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On the Growth of Subharmonic Functions
and its Applications to a Study of the Minimum Modulus
of Integral Functions

By Masao INOUE

I. Growth of subharmonic functions.
1. Let F be a measurable set on the positive xz-axis and let
E(a, b) denote the part of £ contained in (@, b). We put

— o mE(, 1) aamE, )
P g A B g

where mFE(1, +) is the logarithmic measure of E(1, »), namely

mE (1,r)= g —.

B(1,")
Then clearly

ey pE+pCE=1,
CE denoting the complementary set of E.

We consider an infinite domain D on the z-plane such that z=—cc
belongs to its boundary B. Let D, denote a connected part of D con-
tained in |z|<r and B, its boundary lying on |z|=r. Then there
exists a bounded harmonic function in D, which assumes 1 on B, and
0 on the boundary lying in |z|<[r, except at points of a set of logari-
thmic capacity zero, namely the harmonic measure ,(z) of B, with
respect to D,. The following majoration of w,(z) is due to A. Beur-
ling V:

(@) o) ze” I
Let f(r) be a positive increasing function in (0, o0) such that f(s)

, =<

—oo0 as o0, and let U(z) be a positive subharmonic function in D
which satisfies the condition :
3) ImU(<2)f (="' ])

252/

for every boundary point z/, except at points of a set of logarithmic
capacity zero.? Put

1) A. Beurling, Etudes sur un probléme de majoration, Thesis, Upsala, 1933.
2) We say that an infinite set E is of logarithmic capacity zero, whenever any finite
subset of E is so.
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W(r) = Lub. U)

and

, . log f(»r
@ - =tim MeP
and suppose that there exists a positive increasing function @(») in
(0, o) such that
®) M) < g(r)<Coo
for all »(0<r<c0).
Let O be the whole z-plane and E the set of absolute values of
z which run over Q-D. We can then prove

Theorem 1. If li mgﬁ (7)/ o0 and p==plk >2(p—a) >0,

7-»c0

. limlog (@) op
© rlfe? logr = u—2(p—0)

and moreover if m=pE >2(p—a) >0,

IOgJﬁO) o1
@ 1{,«, log r <g-—2(p—o-)'

If l_i_ng%r)<oo and p>2(p—o0)>0,

lmlog M) . op
® et logr —p—2(p—0)

Proof. Suppose hm_—@<oo(p>a). Then, if R is large enough,

f(R)<KR? and M(R)<KR’
for a suitable constant K. Using (2), (4) and (5), we obtain

©) U(x)<f(R)+const. (KR —f(R)je "FIZHR)
<f(R){1+const. o7 "TNBR-ImE(=L R,
for every R(>|z|>0) and for any &>0.
Writing
(9) becomes
(11) U()<f(R){1+const. ¢! -1 B /108 Ry

Putting R=|z|'(|z|=r>1, a”>1), &(|z]|, R, &) is written as follows:

mE, %)  mEQ, 7)
log »* alogr *

@, 1, &) =2(p—0+&—

For any 5, >0, on the one hand,
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for all » sufficiently large; on the other hand, there exists a sequence
of values of 7-—oco such that

e e ang MEL Iy,
Thereby

O, r*, &)~ 2({)—o‘+5)-—/1/+ +7;(1+—~)
and

O, 7% < 2Ap—o+ =i+ ©otyl+ 1),

If 4 >2(p—0)>0, we can take & so small that u >2(p—o+&)>
Then we can choose « such that 2(p—o+&)— u+pu/a< 0, that is,

P A
A 2 —otE)

For such a « we can also find 4 and a positive constant & so small
that @ (r, », &< —8. For «a and 5 thus obtained,

580, 7% &) log, 0

as r,—oo. Hence, from (11),

U)frD1+etr)t (J2,|=r),

where &(r,)—0 as r,—o0, and so

hmlog S)Jb(r) <o
Froo log =
However a may be taken arbitrarily close to m) and, since
& is arbitrary, to - - (p BaS Thus we obtain the desired result:
H— o
(6) limlog W(r) - op

e log r  u—2(p—o)
Moreover, if p>2(p—a) >0, we can choose &, @ and 5 such that

w>2(p—o+8 >0, a>~T@~—o_——_'_—€)

and
e, r*, &< —38
for all » sufficiently large, & being a suitable positive constant. Then
U< for)i1+e@)) (J2]=n),
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where &()—0 as r—co. From this it follows just as before that

. log ‘l’ﬁ(")/ o
(7) e = =2 (r =)

Next suppose llmim(’ )/ “oo and p>2(p—o) >0. Then there exists

a sequence of values of r—co such that
U)<forDil+e))  (Jz]=7)

for aBﬂ 5 ( p where &()—0 as r—co. From this it follows as
before that
(8) limleg M) on

e log 7 p—2(p—0o)
The theorem is thus proved.
For later use we quote the following
Theorem 2. Let U(z) be ¢ subharmonic function in D. If lim U(z)

7

<K< co for every finite boundary point z', and if ﬁa‘?@g")< co (p>>0)
ryc0 I

and pE>>2p, then
UK in D,
where K is a constant®.
2, M. Tsuji first introduced the upper and lower strong logarith-
mic densities of £ as follows" :

NE= Tim MET 81 ang AE= lim mE(r, sr)
7, 5500 10g 8 rs3%  l0g s
Then
(12) 0NEL uBE <l <AE <1
and
(13) ' AE+\CE=1.

By means of the strong lower logarithmic density, we can state
the following

Theorem 3. If hm"mm./oo and N=MNE>2(p—o) >0,

rr00

3) M. Inoue, Une étude sur les fonctions sousharmoniques et ses applications aux
fonctions ho'omorphes, Memoirs of the Fac. of Sci., Kyasya Univ., Vol. 3, No. 1 (1943,

4) M. Tsuji, Wiman’s theorem on integral functions of order <(, to appear in the Proc.
Jap. Acad., where he uses the notations 1, A, A* and 2%, instead of w, y, 1 and A,
respectively. -
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mloE M) o
(14) 17'1-13:: log »r “A—2(p—0a)
If hmmm( oo and A >2(p—a) >0,
liml0g M) or

(15) e log SN 2(p—o)’

Proof. First suppose [im 202 co and A™>2(p—0)>>0. Here we

7 ron

obtain as before

(1) U< f(R){1+const. ¢ TR,

for every R(">|z|>0), where ¢ is chosen so small that )\ >2(p—o+¢&)
=>0.
Let 2 be-a finite positive value greater than 2(p—a+&)/A, and put

s(r)~71 8, R=rs(r), |z|=2. Then, if + is large enough,
. (). &< 2p— _ log s(r)
O, rs@r), &< 2p—a+8&— (A— )log P

log s
log »

for any ¢ >0. Since —/3 >S2(p—o+E)/N, we find, if & is small

enough,
o(r, rs(r), &< —38
for » sufficiently large, § being a suitable positive constant. Hence,
from (11),
U@)f(rs(r)fl+e&()},
where &(r)—0 as r—sco. From this it follows that

m=log M) _ o
1,13; log » =1= 3

However 2 may be taken arbitrarily close to 2(p—o+&)/A and, since
& is arbitrary, to 2(p—o)/A. Thus we obtain

limiog W () 23
14 13210 log » 7\ 2(p—0a)

Secondly suppose Q_nw%(f—)<oo and A >2(p—a)>0. We can then

see by a similar manner as in the proof of Theorem 1 that there
exists a sequence of values of 7, —oco such that

UG)<Sst) i1+ iz =),
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where &(r,)—0 as r,»c0. From this it follows as before that

li log im(r)_\/ oA )
(15) rlg’lo log r = A—2(p—0)

The theorem is thus proved.

II. Unbounded Dirichlet Problem *. .
3. Let E be an unbounded closed set on the positive a-axis and
D be the entire z-plane outside . Let f(») be a positive and conti-
nuous increasing function in (0, o) such that f(»)—oco as r—oco, and
put

We will then prove
Theorem 4. If p=prE >20, there exists @ harmonic function U(z)
in D, such that
U(x) =f(lz])
almost everywhere® on E and
1- Yhote
. U(z)< const. |z] 2
in D for any &>0.
Proof. Let o(z, ) denote a bounded harmonic function in D
which assumes 1 a.e. on E(», c0) and vanishes a.e. on E(0, #), that

is the harmonic measure of E(r, c0) with respect to D. If we put

(16) Ur(z>=—j:f(t>dw(z, ),

U.(z) is bounded and harmonic in D, assumes f a.e. on FK(0, ») and
vanishes a.e. on E(r, co).
U,(z) is written:

U= f(t)olz, t)]z+j:w(z, Haf(e).

For fixed z and for any & >0 such that £ >2¢&, we can find a positive
constant ¢, such that, for every t(C>t, >|z|),
—imE([zl,t)( 2

oz, )< w,(2)<2e

Then, for »>t, >|z]|,

5) The initiative of this problem was taken by M. Tsuji, see his paper quoted. The
main reasoning which follows is due to him.

6) ‘ almost everywhere” means ‘‘ except at points of a set of logarithmic capacity
zero” Hereafter we write for simplicity ‘“ a.e.” instead of ¢ almost everywhere ”’.
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U<rt) +2f, O

<)+ 2+ |, el

g2 —¢
Since # 27, it holds
f(t)< const. t*/2~¢

for every ¢ >0 and for any & such that 1/2—s > 0. Hence
UL)<f k) + 2255 v comst. | 1,
ps—¢ 1 tle—¢
and so
lim U, (2)< co,
provided & »é&'.

It is clear that U, z) is increasing function of » for fixed =z.
Hence lim U,(z) exists at each point z of D. Denoting the limit by

7300

U(z), we see that U(z) is expressible in the form
(17 U(z):—rf(t)dw(z, £
0

Evidently U(z) is harmonic in D and assumes f a.e. (at regular points)
on . We call U(z) (constructed in this way) the solution of the
Dirichlet Problem for D and f.

Now consider the expression (17). For every |z|(>1) and for any
&'(1>>28">0), we can choose a constant ¢ sufficientlv large so that

-smE (|z], 1)

Uz)<f(e|z]) +2 j afct)

)
c\2

H° d
<flelz])+2] 2| Sc'zl té/g(—t){’

From this we deduce for any & >0 and for any 5 such that #/2—q¢ >3 >0,
0 dt

O A

if & is small enough, for instance, &'<’¢. Putting »=p/2—0c—¢&/2 and
choosing ¢’ so small that 2&'<7¢, it follows that

L lore 1t
: —ptotere g
U(z)<_ const. |z|°"¢ + const.|z| 2 gl ez

U(z)<_ const. |z|”" € +const. Iz}gf

1-p
S pate
< const.|z| 2 :

This is the desired result. The theorem is thus completely proved.
4, We will now prove
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Theorem 5. Let V,(z) be a bounded harmonic function in D, which
assumes f(|z|) at each boundary point z, except at points of a set of
logarithmic capacity zero. Then, if pE >20, V,.(2) converges as r—oco
towards the solution of the Dirichlet Problem for D and f.

Proof. Let o,(z, ) denote a bounded harmonic function in D,
which vanishes a.e. on the boundary lying in |z|<t(<») and assumes
1 a.e. on the rest of boundary. Then clearly

ViR=f@o )~ |tttz 17

and

Uz —{ fOdoe, 7.
Hence

U&=V (&) — (o, (2).
Since p>2¢, f(Mw(2)-0 as r—co. Therefore

UE@)=lim U,(z) > lim V,(2).
On the other hand,

U= 1tz 0]+ [ o, Hirw

[fttate, 0]+ oz, narce

=V,(2)—f(No(z, 7).
Evidently f()w(z, r)—0 as r—sco. Therefore
U(z) < lim V,(2).

7300

Consequently
U()=1imV,(2), q.e.d.

Theorem 6. Let f(r) be convex in logr and let U(z) be the solution
of the Dirichlet Problem for D and f. Then U(z)=f(|2])-

Proof. By the preceding theorem, U(z):-lrirg V.(z). If we put
F@@)=f(|z]), B(z) is subharmonic in the whole z-I;lane. Hence V,(2) >
3()=f(|z|) in D, for any +>>0. Consequently U(z)>f(|z|).

As a special case of Theorem 4, we can state in view of Theorem
6,

Theorem 7. There exists a harmonic function U(z) in D such that

7) One may see wp{z)=ru(z, r).
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U(z) =|z|*
almost everywhere on E and
1-1E

|2|°=U(z)< const. |z| 2 ¢

in D for any p(0<p<#/2) and for any & >0%.
III. Applications.

Let F'(z) be a non-constant integral function of order p:

p=Tim log log M(»)
r-»0o log 9 ’

where M(») denotes the maximum of |F(z)| on |z|=r. We define the
lower order p’ of F as follows:

p'-:lim MQ
e log r

Let f(») be a positive and continuous increasing function of 7 in
(0, o0) such that f(»)—>co as r—co, and put

o=lim 108 7(1),
700 IOg ’l'

Denote by m() the minimum of |[F(z)| on [z|=".
5. We will now prove

Theorem 8. If 0_,<;(r<p<; ,
(18) nE(og m(r)>f() 2(1~2p) 1=

Proof. Since 0<_ p<~%~, F(2) may be represented in the form

z
(1

Flz) =a,e* T (1——), a,=0.
1

"

As far as we are concerned with a study of the set of » on which log m(»)
~>f(r), the most unfavourable case, fixing the moduli of zeros, will
occur, for instance, when all ¢, >0. Then m(r) will evidently be as
small as possible and M(») as large as possible. We will therefore
consider without loss of generality,

(@) =lao|e" (- o), @, 0,

of which the order is unchanged; m(r) is always attained on the po-
sitive z-axis.

8) This theorem is obtained by M. Tsuji in a more general case. See his paper quoted.



80 Masao INOUE

We now suppose that
p=pE(log m(r)<f())>2(p — o) +- ‘; .

Let D be the entire z-plane outside £. Replacing U, p, ¢ with log*
|F'(z)|, p+&@E>0), logt M(r) in Theorem 1, we have in virtue of (7),

pggjz%——w,
since xF <1 and ¢ is arbitrary. This gives contradictory

p2p—0)+ 2
Hence

nlilog m(r) <f()<2(p—c)+ 7
and so by (1),
rE(log m(r) >f()=(1—2p) (1— % )-
As a corollary we can state:

If 0\/\,0(% and lim I_Og_f(;_-):

7300 1 g ’
(19) rE(log m(r)>f(1))=1—2p.
E'specially if 0< koo,
(20) nE(log m(») >(log )*)=1—2p.

We have also:

If O<p<%— and 0<a<1,'

(21) pElog m() >r"7) 2 (1—2p) (1—a).
Applying (6) we will reach by a similar manner:
) ;

If 0 p'<p-"

9
HE(log m(r)>f(r)) 21— 2p— 7 (12,
But we know at present a better result. In fact, in a preceding paper *,
the author obtained the following result:
If 0<p< L,

(22) rE(0g m(r)>1*'-))=1-2p
for any &>0.

9) M. Inoue, Sur le module minimum des fonctions sousharmoniques et des fonctions
entiéres d’ordre <4, Memoirs of the Fac. of Sci., Kyasya Univ., Vol. 4, No. 2 (1949).
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Evidently this contains the above mentionned as -a special case.
6. Applying Theorem 3 we obtain

Theorem 9. If 0<o<p<_ ; ,
23) | NE(log m(r)>f(r) - 1—2p.

Proof. Suppose A=AE(log m(r)<f(r))">2p. Then, proceeding as
in the proof of Theorem 8, we conclude from (14) that

p< oA .
“A=2(p—0)’
that is, p<o since A_>2p. This is a contradiction. Hence
AE(log m(r)<f(r)<2p,

and so by (12), ,
AE(log m(r)>f(r)) =1—2p.
Corollary. If 0<C p<é

(24) AE(log m(1)>1"-%) =1-2p
for any &>0.
This is a result recently obtained by M. Tsuji .
7. Applying Theorems 4 and 6, we obtain

Theorem 10. Let f(r) be convex in logr. If 0<o<p<_ —%,

(25) pEog m(»)_~f(1)) = min {(1—2p), 2(p—a)}.
Proof. Suppose
nE(og m(r)_>f (1)< 1—2p,
so that
rE(log m(r)<f(r))_>2p.
Let E=FE (log m(»)<f(r)), p=pFE, and let D be the entire z-plane
outside E£. U(z) denotes the solution of the Dirichlet Problem for D
and f. Consider
W(z) =log|F(z)| —U(z).
Then, by Theorem 6, U(z)>f(|z|) in D. Therefore W(z)<0 everywhere
on K and
max W (z)
lim |

7yeo Pprr

for any & >0 such that g -2(p+¢). According to Theorem 2, W(z)

10) M. Tsuji, loc. cit.
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<0 in D. Hence, by Theorem 4,
1-¢
log M(|z])<U(z)<comst.|z| 2
in D for any &>0. Since & is arbitrary, this yields

pgl“_z__l;b+a':

+o6+-¢e

so that
p<1-2(p—0).
Finally by (1),
sE(log m(r)>f(1)=2(p— o).
This proves the theorem.
Consequently

Theorem 11. Let f(+) be convex in logr. If o<2p -—%—(<~%—),

(26) pE(log m(r) >f(r)) =1-2p
and if 2p-—-é—§20<P<*1~,
(27) rE(log m(r) >f(1)) =2(p — o).

We thus obtain the following
Corollary. If 0<—%—~p<6,
(28) (10 m(r)>r"-921—2p
and if O<e<%— b
(29) pE(log m(r) >r?~%) >2¢.
But, for 0< < p(1—2p) (<»%——p evidently ), there exists by M. Tsuji ™»

an integral function of order p(0<p< %) such that
(30) E(log m(r)>r*-)<1—2p.
The relation between nE (logm(r)>r?~%) and 1—2p for -%——p>8>p

(1—2p) remains unknown.
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