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Abstract
We introduce a modified rack algeb#{ X] for racks X with finite rack rank
N. We use representations @f X] into rings, known asrack modulesto define
enhancements of the rack counting invariant for classiodhartual knots and links.
We provide computations and examples to show that the neariamis are strictly
stronger than the unenhanced counting invariant and areeatetmined by the Jones
or Alexander polynomials.

1. Introduction

First introduced in [1], aguandle modulés a representation of an associative al-
gebraZ[ Q] known as thequandle algebradefined from a quandl€. In [3] quandle
modules were used to define knot and link invariants inclydiome enhancements of
the quandle counting invariant. In [7] a generalized notidrrack modules defined in
terms of trunks was introduced.

In this paper we introduce a modified form of the rack algelmarécks with fi-
nite rack rank and use the resulting representations intdutee over finite rings to
define new enhancements of the rack counting invari@ftfrom [9]. These new en-
hancements specialize t% but are able to distinguish many knots and links with the
same®% values, and hence are strictly stronger invariants. Weigeogxamples which
demonstrate that the new enhanced invariants can dissimdunots with the same Jones
and Alexander polynomials.

The paper is organized as follows. In Section 2 we review #ds of racks and
the rack counting invariant. In Section 3 we define the ragelala and resulting rack
modules. In Section 4 we use finite rack modules to define ndvarerements of the
rack counting invariant. In Section 5 we give examples anscidee our methods of
computation of the new invariants. In Section 6 we collecea bpen questions and
suggest directions for future work.

This paper is the end result of a summer 2010 project peridroyeThe Fletcher
Jones Fellowships in Mathematics in the Claremont CenteMathematical Sciences,
a summer undergraduate research program at the Claremdag€X The authors are
grateful to the Fletcher Jones Foundation for funding thigget.
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2. Rack basics

In this section, we review some rack basics needed for subsécections. We
begin with a definition from [4].

DEFINITION 1. A rack is a setX with an operation> : X x X — X satisfying
the following axioms:
(i) for all x,y e X, there exists ainique ze X such thatx = z»>y, and
(i) for all x,y, ze X, the equation

xXey)pz=Xr2)>(y>2)
is satisfied.

Note that Axiom (i) is equivalent to the following:
(") there exists a second operation': X x X — X such that for allx, y € X

xepy)pty=x=(x>ty)y.

As shown below, the operation denotes a crossing from right to left given the
positive direction of the over-crossing strand. Convgtstile operation-—! denotes a
crossing from the opposite direction.

A X

If we regardx, y € X as two labels on arcs in a knot diagram, as shown below,
we see that axioms (i) and (ii) correspond to Reidemeisteresdl and Ill.

T T (zpy)> 2 (z>2)>(y>2)
j K \ k >z
< - AN
by ~ " Yoz
) N A
Yy T y T z Y z z y

The equivalence relation on knot diagrams generated by #ideReister 1l and
Il moves is known asegular isotopy and labelings of links by racks are preserved
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by regular isotopy moves. Rack colorings are also presebyetthe blackboard-framed
type | moves which preserve the writhe dslackboard-framing

ExampLE 1 (Constant action racks). Given a €t we can define a binary op-
erationx > y = o(x), wherex, y € X and the bijectiors: X — X is any permutation
in the symmetric groupSx on X. Then under the operation, X is a rack, since
>1=o"1(x) and

xpy)pz=0c(Xpy)=03(X)=0(x>2) = (X>2)>(y> 2).

EXAMPLE 2 ((t, s)-racks). A €, s)-rack is a moduleX over A = Z[t*?, s]/(s? —
(1 —1t)s) under the operations

ly=tIx—tlsy.

X>y=tx+sy and x>
Convenient examples of,(s)-rack structures include:
e X =Z, with a choice ofs € Z, andt € Z; satisfyings? = (1—t)s, e.g.Z4 with
t=1 ands =2,
e X =A/l for an ideall, e.g. A/(t? + 1),
e X any abelian group with an automorphismX — X and an endomorphism X —
X satisfyings? = (Id —t)s = s(Id —t).
If s=1—t then our {, s)-rack is a quandle, known as alexander quandle

DEFINITION 2. Analogous to a Cayley table for a groupraek matrix describes
an operation> on a finite rackX = {Xy, X2, ..., Xn}. The entryk of the rack matrix in
the i-th row and j-th column is defined to be the subscript)af wherex, = x; > Xj.

ExAMPLE 3. The following are the rack matrices of the constant actamk X =
{X1, X2, X3, X4} with o = (1234) and thet(s)-rackY = Z, with t =1 ands = 2:

My = My =

B A WwN
B D wN
B WwN
B D WwN
N P AW
hWN R
N PR W
hWN R
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Every tame blackboard-framed oriented knot or lihkhas afundamental rack
FR(L) consisting of equivalence classes of rack words in a seteoegators corres-
ponding one-to-one with the set of arcs in a diagramLomodulo the equivalence
relation generated by the rack axiom relations and the icr@s®lations inL. If we
wish to specify explicitly the writhe vector or blackboardming vector ofL, we will
write FR(L, w) wherew = (wy, ..., w,) and wy is the writhe of thek-th component
of L.

For a given framed linkL and rack X, the number of rack labelings of the arcs
in L by rack elements is an invariant of framed isotopy known as kthsic count-
ing invariant denoted|Hom(F R(L), X)| since each labeling determines a unique rack
homomorphism fromF R(L) to X.

DEFINITION 3. Let X be a rack. For every elememrte X, the rack rank of x,
N(x), is the minimal integeMN such thatrN(x) = x where thekink mapmz: X — X
is defined byr(x) = x> x. Therack rank of X, N(X), is the least common multiple
(Icm) of the rank ranks ok € X:

N(X) = lem{N(x) | x € X}.

If X is finite, then the rack rank is the exponent of the kink majgonsidered as an
element of the symmetric grou$y.

Rack labelings of knot and link diagrams by a ra¥kare also preserved by the
N-phone cord movavhere N is the rack rank ofX:

L. NR
n%(z) w(x) x

N(:c): T

™

!

In [9] it is noted that if a rackX has rack rankN, then the basic counting in-
variants are periodic ifN on each component, and thus the sum of these basic count-
ing invariants over a complete set of writhe vectors mds an invariant ofL up to
ambient isotopy.

DEFINITION 4. Theintegral rack counting invariantof L with respect toX is
defined as:

%(L) = Y [Hom(F R(L, w), X)]
weW
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where X is a finite rack,L is a link with ¢ componentsN = N(X) and W = (Z)°.

ExamMPLE 4. Let us find the set of rack labelings of the Hopf litk by the
constant action rackaz) = {1, 2} with o = (12). The labeling rule here says that
when crossing under a strand with any label, a 1 switches toaad?vice-versa. In
particular, in this rack we always have# x >y for all x, y. The rack rank is 2, so
we need to find rack labelings over diagramslofwith all writhe vectors in Z,)? =
{(0,0),(0,1),(1,0),(1,3) The diagrams of the Hopf link with writhe vectors (0,0), 1D,
and (1, 0) have no valid rack labelings b, since each of these diagrams requires a
relation of the formx = x> y:

l':xby Z:Z|>y I:xby
y:nyE I:yDZ y:ZD:L‘
y:l’bx Z:yDZ

while the (1, 1) diagram has four vali®-labelings:

Hence, the integral rack counting invariant of the Hopf lmikh respect toX is ®%(H) =
0+0+0+4=4.

3. The rack algebra and rack modules

In this section we recall and slightly reformulate the noticof the rack algebra
and rack modules from [1, 3, 7].

Let X be a finite rack with rack ranlN. We would like to define an associative
algebraZ[ X] determined byX. One way to do this is to modify the,§)-rack structure
described in Section 2, giving each pak, ) € X x X its own invertiblet,, and
generics,y. Let Q[X] be the freeZ-algebra generated by thesg, and txii The
rack algebraof X, Z[X], will be a quotient of Q[ X] by a certain ideall .

To see the multiplicative structure &[X] = [X]/I, it is helpful to see a geo-
metric interpretation. Let be a fixed knot or link diagram with a fixed rack labeling
by X. We would like to consider secondary labelings lofby elements of the rack
algebraZ[ X]. In [3] these secondary labels are pictured as “beads” ensthands of
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the knot or link. The basic bead-labeling rule is the ustg$)(rack rule, with the ex-
ception that the beads at a crossing use the spégifi@nd s, y associated to the rack
labels on the right-hand underarc and overarc as illustrate

x

>y

I
Y

=1z ya+ Sgyb

REMARK 5. Note that this rule does not make use of the orientatiorhefun-
derstrand. With rack labet on the underarc on the right-hand side when the overarc is
oriented upward and rack labglon the overstrand, the rack algebra labelsamn the
right-hand underardy on the overarc and = ty ya + s, yb on the left-hand overarc.

—1

Ty >y

T
Y T €T Y
c =1z ya+ Spyb cz%a—i—%b

We can also (as in [3]) formulate the rack algebra labelinig in terms of the

inbound arcs at a negative crossing; first we define eleniggts- t;ilyy and3 y =

—t;bl,ly‘ysxyly,y. Then we can express the label on the outbound underarc ajadivee

crossing with inbound rack colors, y as

c=Hya+syb=1tl a-tli seyb.

We would like to find the conditions required to make labediog a rack-labeled dia-
gram by rack algebra elements invariant under rack-labeleckboard-framed isotopy.
We will then define the rack algeb@{ X] by taking a quotient by the idedl generated
by the elements we must Kill to obtain invariance undecolored blackboard-framed
Reidemeister moves. In [1, 3] the special case whérie a quandle, i.e. a rack of rack
rank N(X) = 1, is considered. To extend this definition to the case ofgawith finite
rank N > 1, the Reidemeister moves we need are the standard type llllantbves
together with the blackboard-framed type | moves andNhphone cord move.
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The Reidemeister Il and blackboard-framed type | moves doimpose any con-
ditions due to our choice of crossing rule:

—1

/g b % .
4 [
®

xby\ xl>x\

\a) t

| %

Yy z (f x>ty
c=1y,0+ Sz, b= (tyz+ Sux)a b="tu—1,.0+ Spp-14.0

The Reidemeister Ill move gives us three conditions which reeognize as in-
dexed versions of thet,(s)-rack conditions:

Comparing coefficients om, we must have

tx>y,ztx,y = tx>z,yl>ztx,21 tx>y,zsx,y = Sx>z,y>zty,z

and

Skoy,z = SkezyrzSy,z + tx>z,y>zsx,z-
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Finally, for defining counting invariants we will need-phone cord move compatibility.

aV=1l(x) w*(x)  w(z) x

Going though thékth kink multiplies our rack algebra element by a factot,@f,) ) +
Sek(x),7k(x)» SO N-phone cord invariance requires that the product of thestrfs must
equal 1:

N-1

l_[(trrk(x),nk(x) + Stk (o) = 1.
k=0

Thus, we have:

DErFINITION 5. Let X be a rack with rack rantN and letQ[X] be the freez-
algebra generated by elememfg} ands, y wherex, y € X. Then therack algebraof
X, denotedZ[X], is Z[X] = [X]/I where | is the ideal generated by elements of
the form
4 tx1>y,ztx,y - tx>z,y>ztx,zi
L4 tx1>y,zs><,y - Sx>z,y>zty,21
L4 S>(>y,z - Sx>z,y>zsy,z - tx>z,y>zsx,z and
o 1T eSo ek, + Sexgonico)

A rack module over Xor a Z[ X]-moduleis a representation dZ[X], i.e., an abelian
group G with isomorphismst, y: G — G and endomorphisms, y: G — G such that
each of the above maps is zero.

ExamMPLE 6. Let X be a rack and lety be a ¢, s)-rack. ThenY is a Z[X]-
module viat,y =t ands, y = s for all x, y if and only if N(X) = N(Y).

REMARK 7. Let X be a rack of rack rankN and let G be an abelian group
with isomorphismst, y: G — G and endomorphisms, y: G — G. The rack module
condition is equivalent to the condition that the cartegiaoduct X x G is a rack of
rack rankN under the operation

(X, 9) > (y, h) = (X> Y, tx,y(9) + S¢,y(h)).
Such a rack is usually known as amtension rackof X.

For the purpose of enhancing the rack counting invariant, waat to find ex-
amples of finite rack modules. Probably the simplest way tiese this is the follow-
ing: let X be a finite rack and leR be a finite ring with identity, e.gZ, or, for a
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non-commutative example, the ring,(Z,) of m x m matrices overzZ,. We can give
any R-moduleV the structure of &[X]-module by choosing elementg, € R* and
S«y € R satisfying the rack module relations for ad] y € X.

We can express &[X]-module structure onR conveniently by giving a block
matrix Mg = [M;|Mg] with block matricesM; and Mg indexed by elements oK =
{X1, ..., %n}, i.e. the elements in row column j of M; and Ms respectively ardy,y,
andsy.y, -

EXAMPLE 8. Let X be the constant action rack on the §&2} with permutation
oc=(12),letR=Zzand sets;; =S, =1,So=S1 =2 andty; =t =ty =t = 1.
It is straightforward to verify that the rack algebra redat are satisfied, and thus we
have a finiteZ[ X]-module structure orZs with rack module matrix given by

1 1)1 2
MR_|:1 1|2 1}'

ExamMPLE 9. LetL be a fixed oriented link diagram with ares, ..., a, and let
f be a rack labeling of. by X. We can regardf € Hom(F R(L), X) as a rack homo-
morphism from the fundamental rack af into X or as a link diagram with a fixed
rack labeling. Such a labeling determines a rack modijlé] = Z[X][ay, ..., a,]/C
where C is the submodule determined by the crossing relations atithssings ofL.
For instance, the trefoil knot diagram below with the pietlirack coloring defines a
rack module with the listed presentation mathdg; ;.

1
m tiz —1 si3
@\@ Mzifp=| =1 s2 a3
t -1
5 9 S1 1

REMARK 10. We note that in the case whekxeis the trivial quandle with one
element, we havé;; =t, g1 =sand ¢+ s) =1 impliess = 1—t, and Mg+ is a
presentation matrix for the Alexander quandle Laf

4. Rack module enhancements of the counting invariant

In this section we use finite rack modules to enhance the ragktimng invariant.

Let X be a finite rack with rack ranlN, L an oriented link ofc ordered compo-
nents, andW = (Zy)°¢ the set of writhe vectors oE mod N. Recall from Section 2
that theintegral rack counting invarianof L with respect toX is the sum

%(L) = > [Hom(FR(L, w), X)|
weW



480 A. HaAs, G. HECKEL, S. NELSON, J. YUEN AND Q. ZHANG

counting the total number of rack labelings bf by X over a complete period of
writhes modN.

Now let R be aZ[X]-module. For each rack labeling € Hom(F R(L, w), X) of
L by X, we can ask how many associatBdabelings of the diagram there are. Such
a labeling is a homomorphism @&[ X]-modules¢: Z[ f] — R. We can find the set of
all such labelings from the presentation matrixZjff ] by substituting in the values of
tvy ands,y in R and finding the solution space of the resulting homogeneysies
of linear equations irR. Denote this set by Hori( f], R).

By construction, the set Homi( f], R) of R-labelings of f is invariant underx-
colored blackboard-framed Reidemeister moves ldrghone cord moves, and thus gives
us an invariant signature of thé-labeling. The multiset of such signatures over the set
of all X-labelings{Hom(F R(L, w), X): w € W} gives us a natural enhancement of the
rack counting invariant.

DEFINITION 6. Let X be a finite rack with rack raniN, L an oriented link of
¢ ordered component8V = (Zy)® and R a finite Z[ X]-module. Therack module en-
hanced multisebf L with respect toX and R is the multiset

Y (L) = {Hom(Z[ f], R): f € Hom(FR(L, w), X), w € W}.

For ease of comparison, we can take the cardinality of eadheofsets of rack mod-
ule homomorphisms to get a multiset of integers, thek module enhanced count-
ing multiset

®YE(L) = {|[Hom@[ f], R)|: f € Hom(FR(L, w), X), w € W}.

The generating function ofD%é(L) is a polynomial link invariant, theack module
enhanced counting invariant

Oy r(L) = Z( > uHom(Z[f],Rn)_

weW \ f eHom(F R(L,w), X)

Theorem 1. For any finite rack X and rack module,RD>’\{"R(L), dy r(L) and
®yx r(L) are invariants of classical and virtual knots and links.

ExamPLE 11. Let X and R be the rack and rack module in Example 8. Every
knot has exactly two labelings by in even writhe and zero labelings in odd writhe, so
the integral rack counting invariant for any knotdsg;(K) = 2. However, this smallest
possible non-quandle rack with a choice ZfX]-module structure orZ; nevertheless
detects the difference between the two smallest non-rinats, the trefoil 3 and the
figure-eight knot 4.
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The X-colored trefoil knot below has the listeZl f] presentation matrix.

1
1
‘\@\ -1 0 0 tot+tsp2
Mg = tty -1 s 0
- 0 s12 o -1
2 0 tr -1 2,2
2

Substituting in the values o,y and s,y in R and thinking of the matrix as a co-
efficient matrix for a homogeneous system, we find there aret& tack algebra la-
belings; note that the symmetry in the indiceshtk implies that the otheiX-labeling
yields the same number d®-labelings, for an invariant value a@fx r(3;) = 2u®

QO FrLrN
= NN O
NP~ P, O
R NONDN
O O Ok
O O r o
O ON O
OO Fr Pk

Comparing this with theX-colored figure eight knot 4 we find that the space of
Z[ X]-colorings has only three elements:

2
1
thy 0 s, -1
© M:tz,l—losz,l
9 S22 —1 tz 0
1
1 0 1 2 1 0 0 1
1 2 0 2 01 0 2
—
0 2 1 2 0 0 1 1
1 2 1 0 0 0 0O

Thus, we havedy r(41) = 2u® # 2u® = ®y r(31), and the rack module enhanced in-
variant is strictly stronger than the rack counting invatia

REMARK 12. In the special case wheR is a commutative ring and,, and
sy are elements oR, we do not neeR to be finite in order to have a well-defined
computable enhanced invariant. Replacing the the numbeaR-labelings with the di-
mension of the space dr-labelings yields a computable invariant we might call the
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dimension-enhanced rack module counting invariant

odm(L) = Z( Z ydim(Home[ f1, R)))_

weW \ feHom(F R(L,w), X)

Indeed, if R is a PID, <1>g*g{g carries the same information aby g, though if R has
torsion then®yx g will generally contain more information.

REMARK 13. Let X be a rack andR a finite Z[ X]-module. As noted in Re-
mark 7, the cartesian produat x R is a rack under

(x, @) > (y,b) = (x>, tyya + S yh).

The rack module enhanced counting invarigng r is then related to the integral rack
counting invariant with respect to the extension ratk R by

% (L) = Y [H],

Heol o(L)

i.e., ®% (L) is the sum of the exponents in the terms &k . In particular, we
can understandbyx g as an enhancement d@% . defined by collecting together the
labelings ofL by the extension rackk x R which project to the same rack labeling of
L by X.

REMARK 14. Note that all of the preceding extends to virtual knotd nks in
the usual way, i.e., by ignoring any virtual crossings. Sglef¢r more.

5. Computations and Examples

In this section we collect a few examples of the rack moduleaaned invariant.

ExaMPLE 15. Let X and R be the rack and rack module used in Examples 8
and 11. The virtual knots labeled, &nd % in the knot atlas [2] both have a Jones
polynomial of 1. Since the rackk has a rack rank of 2 and each knot has writhe 1,
we must also account for colorings of each knot with the @aluibf a positive kink.

In fact, the only valid colorings of both virtual knots; &nd 3 by the rack are the
colorings of the knots with even writhe. One possidecoloring of the virtual knot
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3, with its presentation matrix is:

-1 0 —t,3:

S0 112 -1
1 -1 0
0 0 to1

Substituting the values from the rack moduReyields a matrix that may be reduced
as follows:

1 2 0 2 1100
0 21 2 0110
—

21 20 0 011
1 0 0 1 0 00O

This row reduced matrix shows that there are three possiuk module colorings. In
addition, the other possible coloring of this knot is symmigeto this coloring so the
3; virtual knot has a rack module enhanced counting invariérus.

In contrast, the Bvirtual knot has presentation matrix

i -1 i1 0
Mz = -1 —t3s12 0 t3

.1 th -1 0

0 0 t1,2 S2—1

derived from the coloring:

The module values yield a presentation matrix that may beaed as follows:

1 210 1 210
21 01 0011
—>
21 20 0 00O
0 011 0 00O
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This matrix indicates that the;3sirtual knot with this coloring has 9 rack module col-
orings. The 3 knot also has one additional rack coloring, which is symioetr the
given coloring, so the rack module enhanced invariant fer 3p virtual knot is 21°.
Both 3, and 3 have a Jones polynomial of 1, yet their rack module enhanocedte
ing invariants are different, . # 2u®, which shows that the the rack module enhanced
invariant is not determined by the Jones polynomial.

ExaMPLE 16. The rack module enhanced counting invariant is also eterd
mined by the Alexander polynomial. Knotgg8and 94 both have the same Alexander
polynomial, —t3 4 5t2 — 10t + 13— 10t—* 4+ 5t=2 —t 3. Using the two element constant
action rack and module used in Examples 8, 11, and 15, the &pohas two rack
colorings, one of which is illustrated below.

The presentation matrix of;8 is:

T 0 0 0 thy -1
t53 -1 0 —ty3%2 O 0 0
0 —tls, O 0 0 0 i -1
Mo = 0 ty -1 0 s; 0 0 0
-1 0 .1 0 0 0 0 to1
0 0 5 -1 0 —tls, O 0
0 0 0 thy -1 0 1 0
. 0 0 0 0 t53 -1 0 —t7352 |

which can be reduced as shown after substituting in valums the module:

20000 1 2 0 120200 0 0
12020000 01202000
02000012 00122000
01202000 _[00011121
20200001 0000120 2
00120200 0000O0TO OO OO
00012020 0000O0GOO OO
00001202 |00000O0GO0O0 O
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This matrix indicates that there are twenty-seven rack rieodalorings of the knot 8,
yielding an invariant value of &’ since there is one additional rack coloring due to
the symmetry of the rack and rack module used.

The knot 94 requires a writhe adjustment by adding one positive kink lideo
to have a valid coloring by the rack, which yields the knothwfiresentation matrix
shown below.

"1 -1 0 0 0 0 0 -tHix, 0 O

0 —t3%, 0 O 0 0 3 -1 0 0

0 tp -1 0 0 0o 0 0 0 0

-1 0 $;0 0 0 0 o0 0 s

1 0ty -1 0 0 0 o0 0 0

Mzin=|1 0o 0o 0t} -tls;-1 0 0 O 0 0
0 0 0 0 ~tls: 7 -1 0 0 0

0 0 0 0 -1 0 0 —tis: 0

O 0 0 O 0 —4is, 0 0 -1
0o 0 o0 o0 0 0 1t -1 0

After substituting in the values from the rack module, thetriracan be reduced to
the form:

OO0OO0OO0ORrRNOOOO
OORrRNRPROOOOO
ONNROOOOOO
NP PR OOOOOOO
ONOOOORr L OQg
OO0OO0OO0ORrRrROOOOO
OO0OO0OFrOO0OONOO
OCORPPRPOOORON
OoOrONOOOOO
Qoo O0ORRFLPRONEg

O OO 00000 Oor
[eNeNelNelNolNolololl Sl
OO OO0 O0OoOoOrFrNOo
OO0 OO0 O0Okr O0O0o
[eNelNelNelNel B ool

OO O0OO0OOFr,NOOLR
O OO OO OOFrDNNDN
O O O0OO0OOFr,NDNODO
NOONOOOORrO
P OO OOOOONNDN

The reduced matrix shows that there are nine colorings efkhot by the rack module.
The other coloring of the knot by the rack yields an additlomae colorings so the
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rack module enhanced invariant for the knot & 2u°. Since 2?7 # 2u°, the rack
module enhanced counting invariant is not determined byAtlezander polynomial.

Our next examples give a sense of the effectiveness of sommpes of dx g
using racksX and rack moduleR = Z, chosen at random from the results of our
computer searches.

ExAmMPLE 17. Let X be the quandle with quandle matrix given by

1
Mx =1| 3
2

= N W

2
1
3

Via computations in python, we selectedZf§X]-module structure orR = Zs given by
the rack module matrix

4 2 3|12 11
Mr=1|1 4 2|2 2 3
1 3 43 2 2

and computed the knot invariant for all prime knots with up8t@rossings, all prime
links with up to 7 crossings as listed in the knot atlas [2f tmknotU, the square
knot SK and granny knotGK, and unlinks of two and three componetis and Us.
The results are collected in the table below.

Dx M L
3u° | U,5;,6,63,71, 72, 73, 75, 76, 81, 8, 83, 84, 86, 87, 812, 813, 814, 817
L2al,L4al,L5al,L6a4,L6nl,L7a3,L7a4,L7a6,L7nl,L7n2
3u® + 6u?° 31,61, 77,85, 810, 811, 815,819, &0, L6al,L6a3,L6a5,L7al,L7a5

3u® 4 12u2% + 12u'% | SK,GK

3u?® | 44,5,,85,89,85 L6a2,L7a2,L7a7

9U25 74,Us

27U | 845,81, %, %4,Us3

ExAMPLE 18. Let X be the rack with rack matrix given by
2 2 2
Mx=1]1 1 1
3 33

Via computations in python, we selectedZf§X]-module structure orR = Zs given by

111 4

Mr=|1 1 1 4

111

o O O

0
0
0

o



RACK MODULE ENHANCEMENTS OF COUNTING INVARIANTS 487

and computed the knot invariant for the same set of knots @ukdals in Example 17.
For all of the knots in our list, the invariant value dsy y = 4u®. Our results for links
are collected in the table below.

CDX,M L
8u® + 8u?® | L2al, L4al, L6al, L6a2, L6a3, L7a2, L7a5, L7a6, L7nl
16u%° | U,, L5al, L7al, L7a3, L7a4, L7n2
48u2° + 16u'?® | L6a4, L6a5, L6nl, L7a7
64{]125 U3

Our pyt hon and C code for computing rack modules and their invariants islavai
able for download atww. esot eri cka. or g.

6. Open questions

In this section we collect a few questions for future inwgestion.
e If X is a {, s)-rack with rack rankN = 1, i.e. an Alexander quandle, thef is
a rack module over the trivial quandle with one eleméitwith t;; =t ands;; =
1—t. In this scenario, the integral rack counting invarig@rit(L) is related to the rack
module enhanced counting invariadiy, x by

Dy x(L) = u®®),

How does this relationship generalize whinhis a larger {, s)-rack?

e Other enhancements of the rack counting invariant using raodules are pos-
sible; we have only scratched the surface with the most agiencement. What other
enhancements ob% using rack modules are possible?

e What enhancements @by y are possible?

e What approach might we use to categorify these invariants?

e How is ®x v related to other knot and link invariants?

e How do rack modules extend to the case of virtual racks, aeks with a non-

trivial action at virtual crossings?
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