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Abstract

Let f(x) be a monic polynomial irZ[x]. We have observed a statistical relation
of roots of f(x) mod p for different primesp, where f(x) decomposes completely
modulo p. We could guess what happensfi{x) is irreducible and has at most one
decompositionf (x) = g(h(x)) such thatg, h are monic polynomials oveZ with
h(0) = 0, 1< degh < degf. In this paper, we study cases thathas two different
such decompositions. Besides, we construct a series oh@alials f which have
two non-trivial different decomposition$(x) = g(h(x)).

1. Introduction
Let
f(x) = X"+ a1 X"t 4+ ax + ag € Z[X]
be a monic polynomial with integer coefficients. We put
Splf) ={p]| f(x) mod p is completely decomposable

where p denotes prime numbers. Let, ..., r, (ri € Z, 0<r; < p—1) be solutions
of f(x) =0modp for p € Sp(f); thena, 1+ > ri = 0modp is clear. Thus there
exists an integeC,(f) such that

(€] a1+ » 1 =Cp(f)p.
i=1

If f(x) has no rational roots, then we have<lCy(f) < n — 1 with finitely many
exceptional primes.
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By defining the natural density

#HplpeSplf), p=X, Cp(f)=k}
#HplpeSp(f), p=X}

(2 Prk, f, X) =

the limit
Pr(k, f) = ><Iim Pr(k, f, X)

seems to exist ([1], [2]).

If a polynomial f is of a form f(x) = g(h(x)) for polynomialsg(x), h(x) with
degh = 2, thenCp(f) = (degf)/2 holds with finitely many exceptionp € Splf)
([1]). They and linear forms seem exceptional polynomiais Which Pr(k, f) can
be evaluated explicitly. Hereafter we exclude such polyiatsnand assume that
is irreducible.

First, suppose thaf does not have a decomposition such tHgk) = g(h(x)),
where g, h are polynomials oveQ with 1 < degh < degf. We call it non-reduced.
Letry,...,ry be roots of f mod p for a prime p € Spl f); then the relation (1) implies
that) ri/p tends to an intege€,(f) if p — oo, hence pointsrg/p,...,r,/p) € [0, 1)
are not distributed uniformly. However, by consideringpoints ¢i,/p, ..., ri,,/p) €
[0, 1)1 for all n — 1 ordered choices of roots impartially, it is likely that seeare
uniformly distributed in [0, 1V"* when p(e Spl(f)) — oo. Here the definition of the
uniform distribution is an ordinary one, numbering pointsriumerical order ofp €
Spl(f) with arbitrary numbering for the same. If it is true, it is known ([2]) that

AN —1,K)

3) Prik, ) = = =5,

(= En(K) say),

where A(m, k) is the Eulerian number defined by the following rules:

A(m, k) =0 unless I=k <m, and
{A(l, 1)=1, A(m k) = (m—k + 1)A(m -1,k — 1) + kA(m — 1, k).

In fact, numerical data by computer support (3). (See [1, 2])
Next, suppose that there is a decomposition

(4) f(x) = g(h(x)) (2 < degh(x) < deg f(x)),

where we normalize the decomposition so tgah are monic anch(0) = 0. We call
h(x) a reduced kernel off (x) and the degree dfi(x) a reduced degree of (x). Al-
though there may be several reduced kernels, a reducededdgtermines a reduced
kernel uniquely (cf. Proposition 3 below). Put= degg, r = degh (n = degf = mr)
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in (4). For a primep € Splf), we group the rootsy, ..., ry of f(x) = 0modp
as follows:

{rill1<i<n}={xmodp]| f(x) = g(h(x)) = 0 mod p}
m
= U{ri'l’ Tk
i=1
wherer; ; satisfies
h(rij)=s modp (1=<Vj=<r),

wheres (1 <i <m) are all roots ofg(x) = 0 modp. Let us arrange any—1 roots of
h(x)=s modp (i =1,...,m) impartially. Denoting the permutation group tf,...,a}
by G,, we put, for permutationg € G, andoy € &,

F K)o F () o —
(i, o) = ( u(k)bkm,m, u(k»pk(r 1)) 1<k<m).

So, pri(u, ox) is an arrangement af — 1 roots of h(x) = s, modp. As in [2],
if points

(5) 1@, 1), .y T, o)) € [0, MY for Vu € G, Vo € &,
are distributed uniformly whemp — oo, then we have
(6) Pr(f)=E" (f(x)=g(h(x)), m=degg, r = degh),

where the convolutiorE" is defined inductively by the following:

E'=E, E'()= ) EFOEC().
i+j=l

We note that it does not happen that all elements of a subset
{xmodp | h(x) = h(r; ;) mod p} (C {xmodp| f(x)=0 modp})

for i, j appear in an vector in (5) at the same time.

Now, let us assume that there is only one reduced degreeisttis decomposition
(4) is unique; then numerical data in [1, 2] support (6), anel may expect that the
points in (5) are distributed uniformly.

Before referring to examples in [2], which have two reducedrdes, let us give two
non-trivial examples that have plural reduced degrees, dascliss the non-uniformity
of points (5). A trivial example mean$(x) = g((h o k)(x)) = (g o h)(k(x)) for three
polynomialsg, h, k. We consider all ove€ if we do not refer.

First, we treat the case that a reduced kernel is a monomial.
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Theorem 1. Let n be a natural number and(k> 2) a divisor of n. Let {x) be a
monic polynomial of degree n and assume that there are masi;mpmials @x), h(x)
with degh =r, h(0) = 0 such that

7 f(x) = g(x) = Y _bch(x)* (mr=n, by = 1).

k=0

Then putting

h(x) =) cx* (¢ =1),
k=1

we have

h(x)= > cjxI =x"x(a polynomial in X)
j=r modl

where p is the least non-negative residue of r modulo | and

foo= Y bhx)~
0<k=m,
rk=0 modI|

Proofs of this theorem and subsequent theorems are given tfie next section on.
To state the next example, we introduce notations. For aralatwmberm and a
constantD € C, we put

_ K
h(x,m,D)=x"4+m (m k)D—x’“‘z",

1<k<(m-1)/2 k m—k

where k is supposed to be integers, and for an odd natural numband an even
natural numbem

H(x, n,m, D) = x"Y2 4 n

(n—1)/2+ j\ Dm-@i+1)y4

2. ( 2i )ij
0<j=<(n-1)/2-1 J+1 (n—-1)/2—]
For exampleh(x, 1, D) = x, h(x, 2,D) = x?, h(x, 3, D) = x® + 3Dx, and we see that
above two polynomial$i(x, m, D), H(x, n,m, D) are polynomials inD, x with integer
coefficients, computingp-factors for

L(m—k) . (m—k—1)!

m-k\ k (m—2k)!k!’

n ((ﬂ—l)/2+j) 0 (n=1)/2+j)!
(n—1)/2— | 2j+1

respectively.

T ((n—1/2- DR+
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Theorem 2. Let m n be natural numbers. If mn is odthen we put
hi(x) = h(x, m, D), hy(x) = h(x, n, D),
g1(x) = h(x,n, D™), gz(x) = h(x, m, D").

If m is even and n is oddhen we put
hi(x) = h(x, m, D), ho(x) = h(x, n, D),
Gu(x) = xH(x, n,m, D)%, ga(x) = h(x, m, D").

Then we have
01(h1(x)) = g2(h2(x)).

With respect to these theorems, let us state some expeatBupposef (x) =
gi(hi (x)) with 1 < degh; < n=degf (i =1, 2), and we normalize them by a trans-
formationx — x +a so that the second leading coefficient bfvanishes and moreover
h; (0) = 0. Putd = (deghi, degh,). Then we expect
(i) if d =1, then such pairs are of the form in the theorems above,

(ii) there are polynomiald;(x), H2(x) such that dedd; = (degh;)/d (i = 1, 2) which
satisfy h; (x) = Hi(p(x)) for an appropriate polynomigb(x), and

(i) there are polynomial€sy, G, with degG; = (degh,)/d and deds, = (degh,)/d
which satisfyG;(h1(x)) = Ga(ha(x)).

Now, let us give examples of polynomials(x) for which it has two decomposi-
tions and points in (5) are not distributed uniformly.

Theorem 3. Let G(x) be a monic polynomial with integer coefficients and let in-
tegers jr satisfyr> 1, j > 1, (j,r) =1, and we assume that either(@ =1, j > 1
or degG > 0. Then for a polynomial

® f=xGKX) —d (de2z),

it has polynomials % and ij_(xr) as reduced kernelsand points in(5) are not dis-
tributed uniformly for gx) = x!G(x)" —d, h(x) = x".

In particular, points (5) do not distributed uniformly forpmlynomial f(x) = x/" —d,
gx) =xl —d, h(x) =x" with j > 1,r > 1, (j,r) = 1.

Theorem 4. Let m n be odd integers such that ;m1, n > 1 and dm} n and
n>d for d = (m, n), and we put

f(x) = h(h(x, m, D), n, D™) + ¢ = h(h(x, n, D), m, D") + ¢,

where ¢ D (# 0) are integers. Then for points i(6) are not distributed uniformly for
g(x) = h(x, n, D™), h(x) = h(x, m, D).
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Note that if m divides n, thenh(x, n, D) itself is a polynomial inh(x, m, D) by Prop-
osition 2, i.e. of a trivial type.

Now with these preparations, let us consider examples in [f2st, let degf =
12. Put

fx)=(x(3+0)P—d (j=1,G=x+c,r=3at (8)),

and letp (# 3) be a prime number for whici mod p is completely decomposable.
It is likely

[Pr(, f),...,Pr(11, f)]
©) 1727 1

— [01 01 011_51 3_01 gv %1 Ea 01 01 0}1
which is equal neither t&j3 nor to EJ. In [2], the cases = -3, d = —3 andc = —1,
d = —3 are referred to ads, f, respectively. As above, points (5) fgr= x(x 4 c)3—
d, h = x® are not distributed uniformly. ThuBr(f) # E3, EJ is not strange. Take an
integer D such thatD® = d mod p, and letrs,...,rs be roots ofx*+cx—D = 0 modp,
and put

4
l_[(x—ri) =x*— 53 + X% — X + .
i=1

Then we have, besides a fundamental linear relagice O mod p, non-linear relations
amongr;

(10) =0, g =-¢, s4,=-D mod p.

In this case, we have more relations as follows.

Theorem 5. Letw be an integer such thab?+w+1 = 0 mod p; then symmetric
polynomials §, ..., & of ry, rp, wrs, wry defined by

(X + )X+ )X+ ors)(X +ors) = x* + X3+ SX° + Sx+ S

satisfy
63— S —3c=0 mod p,
(112) S$-3% =0 mod p,
365/S — S —27c2=0 mod p.

The author does not know whether non-linear relations (b@) @1) contribute to (9).
Next, let us consider the case of degl5. For

(12) f=03+2 (j=3G=1r=5d=-2),
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numerical data in [2] suggest thRt(f) is (not E2 but) E3 as if h = x® were a unique
reduced kernel. But, for the polynomial (12), points definmd(5) for g = x> + 2,
h = x3 are not distributed uniformly by Theorem 3. The data mighttbe few to
recognize the difference betwe@u(f) and E3. By contrast, we can recognize easily
the difference betweeRr(f) and E3, EZ in the case of degree 12 as above, where data
in the same range of primgs are enough.

For polynomialsf (x) = (x3)"+2,(x%)" +2,(x®)**+2, Pr(f) looks like E],E/, ES®,
respectively ([2]).

We can add one more example. Put= (x?(x® + x3 + 1))® + 2, which is of the
type (8) like examples of degree 12 above. The difference

ES — Pr(f)
=1[0,0,0,0,0,0, 0, 0.00032;0.00041,—0.00125, 0.00314,
0.00170,—0.00568, 0.00169, 0.000950.00045, 0, 0, 0, 0, 0, 0, O, O]
within the range ofp < 10'%.
The situations resemble the case of dedl5. What differs between these and

the case of degree 12? Are points (5) not distributed unifprinthere are distinct
reduced degrees?

2. Proof of Theorem 1

We keep notations in Theorem 1, and let us introduce a nata@i(x*), which
denotes a polynomial ix whose degree is less than or equalkto
Decomposeh(x) as

h)= D cxl+ D cxl =ho(x)+hi(x) (say).

j=r mod| j#r modl

We have to proveh;(x) = 0 first. Assume thah;(x) # 0 and denote the degree By
thens £ r modl and O< s < r are obvious.

f(x) = h(x)™ + O(x™=2r) follows from (7), andh™ = Y, (})h§h* and
deghkh™*) = rk + s(m — k) = sm+ (r — s)k imply

hm — hg1 + mr-g—lhl + O(Xsm+(r—s)(m—2))'
Therefore we have
f = hg‘ + mhg"lhl + O(XSW(V*S)(m*Z)) + O(X(mfl)r)_

It is easy to see that the condition<0s < r implies degh]*h;) = (m—1) +s >
max((m — 1)r, sm+ (r —s)(m — 2)). Hence the degree of the right-hand side of

(13) f —hD = mh~thy + O(x(M-Dr+s-1y
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is equal to degihf—*h;). Sincemro = mr =n =0 modl, h]' = (x-(a polynomial in
x'))™ = x™o . (a polynomial inx') is a polynomial inx'. Thus f — hJ' is a poly-
nomial in x', hence the degree of the left-hand side polynomial in (13livsible
by I. On the other hand, for the right-hand side of (13), we ha\@(rd%‘*lhl) =
(m—121)y +s=—(r —s) % 0modl. This contradicts (13). Thus we havg = 0 and
there is a polynomiah, such thath(x) = x"hy(x'), and so we havef (x) = g(x') =
> ko bixokhy(x')K. This impliesbx = 0 unlessrk = rok = 0 modl.

3. Proof of Theorem 2 and miscellaneous results

We still keep notations in the introduction. To prove Theor2 we prepare lemmas.

Lemma 1. For a natural number > 2, we have

h(x, n + 1, D% — xh(x, n, D?) — D*h(x, n — 1, D?)

14
(1) =1+ (-1)"D"h(x, 1, D?)

and for x= D(t —t™1),
h(x, 1,D%) = D(t —t™%), h(x, 2, D?) = D(t2 + (-t 1)2 - 2).

Proof. Sinceh(x,1,D?) = x, h(x,2,D?) = x?, the last two equations are obvious.
Before the proof of the induction formula (14), we note twauglities

(n+1)n+1—k 1 nn—k 1
k n+1-k k Jn—k

_ n—1-k n—1
"\ k=1 Jn+1-2k’

n—k—2 1 B n—k-—1 1
k n—1-—2k k n—1—k’
The first follows from

(n+1)n+1—k 1 - n—k\ 1
k n+1-k k Jn—k

_(+1)-(0-K!' n-(n-1-K)

and

~ kI(n 41— 2k)! kl(n — 2k)!
_(n—1-K)![(n+1)(n—K)
= k!(n—2k)!{ nt1-2k _”}

_(h—1-Kk! kn-—k
 kI(n—2k)! n+1—2k

_ n—l—k) n—1
k=1 Jn+1-2’
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and the second is direct.
Suppose thah is odd; then the left-hand side of (14) is equal to

n+1—k D%
n+1) > ( * . )—1 kx”“—2k
1<k<(n—1)/2 n+1-

-n ¥ n—ky D* 12K
k /n—k
1<k<(n-1)/2

_1_ 2%k+2
— DAl (n-1) Z (n 1 k) D x-1-2

1<k<(n-1)/2—1 k n—1-k

_ Z (n —1- k) n—-1 Dy n+1-2k
1<k<(n-1)/2 k=1 /n+1-2

1 k42
— DA™~ (n—1) Z (n 1 k) D 12

1<k<(n-1)/2-1 k n-1-k

_ Z (n —2- K) n-1 Lakszgn-1-2k
1=K <(n-1)/2-1 K n—-1-2K

n—1—k) D2
—(h—1) Z ( )—Xn—l—2k
1<k<(n—1)/2—1 k n—-1-k

=0.

Next, suppose that is even; then the right-hand side of (14) is equal to

n+1-k\ D¥* _
(n+1) Z ( . )n+1_kxn+1 2k

1<k=n/2
-n Z (n - k) D* xNH1-2k
1<k<n/2-1 k /n—k
n—1—k D2k+2
_ D2Xn—1 _ (n _ 1) Z ( ) Xr‘l—l—2k
1<k<n/2-1 k n-1-k
n/2+4+1 D"
=Mn+1
(n+ )( n/2 )n/2+ 1X
n—1-—k n—1
+ Z ( ) D2k yn+1-2k
1<k<n/2-1 k=1 /n+1-2

_a 2%+2
D"t - (n-1) Z (n . k)D_anzk

1<k=n/2—-1 k n—-1-k
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= (n +1)D"x + D?x"?!

n—1-ky_n-1 o nii-x
+ Z ( K_1 ) D"

2<k<n/2—1 n+1-2k

1 %k+2
— DA% l—(n-1) Z (” 1 k) D 12

1<k<n/2-1 K n—1-k
= (n+ 1)D"x
n—2-—K n—1
4 Z ( ) D2K+2yn-1-2K
1<K <n/2-2 K n—-1-2K
n—1—k D2k+2
_ -1 = yn-1-2
-1 ) ( K )n—l—kx
1<k<n/2-1
=(n+1)D"x - (n—1)D"x
= 2D"x

= 2D"h(x, 1, D?),
which completes a proof.

Lemma 2. Put
Ch = D"(t" + (—tTH"— 21— (—1)").

Then we have

(15) Co1— D(t —t™)cy — Dcpy = D"(1 + (—1)")cy
and

c=D@t—t1), c=D*t*+(-t1)?-2).

Proof. The equalities focy, ¢, are obvious. The first follows from

Cop1— D(t —t™Y)c, — D%chs

— Dn+1(tn+1 + (_tfl)n+1 —1— (_1)n+1)
Dt —t™h)-D"t" + (—t™H" -1 (-1)")
_ D2. Dn—l(tn—l + (_t—l)n—l _1_ (_1)n—1)

= D"+ ()"t -t

D"(1+ (-1)")cy.
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Proposition 1. For a natural number nwe have
h(D(t —t™%), n, D?) = D"(t" + (-t )" — 1 — (—-1)")
bt -t if 24n,
T (DYA(VZ —t2))2 if 2] n.

Proof. h(D(t —t™1), k, D?) = ¢ holds fork = 1, 2 and their induction formulas
(14), (15) coincide forx = D(t —t™1). Therefore they are the same. []

Proof of Theorem 2. We put = Dy(t —t~%) for D; = +/D.
Let m, n be odd; then we have
hy(x) = h(Dy(t —t ), m, D) = D™ —t™),

(16) _ 2 -
gu(ha(x)) = h(DT'(t™ —t7™), n, DI™) = D"(t™ —t™™),

which is symmetric with respect tm, n. Therefore we havey(hi(X)) = g2(h2(x)) for
x = Dy(t —t™1), and so the assertion in this case.
Next, suppose than is even andn is odd. First, we can see easily

xH(x?, n, m, D?) = h(x, n, D{").
Hence, puttingx = Dy(t —t™1), we have
01(x%) = x?’H(x?, n, m, D?)? = h(x, n, D}")?
and
hi(x) = h(x, m, D2) = (DIY*(t™2 —t="/2))2,
and so
g1(h1(x))
= h(DJ*(t™2 —t~™2), n, DI"?
— (DTn/Z(tmn/Z + (_t—m/Z)n))Z
— DTn(tmn 4 tTmn_ 2)_
On the other hand, we have
%(h2(Da(t —t™)))
= h(h(Dy(t —t %), n, Df), m, Df”)
= h(D](t" + (-t™)"), m, DI")
— DTn(tmn + (_tfl)mn _ 2),

which implies
g1(h1(x)) = ga(h2(x)).
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This completes a proof of Theorem 2. [l
Let us give miscellaneous results.

Proposition 2. Let k, m be natural numbers. Then>h mk, D) is a polynomial
of h(x, m, D).

Proof. The assertion follows from Proposition 1 and tR& + y™ is a poly-
nomial in x™ 4 yM, x™y™ hencet™ + (—t~H)™k is a polynomial int™ + (—t~H™ [

A polynomial h(x,mk, D) is not necessarily a polynomial im(x,m, D) with integer
coefficients ash(x, 2, D) = x?, h(x, 4, D) = x* + 4Dx?.

Proposition 3. Let f(x),y,z be monic polynomials in x and suppose tted ) =
degl) and y0) = z(0) = 0. If f(x) is a polynomial both in y and in,zhen we have
y =2z

Proof. Put

fX)=y"+an1y" '+ +ay+ao
=7"4+Ccn1Z" T+ -+ Gz + ap,

Y =box" +bpa X" 4+ bix (b = 1),

z2=0 X"+ dp X" 4o+ dix (dnh =1).

We have only to conclude a contradiction under the assumpkiat there is an integer
s with 1 <s <n—1 such thaths # ds and by = di for k > s+ 1. Put

n s s
X = Z biXi, YZZbiXi, ZZZdiXi;
i=s+1 i=1 i=1

then we have
y=X+4+Y, z=X+27Z, deglY-2Z)=s.

Since degk™*Yk) < n(m—k) +sk=nm—(n—s)k and degk™*Zz*) < nm—(n—s)k,
we have

ym — XM + mxm—lY + O(Xnm—Z(n—s)), Zm — XM + mxm—lz + O(Xnm—z(n—s)).
Thus we have
f(X) — ym + O(Xn(mfl)) = ZM + O(Xn(mfl))

— XM + mxm—lY + O(Xnm—z(n—s)) + O(Xn(mfl))
= XM + me—lz + O(Xnm—2(n—s)) + O(Xn(m—l))

and so

(17) me_l(Y — Z) = O(Xnm_z(n_s)) + O(Xn(m—l))'
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On the other hand, the definition sfimplies degth X™ (Y —Z)) = n(m—1)+s. The
inequalities of degreegn(m—1)+s} —{nm—2(n—s)} =n—s> 0 and{n(m—1)+s} —
{n(m—1)} = s> 0 imply that the degree of the right hand side of the above temua
(17) is less than the degree of the left hand side. Thus we aas@ntradiction. [

By this proposition, a reduced degree determines a reduestlkuniquely.

Proposition 4. Let hy(x),hy(x) be monic polynomials witfdegh),degf.)) = d.
Suppose that there are monic polynomial§xd, g>(x) such that

degfy) and deggz)zde%m)

g1(h1(x)) = ga(h2(x)), deg@u) = .
If polynomials G, G, satisfy G(hi(x)) = Ga(hy(x)), then there exists a polynomial
G(x) so that G(x) = G(gi(x)) fori =1, 2

Proof. We note thatGi(hi(x)) = Gy(hy(x)) implies degG;)degh;) =
degG») degh.), hence dedg,) is divisible by dedlf,)/d = deg@:). We prove the as-
sertion by induction orm = degG1)/deg@:). Supposem = 1; denoting the leading
coefficient of G; by a, we have

degGi —ag1) < deg@)

and Gi1 — agi)(hi(x)) = Gi(hi(x)) — agi(hi(x)) = Gz(h2(x)) — ag(h2(x)) = (G2 —
ag)(h2(x)). Therefore dedsi—agq;) is divisible by degd;) as above, and hence we have
G;—ag; = ¢ for some constant € C. ThenG,(hz(x)) = Gi(hi(x)) = ag(hi(X))+c =
agp(h2(x)) 4+ ¢ = (ag + ¢)(h2(x)), which meansG,(x) = ag(x) + ¢. Thus we can take
a polynomialax + ¢ as G(x).

Suppose that the assertion is true o< k and degGi) = (k+1)deg@). Denoting
the leading coefficient 06; by a as above, we have de@(—ag'l‘“) < (k+1)degfn)
and G1 —agi™)(hi(x)) = Ga(hi(x)) — agu(hi(x))** = (G2 — ags™*)(ha(x)). Hence
degG: —agt?) is divisible by degg:) and so degds; —agi™) =1 deg@:) with | <k.
Thus the induction assumption tél—ag‘{+l and Gz—ag‘;’l completes a proof. []

4. Case of dedh =3

In this section, we discuss the expectation in the intrddacin the case oh; =
h(x, 3, D?). Through this section, we put

y = h(x, 3,D%) = x343D?x (D # 0).

Then a polynomiah in x can be written aso(y) + vi(y)x + v2(y)x? for polynomialsy;
in y uniquely. We will give two theorems in this section, whiclpport the expectation.
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Lemma 3. Let
y =x34+3D%x, h = vg+ v1X + v2x?,
wherev; (i =0, 1, 2) are polynomials in y withdegvy > max(degv;, degv,) and put
(18) A = v3 + 3D%;0% — vdy.

Put dy = deguvg as a polynomial in y and letggcy, ¢, U, w be polynomials in y
which satisfy

Co = vg + O(x¥"3),

c = O(X3d0n73)’

2 = nud vy + O(x3N6) = O(x3%"-3),

(19) C1A + v3y(Crvz — Coup) = UV A,
(20) Civp — Covy = WA,
u = nu) 1+ Op3e-D-3)
_ _”(nz_ 1) 02 4 O(xM-2-3).
For
H = o + C1X + CoX2,
we put

hH = Cy + Cix + Cox?,

where G (i =0, 1, 2) are polynomials in y. Then we have

Co = v8+1 + O(x3hn+1)-3)

C; = O(x3N+1)-3)

C, = (n + 1)v8v2 + O(XSdo(n+l)—6),
C1A + v3y(Crva — Covg) = Ung A,
Civp —Couy = WA if v #0,

where

U = cp— 3D?¢; + (vo — 3D%w)u — yurvow = (n + L)l + O(%"—3),

nin+1
W=uvw-—-u=— ( 2+ ) . vS_l + O(x3(—1-3),
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Proof. SincehH is equal to
CovaX? + (C1vz + Cou1)X® + (Covz + C1v1 + Covo)X? + (Covy + C1v0)X + Covo
= (Covz + C1v1 + Coup — 3DCou2)X?
+ (Cov1 + Crvg — 3D?(Crvz + Cov1) + Co2y)X + Covp + (C1vz + Cov1)Y,
we have
Co = Covo + (Crv2 + Cou1)Y,
C1 = Cou1 + C1vo — 3D?(Crvz + Cov1) + Covyy,
C, = Cova + Civg + Coug — 3D2C21)2.
C.A+ v%y(Clvg — CZUl) is equal to
(co — 3D?C)v1 A + (vg — 3D%vp)c A

+ CovpY A+ Clvovgy + Cgvgy2 — 3D201v§'y — Cgvovlvgy — Clvagy,

and by replacingc; A by uvi A — v3y(civ — Coug) (cf. 19) in the second term, it is
equal to

(Co — 3D?C2)v1 A + (vo — 3D?vp)(Uv1 A — v3Y(Crv2 — Cou1))
+ oy A+ Clvovgy + szgy2 — 3D2C1vgy — szovlvgy — Clvagy

and replacing the thirdA by the definition (18),

= (Co — 3D?Cy + (vo — 3D?va)U)v1 A — YvZua(Crup — Cou1)
and using (20), we have the final form
(co — 3D?C; + (vo — 3D2w)u — yvivow)v A = Ui A
Now, by using (19), (20), it is easy to see that
(Crvz — Covr)v: — (vow — U)v1 A = —3D201v1v§ - Clvi’ + Clvgy 4+ ctA=0.

If v1 # 0, then we haveCiv, — Covy = (vow — U)A. And the other assertions are easy,
noting degui, degv, < dy — 1 as polynomials iny. ]

Lemma 4. Let h= vg(y)+v1(y)x+v2(y)x? with y = x34+3D?x and ¢ = degvg >
max(degv1, deguv,), and put A= v3 + 3D?%v1v5 — v3y. For a natural number nwrite
h" = o+ €1X + C2x2 with polynomials cin y. We have £= nv§ v, + O(x3%"-6), and
if v; # 0, then qu, — Couy is @ multiple of A by a polynomigl—n(n — 1)/2) - vi=2 +
O(XSdO(n—Z)—ZB).
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Proof. We use the induction on. In case ofn =1,¢ =v (i =0, 1, 2) and
u=1imply civ, — covy = 0, andc A + v%y(clvz — Cpu1) = UviA is clear. Thus the
assertion fom = 1 is obvious. Then Lemma 3 completes the induction. ]

Theorem 6. Let h(x), g(x) be monic polynomials in x with(B) = g(0) = 0, and
suppose that () = g(h(x)) is a polynomial in y= x3 4+ 3D2x (D # 0). If degh(x)
is a multiple of3, then HXx) itself is a polynomial in y.

Proof. We writeh = vy 4+ v1X + vox2, where vy, v1, v, are polynomials iny.
Since dedn is a multiple of 3 by the assumption and dgg =k mod 3 k =0, 1, 2),
we have dedp = deguo > degu; + 1, deguy + 2. Put f(X) = ¢y + C1X + Cx? for
polynomialsc; in y. Then we havee; = ¢, = 0 by the assumption. On the other hand,
applying Lemma 4 to the expression éfx) as a sum of powers adfi(x), we have
C = nvg‘lvz + O(x3%"-8) for n = degg(x) and the degree, of vy as a polynomial
in y, and sov, = 0. Supposey; # 0; Lemma 4 implies that

nin—1
C1v2 — Gy = (V3 4 3D%vq05 — vly) (-% 0+ O(x3do<“2>3)),

which is equal to 0 byc; = ¢, = 0. Since n(n—1)/2)-v) 2+ O(x3("-2-3) £ 0, we
have v? 4 3D?v1v5 — v3y = 0. This impliesv; = 0 by v, = 0, which is a contradiction.
Thus we havev; = 0 and hencéh = vg is a polynomial iny. ]

The next result supports the expectation, although it isrg special case of deg=
3. Our proof is technical and an intrinsic proof is desirable

Theorem 7. Let h(x) be a monic polynomial in x with(B) = 0, and f(x) =
g(h(x)) (g(x) = x3+bx?+b;x) (by,by € C). Then f(x) is a polynomial in y if and only
if either h(x) itself is a polynomial in yor for an integer M h(x) = h(x, M, D?) and

b, =0, by =3D"™ if M=1 mod 2,
b, =6DM, b =9D?" if M =0 mod 2.
The proof of the sufficiency is easy as follows:Hfx) is a polynomial iny, then f (x)

is clearly a polynomial iny. To show the other case, we put= D(t —t1). Since
we have, by Proposition 1

tM —tM if M=1 mod 2

j— 2 —_— M 1

h(x) = h(x, M, D% =D {t"" +tM-_2 if M=0 mod 2,
it is easy to see

h3 +3DMh = DM(3M —t3M) if M =1 mod 2,

h® 4+ 6DMh? + 9D?Mh = D3M(t3M/2 _t=3M/2)2 i M =0 mod 2.
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They are polynomials iny = D3(t2 — t=3) by the theory of symmetric polynomials.
Thus f(x) is a polynomial iny, containingD in coefficients in general.
To prove the converse, we need preparations.

Lemma 5. For a non-negative integer mwe put

Um(X) — Xm+ 2 : m—zik Xm—zk,
1<k<m/2
1 (m 2kk) 2k+1
x) = x™* m+1 E - L
Pm() +(m+ )1<k<m/2 22%(m — 2k + 1)

+ (1 + (_1)m—1)2—(m+1),

where k is supposed to be integers. Then we have
2

@) el = 300 + (% +  Jun0)

21
(22) P29 = (% + 3) P00 + 506+ 10

Proof. If mis even, then we see
2

gpm(x) + (X? + %f)um(x)

m/2 —k
_x™2 m+1 3 (24 m—2k+2
2 2 £ 2%(m— 2k + 1)
xm2 1 Q8 (nTizkk) m-2k X" 1A (mik)
— —2k+2 m—2k/ ,, m—2k
3 +§Z=:TX Pt
m/2 m— k
m+1
— Xm—&-2 m 2k 1 Xm—2k+2
+ Z 2k \m-2k+1 +
m/2 (m—K+1) 1 xM
m—2K+2)  m-2K+2
D S
K=1
m/2
m+2+z — m—k+1+ m—-k+1 m-2k2
22\ \m-2k/m—2k + 1 m—2k + 2
1
2m+2
m/2+1
— Xm+2+ Z i m+2-Kk yM—2k+2
o 22 \m—2k+2

= Um+2(X),
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and similarly we have (21) for an odd integer. Next, let us see (22). For even,
we have

2
(X? + %) () + 50 + Dm(x)

_ X™M3 m+1 mX/é (nT:Zkk)

+ m—-2k+3
2 2 & 2Km-2k+1)

X

/2 —
n XMt L m +1 m2: (mr 2 2K+

4 4 H= 2%(m— 2k + 1)

k
xm3 1 8 (r:? _Zkk) m—2k
+3
+ 2 + 2 Z 22k X
k=1
xmt 1 2 (r;n_zkk) m—2k
+1
+ 2 + 2 Z 22k X
k=1
2
— x™3 3Xm+l 1 % () { m+1 n 1}Xm2k+3
N 22 Im—2k+1

22 | 4m—2k + 1)

/2 (m-
n mx: (nT—Zkk) { m+1 n %}Xm2k+l
k=

m/2 m— k
XT3 p Xm“ + (mo) M—k+1 T2K+3
22« m—2k+1

m/2 m—K+1
-I— (2K m+1 4 oolym-aks _ §Xm+1 L m+ 3x
22K m—2K + 3 4 2m+2

1 m-k\ m—-k+1
_ ymMm+3 =
= +k2=;22k{(m—2k)m—2k+l

m-k+1 m+1
2 m—2k+3
+(m_2k+2)(m_2k+3+ )}X

m+ 3
2m+2
m/2
=xm+3+2i m+2-k m+ 3 m-23 m+3X
= 2% \m+2-2k/m—2k+3 2m+2
= Pm+2(X),

and similarly we have (22) for odch. O
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We noteum(x) = pr,(x)/(m + 1).
Proposition 5. If monic polynomials (x), p(x) satisfy
(23) % + Du(x)®> + ¢ = p(x)*> (ceC),
then we havefor m = deg((x))

_1ym-1
(24) U0 = Un(), PO = PrX), € = G = < ;2)m

Proof. We prove the assertion by induction on
The case oim = 0: In this caseu(x) = 1 and p(x) = x + b for someb € C. The
equation (23) implies

X%+ 1+ ¢ = x>+ 2bx + b?,
which meansb = 0, ¢ = —1. Sinceug(X) = 1, po(X) = X, ¢p = —1, the assertion is

true form = 0.
The case ofn = 1: We putu(x) = x + b, p(x) = x? + dx + €; then we have

(X® + DuX)? + ¢ = x* + 2bx® + (b? + 1)x* + 2bx + b? + ¢,
p(x)? = x* + 2dx3 + (d? + 2e)x? + 2dex + €,
henceb = d, b?> + 1 =d? + 2e, b = de, b? + ¢ = €. Thus we haveb =d = 0,
e =1/2, ¢ = 1/4, which implies (24) form = 1, sinceuy(x) = X, p1(X) = x>+ 1/2.

The case oim > 2: Since p(x), u(x) are monic and deg(x)) = degu(x)) + 1 =
m+ 1, putting

(25) r(x) = p(x) — xu(x)

we have deg((x)) <m. The equation (23) impliesxt + 1)u(x)? +c = p(x)? = r(x)?+
2xr (x)u(x) 4+ x?u(x)? and so

(26) u(x)? 4+ ¢ = r(x)% + 2xr(x)u(x).
Next, we will show
1 m—1 m-2
(27) r(x) = EX + O(x™™).
As above, we know deg(x)) < m. Suppose deg(x)) = m; then the degree of the

right-hand side of (26) isr& + 1, but the left-hand side is of degreen2 Hence we
have a contradiction and so def()) < m. Suppose deg(x)) < m— 2; the degree of
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the right-hand side of (26) is less than max@2¢ 2), 14+ (m—2) + m) = 2m — 1,
which is less than the degreen2of the left-hand side, which is a contradiction. Thus

we have deg(x)) = m—1, and then comparing the leading terms of the both sides of
(26), we have (27). Next, we show

(28) u(x) = 2xr(x) +ry(x), deg€i(x)) =m-—2.

Write
u(x) = (bx +d)r(x) +ri(x), deg€i(x)) <m-—2.

Comparing the leading coefficients of the both sides, we hawe? easily. Substituting
the above to (26), we have

(29) (ddx + d? — 1)r (x)% 4 2(x + d)r (X)r1(x) + r1(x)> + ¢ = 0.

Since the degree of 2(+ d)r (x)ri(x) + ri(x)> + c is less than or equal ton2— 2,
we have deg(@x + d? — 1)r(x)?) < 2m —2, henced = 0, and then (29) implies &
r(x)? — 2xr(X)ry(x) — ri(x)? — ¢ = (r(x) — xr1(x))? = x2r1(x)?> —ry(x)? — ¢, i.e.

(30) t (x) — xry(x))? = (X% + )ry(x)*> + c.

If deg(r1(X)) < m— 3 holds, then the degree of the left-hand side of (30) i\ 2(1)
and the right-hand side is of degree less than or equal +022Zm — 3), which is a
contradiction. Thus we have proved de(x) = m—2 and so (28).

Denote the leading coefficient of(x) by a; then comparing the leading coefficients
of (30) we have (12 — a)? = a? and soa = 1/4. Therefore we have

ri(x) = %xm‘z + O(x™3)
and then (27) implies
(31) r(x) — xry(X) = %x”“ + O(x™2),
Now, (30) is nothing but

(x* + 1)(Ar1(x))* + 16 = (4r (x) — 4xr1(x))%,

and 41(x), 4r (X) — 4xr1(x) are monic polynomials of degreea—2,m—1, respectively.
Hence by the induction assumption, we have

(32) 41(X) = Um2(X), 16C=Cm2, 4 (X)—4xri(x) = pm—2(X).
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This impliesc = ¢,,. We can show the assertion as follows:

u(x) = 2xr(x) +ri(x) (by (28))

2
= % ool + (X? + i)um_z(x) (by (32))

=up(x) (by Lemma 5)
and
p(x) =r(x) + xu(x) (by (25))

_ 2 Um—2(X) + 4 1 pm_a(X) + XUm(X)  (by (32))

2
= (XE + %) Pm_2(X) + g (X2 + Dum_2(x) (by Lemma 5)

= Pm(X). O

Proposition 6. For a non-negative integer pnwe have

-1
pm(t —2t ) _ 2—(m+1)(tm+1 + (_t)—(m+l)),

! t—t_l) _ tm+2 + (_t)—m
"2 o2tz 4-1)

Proof. By denoting the right-hand sides pf,, u, in the assertion byPy,, U,
respectively, it is easy to see

t—t? 2+t
Umy2 = 4 Pm 8 ms

t2+t72 t—t )t +t1)?
Pm+2 = ) I:)m + ( )2(4 ) Um-

They coincide with the induction formula (21), (22) with= (t —t~1)/2 in Lemma 5,
noting thatx?/2+1/4 = (t2+t72)/8 and &/2)- (x*> + 1) = 274t —t~})(t +t~1)2. The
definitions po(X) = X, Up(X) = 1, p1(X) = x? + 1/2 anduy(x) = x imply the assertion
for m =0, 1 easily. Thus we have the assertion of the proposition. []

Let us begin the proof of Theorem 7 with preparations above.white

h(x) = vo(y) + vi(Y)X + va(Y)X,
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anda = 3D?2. It is not hard to see witly = x% 4 ax

f(x) = h(x)® + boh(x)* + byh(x)
= {byvy + bz(vf + 2vgv2 — avg) + 3v1v§y + 3v§v2 + 3vovf + azvg
— 3avgv3 — 3aviva)x?
+ {bivy + bz(l)%y — 2v1v0a + 2vpvy) + 3vov§y + 3va2y — Bavguyvy — avf
+ 3vdv1 — 2avdy + 3a%v1v3}x
+ {vg + bzvg + bvg — Savlvgy + vgy2 + (vf + 2byv1vo + Buguiva)Y}
= X2 + X+ (say),

where we abbreviated; (y) to vi. Since f(x) is a polynomial iny = x® 4+ ax by the
assumption, the coefficients af and x> vanish and so we have

¢, =¢c,=0.
Then we have
Covg — Civp = (Uf + avlvg — Ugy)(bz — 2avy + 3vg) = 0.

Supposev? +aviv? —v3y = 0; if viv2 # 0, the degree of the left-hand side is 3 deg
3degu, + 1 according to deg; > degv,, degv; < degv,, respectively. This is a con-
tradiction and so we have; = v, = 0. Thus in this cas@(x) = ve(y) is a polynomial
in'y. Supposev? +aviv3 —v3y # 0 and sob, — 2av, + 3vp = 0. Since the determinant
of the coefficients matrix of the simultaneous equatiops= ¢, = 0 with respect to
by, by is —(v3 + avivs — v3y) # 0, we have

(33) b, = —4davgv, + 3v(2) + azvg — 3wy + avf,
(34) b, = 2av, — 3vg.

Substitutingvy = (2av, — by)/3 to (33), we have

2,2
a?vs

b2
b, = —T + avf + 32 — 31)11}2y

and so
(st 2o )= (3 2

Since vy, v, are polynomials iny, regarding them as a polynomial iy(2D?), denote
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the leading coefficient of, by A, and putm = degf,). Proposition 5 yields
V2 = Aum(%).

3 b2
;(bl — 32) = A2Cm,

Vi Yvz B%(L> (B = +A),

D 2D3 2Ds
where un, pm are polynomials in Lemma 5. Thus putting
-y
2D3’
we have
v2 = Aun(Y),

vy = D(AY Un(Y) + Bpm(Y)),
a%cmA? + b3
bl = T,

2a b
v = Aun(Y) - =

Therefore we have
h(x) = vo(y) + va(Y)X + v2(y)x?
2aA

3

and puttingé = A/B (= +1),

—Un(Y) — b— + D(AY tn(Y) + Bpn(Y))x + Aum(Y)x?

h(x) = A(2D? 4+ DY X + x?)um(Y) + DBpn(Y)x — %
(35)
2D2{(x + 5D2x2 + 4D*)up(Y) + 2D%5 p(Y)x} — b_

noting Y = (2D%)~Y(x® + 3D?x). The following is the last lemma necessary to prove
Theorem 2.
Lemma 6. Putting
g = (x* +5D?x? + 4D%)um(Y) + 2D38 pm(Y)X,
we have
2™1D3g —h(x, 3m + 4, D) = (1 + (-1)MD¥** if §=1,
2M-1p3m-2g _ h(x, 3m + 2, D?) = (1 + (-1)"MD3¥+2 if §=—1,

and
h(x) = «1h(x, 3m 4 3+ 8, D?) + i,
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for some constants, «».

Proof. Putx = D(t —t™1), we have
t3_t-3
>
x* 4+ 5D?x% + 4D* = D*(t* +t™* + t2 + t7?)

Y =

and then, notingt¢ + t=* + t2 + t=2)/(t® + 1) = (t2 + 1)/t*, Proposition 6 implies

D4 .
2m_1 (t3m+4 + (_1)mt7(3m+4)) if §= 1’
g= D4
= (t3m+2 + (_1)mt7(3m+2)) if §=—1.
Proposition 1 implies easily the assertion in the lemma. O

Sinceh(x), h(x, m, D?) are monic without constant term, Lemma 6 impligs= 1,
Ko =0, ie.

h(x) = h(x, M, D?) for M =3m+ 3+ 3.

Hence, in case ofm being odd, Proposition 1 implies
fo) = (OM(E" —t7"))° + b (DY (t" —t™M))? + by (DM (™ — ™))
— DBM(t3M _t73M) + b2D2M(t2M + t72M _ 2)
+ (=3D%M 4+ b DM)(tV — ™M),

which is a polynomial iny = x3 + 3D?x = D3(t® —t7%) (x = D(t —t™%)) by the
assumption. Therefore we haiwe = 0 andb; = 3D?M, since (3,M) = 1 andy is
invariant byt — v/1t.

If mis even, then we have

f(x)

= (DOM" +t™ - 2)® + b,(DM(M +t™ — 2))2 + b, DM(M +t™ — 2)

— D3M(t3M +t_3M) + (_6D3M + bZDZM)(tZM +t_2M)

+ (—4b, DM 4 15D3M + b, DMY(M +tM) 4 6b, DM — 20D3M — 2b, DM

which is a polynomial int® —t=2 by the assumption. Similarly we haww = 6DM
andb; = 9D?M. Thus we have completed a proof of Theorem 7. ]
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5. Proof of Theorem 3

Put X = X(x) = x)G(x"), and suppose that = X" —d is completely decompos-
able modulo a primep (+ D) without multiple roots; then there exists an inteder
such thatD" = d mod p, consequently we have

f=X"-D'=(X-D)X" '+ X 2D+---+D"1 mod p.

Then, the second leading term ®f— D being 0 implies that the sum of roots (1 <
i <m:=degX) of X(x) — D = 0 modp vanishes, that is a linear relation

m
(36) > ri=0 modp
i1

occurs. Let us see thdi(r;) =r (1 <i <m, h(x) = x") are different, and roots of
f(x) = 0modp are of the formria)'g for a primitive r-th root wo of unity in Z/pZ.
First, suppose; = r/ mod p; thenr; =r o mod p for anr-th rootw of unity and we
have D = X(ri) = () G(r/) = w X(r)) = »' D mod p, which impliesw = 1 mod p
by the assumptionj(r) = 1. Thus we have; =r modp, i.e.i =1. Second, letR
be a root of f(x) = 0 modp; then X(R)" = D" mod p and soX(R) = Dw; mod p
for anr-th root w; of unity in Z/pZ. By (j,r) =1, D = w7*X(R) = X(w2R) mod p
for anr-th root w, of unity. Thus roots off (x) = 0 mod p are of the formrjw for an
r-th root w of unity. Since the number of solutions df(x) = 0 mod p is rm by the
assumption, the number ofth roots of unity inZ/pZ is r, and so there is a primitive
r-th root wg of unity.
Then a point

(U]_, s U(r—l)m)

(37) . ((rlwo rla){)l) (rmwo rmwgl))
: s e T T

in (5) for g(x) = x)G(X)" —d, h(x) = x" has a relation

m
(38) Z Ve-r-n €Z (I=k=r-1),
i—1

which comes from (36). This breaks the uniformity of the wlisttion of points (5)
when p — oo, since for a subsed c [0, 1)"~1) defined by

m
Z Uk+(i—1)r—1) — @
i=1

<e (aeZ),

the volume is arbitrarily small, but the point (37) is @ for every prime. O
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6. Proof of Theorem 4

Suppose that for a prime t D, f(x) mod p is completely decomposable without
multiple roots. Sincen(x, m, D) is a polynomial inx, D with integer coefficients, (16)
holds overF, = Z/pZ. We consider all over the algebraic cIosUF_g of the prime
field Fp. Put D; = +/D € Fp, and forx € Fp, we take an element € F, so that
X = Dy(t—t71), i.e.t?>~D7Ixt—1= 0. Then by (16),f (x) = h(h(x,m,D),n,DM)+c =
DPM(t™" — t~MM + ¢ = 0 is equivalent to t(""? + ¢D;™t™" — 1 = 0. Taking a root
T, € F, of X2+cD{™x—1=0, we havet = /T, ¢ ort = — /T, ‘¢ for anmnth
root of unity ¢ in F,. Therefore, puttinglT = /T, the root of f(x) = 0 is written
as D1(T¢ — T2 for an mnth root ¢ of unity in Fp. Since f(x) hasmn different
roots overF, by the assumption, the fieIH_p hasmn roots for an equatiox™ = 1,

Let n be a primitivemn-th root of unity in Fp, and put

X = Dy(Tnk — T~p7%).

Then the roots off (x) = 0 arexy,Xp,...,Xmn. We have, for Ixk <nand 0<r <m-1
h(%nr, M, D) = DP((TH*"™)™ — (T~~")™)  (by (16))

DI((Tn)™ = (T 1™

= h(xx, m, D).

Since, notingf (x) = h(h(x, m, D), n, D™) + ¢, the equatiorh(x, n, D™) + ¢ = 0 has
n distinct roots,h(xx, m, D) (1 < k < n) are distinct, that ifi(xx, m, D) # h(x;, m, D)
if k1 modn. Based on these, let us show the non-uniformity. @ut (m, n) and
N = n/d; then we are assuminy > 1 anddm } n. Put

S={x || =0 moddmj}.

Then we have 8= N > 1 and

Y ox=DT Y '™ -D, Tt Y g™ =0 in F,

XeS k mod N k mod N

Since we suppose thdt(x) mod p is completely decomposable, all roots of f(x) =
O modp are in Fp, that is we may considex, € Z with 0 < x¢ < p, and then the
above means

(39) 3 % cz.

Let us see

(40) S5 (x| h(x,m D) = h(x, m, D)} for 1<Vk<mn
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If SO {x|h(x, m, D) = h(xx, m, D)} for some integek, then we have
{(k+nr|rez})c{dml|l eZ},

hence,k = dml for an integerlg, and son = 0 moddm, which contradictsdm } n.
By (40), we can arrang&/p for elementsx in S into ry(id, id) in (5), changing

numbering, and then (39) means that an appropriate sum aflicates in (5) is an

integer. Thus points (5) are not distributed uniformly. []

7. Proof of Theorem 5

We keep notations in Theorem 5. Since we assume thatx3(x3+c)3—d mod p
is completely decomposable, the existencewoin the theorem is clear. LeD be an
integer such thaD® = d mod p. Sincer; are roots ofx(x® + ¢) — D = 0 modp,
we have

4
(41) H(x—ri)=x4+cx—D.
i=1
Put
(42) (X —r)(X —r2) = X* + arX + ap,
(43) (X —r3)(X —ra) = X2 + byx + by.

Hence equations (41)—(43) imply
by =-a, bp=al-a, c=a—2a;a
and so
fi+rp=—-ay, rffp=ay, r3+r4=a, rlfg=a—a, D=aj—ala.
These imply
S =r14+r2+ oz +rs)
=a(w—1),
S =rira + (r1 + r2)(rs 4 rg)w + rargw?
= —a?(2w + 1) + ap(w + 2),
S = (r1 + ra)raraw? +r1r5(r3 + ra)w
=ad(w+1)—aay,

Sy = rirorafaw? = D(w + 1)
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and easily relations (11), notingy (- 1)° = 6w + 3. ]
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