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Abstract
Let f (x) be a monic polynomial inZ[x]. We have observed a statistical relation

of roots of f (x) mod p for different primesp, where f (x) decomposes completely
modulo p. We could guess what happens iff (x) is irreducible and has at most one
decomposition f (x) D g(h(x)) such thatg, h are monic polynomials overZ with
h(0)D 0, 1< degh < deg f . In this paper, we study cases thatf has two different
such decompositions. Besides, we construct a series of polynomials f which have
two non-trivial different decompositionsf (x) D g(h(x)).

1. Introduction

Let

f (x) D xn
C an�1xn�1

C � � � C a1x C a0 2 Z[x]

be a monic polynomial with integer coefficients. We put

Spl( f ) D {p j f (x) mod p is completely decomposable},

where p denotes prime numbers. Letr1, : : : , rn (r i 2 Z, 0� r i � p� 1) be solutions
of f (x) � 0 mod p for p 2 Spl( f ); then an�1 C

P

r i � 0 mod p is clear. Thus there
exists an integerCp( f ) such that

(1) an�1C

n
X

iD1

r i D Cp( f )p.

If f (x) has no rational roots, then we have 1� Cp( f ) � n � 1 with finitely many
exceptional primesp.
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By defining the natural density

(2) Pr(k, f, X) D
#{p j p 2 Spl( f ), p � X, Cp( f ) D k}

#{p j p 2 Spl( f ), p � X}
,

the limit

Pr(k, f ) D lim
X!1

Pr(k, f, X)

seems to exist ([1], [2]).
If a polynomial f is of a form f (x) D g(h(x)) for polynomials g(x), h(x) with

degh D 2, then Cp( f ) D (deg f )=2 holds with finitely many exceptionsp 2 Spl( f )
([1]). They and linear forms seem exceptional polynomials for which Pr(k, f ) can
be evaluated explicitly. Hereafter we exclude such polynomials and assume thatf
is irreducible.

First, suppose thatf does not have a decomposition such thatf (x) D g(h(x)),
where g, h are polynomials overQ with 1 < degh < deg f . We call it non-reduced.
Let r1, : : : ,rn be roots of f mod p for a prime p 2 Spl( f ); then the relation (1) implies
that

P

r i =p tends to an integerCp( f ) if p!1, hence points (r1=p, : : : ,rn=p) 2 [0,1)n

are not distributed uniformly. However, by consideringn! points (r i1=p, : : : , r in�1=p) 2
[0, 1)n�1 for all n � 1 ordered choices of roots impartially, it is likely that these are
uniformly distributed in [0, 1)n�1 when p(2 Spl( f )) ! 1. Here the definition of the
uniform distribution is an ordinary one, numbering points in numerical order ofp 2
Spl( f ) with arbitrary numbering for the samep. If it is true, it is known ([2]) that

(3) Pr(k, f ) D
A(n� 1, k)

(n� 1)!
(D En(k) say),

where A(m, k) is the Eulerian number defined by the following rules:

�

A(m, k) D 0 unless 1� k � m, and
A(1, 1)D 1, A(m, k) D (m� kC 1)A(m� 1, k � 1)C k A(m� 1, k).

In fact, numerical data by computer support (3). (See [1, 2])
Next, suppose that there is a decomposition

(4) f (x) D g(h(x)) (2< degh(x) < deg f (x)),

where we normalize the decomposition so thatg, h are monic andh(0)D 0. We call
h(x) a reduced kernel off (x) and the degree ofh(x) a reduced degree off (x). Al-
though there may be several reduced kernels, a reduced degree determines a reduced
kernel uniquely (cf. Proposition 3 below). PutmD degg, r D degh (nD deg f D mr)



STATISTICAL RELATION OF ROOTS OF POLYNOMIAL 395

in (4). For a primep 2 Spl( f ), we group the rootsr1, : : : , rn of f (x) � 0 mod p
as follows:

{r i j 1� i � n} D {x mod p j f (x) D g(h(x)) � 0 mod p}

D

m
[

iD1

{r i ,1, : : : , r i ,r },

where r i , j satisfies

h(r i , j ) � si mod p (1� 8 j � r ),

wheresi (1� i �m) are all roots ofg(x)� 0 mod p. Let us arrange anyr �1 roots of
h(x)� si mod p (i D 1,: : : ,m) impartially. Denoting the permutation group of{1,: : : ,a}

by Sa, we put, for permutations� 2 Sm and �k 2 Sr

rk(�, �k) D

�

r
�(k),�k(1)

p
, : : : ,

r
�(k),�k(r�1)

p

�

(1� k � m).

So, prk(�, �k) is an arrangement ofr � 1 roots of h(x) � s
�(k) mod p. As in [2],

if points

(5) (r1(�, �1), : : : , rm(�, �m)) 2 [0, 1)m(r�1) for 8� 2 Sm, 8�i 2 Sr

are distributed uniformly whenp!1, then we have

(6) Pr( f ) D Em
r ( f (x) D g(h(x)), mD degg, r D degh),

where the convolutionEm
r is defined inductively by the following:

E1
r D Er , EkC1

r (l ) D
X

iC jDl

Ek
r (i )Er ( j ).

We note that it does not happen that all elements of a subset

{x mod p j h(x) � h(r i , j ) mod p} (� {x mod p j f (x) � 0 mod p})

for i , j appear in an vector in (5) at the same time.
Now, let us assume that there is only one reduced degree, thatis the decomposition

(4) is unique; then numerical data in [1, 2] support (6), and we may expect that the
points in (5) are distributed uniformly.

Before referring to examples in [2], which have two reduced degrees, let us give two
non-trivial examples that have plural reduced degrees, anddiscuss the non-uniformity
of points (5). A trivial example meansf (x) D g((h Æ k)(x)) D (g Æ h)(k(x)) for three
polynomialsg, h, k. We consider all overC if we do not refer.

First, we treat the case that a reduced kernel is a monomial.
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Theorem 1. Let n be a natural number and l(� 2) a divisor of n. Let f(x) be a
monic polynomial of degree n and assume that there are monic polynomials g(x), h(x)
with degh D r , h(0)D 0 such that

(7) f (x) D g(xl ) D
m
X

kD0

bkh(x)k (mr D n, bm D 1).

Then, putting

h(x) D
r
X

kD1

ckxk (cr D 1),

we have

h(x) D
X

j�r mod l

c j x
j
D xr0

� (a polynomial in xl )

where r0 is the least non-negative residue of r modulo l and

f (x) D
X

0�k�m,
rk�0 modl

bkh(x)k.

Proofs of this theorem and subsequent theorems are given from the next section on.
To state the next example, we introduce notations. For a natural numberm and a

constantD 2 C, we put

h(x, m, D) D xm
Cm

X

1�k�(m�1)=2

�

m� k

k

�

Dk

m� k
xm�2k,

where k is supposed to be integers, and for an odd natural numbern and an even
natural numberm

H (x, n, m, D) D x(n�1)=2
C n

X

0� j�(n�1)=2�1

�

(n� 1)=2C j

2 j C 1

�

Dm(n�(2 jC1))=4

(n� 1)=2� j
x j .

For example,h(x, 1, D) D x, h(x, 2, D) D x2, h(x, 3, D) D x3
C 3Dx, and we see that

above two polynomialsh(x, m, D), H (x, n, m, D) are polynomials inD, x with integer
coefficients, computingp-factors for

m

m� k

�

m� k

k

�

D m �
(m� k � 1)!

(m� 2k)!k!
,

n

(n� 1)=2� j

�

(n� 1)=2C j

2 j C 1

�

D n �
((n� 1)=2C j )!

((n� 1)=2� j )!(2 j C 1)!
,

respectively.
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Theorem 2. Let m, n be natural numbers. If mn is odd, then we put

h1(x) D h(x, m, D), h2(x) D h(x, n, D),

g1(x) D h(x, n, Dm), g2(x) D h(x, m, Dn).

If m is even and n is odd, then we put

h1(x) D h(x, m, D), h2(x) D h(x, n, D),

g1(x) D x H(x, n, m, D)2, g2(x) D h(x, m, Dn).

Then we have

g1(h1(x)) D g2(h2(x)).

With respect to these theorems, let us state some expectations. Supposef (x) D
gi (hi (x)) with 1 < deghi < n D deg f (i D 1, 2), and we normalize them by a trans-
formation x! xCa so that the second leading coefficient off vanishes and moreover
hi (0)D 0. Put d D (degh1, degh2). Then we expect
(i) if d D 1, then such pairs are of the form in the theorems above,
(ii) there are polynomialsH1(x), H2(x) such that degHi D (deghi )=d (i D 1, 2) which
satisfy hi (x) D Hi (p(x)) for an appropriate polynomialp(x), and
(iii) there are polynomialsG1, G2 with degG1 D (degh2)=d and degG2 D (degh1)=d
which satisfyG1(h1(x)) D G2(h2(x)).

Now, let us give examples of polynomialsf (x) for which it has two decomposi-
tions and points in (5) are not distributed uniformly.

Theorem 3. Let G(x) be a monic polynomial with integer coefficients and let in-
tegers j, r satisfy r> 1, j � 1, ( j , r ) D 1, and we assume that either G(x) D 1, j > 1
or degG > 0. Then for a polynomial

(8) f D (x j G(xr ))r
� d (d 2 Z),

it has polynomials xr and xj G(xr ) as reduced kernels, and points in(5) are not dis-
tributed uniformly for g(x) D x j G(x)r

� d, h(x) D xr .

In particular, points (5) do not distributed uniformly for apolynomial f (x) D x jr
� d,

g(x) D x j
� d, h(x) D xr with j > 1, r > 1, ( j , r ) D 1.

Theorem 4. Let m, n be odd integers such that m> 1, n > 1 and dm­ n and
n > d for dD (m, n), and we put

f (x) D h(h(x, m, D), n, Dm)C cD h(h(x, n, D), m, Dn)C c,

where c, D (¤ 0) are integers. Then for points in(5) are not distributed uniformly for
g(x) D h(x, n, Dm), h(x) D h(x, m, D).
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Note that if m divides n, then h(x, n, D) itself is a polynomial inh(x, m, D) by Prop-
osition 2, i.e. of a trivial type.

Now with these preparations, let us consider examples in [2]. First, let degf D
12. Put

f (x) D (x(x3
C c))3

� d ( j D 1, G D x C c, r D 3 at (8)),

and let p (¤ 3) be a prime number for whichf mod p is completely decomposable.
It is likely

(9)

[Pr(1, f ), : : : , Pr(11, f )]

D

�

0, 0, 0,
1

15
,

7

30
,

2

5
,

7

30
,

1

15
, 0, 0, 0

�

,

which is equal neither toE4
3 nor to E3

4. In [2], the casescD �3, d D �3 andcD �1,
d D �3 are referred to asf5, f6, respectively. As above, points (5) forgD x(xCc)3

�

d, h D x3 are not distributed uniformly. ThusPr( f ) ¤ E4
3, E3

4 is not strange. Take an
integerD such thatD3

� d mod p, and letr1,:::,r4 be roots ofx4
Ccx�D � 0 mod p,

and put
4
Y

iD1

(x � r i ) D x4
� s1x3

C s2x2
� s3x C s4.

Then we have, besides a fundamental linear relations1 � 0 mod p, non-linear relations
amongr i

(10) s2 � 0, s3 � �c, s4 � �D mod p.

In this case, we have more relations as follows.

Theorem 5. Let ! be an integer such that!2
C!C1� 0 mod p; then symmetric

polynomials S1, : : : , S4 of r1, r2, !r3, !r4 defined by

(x C r1)(x C r2)(x C !r3)(x C !r4) D x4
C S1x3

C S2x2
C S3x C S4

satisfy

(11)

8

<

:

6S3 � S3
1 � 3c� 0 mod p,

S1S2 � 3S3 � 0 mod p,
36S2

1 S4 � S6
1 � 27c2

� 0 mod p.

The author does not know whether non-linear relations (10) and (11) contribute to (9).
Next, let us consider the case of degD 15. For

(12) f D (x3)5
C 2 ( j D 3, G D 1, r D 5, d D �2),
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numerical data in [2] suggest thatPr( f ) is (not E3
5 but) E5

3 as if hD x3 were a unique
reduced kernel. But, for the polynomial (12), points definedby (5) for g D x5

C 2,
h D x3 are not distributed uniformly by Theorem 3. The data might betoo few to
recognize the difference betweenPr( f ) and E5

3. By contrast, we can recognize easily
the difference betweenPr( f ) and E4

3, E3
4 in the case of degree 12 as above, where data

in the same range of primesp are enough.
For polynomials f (x)D (x3)7

C2,(x5)7
C2,(x3)35

C2, Pr( f ) looks like E7
3,E7

5,E35
3 ,

respectively ([2]).
We can add one more example. Putf D (x2(x6

C x3
C 1))3C 2, which is of the

type (8) like examples of degree 12 above. The difference

E8
3 � Pr( f )

D [0, 0, 0, 0, 0, 0, 0, 0.00032,�0.00041,�0.00125, 0.00314,

0.00170,�0.00568, 0.00169, 0.00095,�0.00045, 0, 0, 0, 0, 0, 0, 0, 0]

within the range ofp < 1011.
The situations resemble the case of degD 15. What differs between these and

the case of degree 12? Are points (5) not distributed uniformly if there are distinct
reduced degrees?

2. Proof of Theorem 1

We keep notations in Theorem 1, and let us introduce a notation O(xk), which
denotes a polynomial inx whose degree is less than or equal tok.

Decomposeh(x) as

h(x) D
X

j�r mod l

c j x
j
C

X

j¥r mod l

c j x
j
D h0(x)C h1(x) (say).

We have to proveh1(x) D 0 first. Assume thath1(x) ¤ 0 and denote the degree bys;
then s¥ r mod l and 0< s< r are obvious.

f (x) D h(x)m
C O(x(m�1)r ) follows from (7), and hm

D

Pm
kD0

�m
k

�

hk
0hm�k

1 and

deg(hk
0hm�k

1 ) D rk C s(m� k) D smC (r � s)k imply

hm
D hm

0 Cmhm�1
0 h1C O(xsmC(r�s)(m�2)).

Therefore we have

f D hm
0 Cmhm�1

0 h1C O(xsmC(r�s)(m�2))C O(x(m�1)r ).

It is easy to see that the condition 0< s < r implies deg(hm�1
0 h1) D (m� 1)r C s >

max((m� 1)r, smC (r � s)(m� 2)). Hence the degree of the right-hand side of

(13) f � hm
0 D mhm�1

0 h1C O(x(m�1)rCs�1)
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is equal to deg(mhm�1
0 h1). Sincemr0�mr D n� 0 modl , hm

0 D (xr0
�(a polynomial in

xl ))m
D xmr0

� (a polynomial inxl ) is a polynomial in xl . Thus f � hm
0 is a poly-

nomial in xl , hence the degree of the left-hand side polynomial in (13) isdivisible
by l . On the other hand, for the right-hand side of (13), we have deg(mhm�1

0 h1) D
(m� 1)r C s� �(r � s) ¥ 0 modl . This contradicts (13). Thus we haveh1 D 0 and
there is a polynomialh2 such thath(x) D xr0h2(xl ), and so we havef (x) D g(xl ) D
Pm

kD0 bkxr0kh2(xl )k. This impliesbk D 0 unlessrk � r0k � 0 modl .

3. Proof of Theorem 2 and miscellaneous results

We still keep notations in the introduction. To prove Theorem 2, we prepare lemmas.

Lemma 1. For a natural number n� 2, we have

(14)
h(x, nC 1, D2) � xh(x, n, D2) � D2h(x, n� 1, D2)

D (1C (�1)n)Dnh(x, 1, D2)

and for xD D(t � t�1),

h(x, 1, D2) D D(t � t�1), h(x, 2, D2) D D2(t2
C (�t�1)2

� 2).

Proof. Sinceh(x, 1,D2)D x, h(x, 2,D2)D x2, the last two equations are obvious.
Before the proof of the induction formula (14), we note two equalities

(nC 1)

�

nC 1� k

k

�

1

nC 1� k
� n

�

n� k

k

�

1

n� k

D

�

n� 1� k

k � 1

�

n� 1

nC 1� 2k
,

and
�

n� k � 2

k

�

1

n� 1� 2k
D

�

n� k � 1

k

�

1

n� 1� k
.

The first follows from

(nC 1)

�

nC 1� k

k

�

1

nC 1� k
� n

�

n� k

k

�

1

n� k

D

(nC 1) � (n� k)!

k!(nC 1� 2k)!
�

n � (n� 1� k)!

k!(n� 2k)!

D

(n� 1� k)!

k!(n� 2k)!

�

(nC 1)(n� k)

nC 1� 2k
� n

�

D

(n� 1� k)!

k!(n� 2k)!

kn� k

nC 1� 2k

D

�

n� 1� k

k � 1

�

n� 1

nC 1� 2k
,



STATISTICAL RELATION OF ROOTS OF POLYNOMIAL 401

and the second is direct.
Suppose thatn is odd; then the left-hand side of (14) is equal to

(nC 1)
X

1�k�(n�1)=2

�

nC 1� k

k

�

D2k

nC 1� k
xnC1�2k

� n
X

1�k�(n�1)=2

�

n� k

k

�

D2k

n� k
xnC1�2k

� D2xn�1
� (n� 1)

X

1�k�(n�1)=2�1

�

n� 1� k

k

�

D2kC2

n� 1� k
xn�1�2k

D

X

1�k�(n�1)=2

�

n� 1� k

k � 1

�

n� 1

nC 1� 2k
D2kxnC1�2k

� D2xn�1
� (n� 1)

X

1�k�(n�1)=2�1

�

n� 1� k

k

�

D2kC2

n� 1� k
xn�1�2k

D

X

1�K�(n�1)=2�1

�

n� 2� K

K

�

n� 1

n� 1� 2K
D2KC2xn�1�2K

� (n� 1)
X

1�k�(n�1)=2�1

�

n� 1� k

k

�

D2kC2

n� 1� k
xn�1�2k

D 0.

Next, suppose thatn is even; then the right-hand side of (14) is equal to

(nC 1)
X

1�k�n=2

�

nC 1� k

k

�

D2k

nC 1� k
xnC1�2k

� n
X

1�k�n=2�1

�

n� k

k

�

D2k

n� k
xnC1�2k

� D2xn�1
� (n� 1)

X

1�k�n=2�1

�

n� 1� k

k

�

D2kC2

n� 1� k
xn�1�2k

D (nC 1)

�

n=2C 1

n=2

�

Dn

n=2C 1
x

C

X

1�k�n=2�1

�

n� 1� k

k � 1

�

n� 1

nC 1� 2k
D2kxnC1�2k

� D2xn�1
� (n� 1)

X

1�k�n=2�1

�

n� 1� k

k

�

D2kC2

n� 1� k
xn�1�2k
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D (nC 1)Dnx C D2xn�1

C

X

2�k�n=2�1

�

n� 1� k

k � 1

�

n� 1

nC 1� 2k
D2kxnC1�2k

� D2xn�1
� (n� 1)

X

1�k�n=2�1

�

n� 1� k

k

�

D2kC2

n� 1� k
xn�1�2k

D (nC 1)Dnx

C

X

1�K�n=2�2

�

n� 2� K

K

�

n� 1

n� 1� 2K
D2KC2xn�1�2K

� (n� 1)
X

1�k�n=2�1

�

n� 1� k

k

�

D2kC2

n� 1� k
xn�1�2k

D (nC 1)Dnx � (n� 1)Dnx

D 2Dnx

D 2Dnh(x, 1, D2),

which completes a proof.

Lemma 2. Put

cn D Dn(tn
C (�t�1)n

� 1� (�1)n).

Then we have

(15) cnC1 � D(t � t�1)cn � D2cn�1 D Dn(1C (�1)n)c1

and

c1 D D(t � t�1), c2 D D2(t2
C (�t�1)2

� 2).

Proof. The equalities forc1, c2 are obvious. The first follows from

cnC1 � D(t � t�1)cn � D2cn�1

D DnC1(tnC1
C (�t�1)nC1

� 1� (�1)nC1)

� D(t � t�1) � Dn(tn
C (�t�1)n

� 1� (�1)n)

� D2
� Dn�1(tn�1

C (�t�1)n�1
� 1� (�1)n�1)

D DnC1(1C (�1)n)(t � t�1)

D Dn(1C (�1)n)c1.
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Proposition 1. For a natural number n, we have

h(D(t � t�1), n, D2) D Dn(tn
C (�t�1)n

� 1� (�1)n)

D

�

Dn(tn
� t�n) if 2 ­ n,

(Dn=2(tn=2
� t�n=2))2 if 2 j n.

Proof. h(D(t � t�1), k, D2) D ck holds for k D 1, 2 and their induction formulas
(14), (15) coincide forx D D(t � t�1). Therefore they are the same.

Proof of Theorem 2. We putx D D1(t � t�1) for D1 D
p

D.
Let m, n be odd; then we have

(16)
h1(x) D h(D1(t � t�1), m, D2

1) D Dm
1 (tm

� t�m),

g1(h1(x)) D h(Dm
1 (tm

� t�m), n, D2m
1 ) D Dmn

1 (tmn
� t�mn),

which is symmetric with respect tom, n. Therefore we haveg1(h1(x)) D g2(h2(x)) for
x D D1(t � t�1), and so the assertion in this case.

Next, suppose thatm is even andn is odd. First, we can see easily

x H(x2, n, m, D2
1) D h(x, n, Dm

1 ).

Hence, puttingx D D1(t � t�1), we have

g1(x2) D x2H (x2, n, m, D2
1)2
D h(x, n, Dm

1 )2

and

h1(x) D h(x, m, D2
1) D (Dm=2

1 (tm=2
� t�m=2))2,

and so

g1(h1(x))

D h(Dm=2
1 (tm=2

� t�m=2), n, Dm
1 )2

D (Dmn=2
1 (tmn=2

C (�t�m=2)n))2

D Dmn
1 (tmn

C t�mn
� 2).

On the other hand, we have

g2(h2(D1(t � t�1)))

D h(h(D1(t � t�1), n, D2
1), m, D2n

1 )

D h(Dn
1(tn
C (�t�1)n), m, D2n

1 )

D Dmn
1 (tmn

C (�t�1)mn
� 2),

which implies

g1(h1(x)) D g2(h2(x)).
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This completes a proof of Theorem 2.

Let us give miscellaneous results.

Proposition 2. Let k, m be natural numbers. Then h(x, mk, D) is a polynomial
of h(x, m, D).

Proof. The assertion follows from Proposition 1 and thatxmk
C ymk is a poly-

nomial in xm
C ym, xmym, hencetmk

C (�t�1)mk is a polynomial intm
C (�t�1)m

A polynomial h(x,mk,D) is not necessarily a polynomial inh(x,m,D) with integer
coefficients ash(x, 2, D) D x2, h(x, 4, D) D x4

C 4Dx2.

Proposition 3. Let f(x),y,z be monic polynomials in x and suppose thatdeg(y)D
deg(z) and y(0)D z(0)D 0. If f (x) is a polynomial both in y and in z, then we have
y D z.

Proof. Put

f (x) D ym
C am�1ym�1

C � � � C a1yC a0

D zm
C cm�1zm�1

C � � � C c1zC a0,

y D bnxn
C bn�1xn�1

C � � � C b1x (bn D 1),

zD dnxn
C dn�1xn�1

C � � � C d1x (dn D 1).

We have only to conclude a contradiction under the assumption that there is an integer
s with 1� s � n� 1 such thatbs ¤ ds and bk D dk for k � sC 1. Put

X D
n
X

iDsC1

bi x
i , Y D

s
X

iD1

bi x
i , Z D

s
X

iD1

di x
i
I

then we have
y D X C Y, zD X C Z, deg(Y � Z) D s.

Since deg(Xm�kYk) � n(m�k)CskD nm� (n�s)k and deg(Xm�k Zk) � nm� (n�s)k,
we have

ym
D Xm

CmXm�1Y C O(xnm�2(n�s)), zm
D Xm

CmXm�1Z C O(xnm�2(n�s)).

Thus we have

f (x) D ym
C O(xn(m�1)) D zm

C O(xn(m�1))

D Xm
CmXm�1Y C O(xnm�2(n�s))C O(xn(m�1))

D Xm
CmXm�1Z C O(xnm�2(n�s))C O(xn(m�1))

and so

(17) mXm�1(Y � Z) D O(xnm�2(n�s))C O(xn(m�1)).
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On the other hand, the definition ofs implies deg(mXm�1(Y� Z))D n(m�1)Cs. The
inequalities of degrees{n(m�1)Cs}�{nm�2(n�s)} D n�s> 0 and{n(m�1)Cs}�
{n(m� 1)} D s> 0 imply that the degree of the right hand side of the above equation
(17) is less than the degree of the left hand side. Thus we havea contradiction.

By this proposition, a reduced degree determines a reduced kernel uniquely.

Proposition 4. Let h1(x),h2(x) be monic polynomials with(deg(h1),deg(h2))D d.
Suppose that there are monic polynomials g1(x), g2(x) such that

g1(h1(x)) D g2(h2(x)), deg(g1) D
deg(h2)

d
and deg(g2) D

deg(h1)

d
.

If polynomials G1, G2 satisfy G1(h1(x)) D G2(h2(x)), then there exists a polynomial
G(x) so that Gi (x) D G(gi (x)) for i D 1, 2.

Proof. We note that G1(h1(x)) D G2(h2(x)) implies deg(G1) deg(h1) D
deg(G2) deg(h2), hence deg(G1) is divisible by deg(h2)=d D deg(g1). We prove the as-
sertion by induction onm D deg(G1)=deg(g1). Supposem D 1; denoting the leading
coefficient ofG1 by a, we have

deg(G1 � ag1) < deg(g1)

and (G1 � ag1)(h1(x)) D G1(h1(x)) � ag1(h1(x)) D G2(h2(x)) � ag2(h2(x)) D (G2 �

ag2)(h2(x)). Therefore deg(G1�ag1) is divisible by deg(g1) as above, and hence we have
G1�ag1 D c for some constantc 2 C. ThenG2(h2(x))D G1(h1(x)) D ag1(h1(x))CcD
ag2(h2(x))C cD (ag2C c)(h2(x)), which meansG2(x) D ag2(x)C c. Thus we can take
a polynomialaxC c as G(x).

Suppose that the assertion is true form� k and deg(G1)D (kC1)deg(g1). Denoting
the leading coefficient ofG1 by a as above, we have deg(G1�agkC1

1 )< (kC1) deg(g1)
and (G1 � agkC1

1 )(h1(x)) D G1(h1(x)) � ag1(h1(x))kC1
D (G2 � agkC1

2 )(h2(x)). Hence
deg(G1�agkC1

1 ) is divisible by deg(g1) and so deg(G1�agkC1
1 )D l deg(g1) with l � k.

Thus the induction assumption toG1�agkC1
1 and G2�agkC1

2 completes a proof.

4. Case of degh D 3

In this section, we discuss the expectation in the introduction in the case ofh1 D

h(x, 3, D2). Through this section, we put

y D h(x, 3, D2) D x3
C 3D2x (D ¤ 0).

Then a polynomialh in x can be written asv0(y)C v1(y)xC v2(y)x2 for polynomialsvi

in y uniquely. We will give two theorems in this section, which support the expectation.
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Lemma 3. Let

y D x3
C 3D2x, h D v0C v1x C v2x2,

wherevi (i D 0, 1, 2) are polynomials in y withdegv0 > max(degv1, degv2) and put

(18) AD v3
1 C 3D2

v1v
2
2 � v

3
2y.

Put d0 D degv0 as a polynomial in y and let c0, c1, c2, u, w be polynomials in y
which satisfy

c0 D v
n
0 C O(x3d0n�3),

c1 D O(x3d0n�3),

c2 D nvn�1
0 v2C O(x3d0n�6) D O(x3d0n�3),

c1AC v2
2y(c1v2 � c2v1) D uv1A,(19)

c1v2 � c2v1 D wA,(20)

u D nvn�1
0 C O(x3d0(n�1)�3),

w D �

n(n� 1)

2
� v

n�2
0 C O(x3d0(n�2)�3).

For

H D c0C c1x C c2x2,

we put

hH D C0C C1x C C2x2,

where Ci (i D 0, 1, 2) are polynomials in y. Then we have

C0 D v
nC1
0 C O(x3d0(nC1)�3),

C1 D O(x3d0(nC1)�3),

C2 D (nC 1)vn
0v2C O(x3d0(nC1)�6),

C1AC v2
2y(C1v2 � C2v1) D Uv1A,

C1v2 � C2v1 D W A if v1 ¤ 0,

where

U D c0 � 3D2c2C (v0 � 3D2
v2)u � yv1v2w D (nC 1)vn

0 C O(x3d0n�3),

W D v0w � u D �
n(nC 1)

2
� v

n�1
0 C O(x3d0(n�1)�3).
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Proof. SincehH is equal to

c2v2x4
C (c1v2C c2v1)x3

C (c0v2C c1v1C c2v0)x2
C (c0v1C c1v0)x C c0v0

D (c0v2C c1v1C c2v0 � 3D2c2v2)x2

C (c0v1C c1v0 � 3D2(c1v2C c2v1)C c2v2y)x C c0v0C (c1v2C c2v1)y,

we have

C0 D c0v0C (c1v2C c2v1)y,

C1 D c0v1C c1v0 � 3D2(c1v2C c2v1)C c2v2y,

C2 D c0v2C c1v1C c2v0 � 3D2c2v2.

C1AC v2
2y(C1v2 � C2v1) is equal to

(c0 � 3D2c2)v1AC (v0 � 3D2
v2)c1A

C c2v2y AC c1v0v
3
2yC c2v

4
2y2
� 3D2c1v

4
2y � c2v0v1v

2
2y � c1v

2
1v

2
2y,

and by replacingc1A by uv1A � v2
2y(c1v2 � c2v1) (cf. 19) in the second term, it is

equal to

(c0 � 3D2c2)v1AC (v0 � 3D2
v2)(uv1A� v2

2y(c1v2 � c2v1))

C c2v2y AC c1v0v
3
2yC c2v

4
2y2
� 3D2c1v

4
2y� c2v0v1v

2
2y� c1v

2
1v

2
2y

and replacing the thirdA by the definition (18),

D (c0 � 3D2c2C (v0 � 3D2
v2)u)v1A� yv2

1v2(c1v2 � c2v1)

and using (20), we have the final form

(c0 � 3D2c2C (v0 � 3D2
v2)u � yv1v2w)v1AD Uv1A.

Now, by using (19), (20), it is easy to see that

(C1v2 � C2v1)v1 � (v0w � u)v1AD �3D2c1v1v
2
2 � c1v

3
1 C c1v

3
2yC c1AD 0.

If v1 ¤ 0, then we haveC1v2�C2v1 D (v0w� u)A. And the other assertions are easy,
noting degv1, degv2 � d0 � 1 as polynomials iny.

Lemma 4. Let hD v0(y)Cv1(y)xCv2(y)x2 with yD x3
C3D2x and d0D degv0>

max(degv1, degv2), and put AD v3
1 C 3D2

v1v
2
2 � v

3
2y. For a natural number n, write

hn
D c0Cc1xCc2x2 with polynomials ci in y. We have c2D nvn�1

0 v2CO(x3d0n�6), and
if v1 ¤ 0, then c1v2 � c2v1 is a multiple of A by a polynomial(�n(n � 1)=2) � vn�2

0 C

O(x3d0(n�2)�3).
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Proof. We use the induction onn. In case ofn D 1, ci D vi (i D 0, 1, 2) and
u D 1 imply c1v2 � c2v1 D 0, andc1AC v2

2y(c1v2 � c2v1) D uv1A is clear. Thus the
assertion forn D 1 is obvious. Then Lemma 3 completes the induction.

Theorem 6. Let h(x), g(x) be monic polynomials in x with h(0)D g(0)D 0, and
suppose that f(x) D g(h(x)) is a polynomial in yD x3

C 3D2x (D ¤ 0). If degh(x)
is a multiple of3, then h(x) itself is a polynomial in y.

Proof. We writeh D v0 C v1x C v2x2, where v0, v1, v2 are polynomials iny.
Since degh is a multiple of 3 by the assumption and degvkxk

� k mod 3 (k D 0, 1, 2),
we have degh D degv0 > degv1 C 1, degv2 C 2. Put f (x) D c0 C c1x C c2x2 for
polynomialsci in y. Then we havec1 D c2 D 0 by the assumption. On the other hand,
applying Lemma 4 to the expression off (x) as a sum of powers ofh(x), we have
c2 D nvn�1

0 v2 C O(x3d0n�6) for n D degg(x) and the degreed0 of v0 as a polynomial
in y, and sov2 D 0. Supposev1 ¤ 0; Lemma 4 implies that

c1v2 � c2v1 D (v3
1 C 3D2

v1v
2
2 � v

3
2y)

�

�

n(n� 1)

2
� v

n�2
0 C O(x3d0(n�2)�3)

�

,

which is equal to 0 byc1 D c2 D 0. Since (�n(n�1)=2) �vn�2
0 CO(x3d0(n�2)�3)¤ 0, we

havev3
1C3D2

v1v
2
2�v

3
2yD 0. This impliesv1 D 0 by v2 D 0, which is a contradiction.

Thus we havev1 D 0 and henceh D v0 is a polynomial iny.

The next result supports the expectation, although it is a very special case of deggD
3. Our proof is technical and an intrinsic proof is desirable.

Theorem 7. Let h(x) be a monic polynomial in x with h(0) D 0, and f(x) D
g(h(x)) (g(x)D x3

Cb2x2
Cb1x) (b1,b2 2 C). Then f(x) is a polynomial in y if and only

if either h(x) itself is a polynomial in y, or for an integer M, h(x) D h(x, M, D2) and

b2 D 0, b1 D 3D2M if M � 1 mod 2,

b2 D 6DM , b1 D 9D2M if M � 0 mod 2.

The proof of the sufficiency is easy as follows: Ifh(x) is a polynomial iny, then f (x)
is clearly a polynomial iny. To show the other case, we putx D D(t � t�1). Since
we have, by Proposition 1

h(x) D h(x, M, D2) D DM

�

t M
� t�M if M � 1 mod 2,

t M
C t�M

� 2 if M � 0 mod 2,

it is easy to see

h3
C 3D2M h D D3M (t3M

� t�3M ) if M � 1 mod 2,

h3
C 6DM h2

C 9D2M h D D3M (t3M=2
� t�3M=2)2 if M � 0 mod 2.
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They are polynomials iny D D3(t3
� t�3) by the theory of symmetric polynomials.

Thus f (x) is a polynomial iny, containingD in coefficients in general.
To prove the converse, we need preparations.

Lemma 5. For a non-negative integer m, we put

um(x) D xm
C

X

1�k�m=2

� m�k
m�2k

�

22k
xm�2k,

pm(x) D xmC1
C (mC 1)

X

1�k�m=2

� m�k
m�2k

�

22k(m� 2kC 1)
xm�2kC1

C (1C (�1)m�1)2�(mC1),

where k is supposed to be integers. Then we have

umC2(x) D
x

2
pm(x)C

�

x2

2
C

1

4

�

um(x),(21)

pmC2(x) D

�

x2

2
C

1

4

�

pm(x)C
x

2
(x2
C 1)um(x).(22)

Proof. If m is even, then we see

x

2
pm(x)C

�

x2

2
C

1

4

�

um(x)

D

xmC2

2
C

mC 1

2

m=2
X

kD1

� m�k
m�2k

�

22k(m� 2kC 1)
xm�2kC2

C

xmC2

2
C

1

2

m=2
X

kD1

� m�k
m�2k

�

22k
xm�2kC2

C

xm

4
C

1

4

m=2
X

kD1

� m�k
m�2k

�

22k
xm�2k

D xmC2
C

xm

4
C

1

2

m=2
X

kD1

� m�k
m�2k

�

22k

�

mC 1

m� 2kC 1
C 1

�

xm�2kC2

C

m=2
X

KD1

� m�KC1
m�2KC2

�

22K
xm�2KC2

C

1

2mC2
�

xm

4

D xmC2
C

m=2
X

kD1

1

22k

��

m� k

m� 2k

�

m� kC 1

m� 2kC 1
C

�

m� kC 1

m� 2kC 2

��

xm�2kC2

C

1

2mC2

D xmC2
C

m=2C1
X

kD1

1

22k

�

mC 2� k

m� 2kC 2

�

xm�2kC2

D umC2(x),
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and similarly we have (21) for an odd integerm. Next, let us see (22). For evenm,
we have

�

x2

2
C

1

4

�

pm(x)C
x

2
(x2
C 1)um(x)

D

xmC3

2
C

mC 1

2

m=2
X

kD1

� m�k
m�2k

�

22k(m� 2kC 1)
xm�2kC3

C

xmC1

4
C

mC 1

4

m=2
X

kD1

� m�k
m�2k

�

22k(m� 2kC 1)
xm�2kC1

C

xmC3

2
C

1

2

m=2
X

kD1

� m�k
m�2k

�

22k
xm�2kC3

C

xmC1

2
C

1

2

m=2
X

kD1

� m�k
m�2k

�

22k
xm�2kC1

D xmC3
C

3xmC1

4
C

1

2

m=2
X

kD1

� m�k
m�2k

�

22k

�

mC 1

m� 2kC 1
C 1

�

xm�2kC3

C

m=2
X

kD1

� m�k
m�2k

�

22k

�

mC 1

4(m� 2kC 1)
C

1

2

�

xm�2kC1

D xmC3
C

3xmC1

4
C

m=2
X

kD1

� m�k
m�2k

�

22k

m� kC 1

m� 2kC 1
xm�2kC3

C

m=2
X

KD1

� m�KC1
m�2KC2

�

22K

�

mC 1

m� 2K C 3
C 2

�

xm�2KC3
�

3

4
xmC1

C

mC 3

2mC2
x

D xmC3
C

m=2
X

kD1

1

22k

(

�

m� k

m� 2k

�

m� kC 1

m� 2kC 1

C

�

m� kC 1

m� 2kC 2

��

mC 1

m� 2kC 3
C 2

�

)

xm�2kC3

C

mC 3

2mC2
x

D xmC3
C

m=2
X

kD1

1

22k

�

mC 2� k

mC 2� 2k

�

mC 3

m� 2kC 3
xm�2kC3

C

mC 3

2mC2
x

D pmC2(x),

and similarly we have (22) for oddm.
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We noteum(x) D p0m(x)=(mC 1).

Proposition 5. If monic polynomials u(x), p(x) satisfy

(23) (x2
C 1)u(x)2

C cD p(x)2 (c 2 C),

then we have, for mD deg(u(x))

(24) u(x) D um(x), p(x) D pm(x), cD cm D
(�1)m�1

22m
.

Proof. We prove the assertion by induction onm.
The case ofmD 0: In this case,u(x) D 1 and p(x) D xCb for someb 2 C. The

equation (23) implies

x2
C 1C cD x2

C 2bxC b2,

which meansb D 0, c D �1. Sinceu0(x) D 1, p0(x) D x, c0 D �1, the assertion is
true for mD 0.

The case ofmD 1: We putu(x) D x C b, p(x) D x2
C dxC e; then we have

(x2
C 1)u(x)2

C cD x4
C 2bx3

C (b2
C 1)x2

C 2bxC b2
C c,

p(x)2
D x4

C 2dx3
C (d2

C 2e)x2
C 2dexC e2,

henceb D d, b2
C 1 D d2

C 2e, b D de, b2
C c D e2. Thus we haveb D d D 0,

eD 1=2, cD 1=4, which implies (24) formD 1, sinceu1(x) D x, p1(x) D x2
C 1=2.

The case ofm � 2: Since p(x), u(x) are monic and deg(p(x)) D deg(u(x))C 1D
mC 1, putting

(25) r (x) D p(x) � xu(x)

we have deg(r (x)) �m. The equation (23) implies (x2
C1)u(x)2

CcD p(x)2
D r (x)2

C

2xr (x)u(x)C x2u(x)2 and so

(26) u(x)2
C cD r (x)2

C 2xr (x)u(x).

Next, we will show

(27) r (x) D
1

2
xm�1

C O(xm�2).

As above, we know deg(r (x)) � m. Suppose deg(r (x)) D m; then the degree of the
right-hand side of (26) is 2mC 1, but the left-hand side is of degree 2m. Hence we
have a contradiction and so deg(r (x)) < m. Suppose deg(r (x)) � m� 2; the degree of
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the right-hand side of (26) is less than max(2(m � 2), 1C (m � 2)C m) D 2m � 1,
which is less than the degree 2m of the left-hand side, which is a contradiction. Thus
we have deg(r (x)) D m� 1, and then comparing the leading terms of the both sides of
(26), we have (27). Next, we show

(28) u(x) D 2xr (x)C r1(x), deg(r1(x)) D m� 2.

Write

u(x) D (bxC d)r (x)C r1(x), deg(r1(x)) � m� 2.

Comparing the leading coefficients of the both sides, we havebD 2 easily. Substituting
the above to (26), we have

(29) (4dxC d2
� 1)r (x)2

C 2(x C d)r (x)r1(x)C r1(x)2
C cD 0.

Since the degree of 2(x C d)r (x)r1(x) C r1(x)2
C c is less than or equal to 2m � 2,

we have deg((4dxC d2
� 1)r (x)2) � 2m� 2, henced D 0, and then (29) implies 0D

r (x)2
� 2xr (x)r1(x) � r1(x)2

� cD (r (x) � xr1(x))2
� x2r1(x)2

� r1(x)2
� c, i.e.

(30) (r (x) � xr1(x))2
D (x2

C 1)r1(x)2
C c.

If deg(r1(x)) � m� 3 holds, then the degree of the left-hand side of (30) is 2(m� 1)
and the right-hand side is of degree less than or equal to 2C 2(m � 3), which is a
contradiction. Thus we have proved degr1(x) D m� 2 and so (28).

Denote the leading coefficient ofr1(x) by a; then comparing the leading coefficients
of (30) we have (1=2� a)2

D a2 and soa D 1=4. Therefore we have

r1(x) D
1

4
xm�2

C O(xm�3)

and then (27) implies

(31) r (x) � xr1(x) D
1

4
xm�1

C O(xm�2).

Now, (30) is nothing but

(x2
C 1)(4r1(x))2

C 16cD (4r (x) � 4xr1(x))2,

and 4r1(x), 4r (x)�4xr1(x) are monic polynomials of degreem�2,m�1, respectively.
Hence by the induction assumption, we have

(32) 4r1(x) D um�2(x), 16cD cm�2, 4r (x) � 4xr1(x) D pm�2(x).
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This impliescD cm. We can show the assertion as follows:

u(x) D 2xr (x)C r1(x) (by (28))

D

x

2
pm�2(x)C

�

x2

2
C

1

4

�

um�2(x) (by (32))

D um(x) (by Lemma 5)

and

p(x) D r (x)C xu(x) (by (25))

D

x

4
� um�2(x)C 4�1 pm�2(x)C xum(x) (by (32))

D

�

x2

2
C

1

4

�

pm�2(x)C
x

2
� (x2
C 1)um�2(x) (by Lemma 5)

D pm(x).

Proposition 6. For a non-negative integer m, we have

pm

�

t � t�1

2

�

D 2�(mC1)(tmC1
C (�t)�(mC1)),

um

�

t � t�1

2

�

D

tmC2
C (�t)�m

2m(t2
C 1)

.

Proof. By denoting the right-hand sides ofpm, um in the assertion byPm, Um,
respectively, it is easy to see

UmC2 D
t � t�1

4
PmC

t2
C t�2

8
Um,

PmC2 D
t2
C t�2

8
PmC

(t � t�1)(t C t�1)2

24
Um.

They coincide with the induction formula (21), (22) withx D (t � t�1)=2 in Lemma 5,
noting thatx2

=2C 1=4D (t2
C t�2)=8 and (x=2) � (x2

C 1)D 2�4(t � t�1)(t C t�1)2. The
definitions p0(x) D x, u0(x) D 1, p1(x) D x2

C 1=2 andu1(x) D x imply the assertion
for mD 0, 1 easily. Thus we have the assertion of the proposition.

Let us begin the proof of Theorem 7 with preparations above. We write

h(x) D v0(y)C v1(y)x C v2(y)x2,
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and a D 3D2. It is not hard to see withy D x3
C ax

f (x) D h(x)3
C b2h(x)2

C b1h(x)

D {b1v2C b2(v2
1 C 2v0v2 � av2

2)C 3v1v
2
2yC 3v2

0v2C 3v0v
2
1 C a2

v

3
2

� 3av0v
2
2 � 3av2

1v2}x2

C {b1v1C b2(v2
2y � 2v1v2aC 2v0v1)C 3v0v

2
2yC 3v2

1v2y� 6av0v1v2 � av3
1

C 3v2
0v1 � 2av3

2 yC 3a2
v1v

2
2}x

C {v3
0 C b2v

2
0 C b1v0 � 3av1v

2
2yC v3

2y2
C (v3

1 C 2b2v1v2C 6v0v1v2)y}

D c2x2
C c1x C c0 (say),

where we abbreviatedvi (y) to vi . Since f (x) is a polynomial iny D x3
C ax by the

assumption, the coefficients ofx and x2 vanish and so we have

c1 D c2 D 0.

Then we have

c2v1 � c1v2 D (v3
1 C av1v

2
2 � v

3
2y)(b2 � 2av2C 3v0) D 0.

Supposev3
1Cav1v

2
2� v

3
2yD 0; if v1v2 ¤ 0, the degree of the left-hand side is 3 degv1,

3 degv2C 1 according to degv1 > degv2, degv1 � degv2, respectively. This is a con-
tradiction and so we havev1 D v2 D 0. Thus in this caseh(x) D v0(y) is a polynomial
in y. Supposev3

1Cav1v
2
2�v

3
2y¤ 0 and sob2�2av2C3v0 D 0. Since the determinant

of the coefficients matrix of the simultaneous equationsc1 D c2 D 0 with respect to
b1, b2 is �(v3

1 C av1v
2
2 � v

3
2y) ¤ 0, we have

b1 D �4av0v2C 3v2
0 C a2

v

2
2 � 3v1v2yC av2

1,(33)

b2 D 2av2 � 3v0.(34)

Substitutingv0 D (2av2 � b2)=3 to (33), we have

b1 D �
a2
v

2
2

3
C av2

1 C
b2

2

3
� 3v1v2y

and so
�

� y

2D3

�2
C 1

�

v

2
2 C

3

a2

�

b1 �
b2

2

3

�

D

�

v1

D
�

yv2

2D3

�2

Sincev1, v2 are polynomials iny, regarding them as a polynomial iny=(2D3), denote
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the leading coefficient ofv2 by A, and putmD deg(v2). Proposition 5 yields

v2 D Aum

� y

2D3

�

,

3

a2

�

b1 �
b2

2

3

�

D A2cm,

v1

D
�

yv2

2D3
D Bpm

� y

2D3

�

(B D �A),

whereum, pm are polynomials in Lemma 5. Thus putting

Y D
y

2D3
,

we have

v2 D Aum(Y),

v1 D D(AY um(Y)C Bpm(Y)),

b1 D
a2cmA2

C b2
2

3
,

v0 D
2a

3
Aum(Y) �

b2

3
.

Therefore we have

h(x) D v0(y)C v1(y)x C v2(y)x2

D

2a A

3
um(Y) �

b2

3
C D(AY um(Y)C Bpm(Y))x C Aum(Y)x2

and puttingÆ D A=B (D �1),

(35)
h(x) D A(2D2

C DY xC x2)um(Y)C DBpm(Y)x �
b2

3

D

A

2D2
{(x4
C 5D2x2

C 4D4)um(Y)C 2D3
Æpm(Y)x} �

b2

3
,

noting Y D (2D3)�1(x3
C 3D2x). The following is the last lemma necessary to prove

Theorem 2.

Lemma 6. Putting

g D (x4
C 5D2x2

C 4D4)um(Y)C 2D3
Æpm(Y)x,

we have

2m�1D3mg� h(x, 3mC 4, D2) D (1C (�1)m)D3mC4 if Æ D 1,

2m�1D3m�2g� h(x, 3mC 2, D2) D (1C (�1)m)D3mC2 if Æ D �1,

and
h(x) D �1h(x, 3mC 3C Æ, D2)C �2,
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for some constants�1, �2.

Proof. Putx D D(t � t�1), we have

Y D
t3
� t�3

2
,

x4
C 5D2x2

C 4D4
D D4(t4

C t�4
C t2
C t�2)

and then, noting (t4
C t�4

C t2
C t�2)=(t6

C 1)D (t2
C 1)=t4, Proposition 6 implies

g D

8

�

�

<

�

�

:

D4

2m�1
(t3mC4

C (�1)mt�(3mC4)) if Æ D 1,

D4

2m�1
(t3mC2

C (�1)mt�(3mC2)) if Æ D �1.

Proposition 1 implies easily the assertion in the lemma.

Sinceh(x), h(x,m, D2) are monic without constant term, Lemma 6 implies�1 D 1,
�2 D 0, i.e.

h(x) D h(x, M, D2) for M D 3mC 3C Æ.

Hence, in case ofm being odd, Proposition 1 implies

f (x) D (DM (t M
� t�M ))3

C b2(DM (t M
� t�M ))2

C b1(DM (t M
� t�M ))

D D3M (t3M
� t�3M )C b2D2M (t2M

C t�2M
� 2)

C (�3D3M
C b1DM )(t M

� t�M ),

which is a polynomial iny D x3
C 3D2x D D3(t3

� t�3) (x D D(t � t�1)) by the
assumption. Therefore we haveb2 D 0 and b1 D 3D2M , since (3,M) D 1 and y is
invariant by t ! 3

p

1t .
If m is even, then we have

f (x)

D (DM (t M
C t�M

� 2))3C b2(DM (t M
C t�M

� 2))2C b1DM (t M
C t�M

� 2)

D D3M (t3M
C t�3M )C (�6D3M

C b2D2M )(t2M
C t�2M )

C (�4b2D2M
C 15D3M

C b1DM )(t M
C t�M )C 6b2D2M

� 20D3M
� 2b1DM

which is a polynomial int3
� t�3 by the assumption. Similarly we haveb2 D 6DM

and b1 D 9D2M . Thus we have completed a proof of Theorem 7.
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5. Proof of Theorem 3

Put X D X(x) D x j G(xr ), and suppose thatf D Xr
� d is completely decompos-

able modulo a primep (­ D) without multiple roots; then there exists an integerD
such thatDr

� d mod p, consequently we have

f � Xr
� Dr

D (X � D)(Xr�1
C Xr�2D C � � � C Dr�1) mod p.

Then, the second leading term ofX � D being 0 implies that the sum of rootsr i (1�
i � m WD degX) of X(x) � D � 0 mod p vanishes, that is a linear relation

(36)
m
X

iD1

r i � 0 mod p

occurs. Let us see thath(r i ) D r r
i (1 � i � m, h(x) D xr ) are different, and roots of

f (x) � 0 mod p are of the formr i!
k
0 for a primitive r -th root !0 of unity in Z=pZ.

First, supposer r
i � r r

l mod p; then r i � r l! mod p for an r -th root ! of unity and we
have D � X(r i ) � (r l!) j G(r r

l ) � ! j X(r l ) � ! j D mod p, which implies! � 1 mod p
by the assumption (j , r ) D 1. Thus we haver i � r l mod p, i.e. i D l . Second, letR
be a root of f (x) � 0 mod p; then X(R)r

� Dr mod p and so X(R) � D!1 mod p
for an r -th root !1 of unity in Z=pZ. By ( j , r ) D 1, D � !�1

1 X(R) � X(!2R) mod p
for an r -th root !2 of unity. Thus roots off (x) � 0 mod p are of the formr i! for an
r -th root ! of unity. Since the number of solutions off (x) � 0 mod p is rm by the
assumption, the number ofr -th roots of unity inZ=pZ is r , and so there is a primitive
r -th root !0 of unity.

Then a point

(37)

(v1, : : : , v(r�1)m)

WD

��

r1!0

p
, : : : ,

r1!
r�1
0

p

�

, : : : ,

�

rm!0

p
, : : : ,

rm!
r�1
0

p

��

in (5) for g(x) D x j G(x)r
� d, h(x) D xr has a relation

(38)
m
X

iD1

vkC(i�1)(r�1) 2 Z (1� k � r � 1),

which comes from (36). This breaks the uniformity of the distribution of points (5)
when p!1, since for a subsetD � [0, 1)m(r�1) defined by

�

�

�

�

�

m
X

iD1

vkC(i�1)(r�1) � a

�

�

�

�

�

< � (a 2 Z),

the volume is arbitrarily small, but the point (37) is inD for every prime.
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6. Proof of Theorem 4

Suppose that for a primep ­ D, f (x) mod p is completely decomposable without
multiple roots. Sinceh(x, m, D) is a polynomial inx, D with integer coefficients, (16)
holds overFp D Z=pZ. We consider all over the algebraic closureFp of the prime

field Fp. Put D1 D
p

D 2 Fp, and for x 2 Fp, we take an elementt 2 Fp so that
x D D1(t�t�1), i.e. t2

�D�1
1 xt�1D 0. Then by (16),f (x)D h(h(x,m,D),n,Dm)CcD

Dmn
1 (tmn

� t�mn) C c D 0 is equivalent to (tmn)2
C cD�mn

1 tmn
� 1 D 0. Taking a root

T
C

2 Fp of x2
CcD�mn

1 x�1D 0, we havet D mn
p

T
C

� or t D � mn
p

T
C

�1
� for an mn-th

root of unity � in Fp. Therefore, puttingT D mn
p

T
C

, the root of f (x) D 0 is written
as D1(T� � T�1

�

�1) for an mn-th root � of unity in Fp. Since f (x) hasmn different
roots overFp by the assumption, the fieldFp hasmn roots for an equationxmn

D 1,
Let � be a primitivemn-th root of unity in Fp, and put

xk D D1(T�k
� T�1

�

�k).

Then the roots off (x)D 0 arex1,x2,:::,xmn. We have, for 1� k � n and 0� r �m�1

h(xkCnr , m, D) D Dm
1 ((T�kCnr )m

� (T�1
�

�k�nr )m) (by (16))

D Dm
1 ((T�k)m

� (T�1
�

�k)m)

D h(xk, m, D).

Since, noting f (x) D h(h(x, m, D), n, Dm)C c, the equationh(x, n, Dm)C c D 0 has
n distinct roots,h(xk, m, D) (1� k � n) are distinct, that ish(xk, m, D) ¤ h(xl , m, D)
if k ¥ l modn. Based on these, let us show the non-uniformity. Putd D (m, n) and
N D n=d; then we are assumingN > 1 anddm ­ n. Put

SD {xl j l � 0 moddm}.

Then we have #SD N > 1 and
X

x2S

x D D1T
X

k mod N

�

dmk
� D1T�1

X

k mod N

�

�dmk
D 0 in Fp.

Since we suppose thatf (x) mod p is completely decomposable, all rootsxk of f (x)�
0 mod p are in Fp, that is we may considerxk 2 Z with 0 � xk < p, and then the
above means

(39)
X

x2S

x

p
2 Z.

Let us see

(40) S¡ {x j h(x, m, D) D h(xk, m, D)} for 1� 8k � mn.
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If S� {x j h(x, m, D) D h(xk, m, D)} for some integerk, then we have

{kC nr j r 2 Z} � {dml j l 2 Z},

hence,k D dml0 for an integerl0, and son � 0 moddm, which contradictsdm ­ n.
By (40), we can arrangex=p for elementsx in S into rk(id, id) in (5), changing

numbering, and then (39) means that an appropriate sum of coordinates in (5) is an
integer. Thus points (5) are not distributed uniformly.

7. Proof of Theorem 5

We keep notations in Theorem 5. Since we assume thatf D x3(x3
Cc)3

�d mod p
is completely decomposable, the existence of! in the theorem is clear. LetD be an
integer such thatD3

� d mod p. Since r i are roots ofx(x3
C c) � D � 0 mod p,

we have

(41)
4
Y

iD1

(x � r i ) D x4
C cx� D.

Put

(x � r1)(x � r2) D x2
C a1x C a2,(42)

(x � r3)(x � r4) D x2
C b1x C b2.(43)

Hence equations (41)–(43) imply

b1 D �a1, b2 D a2
1 � a2, cD a3

1 � 2a1a2

and so

r1C r2 D �a1, r1r2 D a2, r3C r4 D a1, r3r4 D a2
1 � a2, D D a2

2 � a2
1a2.

These imply

S1 D r1C r2C !(r3C r4)

D a1(! � 1),

S2 D r1r2C (r1C r2)(r3C r4)!C r3r4!
2

D �a2
1(2!C 1)C a2(!C 2),

S3 D (r1C r2)r3r4!
2
C r1r2(r3C r4)!

D a3
1(!C 1)� a1a2,

S4 D r1r2r3r4!
2
D D(!C 1)
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and easily relations (11), noting (! � 1)3 D 6!C 3.
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