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I. Growth of subharmonic fonctions. 

1. Let E be a measurable set on the positive x-axis and let 
E(a, b) denote the part of E eontained in (a, b). We put 

-E 1.- mE(l, 1·) d E 11.mmE(l, 1·) 
f-1> = tm - --- an f-1> = 

r.,oo log 1• - r__,oo log 1• ' 

whcrc mE(l, 1·) is the logarithmic measure of E(l, 1·), namely 

r dt 
mE (l,r)= ~ --~,--. 

R(l,r) 

Then clearly 

(1) 

CE denoting the eomplementary set of E. 

We eonsider an infinite domain D on the z-plane sueh that z=oo 
belongs to its boundary B. Let Dr denote a eonnected part of D eon­

tained in 1 z 1 <1· and Br its boundary lying on 1 z 1 =1·. Then there 

exists a bounded harmonie funetion in Dr which assumes l on Br and 

0 on the boundary lying in 1 z 1 <1·, exeept at points of a set of logari­

thmie eapacity zero, namely the harmonie measure wr(z) of Br with 

respect to D,.. The following majoration of wr(z) is due to A. Beur­
ling l) : 

(2) ~)/2 -~mE\izj·,r) Il/ 
Wr("' <'---..._ C , Z -~~r. 

Let /(1·) be a positive inereasing funetion in (0, oo) such that /(1·) 

-= as 1·-oo, and let U(z) be a positive subharmonic function in D 

which satisfies the condition: 

(3) Iiriî.U(:;z)f( 1 z' 1) 
z~z' 

for every boundary point z', except at points of a set of logarithmie 

eapacity zero. 2) Put 

1) A. Beurling, f:tudes sur un problème de majoration, Thesis, Upsala, 1933. 
2) We say that an infinite setE is of logarithmic capacity zero, whenever any finite 

subset of E is so. 
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and 

(4) 
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9Jè(r) = l.u.b. U(z) 
!ZJ =r 

(]"' = lim log f(r) 
r-•"" log 1· 

and suppose that there exists a positive increasing function (p(1·) in 

(0, oo) such that 
(5) 'JJl (1') :5: cp( 1')< 00 

for ali 1'(0.::;1·<oo). 

Let a be thé whole z-plane and E the set of absolute values of 

z which run over a-D. We can then prove 

Th 1 If 1-. 9Jl (1·) / d - -E, 2( )' 0 eorem . tm ~-~oo an #=l-' _> p-(J"' _;;- , 
r~co 1 

(fi) limlog 9R (1·) < . ,rp, 
r-.oo log 1' f.t-2(p-(J"')' 

and mm·eove1· if I-'=!:!_E>2(p-(]"'):>0, 

-;;-log 9Jl (1·) (]"' ~-' 
(7) hm---< . 

r-.oo log 1' - ~ !:!_-2(p-(J"') 

If !i~ml)r)<oo and f.L>2(p-(J"')>O, 

(8) 

- 9Jè (r) Proof. Suppose lim-,-<ooCp>(J"'), Then, if R is large enQugh, 
r_,oo r· 

f(R)<KRP and 9Jè(R)<KR' 

for a suitable constant K. Using (2), (4) and (5), we obtain 

(9) U(z)<f(R)tconst. IKR'-f(R)Ie -~mE(izJ,RJ 
--'f(R)Il t (p-a+ê)logR-~mE(izi,RJ <-... " + cons . e 1 

for every RC> 1 z 1 >O) and for any é>O. 
Writing 

(10) 2(p-o-+é)-111,~~~z~!l)=®(lzl, R, é), 

(9) becomes 

(11) U(z)<f(R)Il+const. /~ilzJ, R, ê)IogRI· 

Putting R=lzl '(lzl=1·>l, a>l), ~J(Izl, R, é) is written as follows: 

®(1·, 1·", é) = 2(p-<T + é)- m~(l, _ _!':) +!!_!:§1!!_12, 
log 1·"' a log 1' 

For any 11>0, on the one band, 
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f1-,,/mBQ,__r') and mE(l,1')<,1+,, 
- ~ log r' log 1· ~ 

for ali 1· sufficiently large ; on the other hand, there exists a sequence 
of values of 1'c_.oo such that 

~ .--mE(l, 1·n and mE(l, r~)~--
f1- '1/ ~ log 7'[ -log~ ,,f1 + '1· 

Thereby 

and 
~ 1 

®(r., 1' ~, é)<:"2(p- (T + é)- ji+ fl'_ + ,1(1 + ) . ' a a 

If ti>2(p-<T)>O, we can take é so small that fi>2(p-<T+é)>O. 

Then we can choose a such that 2(p-a-+é)- #+ f;.fa<O, that is, 

a> # 
f.J,- 2 (p- (T + é). 

For such a a we can also find ,7 and a positive constant ô so small 

that ® (r, 1·7, s)< -ô. For a and 'IJ thus obtained, 

i-®(r0 r~, é) log r, -o 
as ri-+oo. Hence, from (11), 

U(z,)<fCr~) Il+ é(r,) j ( 1 z, 1 =1';), 

where é(r;)--+0 as r;-oo, and so 

limlog 9Jè.(r) <a-a. 
-,.~"" log r -

However a may be taken arbitrarily close to 2 ( # ) and, since 
p- p-<T+é 

é is arbitrary, 

(6) 

to ~ ~2(#- -). Thus we obtain the desired result: 
ji- (1-<T . 

limlog 9JêJ(1') < .... _ a-~ _ . 
r:,.o;; log r ~- ji-2(p-<T) 

Moreover, if fl'>2(p-<T)>O, we can choose é, a and ,7 such that 

and 

®(1', 1'~, é)< -Ô 

for all 1· sufficiently large, ô being a suitable positive constant. Then 

U(z)<{(1·"") Il +é(1·) l ( 1 z 1 =1·), 
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where E(1·)-0 as r·-= . From this it follows just as before that 

(7) 
• - -log IJJ'è;(r·) --' Œ' fi hm---:_:::-,-----. 

r-.oo log r· - -,/;-2 (p-Œ') 

Next suppose ~~~ill1r~·2<= and t~>2(p-Œ')>O. Then there exists 

a sequence of values of r·;-= such that 

U(z.t)<fCr·;) Il +E(r·.,) l ( 1 z.;l =r·,) 
-

for a> ~- 2fp-~)' where E(r·J-0 as r;-=· From this it follows as 

before that 

(8) limlog ill1(r:2< Œ'j1,___ • 
r~oo log r· cc•f!_-2(p-Œ') 

The theorem is thus proved. 

For later use we quote the following 

Theorem 2. Let U(z) be a: subhcwmonic function in D. If Œn U(z) 
Z4Z 1 

>K< = for· ever·y finite lJounclar·y point z', and if TimllBCr·) < = (p > 0) 
'r·"f>CC ?._"'J 

and f1E>2p, then 

U(z):';{K in D, 

1oher·e K is a constant3l, 

2. M. Tsuji first introduced the upper and lower strong logarith­

mic densities of E as follows1J : 

);,E= lirri mE(r, S?') and 
r, s ->00 log 8 

XE= lim rytF}_(?',_ sr·)_ 
- r,s->oo log s 

Th en 

(12) 

and 

(13) . );,E +XCE=l. 

By means of the strong lower logarithmic density, we can state 
the following 

Theorem 3. If !i,~~~r:)<= and ~ ~E>2Cp-Œ')>O, 

3) M. Inoue, Une étude sur les fonctions sousharmoniques et sés applications aux 
fonctions ho'omorphes, Memoirs of the Fac. of Sei., Kyusyu Univ., Vol. 3, No. 1 (1943). 

4) M. Tsuji, Wiman's theorem on integral functions of order <~. to appear in the Proc. 

Jap. Acact., where he uses the notations X: ), X* and )*, instead of -;:;., !J., 1 and ). 
respectively. 
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(14) 
.-log IJJl (1·) / 0":\ hm-- --_:::o,_---~-. 
,._., log 1' -~-2(p-IT) 

If 1im9.n1.~'!:.)<= and ~>2(p-()")>O, 
T--J>-00 • 

(15) 1. log 9J1(1'L-- 0":\ lm _______ -..._ ... -------·=· -
-r:>oo log 1' =~-2(p-IT)' 

Proof. Here we 

obtain as before 

(11) U(z)<fCR) Il +const. e~H([z[, R, e)log Ri 

for every RC>Izi>O), where é is chosen so small that :\>2(p-O"+é) 

>O. 
Let /3 be ·a finite positive value greater than 2(p-O"+é)/~, and put 

~ 

s(r) =r·r.:: .. -~, R=1·s(1·), 1 z 1 =1·. Th en, if 1· is large enough, 

B(1·, rsÇr), é}é2(p-o- + é)- (:\-é') l_o~ s(1·) _ 
' log 1·1~(r) 

for any é'>O. 

enough, 

®(1·, 1·s(1·), s)<-o 
for 1' sufficiently large, o being a suitable positive constant. Hence, 

from (11), 

U(z)<f(rs(r))ll +é(r) 1, 

where é(r)-0 as r-oo. From this it follows that 

limlog '.m.(r)~~. 
-r-.oo log 1' 1- f1 

Howcver f1 may be taken arbitrarily close to 2(p-o-+c)/:\ and, since 

é is arbitrary, to 2(p-IT)j~. Thus we obtain 

(14) -.--log IJJl (1·) / o-:\ hm-----...__ ·· . 
,._,oo log 1' ~-2 (p-o-) 

Secondly suppose l!n,:,w;~r)<= and ~>2(p-o-)>O. We can then 

see by a similar manner as in the proof of Theorem 1 that there 
exists a sequence of values of 1·,-= such that 

U(z~)<f(1",8(1'1)) Il +é(1't) 1 ( 1 Z1 1 =1·;), 
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where é(1·t)-O as rt-oo· From this it follows as before that 

(15) limlog IDC(r) < a-:\ • 
.. :;-.o log r ~-2(p-o-) 

The theorem is thus proved. 

II. Unbounded Dirichlet ProbJem 5 \ 

3. Let E be an unbounded closed set on the positive x-axis and 
D be the entire z-plane outside E. Let {(1·) be a positive and conti­
nuons increasing function in (0, oo) such that {(1·)-oo as 1·-oo, and 
put 

--. log f (1·) 
a-= hm---. 

"~"" log 1· 

W e will then prove 
Theorem 4. If !!:_=f!:._E>2a-, the1·e exists a. ha1·monic function U(z) 

in D, such that 

U(z) = f(lz!) 

almost eve?'JJ'Where 6 ) on E and 

in D fot· anu s>O. 

1- t• ----+,+e 
.. U(z)< const. 1 z 1 2 

Proof. Let co (z, 1·) denote a bounded harmonie function in D 

which assumes 1 a. e. on E(1·, oo) and vanishes a. e. on E(O, 1·), that 
is the harmonie measure of E(1·, oo) with respect to D. If we put 

(16) U,.(z)=- J:!(t)dro(z, t), 

U,.(z) is bounded and harmonie in D, assumes f a. e. on E(O, 1') and 
vanishes a. e. on E(1·, oo ). 

U,.(z) is written: 

U,.(z)=[f(t)(l)(z, t) ]~ + J:co(z, t)df(t). 

For fixed z and for any é'>O such that E:.>2e', we can find a positive 
constant t 0 such that, for every t(>to> 1 z j), 

( t)/ ( )<2 -~mE(!zJ, t)< 2 
roz, --..,meZ e ·,t!./2 -r::'' 

Then, for r >to> 1 z 1, 

5) The initiative of this problem was taken by M. Tsuji, see his paper quoted. The 
main reasoning which follows is due to him. 

6) " almost everywhere" means " except at points of a set of Iogarithmic capacity 
zero " I{ereafter we write for simplicity " a. e. " instead of " al most everywhere ". 
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/ ~r d/(t) U (z)" f(t0 ) + 21 - ·· -
r ,. 'ot~/2-~Z' 

Since ~L>2rr, it holds 

f(t)< const. ti!l2 -e 

for every (>0 and for any é such that f!'/2-rr >s>O. Hence 

U,.(z)<f(t0 ) +~~~~~ +const. r: -{1.-j=let:.. e' 

and so 

Iim u,.(z)< r-Q, 

r ->-'"'~ 

provided t''>E'. 

It is clear that U,.(z) is increasing function of 1' for fixed z. 

Hence lim U,.(z) exists at each point z of D. Denoting the limit by 

U(z), we see that U(z) is expressible in the form 

(17) U(z)=- [t(t)dcv(z, t). 

Evidently U(z) is harmonie in D and assumes f a. e. (at regular points) 
on E. We cali U(z) (constructed in this way) the solution of the 
Dirichlet Problem for D and f. 

Now consider the expression (17). For every 1 z 1 C>l) and for any 

é'(l<>2s'>O), we can choose a constant c sufficiently large so that 

U(z)<!Cclzi)+2J'"' e -~mEÎ[z[, t;df(t) 
J c:z1 

~ f( c 1 z 1) + 21 z ,- - ·-. -. },J"" df(t) 
"-· c:•rt::/2-E' 

From this we deduce for any E>O and for any 17 such that l!/2-rr>11>0, 

Uc ) / t 1 lo-1-e t 1 ~~f"' dt Z"-.,COns. z '+cons. z Jc•zrtl+·r,-ei• 

if é' is small enough, for instance, s'<s. Putting 1J=f!/2-[J'-é/2 and 
choosing é' so small that 2s'<é, it follows that 

1- il 

U(z)< const.l z 1 ot-e+ const.l z i-2~+o+e [ tl-i-~~; _ e' 

!.=.~+ol-e 
<const.lzl 2 · 

This is the desired result. The theorem is thus completely proved. 

4. We will now prove 
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Theorem 5. Let Vr(z) be a bounded harmonie function in Dr which 

ac.;sumes f( 1 z 1) at each bounda1•y point z, except at point.c.; of a set of 

loga;:rithmic capacity ze1·o. Then, if J!:E>Zcr, V,.(z) converges as 1·-oo 

towa1·ds the solution of the Di1·ichlet Pt·oblem fm· D and f. 

Proof. Let wJz, 1·) denote a bounded harmonie function in D,. 

which vanishes a. e. on the boundary lying in 1 z 1 <t(.ç1·) and assumes 

1 a. e. on the rest of boundary. Then clearly 

V,.(z)=/(1')w,.(z)- rf(t)dwt(z, 1·) <) 
Jo 

and 

U,.(z)~?:, -.[t(t)dw,(z, 1'). 

Renee 

Ur(z)?; V,.(z)- f(1')(vr(z). 

Since f!>Zcr, f(r)w,.(z)--+0 as 1'--+oo. Therefore 

U(z)=lim U,(z);?; lim V,.(z). 

On the other band, 

U,.(z)=[f(t)w(z, t)J: + \"ü>(z, t)df(t) 
.o 

<[f(t)w(z, t)]~ + ~: w1(z, 1')df(t) 

=V,.(z)-f(r)w(z, r). 

Evidently f(r)w(z, 1')--+0 as r-+oo, Therefore 

U(z) ~ lim V,.(z). 
r-:;-oo 

Consequently 

U(z) = lim Yr(z), q. e. d. 
'/".)>00 

Theorem 6. Let /(1·) be convex in log 1· and let U(z) be the solution 

of the Dirichlet P1·oblem for D and f. Th en U(z);:';,/( 1 z 1 ). 

Proof. By the preceding theorem, U(z)=lim V,.(z). If we put 
.... 00 

'J(z)=f( 1 z 1 ), ty(z) is subharmonic in the whole z-plane. Renee V,.(z);;:;; 

ty(z)=!Cizl) in Dr for any r>O. Consequently U(z);;::d(lz\). 

As a special case of Theorem 4, we can state in view of Theorem 
6, 

Theorem 7. The1·e exists a ha1·monic function U(z) in D such that 

7) One may see '''r(z)=,,,,.(z, r). 
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U(z) =\zl? 

almost everywhere on E and 
l-!1 E 

1 z 1 P:::,:U(z)< const. \ z \-2~-+~ !-e 

in D !01· any p(O<p<Ji/2) and !01· any s>O sJ. 

III. Applications. 

Let P(z) be a non-constant integral function of order p: 

-.--- log log M(1·) p=hm ~------
~--00 log 1· ' 

79 

where M(1·) denotes the maximum of \F'(z)\ on [zl=1·. We define the 
lower order p' of P as follows : 

r>'=lim log log MC~2. 
-,;-,:ëO log ?' 

Let /(1·) be a positive and continuous increasing function of 1· in 
(0, oo) such that /(?')-+oo as ?'-+oo, and put 

o-=lim log{(?'). 
~--"" log 1· 

Denote by m(1·) the minimum of 1 P(z) 1 on 1 z 1 =r. 

5. W e will now prove 

Th 8 If 0 .-- < /1 eorem . . ~o- p....,___ 2 , 

(18) ;1.E(log m(?·)>f(1·))~(1-2p) (1- ;). 

Proof. Since O<p< -~, F'(z) may be represented in the form 

00 z 
F'(z) = a0 zl: II (1-~), a,,=FO. 

1 a,. 

As far as we are concerned with a study of the set of 1· on which log m(r) 

>!(1·), the most unfavourable case, fixing the moduli of zeros, will 
occur, for instance, when ali a,>O. Then m(1·) will evidently be as 

small as possible and M(1·) as large as possible. We will tllerefore 

consider without loss of generality, 

of which the order is unchanged ; m(1·) is always attained on the po­

sitive x-axis. 

8) This theorem is obtained by M. Tsuji in a more general case. See his paper quoted. 
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We now suppose that 

tt=ttE(log rn(t·)~f(r))>2(p-a-) +- Œ' -- ~ p 

Let D be the entire z-plane outside E. Replacing U, p, cp with log+ 

lf'(z)!, p+é(é>O), log'M(1·) in Theorem 1, we have in virtue of (7), 

/' Œ' 

p:::., 2( )' -J!.- . p-Œ 

since ~E~1 and é is arbitrary. This gives contradictory 

Renee· 

and so by (1), 

J!.~2(p-Œ)+ -~-. 
p 

PB(log rn(1·)-s:f(1·)).ç2(p-Œ)+ Œ' 
p 

~E(log rn(1·)>f(1'))~?;(1-2p) (1-- Œ' ). . p 

As a corollary we can state : 

If O<:"p< 1_ a;nd lim ~g f(?j=O, 
, - 2 "·•"" log 1· 

(19) [tE (log rn(1·)>f(1·))--', 1-2p. 

Es1Jeciallu if O<J.;< oo, 

(20) 11E(log rn(1·)>(log rY)~1-2p. 

We have also: 

If O<p< ~ and O<a<1, 

(21) tJ,E(log rn(1'L'>1''')_o;(1-2p) (1-a). 

Applying (6) we will reach by a similar manner : 

If O~rr<r/:;S:p< ~, 

ttE(log rn(1·f> f(1·)) ;~.;1- 2p- rr, (1- 2p'). .. p 

But we know at present a better result. In fact, in a preceding paper 9 \ 

the author obtained the following result : 

If O;::p<-}, 

(22) 

!o1· anu é>O. 

9) M. Inoue, Sur le module minimum des fonctions sousharmoniques et des fonctions 
entières d'ordre <~. Memoirs of the Fac. of Sei., Kyusyii Univ .• Vol. 4, No. 2 (1949). 
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Evidently this contains the above mentionned as a .special case. 
6. Applying Theorem 3 we obtain 

Theorem 9 . . If O=~(J"<P< ~, 

(23) ~E(log m(r)>fCr)) "'-1- 2p. 

81 

Proof. Suppose ~=~E(log m(r)<f(1'))>2p. Then, proceeding as 
in the proof of Theorem 8, we conclude from (14) that 

(J'À, p /' - . 
...._~-2 (p-(J")' 

that is, p~(J" since ~>2p. This is a contradiction. Renee 

~E(log m(r)<:;_f(r))<2p, 

and so by (12), 

~E(log m(r)>f(r))~1-2p. 

Corollary. If O<p< ~ 

(24) ~E(log m(1·)>1·?-")~1-2p 

fm· any é>O. 

This is a result recently obtained by M. Tsuji 10). 

7. Applying Theorems 4 and 6, we obtain 

Theorem 10. Let f(1·) be convex in log 1'. If Os:;(J"<P<{, 

(25) ,UE(log rn(1'D4(1'))?;: min !(l-2Jp), 2(p-Œ')j. 

Proof. Suppose 

;:LE (log m(1·)>fCr))<1-2p, 

so that 

t!E(log m(1·)~{(1·)f~.>Zp. 

Let B=E(log m(1·)<f(1·)), t,L=t.JcE, and let D be the entire z-pla:ne 
outside E. U(z) denotes the solution of the Dirichlet Problem for D 

and f. Consider 

W(z) =log 1 F'(z) 1- U(z). 

Then, by Theorem 6, U(z)?f(lzl) in D. Therefore W(z).:S-:0 everywhere 
onE and 

for any é>O such that f!>2Cp+é). According to Theorem 2, W(z) 

10) M. Tsuji, loc. cit. 
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...s:.O in D. Hence, by Theorem 4, 
1- fL 

log M( 1 z 1) < U(z)< const.l z 12+ a+e. 

in D for any é>O. Since é is arbitrary, this yields 

1-,u 
p::;_ -z +a-, 

so that 

f.l ::;_ 1-2 (p-a-). 

Finally by (1), 

"jiE(log m(r)>f(1·))> 2(p-a-). 

This proves the theorem. 

Consequently 

Theorem 11. Let f(1·) be convex in log 1·. If a-<2p --~-( <~ ), 
(26) #E(log m(1·)>f(1·)) :2:1- 2p 

and if 2p-_!_<a-<p<}_ . 2 -- 2, 

(27) ,uE(log m(1·)>f(1·)) :2:2(p- a-). 

We thus obtain the following 

Corollary. If 0/ _!_-pe:/é ---..___ 2 "-- ' 

(28) 

and if O<é< ~ -p, 

(29) 

But, for O<s<p(1-2p) ( <}-p evidently ), there exists by M. Tsuji 10) 

an integral function of order p( O<p< ~) such that 

(30) /LE(log 1n(1·)>1·?-E)<1-2p. 

The relation between fiE (log m(r)>1·?-E) and 1-2p for -}-p>s>p 

(1-2p) remains unknown. 

(Received July 21, 1950) 


