0 and finally m—co, we obtain

A AR, ¢) = c(DAT(F, c).

(o0

On the other hand, it is readily seen that A, (F, ¢) takes f almost
everywhere on B.
When F' is not =0, we shall put F'=F*—(—F)*, where Max (¥, 0)
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=F+*. The above results hold for each F'* and (—F")*, hence certainly

for F.

Next consider Sy(p, ¢). Suppose =0. Take ¢, ¢» as before and
Pn( =0), pn(=0), bounded functions having continuous partial derivati-
ves of the first order, such that

(p—'%gq)m>;¢=<=;/3n3+_"%“ in D.
Then, for any m and =,
(15) Su(Pmr €n) =Sy(p, €)=80( Py Cn)-
Also by Theorem 3,
(16) Su(Pms €n) w Pu(M) as n—sco,

(17) S ( Py Cn) W Pu(M) as n—soo,
where &,=0 almost everywhere on B and A®,=¢,®.+@, in D; O,
=0 almost everywhere on B and AP, =c,P,,+@n, in D. Proceeding
as before we can find a positive constant C independent of M and m,
such that

(18) | Du(M)—Bu(M)|<C/m  in D.

On account of (15), (16), (17) and (18), we conclude that ®,, and
®,, converge uniformly as m—oco towards a same continuous function,

say S5, (p, ¢), and so
S(p, €)% Sy (@, ©).
Furthermore with the help of Lemma 1,
A S5(p, )=c(M)S5(p, €)—p(M)

for every M of D. It is easily seen that Sy(s, ¢) vanishes almost
everywhere on B.

When ¢ is not >0, we can proceed as for F and prove that the
above results hold in this general case.

Putting

A, ©)—S5(p, =UMD),
U(M) is bounded continuous and satisfies the following conditions :
a) U takes f almost everywhere on B;
b) AU=cU+q in D.
Thus we obtain
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Theorem 5. If ¢(=0) and ¢ are bounded continuous functions in
D, and if the series f} 7\3 is divergent and \,—0, then the sequence of
U, defined by (9) converges uniformly over any closed subset of D
towards a bounded and continuous function U taking f almost every-
where on B and satisfying
AU=cU+¢p in D.
If ¢ and ¢ have continuous partial derivatives of the first order, AU=

cU+ ¢ holds everywhere in D.

Remark. The above reasonings and results are valid in the case
where one takes the peripheral mean

> 1
LY=o || FY 0,
MP=h

instead of the spatial mean A (F). Here it is necessary to take the
coefficient 6 instead of 10 in (5), (9), etc.

The whole results are valid similary in the plane as in the space
for the circumferential mean or areal mean, where the coefficieht

must be taken 4 or 8 respectively.

(Received July 24, 1950)




