Journal of the lnstitute of Polytechnics. Osaka City University, Vol. l, No. 2, Series A

On the Growth of Subharmonic Functions and ils Applications to a Study of the Minimum Modulus of Integral Functions

By Masao INOUE

I. Growth of subharmonic functions.

1. Let E be a measurable set on the positive x -axis and let $E(a, b)$ denote the part of E contained in (a, b) . We put

$$
\bar{\mu}E=\lim_{r\to\infty}\frac{mE(1, r)}{\log r}
$$
 and
$$
\mu E=\lim_{r\to\infty}\frac{mE(1, r)}{\log r}
$$
,

where $mE(1, r)$ is the logarithmic measure of $E(1, r)$, namely

$$
mE(1,r)=\int_{E(1,r)}\frac{dt}{t}.
$$

Then clearly

 $\mu E + \mu CE = 1$, (1)

 CE denoting the complementary set of E .

We consider an infinite domain D on the z-plane such that $z=\infty$ belongs to its boundary *B*. Let D_r denote a connected part of D contained in $|z| < r$ and *B_r* its boundary lying on $|z| = r$. Then there exists a bounded harmonie funetion in *Dr* which assumes l on *Br* and 0 on the boundary lying in $|z| \leq r$, except at points of a set of logarithmic capacity zero, namely the harmonic measure $\omega_r(z)$ of B_r with respect to D_r . The following majoration of $\omega_r(z)$ is due to A. Beur- \lim_{α} α :

$$
\omega_r(z) \leq 2e^{-\frac{1}{2}mE_{\langle z|},r\rangle}, \quad |z| \leq r.
$$

Let $f(r)$ be a positive increasing function in $(0, \infty)$ such that $f(r)$ $\rightarrow \infty$ as $r \rightarrow \infty$, and let $U(z)$ be a positive subharmonic function in D which satisfies the condition:

(3)
$$
\overline{\lim_{z\to z'}}U(\leq z)f(|z'|)
$$

for every boundary point *z',* except at points of a set of logarithmie capacity zero.²⁾ Put

¹⁾ A. Beurling, Études sur un problème de majoration, Thesis, Upsala, 1933.

²⁾ We say that an infinite set E is of logarithmic capacity zero, whenever any finite subset of *E* is so.

$$
\mathfrak{M}(r)=\lim_{|z|=r}b.\ U(z)
$$

and

(4)
$$
\sigma = \lim_{r \to \infty} \frac{\log f(r)}{\log r}
$$

and suppose that there exists a positive increasing function $\varphi(r)$ in $(0, \infty)$ such that

 $\mathfrak{M}(r)\leq \varphi(r)\leq \infty$ (5)

for all $r(0 \leq r < \infty)$.

Let Ω be the whole z-plane and E the set of absolute values of z which run over Ω -*D*. We can then prove

Theorem 1. If
$$
\lim_{r \to \infty} \frac{\mathfrak{M}(r)}{r^2} < \infty
$$
 and $\overline{\mu} = \overline{\mu}E > 2(\rho - \sigma) > 0$,

(6)
$$
\lim_{r \to \infty} \frac{\log \mathfrak{M}(r)}{\log r} \leq \frac{\sigma \mu}{\mu - 2(\rho - \sigma)},
$$

and moreover if $\mu = \mu E > 2(\rho - \sigma) > 0$,

(7)
$$
\lim_{r \to \infty} \frac{\log \mathfrak{M}(r)}{\log r} \leq \frac{\sigma \mu}{\mu - 2(\rho - \sigma)}.
$$

If
$$
\lim_{r \to \infty} \frac{\mathfrak{M}(r)}{r^2} < \infty
$$
 and $\mu > 2(\rho - \sigma) > 0$,
(8) $\lim_{r \to \infty} \frac{\log \mathfrak{M}(r)}{\log \log r} \le \pi$

$$
\lim_{\overline{r}\to\infty}\frac{\log \mathfrak{M}(r)}{\log r}\leq \frac{\sigma\mu}{\mu-2(\rho-\sigma)}.
$$

Proof. Suppose $\lim_{r \to \infty} \frac{\mathfrak{M}(r)}{r^2} \leq \infty(\rho > \sigma)$. Then, if R is large enough,

$$
f(R)
$$
 $\leq KR^2$ and $\mathfrak{M}(R)$ $\leq KR$

for a suitable constant K . Using (2), (4) and (5), we obtain

(9)
$$
U(z) \leq f(R) + \text{const.} \{KR^2 - f(R)\} e^{-\frac{i}{2}mE(|z|, R)}
$$

$$
\leq f(R) \{1 + \text{const.} e^{(p-\sigma+\epsilon)\log R - \frac{1}{2}mE(|z|, R)}\}
$$

for every $R(\geq |z|>0)$ and for any $\varepsilon>0$.

Writing

(10)
$$
2(\rho - \sigma + \varepsilon) - \frac{mE(|z|, R)}{\log R} = \Theta(|z|, R, \varepsilon),
$$

(9) becomes

(11)
$$
U(z) \leq f(R) \{1 + \text{const.} e^{\frac{1}{2} \Theta(|z|, R, \varepsilon) \log R} \}.
$$

Putting $R = |z|^{r}(|z| = r > 1, \alpha > 1)$, $\Theta(|z|, R, \varepsilon)$ is written as follows:

$$
\Theta(r, r^*, \varepsilon) = 2(\rho - \sigma + \varepsilon) - \frac{mE(1, r^*)}{\log r^*} + \frac{mE(1, r)}{\alpha \log r}.
$$

For any $\eta > 0$, on the one hand,

72

On the Growth of Subharmonic Functions

$$
\mu - \eta < \frac{mE(1, r^2)}{\log r^2} \quad \text{and} \quad \frac{mE(1, r)}{\log r} < \mu + \eta
$$

for all r sufficiently large; on the other hand, there exists a sequence of values of $r_i \rightarrow \infty$ such that

$$
\overline{\mu}-\eta \leq \frac{mE(1, r_i^*)}{\log r_i^*} \quad \text{and} \quad \frac{mE(1, r_i)}{\log r_i} \leq \overline{\mu}+\eta.
$$

Thereby

$$
\Theta(r, r^2, \varepsilon) \leq 2(\rho - \sigma + \varepsilon) - \mu + \frac{\mu}{\alpha} + \eta(1 + \frac{1}{\alpha})
$$

and

$$
\Theta(r_i, r_i^{\alpha}, \varepsilon) \leq 2(\rho - \sigma + \varepsilon) - \overline{\mu} + \frac{\overline{\mu}}{\alpha} + \eta(1 + \frac{1}{\alpha}).
$$

If $\overline{\mu}>2(\rho-\sigma)>0$, we can take ϵ so small that $\overline{\mu}>2(\rho-\sigma+\epsilon)>0$. Then we can choose α such that $2(\rho - \sigma + \varepsilon) - \mu + \mu/\alpha \leq 0$, that is,

$$
\alpha\!\!>\!\frac{\overline{\mu}}{\overline{\mu}-2(\rho-\sigma+\varepsilon)}.
$$

For such a α we can also find η and a positive constant δ so small that $\Theta(r_i, r_i^{\sigma}, \varepsilon) \leq -\delta$. For α and η thus obtained,

$$
\frac{1}{2}\Theta(r_i, r_i^{\alpha}, \varepsilon) \log r_i \rightarrow 0
$$

as $r_i \rightarrow \infty$. Hence, from (11),

$$
U(z_i)\langle f(r_i^{\sigma})\{1+\varepsilon(r_i)\} \quad (|z_i|=r_i),
$$

where $\varepsilon(r_i) \rightarrow 0$ as $r_i \rightarrow \infty$, and so

$$
\lim_{r\to\infty}\frac{\log \mathfrak{M}(r)}{\log r}\leq \sigma\alpha.
$$

However *a* may be taken arbitrarily close to $\frac{\mu}{\mu - 2(\rho - \sigma + \varepsilon)}$ and, since

 ε is arbitrary, to $\frac{\mu}{\mu-2(\rho-\sigma)}$. Thus we obtain the desired result:

(6)
$$
\lim_{\overline{r} \to \overline{\alpha}} \frac{\log \mathfrak{M}(r)}{\log r} \leq \frac{\sigma \mu}{\mu - 2(\rho - \sigma)}.
$$

Moreover, if $\mu>2(\rho-\sigma)>0$, we can choose ε , α and η such that

$$
\mu > 2(\rho - \sigma + \varepsilon) > 0, \ \alpha > \frac{\mu}{\mu - 2(\rho - \sigma + \varepsilon)}
$$

and

$$
\Theta(r, r^*, \varepsilon) \leq -\delta
$$

for all r sufficiently large, δ being a suitable positive constant. Then $U(z) \leq f(r^*) \{1+\varepsilon(r)\}$ ($|z|=r$),

where $\varepsilon(r) \rightarrow 0$ as $r \rightarrow \infty$. From this it follows just as before that

(7)
$$
\lim_{r \to \infty} \frac{\log \mathfrak{M}(r)}{\log r} \leq \frac{\sigma \overline{\mu}}{\underline{\mu} - 2(\rho - \sigma)}.
$$

Next suppose $\lim_{\epsilon \to 0} \frac{\mathfrak{M}(r)}{r^2} < \infty$ and $\mu > 2(\rho - \sigma) > 0$. Then there exists

a sequence of values of $r_i \rightarrow \infty$ such that

$$
U(z_i) \leq f(r_i^{\alpha})\{1+\varepsilon(r_i)\} \quad (|z_i|=r_i)
$$

for $\alpha > \frac{\overline{\mu}}{\mu - 2(\rho - \sigma)}$, where $\varepsilon(r_i) \to 0$ as $r_i \to \infty$. From this it follows as

before that

(8)
$$
\lim_{r \to \infty} \frac{\log \mathfrak{M}(r)}{\log r} \leq \frac{\sigma \mu}{\mu - 2(\rho - \sigma)}.
$$

The theorem is thus proved.

For later use we quote the following

Theorem 2. Let $U(z)$ be a subharmonic function in D. If $\overline{\lim}_{z \to z'} U(z) \le K \le \infty$ for every finite boundary point z', and if $\overline{\lim}_{z \to \infty} \frac{\mathfrak{M}(r)}{r^2} \le \infty$ ($\rho > 0$) and $\bar{\mu}E > 2\rho$, then

$$
U(z)\leq K \quad in \quad D,
$$

where K is a constant³.

2. M. Tsuji first introduced the upper and lower strong logarithmic densities of E as follows¹⁾:

$$
\overline{\lambda}E = \overline{\lim}_{r,s\to\infty} \frac{mE(r,sr)}{\log s} \quad \text{and} \quad \underline{\lambda}E = \lim_{r,s\to\infty} \frac{mE(r,sr)}{\log s}.
$$

Then

$$
(12) \t\t 0 \le \lambda E \le \mu E \le \mu E \le \lambda E \le 1
$$

and

$$
\overline{\lambda}E + \lambda CE = 1.
$$

By means of the strong lower logarithmic density, we can state the following

Theorem 3. If
$$
\lim_{r \to \infty} \frac{\mathfrak{M}(r)}{r^2} \leq \infty
$$
 and $\lambda = \lambda E > 2(\rho - \sigma) > 0$,

³⁾ M. Inoue, Une étude sur les fonctions sousharmoniques et ses applications aux fonctions holomorphes, Memoirs of the Fac. of Sci., Kyūsyū Univ., Vol. 3, No. 1 (1943).

⁴⁾ M. Tsuji, Wiman's theorem on integral functions of order $\langle \frac{1}{2}, \cdot \rangle$ to appear in the Proc. Jap. Acad., where he uses the notations λ , λ , $\overline{\lambda}^*$ and λ^* , instead of $\overline{\mu}$, μ , λ and λ . respectively.

(14)
$$
\lim_{r \to \infty} \frac{\log \mathfrak{M}(r)}{\log r} \leq \frac{\sigma \lambda}{\lambda - 2(\rho - \sigma)}
$$

If
$$
\lim_{r \to \infty} \frac{\mathfrak{M}(r)}{r^2} < \infty
$$
 and $\lambda > 2(\rho - \sigma) > 0$,
(15) $\lim_{r \to \infty} \frac{\log \mathfrak{M}(r)}{\log r} \leq \frac{\sigma \lambda}{\lambda - 2(\rho - \sigma)}$.

Proof. First suppose $\overline{\lim}_{r \to \infty} \frac{\mathfrak{M}(r)}{r^2} \leq \infty$ and $\lambda > 2(\rho - \sigma) > 0$. Here we

obtain as before

(11)
$$
U(z) \leq f(R) \{1 + \text{const. } e^{\frac{1}{2} \Theta(|z|, R, z) \log R} \}
$$

for every $R \ge |z| > 0$, where ε is chosen so small that $\lambda > 2(\rho - \sigma + \varepsilon)$ $\gt0$.

Let β be a finite positive value greater than $2(\rho - \sigma + \varepsilon)/\Delta$, and put $s(r) = r^{\frac{\beta}{1-\beta}}$, $R = rs(r)$, $|z| = r$. Then, if r is large enough,

$$
\Theta(r, rs(r), \varepsilon){\lt2(\rho-\sigma+\varepsilon)-(\lambda-\varepsilon')\frac{\log~s(r)}{\log~rs(r)}}.
$$

for any $\varepsilon' > 0$. Since $\frac{\log s}{\log rs} = \beta > 2(\rho - \sigma + \varepsilon)/\lambda$, we find, if ε' is small enough,

$$
\Theta(r, rs(r), \varepsilon) \leq -\delta
$$

for r sufficiently large, δ being a suitable positive constant. Hence, from (11) ,

 $U(z) < f(rs(r))$ {1+ $\varepsilon(r)$ }.

where $\varepsilon(r) \rightarrow 0$ as $r \rightarrow \infty$. From this it follows that

$$
\overline{\lim_{r\to\infty}}\frac{\log \mathfrak{M}(r)}{\log r}\leq \frac{\sigma}{1-\beta}.
$$

However β may be taken arbitrarily close to $2(\rho - \sigma + \varepsilon)/\lambda$ and, since ε is arbitrary, to $2(\rho - \sigma)/\Delta$. Thus we obtain

(14)
$$
\lim_{r \to \infty} \frac{\log \mathfrak{M}(r)}{\log r} \leq \frac{\sigma \lambda}{\lambda - 2(\rho - \sigma)}.
$$

Secondly suppose $\lim_{r\to\infty} \frac{\mathfrak{M}(r)}{r^2} < \infty$ and $\lambda > 2(\rho - \sigma) > 0$. We can then

see by a similar manner as in the proof of Theorem 1 that there exists a sequence of values of $r_i \rightarrow \infty$ such that

$$
U(z_i) \leq f(r_i s(r_i)) \{1+\varepsilon(r_i)\} (|z_i|=r_i),
$$

where $\varepsilon(r_i) \to 0$ as $r_i \to \infty$. From this it follows as before that

(15)
$$
\lim_{r \to \infty} \frac{\log \mathfrak{M}(r)}{\log r} \leq \frac{\sigma \lambda}{\lambda - 2(\rho - \sigma)}.
$$

The theorem is thus proved.

II. Unbounded Dirichlet Problem⁵⁾.

3. Let E be an unbounded closed set on the positive x -axis and D be the entire z-plane outside E. Let $f(r)$ be a positive and continuous increasing function in $(0, \infty)$ such that $f(r) \rightarrow \infty$ as $r \rightarrow \infty$, and put

$$
\sigma = \overline{\lim_{r \to \infty}} \frac{\log f(r)}{\log r}.
$$

We will then prove

Theorem 4. If $\mu = \mu E > 2\sigma$, there exists a harmonic function $U(z)$ in D, such that

$$
U(z) = f(|z|)
$$

almost everywhere 6 on E and

$$
U(z) \leq \text{const. } |z|^{\tfrac{1-\mu}{2}+\sigma+\varepsilon}
$$

in *D* for any $\varepsilon > 0$.

Proof. Let $\omega(z, r)$ denote a bounded harmonic function in D which assumes 1 a.e. on $E(r, \infty)$ and vanishes a.e. on $E(0, r)$, that is the harmonic measure of $E(r, \infty)$ with respect to D. If we put

(16)
$$
U_r(z) = -\int_0^r f(t) d\omega(z, t),
$$

 $U_r(z)$ is bounded and harmonic in D, assumes f a.e. on $E(0, r)$ and vanishes a.e. on $E(r, \infty)$.

 $U_r(z)$ is written:

$$
U_r(z) = \left[f(t)\omega(z, t)\right]_r^0 + \int_0^r \omega(z, t) df(t).
$$

For fixed z and for any $\varepsilon' > 0$ such that $\mu > 2\varepsilon'$, we can find a positive constant t_0 such that, for every $t(\geq t_0 > |z|)$,

$$
\omega(z, t) \leq \omega_{\epsilon}(z) \leq 2e^{-\frac{1}{2}mE(|z|, t)} \leq \frac{2}{t^{\frac{1}{2}-\varepsilon}}.
$$

Then, for $r > t_0 > |z|$,

⁵⁾ The initiative of this problem was taken by M. Tsuji, see his paper quoted. The main reasoning which follows is due to him.

^{6) &}quot;almost everywhere" means "except at points of a set of logarithmic capacity zero" Hereafter we write for simplicity "a.e." instead of "almost everywhere".

$$
U_r(z) \leq f(t_0) + 2 \int_{t_0}^r \frac{df(t)}{t^{\underline{u}}/2 - \varepsilon'}
$$

$$
\leq f(t_0) + \frac{2f(r)}{r^{\underline{u}}/2 - \varepsilon'} + \int_{t_0}^r \frac{f(t) dt}{t^{1 + \underline{u}}/2 - \varepsilon'}
$$

Since $\mu > 2\sigma$, it holds

 $f(t)$ \lt const. $t^{\mu/2-\epsilon}$

for every $t > 0$ and for any ε such that $\mu/2-\sigma > \varepsilon > 0$. Hence

$$
U_r(z){<}f(t_{{\scriptscriptstyle 0}}){+}\frac{\text{const.}}{r^{{\varepsilon}-{\varepsilon}'}}+\text{const.}\int_1^r\frac{dt}{t^{1+{\varepsilon}-{\varepsilon}'}}
$$

and so

$$
\lim_{r\to\infty}U_r(z)\!\!<\!\infty,
$$

provided $\xi > \xi'$.

It is clear that $U_r(z)$ is increasing function of r for fixed z. Hence lim $U_r(z)$ exists at each point *z* of *D*. Denoting the limit by $U(z)$, we see that $U(z)$ is expressible in the form

(17)
$$
U(z) = -\int_0^\infty f(t) d\omega(z, t).
$$

Evidently $U(z)$ is harmonic in D and assumes f a.e. (at regular points) on E . We call $U(z)$ (constructed in this way) the solution of the Dirichlet Problem for D and f.

Now consider the expression (17). For every $|z|(\geq 1)$ and for any $\mathcal{E}'(\mu) > 2\mathcal{E}' > 0$, we can choose a constant *c* sufficiently large so that

$$
U(z) \leq f(c |z|) + 2 \int_{c|z|}^{\infty} e^{-\frac{1}{2} m E(|z|, t)} df(t)
$$

$$
\leq f(c |z|) + 2 |z|^{\frac{1}{2}} \int_{c|z|}^{\infty} \frac{df(t)}{t^{\frac{1}{2} \cdot 2 - \varepsilon}}.
$$

From this we deduce for any $\epsilon > 0$ and for any η such that $\frac{\mu}{2} - \frac{\sigma}{\eta} > 0$,

$$
U(z) \text{const. } |z|^{a+\epsilon} + \text{const. } |z|^{\frac{1}{2}} \int_{c|z|}^{\infty} \frac{dt}{t^{1+\gamma-\epsilon'}},
$$

if ε' is small enough, for instance, $\varepsilon' \leq \varepsilon$. Putting $\eta = \mu/2 - \sigma - \varepsilon/2$ and choosing ε' so small that $2\varepsilon' < \varepsilon$, it follows that

$$
U(z) \le \text{const.} \ |z|^{ \sigma + \varepsilon} + \text{const.} \ |z|^{\frac{1-\mu}{2} + \sigma + \varepsilon} \int_1^{\infty} \frac{dt}{t^{1+\varepsilon/2 - \varepsilon'}}
$$

< \text{const.} \ |z|^{\frac{1-\mu}{2} + \sigma + \varepsilon}

This is the desired result. The theorem is thus completely proved.

4. We will now prove

Masao INOUE

Theorem 5. Let $V_r(z)$ be a bounded harmonic function in D_r which assumes $f(|z|)$ at each boundary point z, except at points of a set of logarithmic capacity zero. Then, if $\mu E > 2\sigma$, $V_r(z)$ converges as $r \rightarrow \infty$ towards the solution of the Dirichlet Problem for D and f.

Proof. Let $\omega_i(z, r)$ denote a bounded harmonic function in D_r which vanishes a.e. on the boundary lying in $|z| \lt t(\leq r)$ and assumes 1 a.e. on the rest of boundary. Then clearly

$$
V_r(z) = f(r)\omega_r(z) - \int_0^r f(t)d\omega_t(z, r)^{-1}
$$

and

$$
U_r(z) \geq -\int_0^r f(t) d\omega_t(z, r).
$$

Hence

$$
U_r(z) \geq V_r(z) - f(r) \omega_r(z).
$$

Since $\mu > 2\sigma$, $f(r)\omega_r(z) \to 0$ as $r \to \infty$. Therefore

$$
U(z) = \lim_{r \to \infty} U_r(z) \geq \lim_{r \to \infty} V_r(z).
$$

On the other hand.

$$
U_r(z) = \left[f(t)\omega(z, t)\right]_r^0 + \int_0^r \omega(z, t) df(t)
$$

$$
\left[f(t)\omega(z, t)\right]_r^0 + \int_0^r \omega_t(z, r) df(t)
$$

$$
= V_r(z) - f(r)\omega(z, r).
$$

Evidently $f(r)\omega(z, r) \rightarrow 0$ as $r \rightarrow \infty$. Therefore

$$
U(z)\leq \lim_{r\to\infty}V_r(z).
$$

 $Consequently$

$$
U(z) = \lim_{r \to \infty} V_r(z), \quad q, e, d.
$$

Theorem 6. Let $f(r)$ be convex in $\log r$ and let $U(z)$ be the solution of the Dirichlet Problem for D and f. Then $U(z) \ge f(|z|)$.

By the preceding theorem, $U(z) = \lim V_r(z)$. If we put Proof. $\mathfrak{F}(z) = f(|z|)$, $\mathfrak{F}(z)$ is subharmonic in the whole z-plane. Hence $V_r(z) \geq$ $\mathfrak{F}(z)=f(|z|)$ in D_r for any $r>0$. Consequently $U(z) \geq f(|z|)$.

As a special case of Theorem 4, we can state in view of Theorem 6,

Theorem 7. There exists a harmonic function $U(z)$ in D such that

⁷⁾ One may see $\omega_r(z) = \omega_r(z, r)$.

$$
U(z)\hspace{-2pt}=\hspace{-2pt}|z|^{\hspace{-2pt}\varrho}
$$

almost everywhere on E and

$$
|z|^{\rho} \le U(z) \le \text{const.} \; |z|^{\frac{1-\mu E}{2}+\sigma+\varepsilon}
$$

in D for any $p(\mathbb{C}(\epsilon \leq \mu/2))$ *and for any* $\epsilon > 0$ *s.*

III. Applications.

Let $F(z)$ be a non-constant integral function of order ρ :

$$
\rho = \overline{\lim_{r \to \infty}} \frac{\log \log M(r)}{\log r},
$$

where $M(r)$ denotes the maximum of $|F(z)|$ on $|z|=r$. We define the lower order ρ' of F as follows:

$$
\rho'=\lim_{\overline{r},\overline{\infty}}\frac{\log\log M(r)}{\log r}.
$$

Let $f(r)$ be a positive and continuous increasing function of r in $(0, \infty)$ such that $f(r) \rightarrow \infty$ as $r \rightarrow \infty$, and put

$$
\sigma = \lim_{r \to \infty} \frac{\log f(r)}{\log r}.
$$

Denote by $m(r)$ the minimum of $|F(z)|$ on $|z| = r$.

5. We will now prove

Theorem 8. If $0 \leq c < \rho < \frac{1}{2}$,

(18)
$$
\overline{\mu}E(\log m(r))f(r))\geq (1-2\rho)(1-\frac{\sigma}{\rho}).
$$

Proof. Since $0 < \rho < \frac{1}{2}$, $F(z)$ may be represented in the form

$$
F(z) = a_0 z^k \prod_{n=1}^{\infty} (1 - \frac{z}{a_n}), \quad a_n = 0.
$$

As far as we are concerned with a study of the set of r on which $log m(r)$ $\geq f(r)$, the most unfavourable case, fixing the moduli of zeros, will occur, for instance, when all $a_n > 0$. Then $m(r)$ will evidently be as small as possible and $M(r)$ as large as possible. We will therefore consider without loss of generality,

$$
F(z)=|a_{\scriptscriptstyle 0}\,|\,z^{\imath}\,\overset{\circ}{\underset{\scriptscriptstyle 1}{\Pi}}\,(1-\frac{z}{|\,a_{\scriptscriptstyle n}\,|}),\quad a_{\scriptscriptstyle n}\!\neq\!0,
$$

of which the order is unchanged; $m(r)$ is always attained on the positive x -axis.

79

⁸⁾ This theorem is obtained by M. Tsuji in a more general case. See his paper quoted.

We now suppose that

$$
\mu=\mu E(\log m(r)\leq f(r))>2(\rho-\sigma)+\frac{\sigma}{\rho}.
$$

Let D be the entire z-plane outside E. Replacing U, ρ , φ with \log^+ $|F(z)|$, $\rho + \varepsilon(\varepsilon)$, $\log^+ M(r)$ in Theorem 1, we have in virtue of (7),

$$
\rho \leq \frac{\sigma}{\mu - 2(\rho - \sigma)}
$$

since $\overline{\mu}E \leq 1$ and ϵ is arbitrary. This gives contradictory

$$
\mu \leq 2(\rho - \sigma) + \frac{\sigma}{\rho}.
$$

Hence

$$
\mu E(\log m(r) \leq f(r)) \leq 2(\rho - \sigma) + \frac{\sigma}{\rho}
$$

and so by (1) ,

$$
\overline{\mu}E(\log m(r))f(r))\geq (1-2\rho)(1-\frac{\sigma}{\rho}).
$$

As a corollary we can state:

If
$$
0 < \rho < \frac{1}{2}
$$
 and $\lim_{r \to \infty} \frac{\log f(r)}{\log r} = 0$,
\n(19) $\overline{\mu}E(\log m(r)) > f(r)$ $\geq 1 - 2\rho$.
\n*Especially if* $0 < k < \infty$,
\n(20) $\overline{\mu}E(\log m(r)) (\log r)^k \geq 1 - 2\rho$.
\nWe have also:
\nIf $0 < \rho < \frac{1}{2}$ and $0 < \alpha < 1$,
\n(21) $\overline{\mu}E(\log m(r)) > r^{2s}$ $\geq (1 - 2\rho)(1 - \alpha)$.
\nApplying (6) we will reach by a similar manner:
\nIf $0 \leq \sigma < \rho' \leq \rho < \frac{1}{2}$,
\n $\mu E(\log m(r)) > f(r)$ $\geq 1 - 2\rho - \frac{\sigma}{\rho'}(1 - 2\rho')$.

But we know at present a better result. In fact, in a preceding paper⁹, the author obtained the following result:

 \mathbb{R}^2

If
$$
0 \le \rho < \frac{1}{2}
$$
,
\n(22) $\mu E(\log m(r)) > r^{\rho'-\epsilon}) \ge 1-2\rho$
\nfor any $\epsilon > 0$.

⁹⁾ M. Inoue, Sur le module minimum des fonctions sousharmoniques et des fonctions entières d'ordre \lt^1 , Memoirs of the Fac. of Sci., Kyūsyū Univ., Vol. 4, No. 2 (1949).

Evidently this contains the above mentionned as a special case. **6.** Applying Theorem 3 we obtain

Theorem 9. If $0 \leq \sigma \leq \rho \leq \frac{1}{2}$,

(23) $\overline{\lambda}E(\log m(r))f(r)) \geq 1-2\rho$.

Proof. Suppose $\lambda = \lambda E(\log m(r) \le f(r)) > 2\rho$. Then, proceeding as in the proof of Theorem 8, we conclude from (14) that

$$
\rho{\leq}\frac{\sigma{\lambda}}{\lambda{-}2\left(\rho{-}\sigma\right)}\,;
$$

that is, $\rho \leq \sigma$ since $\lambda > 2\rho$. This is a contradiction. Hence

$$
\Delta E(\log m(r) \leq f(r)) \leq 2\rho,
$$

and so by (12) ,

$$
\bar{\lambda}E(\log m(r))f(r))\geq 1-2\rho.
$$

Corollary. If $0 < \rho < \frac{1}{2}$

(24)
$$
\bar{\lambda} E(\log m(r)) > r^{2-\epsilon} \geq 1-2\rho
$$

for any $\varepsilon > 0$.

This is a result recently obtained by M. Tsuji ¹⁰).

7. Applying Theorems 4 and 6, we obtain

Theorem 10. Let $f(r)$ be convex in $\log r$. If $0 \leq \sigma \leq \rho \leq \frac{1}{2}$,

(25) $\overline{\mu}E(\log m(r))f(r) \geq \min \{ (1-2\varphi), 2(\rho-\sigma) \}.$

Proof. Suppose

 $\overline{\mu}E(\log m(r))f(r)<1-2\rho,$

so that

$$
\mu E(\log m(r) \leq f(r)) > 2\rho.
$$

Let $E \equiv E(\log m(r) \leq f(r))$, $\mu \equiv \mu E$, and let D be the entire z-plane outside $E.$ $U(z)$ denotes the solution of the Dirichlet Problem for D and f. Consider

$$
W(z) = \log |F(z)| - U(z).
$$

Then, by Theorem 6, $U(z) \geq f(|z|)$ in D. Therefore $W(z) \leq 0$ everywhere on E and

$$
\lim_{r\to\infty}\frac{\max W(z)}{r^{2+\varepsilon}}K(x)
$$

for any $\epsilon > 0$ such that $\mu > 2(\rho + \epsilon)$. According to Theorem 2, $W(z)$

¹⁰⁾ M. Tsuji, loc. cit.

 ≤ 0 in D. Hence, by Theorem 4,

$$
\log M(|z|) \le U(z) \le \text{const.} |z|^{\frac{1-\mu}{2} + \sigma + \varepsilon}.
$$

in *D* for any $\varepsilon > 0$. Since ε is arbitrary, this yields

$$
\rho \leq \frac{1-\mu}{2} + \sigma,
$$

so that

$$
\mu\leq 1\!-\!2\,(\rho\!-\!\sigma).
$$

Finally by (1),

$$
\overline{\mu}E(\log m(r))f(r))\geq 2(\rho-\sigma).
$$

This proves the theorem.

Consequently

Theorem 11. Let $f(r)$ be convex in $\log r$. If $\sigma \leq 2\rho - \frac{1}{2} \left(\langle \frac{1}{2} \rangle \right)$, (26) $\overline{\mu}E(\log m(r))f(r)) \geq 1-2\rho$ and if $2\rho - \frac{1}{2} \leq \sigma \leq \rho \leq \frac{1}{2}$, (27) $\mu E(\log m(r)) > f(r) \geq 2(\rho - \sigma).$ We thus obtain the following Corollary. *If* $0 \leq \frac{1}{2} - \rho \leq \varepsilon$, (28) $\mu E(\log m(r)) \to r^{2-\epsilon} \geq 1-2\rho$
and if $0 < \epsilon < \frac{1}{2}-\rho$, (28) $\mu E(\log m(r)) > r^{2-\epsilon} \geq 2\epsilon.$ (29) But, for $0 < \epsilon < \rho(1-2\rho) \left(\frac{1}{2}-\rho \right)$ evidently), there exists by M. Tsuji ¹⁰⁾ an integral function of order ρ $\left(\sqrt{O(\epsilon/2)}\right)$ such that (30) $\mu E(\log m(r)) > r^{2-\epsilon}$ $\lt 1-2\rho$. The relation between $\overline{\mu}E(\log m(r)) > r^{p-1}$ and $1-2\rho$ for $\frac{1}{2}-\rho > \varepsilon > \rho$ $(1-2\rho)$ remains unknown.

(Received July 21, 1950)