Kitaoka, Y. Osaka J. Math. **49** (2012), 393–420

A STATISTICAL RELATION OF ROOTS OF A POLYNOMIAL IN DIFFERENT LOCAL FIELDS III

YOSHIYUKI KITAOKA

(Received March 2, 2010, revised November 5, 2010)

Abstract

Let $f(x)$ be a monic polynomial in $\mathbb{Z}[x]$. We have observed a statistical relation of roots of $f(x)$ mod p for different primes p , where $f(x)$ decomposes completely modulo *p*. We could guess what happens if $f(x)$ is irreducible and has at most one decomposition $f(x) = g(h(x))$ such that *g*, *h* are monic polynomials over Z with $h(0) = 0$, $1 < \deg h < \deg f$. In this paper, we study cases that *f* has two different such decompositions. Besides, we construct a series of polynomials f which have two non-trivial different decompositions $f(x) = g(h(x))$.

1. Introduction

Let

$$
f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 \in \mathbb{Z}[x]
$$

be a monic polynomial with integer coefficients. We put

 $Spl(f) = {p | f(x) \text{ mod } p \text{ is completely decomposable}},$

where *p* denotes prime numbers. Let r_1, \ldots, r_n ($r_i \in \mathbb{Z}, 0 \le r_i \le p - 1$) be solutions of $f(x) \equiv 0 \mod p$ for $p \in Spl(f)$; then $a_{n-1} + \sum r_i \equiv 0 \mod p$ is clear. Thus there exists an integer $C_p(f)$ such that

(1)
$$
a_{n-1} + \sum_{i=1}^{n} r_i = C_p(f)p.
$$

If $f(x)$ has no rational roots, then we have $1 \leq C_p(f) \leq n-1$ with finitely many exceptional primes *p*.

²⁰¹⁰ Mathematics Subject Classification. 11N64, 11C08.

The author was partially supported by Grant-in-Aid for Scientific Research (C), The Ministry of Education, Science, Sports and Culture.

By defining the natural density

(2)
$$
Pr(k, f, X) = \frac{\# \{p \mid p \in Spl(f), p \le X, C_p(f) = k\}}{\# \{p \mid p \in Spl(f), p \le X\}},
$$

the limit

$$
Pr(k, f) = \lim_{X \to \infty} Pr(k, f, X)
$$

seems to exist $([1], [2])$.

If a polynomial *f* is of a form $f(x) = g(h(x))$ for polynomials $g(x)$, $h(x)$ with deg $h = 2$, then $C_p(f) = (\text{deg } f)/2$ holds with finitely many exceptions $p \in Spl(f)$ ([1]). They and linear forms seem exceptional polynomials for which $Pr(k, f)$ can be evaluated explicitly. Hereafter we exclude such polynomials and assume that *f* is irreducible.

First, suppose that *f* does not have a decomposition such that $f(x) = g(h(x))$, where *g*, *h* are polynomials over Q with $1 < \deg h < \deg f$. We call it non-reduced. Let r_1, \ldots, r_n be roots of f mod p for a prime $p \in Spl(f)$; then the relation (1) implies that $\sum r_i / p$ tends to an integer $C_p(f)$ if $p \to \infty$, hence points $(r_1/p, \ldots, r_n/p) \in [0,1)^n$ are not distributed uniformly. However, by considering *n*! points $(r_{i_1}/p, \ldots, r_{i_{n-1}}/p) \in$ $[0, 1)^{n-1}$ for all $n-1$ ordered choices of roots impartially, it is likely that these are uniformly distributed in [0, 1)ⁿ⁻¹ when $p(\in Spl(f)) \to \infty$. Here the definition of the uniform distribution is an ordinary one, numbering points in numerical order of $p \in$ *Spl*(f) with arbitrary numbering for the same p . If it is true, it is known ([2]) that

(3)
$$
Pr(k, f) = \frac{A(n-1, k)}{(n-1)!} \quad (= E_n(k) \text{ say}),
$$

where $A(m, k)$ is the Eulerian number defined by the following rules:

$$
\begin{cases} A(m, k) = 0 \text{ unless } 1 \le k \le m, \text{ and} \\ A(1, 1) = 1, A(m, k) = (m - k + 1)A(m - 1, k - 1) + kA(m - 1, k). \end{cases}
$$

In fact, numerical data by computer support (3) . (See [1, 2])

Next, suppose that there is a decomposition

(4)
$$
f(x) = g(h(x)) \quad (2 < \text{deg } h(x) < \text{deg } f(x)),
$$

where we normalize the decomposition so that g, h are monic and $h(0) = 0$. We call $h(x)$ a reduced kernel of $f(x)$ and the degree of $h(x)$ a reduced degree of $f(x)$. Although there may be several reduced kernels, a reduced degree determines a reduced kernel uniquely (cf. Proposition 3 below). Put $m = \deg g$, $r = \deg h$ ($n = \deg f = mr$)

in (4). For a prime $p \in Spl(f)$, we group the roots r_1, \ldots, r_n of $f(x) \equiv 0 \mod p$ as follows:

$$
\{r_i \mid 1 \le i \le n\} = \{x \mod p \mid f(x) = g(h(x)) \equiv 0 \mod p\}
$$

$$
= \bigcup_{i=1}^{m} \{r_{i,1}, \dots, r_{i,r}\},
$$

where $r_{i,j}$ satisfies

$$
h(r_{i,j}) \equiv s_i \bmod p \quad (1 \leq \forall j \leq r),
$$

where s_i $(1 \le i \le m)$ are all roots of $g(x) \equiv 0 \mod p$. Let us arrange any $r-1$ roots of $h(x) \equiv s_i \mod p$ (*i* = 1, ..., *m*) impartially. Denoting the permutation group of {1, ..., *a*} by \mathfrak{S}_a , we put, for permutations $\mu \in \mathfrak{S}_m$ and $\sigma_k \in \mathfrak{S}_r$

$$
\boldsymbol{r}_{k}(\mu,\,\sigma_{k})=\left(\frac{r_{\mu(k),\sigma_{k}(1)}}{p},\,\ldots,\,\frac{r_{\mu(k),\sigma_{k}(r-1)}}{p}\right)\quad(1\leq k\leq m).
$$

So, $pr_k(\mu, \sigma_k)$ is an arrangement of $r - 1$ roots of $h(x) \equiv s_{\mu(k)} \mod p$. As in [2], if points

(5)
$$
(\mathbf{r}_1(\mu, \sigma_1), \ldots, \mathbf{r}_m(\mu, \sigma_m)) \in [0, 1)^{m(r-1)}
$$
 for $\forall \mu \in \mathfrak{S}_m, \forall \sigma_i \in \mathfrak{S}_r$

are distributed uniformly when $p \rightarrow \infty$, then we have

(6)
$$
Pr(f) = E_r^m
$$
 $(f(x) = g(h(x)), m = deg g, r = deg h),$

where the convolution E_r^m is defined inductively by the following:

$$
E_r^1 = E_r, \quad E_r^{k+1}(l) = \sum_{i+j=l} E_r^k(i) E_r(j).
$$

We note that it does not happen that all elements of a subset

$$
\{x \bmod p \mid h(x) \equiv h(r_{i,j}) \bmod p\} \quad (\subset \{x \bmod p \mid f(x) \equiv 0 \bmod p\})
$$

for i , j appear in an vector in (5) at the same time.

Now, let us assume that there is only one reduced degree, that is the decomposition (4) is unique; then numerical data in [1, 2] support (6), and we may expect that the points in (5) are distributed uniformly.

Before referring to examples in [2], which have two reduced degrees, let us give two non-trivial examples that have plural reduced degrees, and discuss the non-uniformity of points (5). A trivial example means $f(x) = g((h \circ k)(x)) = (g \circ h)(k(x))$ for three polynomials g, h, k . We consider all over $\mathbb C$ if we do not refer.

First, we treat the case that a reduced kernel is a monomial.

Theorem 1. Let n be a natural number and $l \geq 2$ a divisor of n. Let $f(x)$ be a *monic polynomial of degree n and assume that there are monic polynomials* $g(x)$, $h(x)$ *with* deg $h = r$, $h(0) = 0$ *such that*

(7)
$$
f(x) = g(x^l) = \sum_{k=0}^m b_k h(x)^k \quad (mr = n, \ b_m = 1).
$$

Then, *putting*

$$
h(x) = \sum_{k=1}^{r} c_k x^k \quad (c_r = 1),
$$

we have

$$
h(x) = \sum_{j \equiv r \bmod l} c_j x^j = x^{r_0} \times (a \text{ polynomial in } x^l)
$$

*where r*⁰ *is the least non-negative residue of r modulo l and*

$$
f(x) = \sum_{\substack{0 \le k \le m, \\ rk \equiv 0 \bmod l}} b_k h(x)^k.
$$

Proofs of this theorem and subsequent theorems are given from the next section on.

To state the next example, we introduce notations. For a natural number *m* and a constant $D \in \mathbb{C}$, we put

$$
h(x, m, D) = xm + m \sum_{1 \le k \le (m-1)/2} {m-k \choose k} \frac{D^k}{m-k} x^{m-2k},
$$

where k is supposed to be integers, and for an odd natural number n and an even natural number *m*

$$
H(x, n, m, D) = x^{(n-1)/2} + n \sum_{0 \le j \le (n-1)/2 - 1} \binom{(n-1)/2 + j}{2j+1} \frac{D^{m(n-(2j+1))/4}}{(n-1)/2 - j} x^j.
$$

For example, $h(x, 1, D) = x$, $h(x, 2, D) = x^2$, $h(x, 3, D) = x^3 + 3Dx$, and we see that above two polynomials $h(x, m, D)$, $H(x, n, m, D)$ are polynomials in D, x with integer coefficients, computing *p*-factors for

$$
\frac{m}{m-k} \binom{m-k}{k} = m \cdot \frac{(m-k-1)!}{(m-2k)!k!},
$$

$$
\frac{n}{(n-1)/2 - j} \binom{(n-1)/2 + j}{2j+1} = n \cdot \frac{((n-1)/2 + j)!}{((n-1)/2 - j)!(2j+1)!},
$$

respectively.

Theorem 2. *Let m*, *n be natural numbers. If mn is odd*, *then we put*

$$
h_1(x) = h(x, m, D), \quad h_2(x) = h(x, n, D),
$$

\n
$$
g_1(x) = h(x, n, D^m), \quad g_2(x) = h(x, m, D^n).
$$

If m is even and n is odd, *then we put*

$$
h_1(x) = h(x, m, D), \qquad h_2(x) = h(x, n, D),
$$

$$
g_1(x) = xH(x, n, m, D)^2, \quad g_2(x) = h(x, m, D^n).
$$

Then we have

$$
g_1(h_1(x)) = g_2(h_2(x)).
$$

With respect to these theorems, let us state some expectations. Suppose $f(x) =$ $g_i(h_i(x))$ with $1 < \deg h_i < n = \deg f$ (*i* = 1, 2), and we normalize them by a transformation $x \to x + a$ so that the second leading coefficient of f vanishes and moreover $h_i(0) = 0$. Put $d = (\text{deg } h_1, \text{deg } h_2)$. Then we expect

(i) if $d = 1$, then such pairs are of the form in the theorems above,

(ii) there are polynomials $H_1(x)$, $H_2(x)$ such that deg $H_i = (\text{deg } h_i)/d$ (*i* = 1, 2) which satisfy $h_i(x) = H_i(p(x))$ for an appropriate polynomial $p(x)$, and

(iii) there are polynomials G_1 , G_2 with deg $G_1 = (\text{deg } h_2)/d$ and deg $G_2 = (\text{deg } h_1)/d$ which satisfy $G_1(h_1(x)) = G_2(h_2(x))$.

Now, let us give examples of polynomials $f(x)$ for which it has two decompositions and points in (5) are not distributed uniformly.

Theorem 3. Let $G(x)$ be a monic polynomial with integer coefficients and let in*tegers j, r* satisfy $r > 1$, $j \ge 1$, $(j, r) = 1$, and we assume that either $G(x) = 1$, $j > 1$ *or* deg *G* > 0*. Then for a polynomial*

(8)
$$
f = (x^j G(x^r))^r - d \quad (d \in \mathbb{Z}),
$$

it has polynomials x^r *and* $x^j G(x^r)$ *as reduced kernels, and points in* (5) *are not distributed uniformly for* $g(x) = x^{j}G(x)^{r} - d$, $h(x) = x^{r}$.

In particular, points (5) do not distributed uniformly for a polynomial $f(x) = x^{jr} - d$, $g(x) = x^{j} - d$, $h(x) = x^{r}$ with $j > 1$, $r > 1$, $(j, r) = 1$.

Theorem 4. Let m, n be odd integers such that $m > 1$, $n > 1$ and $dm \nmid n$ and $n > d$ for $d = (m, n)$, and we put

$$
f(x) = h(h(x, m, D), n, Dm) + c = h(h(x, n, D), m, Dn) + c,
$$

where c, D (\neq 0) *are integers. Then for points in* (5) *are not distributed uniformly for* $g(x) = h(x, n, D^m), h(x) = h(x, m, D).$

Note that if *m* divides *n*, then $h(x, n, D)$ itself is a polynomial in $h(x, m, D)$ by Proposition 2, i.e. of a trivial type.

Now with these preparations, let us consider examples in [2]. First, let deg $f =$ 12. Put

$$
f(x) = (x(x3 + c))3 - d \quad (j = 1, G = x + c, r = 3 \text{ at (8)),}
$$

and let $p \neq 3$) be a prime number for which f mod p is completely decomposable. It is likely

(9)
\n
$$
[Pr(1, f), \ldots, Pr(11, f)]
$$
\n
$$
= \left[0, 0, 0, \frac{1}{15}, \frac{7}{30}, \frac{2}{5}, \frac{7}{30}, \frac{1}{15}, 0, 0, 0\right],
$$

which is equal neither to E_3^4 nor to E_4^3 . In [2], the cases $c = -3$, $d = -3$ and $c = -1$, $d = -3$ are referred to as f_5 , f_6 , respectively. As above, points (5) for $g = x(x+c)^3$ *d*, $h = x^3$ are not distributed uniformly. Thus $Pr(f) \neq E_3^4$, E_4^3 is not strange. Take an integer *D* such that $D^3 \equiv d \mod p$, and let r_1, \ldots, r_4 be roots of $x^4 + cx - D \equiv 0 \mod p$, and put

$$
\prod_{i=1}^{4} (x - r_i) = x^4 - s_1 x^3 + s_2 x^2 - s_3 x + s_4.
$$

Then we have, besides a fundamental linear relation $s_1 \equiv 0 \mod p$, non-linear relations among *rⁱ*

(10)
$$
s_2 \equiv 0, \quad s_3 \equiv -c, \quad s_4 \equiv -D \mod p.
$$

In this case, we have more relations as follows.

Theorem 5. Let ω be an integer such that $\omega^2 + \omega + 1 \equiv 0 \mod p$; then symmetric *polynomials* S_1, \ldots, S_4 *of* $r_1, r_2, \omega r_3, \omega r_4$ *defined by*

$$
(x + r_1)(x + r_2)(x + \omega r_3)(x + \omega r_4) = x^4 + S_1x^3 + S_2x^2 + S_3x + S_4
$$

satisfy

(11)
$$
\begin{cases} 6S_3 - S_1^3 - 3c \equiv 0 \mod p, \\ S_1 S_2 - 3S_3 \equiv 0 \mod p, \\ 36S_1^2 S_4 - S_1^6 - 27c^2 \equiv 0 \mod p. \end{cases}
$$

The author does not know whether non-linear relations (10) and (11) contribute to (9). Next, let us consider the case of $deg = 15$. For

(12)
$$
f = (x^3)^5 + 2 \quad (j = 3, G = 1, r = 5, d = -2),
$$

numerical data in [2] suggest that $Pr(f)$ is (not E_5^3 but) E_3^5 as if $h = x^3$ were a unique reduced kernel. But, for the polynomial (12), points defined by (5) for $g = x^5 + 2$, $h = x³$ are not distributed uniformly by Theorem 3. The data might be too few to recognize the difference between $Pr(f)$ and E_3^5 . By contrast, we can recognize easily the difference between $Pr(f)$ and E_3^4, E_4^3 in the case of degree 12 as above, where data in the same range of primes *p* are enough.

For polynomials $f(x) = (x^3)^7 + 2, (x^5)^7 + 2, (x^3)^{35} + 2, Pr(f)$ looks like E_3^7, E_5^7, E_3^{35} , respectively ([2]).

We can add one more example. Put $f = (x^2(x^6 + x^3 + 1))^3 + 2$, which is of the type (8) like examples of degree 12 above. The difference

$$
E_3^8 - Pr(f)
$$

= [0, 0, 0, 0, 0, 0, 0, 0.00032, -0.00041, -0.00125, 0.00314,
0.00170, -0.00568, 0.00169, 0.00095, -0.00045, 0, 0, 0, 0, 0, 0, 0, 0]

within the range of $p < 10^{11}$.

The situations resemble the case of deg $= 15$. What differs between these and the case of degree 12? Are points (5) not distributed uniformly if there are distinct reduced degrees?

2. Proof of Theorem 1

We keep notations in Theorem 1, and let us introduce a notation $O(x^k)$, which denotes a polynomial in *x* whose degree is less than or equal to *k*.

Decompose $h(x)$ as

$$
h(x) = \sum_{j \equiv r \bmod l} c_j x^j + \sum_{j \not\equiv r \bmod l} c_j x^j = h_0(x) + h_1(x) \quad \text{(say)}.
$$

We have to prove $h_1(x) = 0$ first. Assume that $h_1(x) \neq 0$ and denote the degree by *s*; then $s \neq r \mod l$ and $0 < s < r$ are obvious.

 $f(x) = h(x)^m + O(x^{(m-1)r})$ follows from (7), and $h^m = \sum_{k=0}^m {m \choose k}$ $\binom{m}{k} h_0^k h_1^{m-k}$ and $\deg(h_0^k h_1^{m-k}) = rk + s(m-k) = sm + (r - s)k$ imply

$$
h^m = h_0^m + mh_0^{m-1}h_1 + O(x^{sm + (r-s)(m-2)}).
$$

Therefore we have

$$
f = h_0^m + m h_0^{m-1} h_1 + O(x^{sm + (r - s)(m-2)}) + O(x^{(m-1)r}).
$$

It is easy to see that the condition $0 < s < r$ implies $\deg(h_0^{m-1}h_1) = (m-1)r + s >$ $max((m-1)r, sm + (r - s)(m - 2))$. Hence the degree of the right-hand side of

(13)
$$
f - h_0^m = m h_0^{m-1} h_1 + O(x^{(m-1)r+s-1})
$$

is equal to $\deg(mh_0^{m-1}h_1)$. Since $mr_0 \equiv mr = n \equiv 0 \mod l$, $h_0^m = (x^{r_0} \cdot (a \text{ polynomial in})$ $f(x^l)$)^{*m*} = x^{mr_0} · (a polynomial in *x*^{*l*}) is a polynomial in *x*^{*l*}. Thus $f - h_0^m$ is a polynomial in x^l , hence the degree of the left-hand side polynomial in (13) is divisible by *l*. On the other hand, for the right-hand side of (13), we have $\deg(mh_0^{m-1}h_1)$ = $(m-1)r + s \equiv -(r-s) \neq 0 \mod l$. This contradicts (13). Thus we have $h_1 = 0$ and there is a polynomial h_2 such that $h(x) = x^{r_0}h_2(x^l)$, and so we have $f(x) = g(x^l)$ $\sum_{k=0}^{m} b_k x^{r_0 k} h_2(x^l)^k$. This implies $b_k = 0$ unless $rk \equiv r_0 k \equiv 0 \mod l$. \Box

3. Proof of Theorem 2 and miscellaneous results

We still keep notations in the introduction. To prove Theorem 2, we prepare lemmas.

Lemma 1. *For a natural number* $n \geq 2$ *, we have*

(14)
$$
h(x, n + 1, D^2) - xh(x, n, D^2) - D^2h(x, n - 1, D^2)
$$

$$
= (1 + (-1)^n)D^n h(x, 1, D^2)
$$

and for $x = D(t - t^{-1}),$

$$
h(x, 1, D^2) = D(t - t^{-1}),
$$
 $h(x, 2, D^2) = D^2(t^2 + (-t^{-1})^2 - 2).$

Proof. Since $h(x, 1, D^2) = x$, $h(x, 2, D^2) = x^2$, the last two equations are obvious. Before the proof of the induction formula (14), we note two equalities

$$
(n+1)\binom{n+1-k}{k}\frac{1}{n+1-k} - n\binom{n-k}{k}\frac{1}{n-k}
$$

$$
= \binom{n-1-k}{k-1}\frac{n-1}{n+1-2k},
$$

and

$$
\binom{n-k-2}{k}\frac{1}{n-1-2k} = \binom{n-k-1}{k}\frac{1}{n-1-k}.
$$

The first follows from

$$
(n+1)\binom{n+1-k}{k}\frac{1}{n+1-k} - n\binom{n-k}{k}\frac{1}{n-k}
$$

=
$$
\frac{(n+1)\cdot(n-k)!}{k!(n+1-2k)!} - \frac{n\cdot(n-1-k)!}{k!(n-2k)!}
$$

=
$$
\frac{(n-1-k)!}{k!(n-2k)!} \left\{\frac{(n+1)(n-k)}{n+1-2k} - n\right\}
$$

=
$$
\frac{(n-1-k)!}{k!(n-2k)!} \frac{kn-k}{n+1-2k}
$$

=
$$
\binom{n-1-k}{k-1} \frac{n-1}{n+1-2k}
$$

and the second is direct.

Suppose that n is odd; then the left-hand side of (14) is equal to

$$
(n + 1) \sum_{1 \le k \le (n-1)/2} {n + 1 - k \choose k} \frac{D^{2k}}{n + 1 - k} x^{n+1-2k}
$$

\n
$$
-n \sum_{1 \le k \le (n-1)/2} {n-k \choose k} \frac{D^{2k}}{n-k} x^{n+1-2k}
$$

\n
$$
-D^2 x^{n-1} - (n - 1) \sum_{1 \le k \le (n-1)/2-1} {n-1-k \choose k} \frac{D^{2k+2}}{n-1-k} x^{n-1-2k}
$$

\n
$$
= \sum_{1 \le k \le (n-1)/2} {n-1-k \choose k-1} \frac{n-1}{n+1-2k} D^{2k} x^{n+1-2k}
$$

\n
$$
-D^2 x^{n-1} - (n - 1) \sum_{1 \le k \le (n-1)/2-1} {n-1-k \choose k} \frac{D^{2k+2}}{n-1-k} x^{n-1-2k}
$$

\n
$$
= \sum_{1 \le k \le (n-1)/2-1} {n-2-k \choose K} \frac{n-1}{n-1-2K} D^{2k+2} x^{n-1-2K}
$$

\n
$$
- (n - 1) \sum_{1 \le k \le (n-1)/2-1} {n-1-k \choose k} \frac{D^{2k+2}}{n-1-k} x^{n-1-2k}
$$

\n
$$
= 0.
$$

Next, suppose that n is even; then the right-hand side of (14) is equal to

$$
(n+1)\sum_{1\leq k\leq n/2} {n+1-k \choose k} \frac{D^{2k}}{n+1-k} x^{n+1-2k}
$$

\n
$$
-n\sum_{1\leq k\leq n/2-1} {n-k \choose k} \frac{D^{2k}}{n-k} x^{n+1-2k}
$$

\n
$$
-D^2 x^{n-1} - (n-1)\sum_{1\leq k\leq n/2-1} {n-1-k \choose k} \frac{D^{2k+2}}{n-1-k} x^{n-1-2k}
$$

\n
$$
= (n+1){n/2+1 \choose n/2} \frac{D^n}{n/2+1} x
$$

\n
$$
+ \sum_{1\leq k\leq n/2-1} {n-1-k \choose k-1} \frac{n-1}{n+1-2k} D^{2k} x^{n+1-2k}
$$

\n
$$
-D^2 x^{n-1} - (n-1)\sum_{1\leq k\leq n/2-1} {n-1-k \choose k} \frac{D^{2k+2}}{n-1-k} x^{n-1-2k}
$$

$$
= (n + 1)D^{n}x + D^{2}x^{n-1}
$$

+
$$
\sum_{2 \le k \le n/2-1} {n-1-k \choose k-1} \frac{n-1}{n+1-2k} D^{2k}x^{n+1-2k}
$$

-
$$
D^{2}x^{n-1} - (n - 1) \sum_{1 \le k \le n/2-1} {n-1-k \choose k} \frac{D^{2k+2}}{n-1-k} x^{n-1-2k}
$$

=
$$
(n + 1)D^{n}x
$$

+
$$
\sum_{1 \le k \le n/2-2} {n-2-k \choose k} \frac{n-1}{n-1-2k} D^{2k+2}x^{n-1-2k}
$$

-
$$
(n - 1) \sum_{1 \le k \le n/2-1} {n-1-k \choose k} \frac{D^{2k+2}}{n-1-k} x^{n-1-2k}
$$

=
$$
(n + 1)D^{n}x - (n - 1)D^{n}x
$$

=
$$
2D^{n}x
$$

=
$$
2D^{n}h(x, 1, D^{2}),
$$

which completes a proof.

Lemma 2. *Put*

$$
c_n = D^n(t^n + (-t^{-1})^n - 1 - (-1)^n).
$$

Then we have

(15)
$$
c_{n+1} - D(t - t^{-1})c_n - D^2 c_{n-1} = D^n (1 + (-1)^n) c_1
$$

and

$$
c_1 = D(t - t^{-1}),
$$
 $c_2 = D^2(t^2 + (-t^{-1})^2 - 2).$

Proof. The equalities for c_1 , c_2 are obvious. The first follows from

$$
c_{n+1} - D(t - t^{-1})c_n - D^2 c_{n-1}
$$

= $D^{n+1}(t^{n+1} + (-t^{-1})^{n+1} - 1 - (-1)^{n+1})$
 $- D(t - t^{-1}) \cdot D^n(t^n + (-t^{-1})^n - 1 - (-1)^n)$
 $- D^2 \cdot D^{n-1}(t^{n-1} + (-t^{-1})^{n-1} - 1 - (-1)^{n-1})$
= $D^{n+1}(1 + (-1)^n)(t - t^{-1})$
= $D^n(1 + (-1)^n)c_1.$

 \Box

 \Box

Proposition 1. *For a natural number n*, *we have*

$$
h(D(t - t^{-1}), n, D^2) = D^n(t^n + (-t^{-1})^n - 1 - (-1)^n)
$$

=
$$
\begin{cases} D^n(t^n - t^{-n}) & \text{if } 2 \nmid n, \\ (D^{n/2}(t^{n/2} - t^{-n/2}))^2 & \text{if } 2 \mid n. \end{cases}
$$

Proof. $h(D(t - t^{-1}), k, D^2) = c_k$ holds for $k = 1, 2$ and their induction formulas (14), (15) coincide for $x = D(t - t^{-1})$. Therefore they are the same. \Box

Proof of Theorem 2. We put $x = D_1(t - t^{-1})$ for $D_1 = \sqrt{D}$. Let *m*, *n* be odd; then we have

(16)
$$
h_1(x) = h(D_1(t - t^{-1}), m, D_1^2) = D_1^m(t^m - t^{-m}),
$$

$$
g_1(h_1(x)) = h(D_1^m(t^m - t^{-m}), n, D_1^{2m}) = D_1^{mn}(t^{mn} - t^{-mn}),
$$

which is symmetric with respect to *m*, *n*. Therefore we have $g_1(h_1(x)) = g_2(h_2(x))$ for $x = D_1(t - t^{-1})$, and so the assertion in this case.

Next, suppose that *m* is even and *n* is odd. First, we can see easily

$$
xH(x^2, n, m, D_1^2) = h(x, n, D_1^m).
$$

Hence, putting $x = D_1(t - t^{-1})$, we have

$$
g_1(x^2) = x^2 H(x^2, n, m, D_1^2)^2 = h(x, n, D_1^m)^2
$$

and

$$
h_1(x) = h(x, m, D_1^2) = (D_1^{m/2}(t^{m/2} - t^{-m/2}))^2,
$$

and so

$$
g_1(h_1(x))
$$

= $h(D_1^{m/2}(t^{m/2} - t^{-m/2}), n, D_1^m)^2$
= $(D_1^{mn/2}(t^{mn/2} + (-t^{-m/2})^n))^2$
= $D_1^{mn}(t^{mn} + t^{-mn} - 2).$

On the other hand, we have

$$
g_2(h_2(D_1(t - t^{-1})))
$$

= $h(h(D_1(t - t^{-1}), n, D_1^2), m, D_1^{2n})$
= $h(D_1^n(t^n + (-t^{-1})^n), m, D_1^{2n})$
= $D_1^{mn}(t^{mn} + (-t^{-1})^{mn} - 2),$

which implies

$$
g_1(h_1(x)) = g_2(h_2(x)).
$$

This completes a proof of Theorem 2.

Let us give miscellaneous results.

Proposition 2. *Let k*, *m be natural numbers. Then h*(*x*, *mk*, *D*) *is a polynomial of h*(*x*, *m*, *D*)*.*

Proof. The assertion follows from Proposition 1 and that $x^{mk} + y^{mk}$ is a polynomial in $x^m + y^m$, $x^m y^m$, hence $t^{mk} + (-t^{-1})^{mk}$ is a polynomial in $t^m + (-t^{-1})^m$

A polynomial $h(x,mk, D)$ is not necessarily a polynomial in $h(x,m, D)$ with integer coefficients as $h(x, 2, D) = x^2$, $h(x, 4, D) = x^4 + 4Dx^2$.

Proposition 3. *Let* $f(x)$, y , z *be monic polynomials in x and suppose that* deg(*y*) = $deg(z)$ *and* $y(0) = z(0) = 0$ *. If* $f(x)$ *is a polynomial both in y and in z, then we have* $y = z$.

Proof. Put

$$
f(x) = y^{m} + a_{m-1}y^{m-1} + \dots + a_1y + a_0
$$

= $z^{m} + c_{m-1}z^{m-1} + \dots + c_1z + a_0$,
 $y = b_nx^{n} + b_{n-1}x^{n-1} + \dots + b_1x$ ($b_n = 1$),
 $z = d_nx^{n} + d_{n-1}x^{n-1} + \dots + d_1x$ ($d_n = 1$).

We have only to conclude a contradiction under the assumption that there is an integer *s* with $1 \le s \le n-1$ such that $b_s \ne d_s$ and $b_k = d_k$ for $k \ge s+1$. Put

$$
X = \sum_{i=s+1}^{n} b_i x^i, \quad Y = \sum_{i=1}^{s} b_i x^i, \quad Z = \sum_{i=1}^{s} d_i x^i;
$$

then we have

$$
y = X + Y, \quad z = X + Z, \quad \deg(Y - Z) = s.
$$

Since $\deg(X^{m-k}Y^k) \le n(m-k) + sk = nm - (n-s)k$ and $\deg(X^{m-k}Z^k) \le nm - (n-s)k$, we have

$$
y^{m} = X^{m} + mX^{m-1}Y + O(x^{nm-2(n-s)}), \quad z^{m} = X^{m} + mX^{m-1}Z + O(x^{nm-2(n-s)}).
$$

Thus we have

$$
f(x) = y^{m} + O(x^{n(m-1)}) = z^{m} + O(x^{n(m-1)})
$$

= $X^{m} + m X^{m-1} Y + O(x^{nm-2(n-s)}) + O(x^{n(m-1)})$
= $X^{m} + m X^{m-1} Z + O(x^{nm-2(n-s)}) + O(x^{n(m-1)})$

and so

(17)
$$
mX^{m-1}(Y - Z) = O(x^{nm-2(n-s)}) + O(x^{n(m-1)}).
$$

 \Box

On the other hand, the definition of *s* implies deg($mX^{m-1}(Y - Z)$) = $n(m-1) + s$. The inequalities of degrees $\{n(m-1)+s\} - \{nm-2(n-s)\} = n-s > 0$ and $\{n(m-1)+s\} {n(m-1)} = s > 0$ imply that the degree of the right hand side of the above equation (17) is less than the degree of the left hand side. Thus we have a contradiction. \Box

By this proposition, a reduced degree determines a reduced kernel uniquely.

Proposition 4. Let $h_1(x), h_2(x)$ be monic polynomials with $(\deg(h_1), \deg(h_2)) = d$. *Suppose that there are monic polynomials* $g_1(x)$ *,* $g_2(x)$ *<i>such that*

$$
g_1(h_1(x)) = g_2(h_2(x)), \quad \deg(g_1) = \frac{\deg(h_2)}{d} \quad and \quad \deg(g_2) = \frac{\deg(h_1)}{d}.
$$

If polynomials G_1 , G_2 *satisfy* $G_1(h_1(x)) = G_2(h_2(x))$, *then there exists a polynomial G*(*x*) *so that* $G_i(x) = G(g_i(x))$ *for* $i = 1, 2$ *.*

Proof. We note that $G_1(h_1(x)) = G_2(h_2(x))$ implies $deg(G_1) deg(h_1) =$ $deg(G_2) deg(h_2)$, hence $deg(G_1)$ is divisible by $deg(h_2)/d = deg(g_1)$. We prove the assertion by induction on $m = \deg(G_1)/\deg(g_1)$. Suppose $m = 1$; denoting the leading coefficient of G_1 by a , we have

$$
\deg(G_1 - a g_1) < \deg(g_1)
$$

and $(G_1 - ag_1)(h_1(x)) = G_1(h_1(x)) - ag_1(h_1(x)) = G_2(h_2(x)) - ag_2(h_2(x)) = (G_2$ ag_2)(h_2 (*x*)). Therefore deg(G_1 -*ag*₁) is divisible by deg(g_1) as above, and hence we have $G_1 - a g_1 = c$ for some constant $c \in \mathbb{C}$. Then $G_2(h_2(x)) = G_1(h_1(x)) = a g_1(h_1(x)) + c$ $a g_2(h_2(x)) + c = (a g_2 + c)(h_2(x))$, which means $G_2(x) = a g_2(x) + c$. Thus we can take a polynomial $ax + c$ as $G(x)$.

Suppose that the assertion is true for $m \leq k$ and $\deg(G_1) = (k+1)\deg(g_1)$. Denoting the leading coefficient of G_1 by a as above, we have $\deg(G_1 - ag_1^{k+1}) < (k+1) \deg(g_1)$ and $(G_1 - ag_1^{k+1})(h_1(x)) = G_1(h_1(x)) - ag_1(h_1(x))^{k+1} = (G_2 - ag_2^{k+1})(h_2(x))$. Hence $\deg(G_1 - ag_1^{k+1})$ is divisible by $\deg(g_1)$ and so $\deg(G_1 - ag_1^{k+1}) = l \deg(g_1)$ with $l \leq k$. Thus the induction assumption to $G_1 - a g_1^{k+1}$ and $G_2 - a g_2^{k+1}$ completes a proof.

4. Case of $\deg h = 3$

In this section, we discuss the expectation in the introduction in the case of $h_1 =$ $h(x, 3, D^2)$. Through this section, we put

$$
y = h(x, 3, D2) = x3 + 3D2x \quad (D \neq 0).
$$

Then a polynomial *h* in *x* can be written as $v_0(y) + v_1(y)x + v_2(y)x^2$ for polynomials v_i in *y* uniquely. We will give two theorems in this section, which support the expectation.

Lemma 3. *Let*

$$
y = x^3 + 3D^2x, \quad h = v_0 + v_1x + v_2x^2,
$$

where v_i (*i* = 0, 1, 2) *are polynomials in y with* deg v_0 > max(deg v_1 , deg v_2) *and put*

(18)
$$
A = v_1^3 + 3D^2v_1v_2^2 - v_2^3y.
$$

Put d_0 *= deg v₀ <i>as a polynomial in y and let c₀, c₁, c₂, <i>u*, *w be polynomials in y which satisfy*

(19)
\n
$$
c_0 = v_0^n + O(x^{3d_0n-3}),
$$
\n
$$
c_1 = O(x^{3d_0n-3}),
$$
\n
$$
c_2 = nv_0^{n-1}v_2 + O(x^{3d_0n-6}) = O(x^{3d_0n-3}),
$$
\n
$$
c_1A + v_2^2y(c_1v_2 - c_2v_1) = uv_1A,
$$

$$
(20) \t\t\t c_1v_2 - c_2v_1 = wA,
$$

$$
u = nv_0^{n-1} + O(x^{3d_0(n-1)-3}),
$$

$$
w = -\frac{n(n-1)}{2} \cdot v_0^{n-2} + O(x^{3d_0(n-2)-3}).
$$

For

$$
H = c_0 + c_1 x + c_2 x^2,
$$

we put

$$
hH = C_0 + C_1x + C_2x^2,
$$

where C_i ($i = 0, 1, 2$) *are polynomials in y. Then we have*

$$
C_0 = v_0^{n+1} + O(x^{3d_0(n+1)-3}),
$$

\n
$$
C_1 = O(x^{3d_0(n+1)-3}),
$$

\n
$$
C_2 = (n+1)v_0^n v_2 + O(x^{3d_0(n+1)-6}),
$$

\n
$$
C_1A + v_2^2 y(C_1v_2 - C_2v_1) = Uv_1A,
$$

\n
$$
C_1v_2 - C_2v_1 = WA \text{ if } v_1 \neq 0,
$$

where

$$
U = c_0 - 3D^2c_2 + (v_0 - 3D^2v_2)u - yv_1v_2w = (n+1)v_0^n + O(x^{3d_0n-3}),
$$

\n
$$
W = v_0w - u = -\frac{n(n+1)}{2} \cdot v_0^{n-1} + O(x^{3d_0(n-1)-3}).
$$

Proof. Since hH is equal to

$$
c_2v_2x^4 + (c_1v_2 + c_2v_1)x^3 + (c_0v_2 + c_1v_1 + c_2v_0)x^2 + (c_0v_1 + c_1v_0)x + c_0v_0
$$

= $(c_0v_2 + c_1v_1 + c_2v_0 - 3D^2c_2v_2)x^2$
+ $(c_0v_1 + c_1v_0 - 3D^2(c_1v_2 + c_2v_1) + c_2v_2y)x + c_0v_0 + (c_1v_2 + c_2v_1)y$,

we have

$$
C_0 = c_0 v_0 + (c_1 v_2 + c_2 v_1) y,
$$

\n
$$
C_1 = c_0 v_1 + c_1 v_0 - 3D^2 (c_1 v_2 + c_2 v_1) + c_2 v_2 y,
$$

\n
$$
C_2 = c_0 v_2 + c_1 v_1 + c_2 v_0 - 3D^2 c_2 v_2.
$$

 $C_1A + v_2^2y(C_1v_2 - C_2v_1)$ is equal to

$$
(c_0 - 3D^2c_2)v_1A + (v_0 - 3D^2v_2)c_1A + c_2v_2yA + c_1v_0v_2^3y + c_2v_2^4y^2 - 3D^2c_1v_2^4y - c_2v_0v_1v_2^2y - c_1v_1^2v_2^2y,
$$

and by replacing c_1A by $uv_1A - v_2^2y(c_1v_2 - c_2v_1)$ (cf. 19) in the second term, it is equal to

$$
(c_0 - 3D^2c_2)v_1A + (v_0 - 3D^2v_2)(uv_1A - v_2^2y(c_1v_2 - c_2v_1))
$$

+
$$
c_2v_2yA + c_1v_0v_2^3y + c_2v_2^4y^2 - 3D^2c_1v_2^4y - c_2v_0v_1v_2^2y - c_1v_1^2v_2^2y
$$

and replacing the third *A* by the definition (18),

$$
= (c_0 - 3D^2c_2 + (v_0 - 3D^2v_2)u)v_1A - yv_1^2v_2(c_1v_2 - c_2v_1)
$$

and using (20), we have the final form

$$
(c_0 - 3D^2c_2 + (v_0 - 3D^2v_2)u - yv_1v_2w)v_1A = Uv_1A.
$$

Now, by using (19), (20), it is easy to see that

$$
(C_1v_2 - C_2v_1)v_1 - (v_0w - u)v_1A = -3D^2c_1v_1v_2^2 - c_1v_1^3 + c_1v_2^3y + c_1A = 0.
$$

If $v_1 \neq 0$, then we have $C_1v_2 - C_2v_1 = (v_0w - u)A$. And the other assertions are easy, noting deg v_1 , deg $v_2 \leq d_0 - 1$ as polynomials in *y*. \Box

Lemma 4. *Let* $h = v_0(y) + v_1(y)x + v_2(y)x^2$ *with* $y = x^3 + 3D^2x$ *and* $d_0 = \text{deg } v_0$ > $max(\text{deg } v_1, \text{ deg } v_2)$, and put $A = v_1^3 + 3D^2v_1v_2^2 - v_2^3y$. For a natural number n, write $h^n = c_0 + c_1x + c_2x^2$ *with polynomials c_i in y. We have* $c_2 = nv_0^{n-1}v_2 + O(x^{3d_0n-6})$, *and if* $v_1 \neq 0$, *then* $c_1v_2 - c_2v_1$ *is a multiple of A by a polynomial* $(-n(n-1)/2) \cdot v_0^{n-2}$ + $O(x^{3d_0(n-2)-3})$.

Proof. We use the induction on *n*. In case of $n = 1$, $c_i = v_i$ ($i = 0, 1, 2$) and $u = 1$ imply $c_1v_2 - c_2v_1 = 0$, and $c_1A + v_2^2y(c_1v_2 - c_2v_1) = uv_1A$ is clear. Thus the assertion for $n = 1$ is obvious. Then Lemma 3 completes the induction. □

Theorem 6. *Let* $h(x)$, $g(x)$ *be monic polynomials in x with* $h(0) = g(0) = 0$, *and suppose that* $f(x) = g(h(x))$ *is a polynomial in* $y = x^3 + 3D^2x$ ($D \neq 0$)*. If* deg $h(x)$ *is a multiple of* 3, *then h*(*x*) *itself is a polynomial in y.*

Proof. We write $h = v_0 + v_1x + v_2x^2$, where v_0 , v_1 , v_2 are polynomials in *y*. Since deg *h* is a multiple of 3 by the assumption and deg $v_k x^k \equiv k \mod 3$ ($k = 0, 1, 2$), we have deg $h = \deg v_0 > \deg v_1 + 1$, deg $v_2 + 2$. Put $f(x) = c_0 + c_1 x + c_2 x^2$ for polynomials c_i in *y*. Then we have $c_1 = c_2 = 0$ by the assumption. On the other hand, applying Lemma 4 to the expression of $f(x)$ as a sum of powers of $h(x)$, we have $c_2 = nv_0^{n-1}v_2 + O(x^{3d_0n-6})$ for $n = \text{deg } g(x)$ and the degree d_0 of v_0 as a polynomial in *y*, and so $v_2 = 0$. Suppose $v_1 \neq 0$; Lemma 4 implies that

$$
c_1v_2 - c_2v_1 = (v_1^3 + 3D^2v_1v_2^2 - v_2^3y)\bigg(-\frac{n(n-1)}{2}\cdot v_0^{n-2} + O(x^{3d_0(n-2)-3})\bigg),
$$

which is equal to 0 by $c_1 = c_2 = 0$. Since $(-n(n-1)/2) \cdot v_0^{n-2} + O(x^{3d_0(n-2)-3}) \neq 0$, we have $v_1^3 + 3D^2v_1v_2^2 - v_2^3y = 0$. This implies $v_1 = 0$ by $v_2 = 0$, which is a contradiction. Thus we have $v_1 = 0$ and hence $h = v_0$ is a polynomial in *y*. $\mathcal{L}_{\mathcal{A}}$

The next result supports the expectation, although it is a very special case of deg $g =$ 3. Our proof is technical and an intrinsic proof is desirable.

Theorem 7. Let $h(x)$ be a monic polynomial in x with $h(0) = 0$, and $f(x) =$ $g(h(x)) (g(x) = x^3 + b_2x^2 + b_1x) (b_1, b_2 \in \mathbb{C})$ *. Then* $f(x)$ *is a polynomial in y if and only if either h*(*x*) *itself is a polynomial in y, or for an integer M,* $h(x) = h(x, M, D^2)$ *and*

$$
b_2 = 0
$$
, $b_1 = 3D^{2M}$ if $M \equiv 1 \mod 2$,
\n $b_2 = 6D^M$, $b_1 = 9D^{2M}$ if $M \equiv 0 \mod 2$.

The proof of the sufficiency is easy as follows: If $h(x)$ is a polynomial in *y*, then $f(x)$ is clearly a polynomial in *y*. To show the other case, we put $x = D(t - t^{-1})$. Since we have, by Proposition 1

$$
h(x) = h(x, M, D2) = DM \begin{cases} tM - t-M & \text{if } M \equiv 1 \mod 2, \\ tM + t-M - 2 & \text{if } M \equiv 0 \mod 2, \end{cases}
$$

it is easy to see

$$
h3 + 3D2Mh = D3M(t3M - t-3M) \text{ if } M \equiv 1 \mod 2,
$$

$$
h3 + 6DMh2 + 9D2Mh = D3M(t3M/2 - t-3M/2)2 \text{ if } M \equiv 0 \mod 2.
$$

They are polynomials in $y = D^3(t^3 - t^{-3})$ by the theory of symmetric polynomials. Thus $f(x)$ is a polynomial in *y*, containing *D* in coefficients in general.

To prove the converse, we need preparations.

Lemma 5. *For a non-negative integer m*, *we put*

$$
u_m(x) = x^m + \sum_{1 \le k \le m/2} \frac{\binom{m-k}{m-2k}}{2^{2k}} x^{m-2k},
$$

\n
$$
p_m(x) = x^{m+1} + (m+1) \sum_{1 \le k \le m/2} \frac{\binom{m-k}{m-2k}}{2^{2k}(m-2k+1)} x^{m-2k+1} + (1 + (-1)^{m-1}) 2^{-(m+1)},
$$

where k is supposed to be integers. Then we have

(21)
$$
u_{m+2}(x) = \frac{x}{2} p_m(x) + \left(\frac{x^2}{2} + \frac{1}{4}\right) u_m(x),
$$

(22)
$$
p_{m+2}(x) = \left(\frac{x^2}{2} + \frac{1}{4}\right) p_m(x) + \frac{x}{2} (x^2 + 1) u_m(x).
$$

Proof. If *m* is even, then we see

$$
\frac{x}{2}p_m(x) + \left(\frac{x^2}{2} + \frac{1}{4}\right)u_m(x) \n= \frac{x^{m+2}}{2} + \frac{m+1}{2} \sum_{k=1}^{m/2} \frac{\binom{m-k}{m-2k}}{2^{2k}(m-2k+1)} x^{m-2k+2} \n+ \frac{x^{m+2}}{2} + \frac{1}{2} \sum_{k=1}^{m/2} \frac{\binom{m-k}{m-2k}}{2^{2k}} x^{m-2k+2} + \frac{x^m}{4} + \frac{1}{4} \sum_{k=1}^{m/2} \frac{\binom{m-k}{m-2k}}{2^{2k}} x^{m-2k} \n= x^{m+2} + \frac{x^m}{4} + \frac{1}{2} \sum_{k=1}^{m/2} \frac{\binom{m-k}{m-2k}}{2^{2k}} \left(\frac{m+1}{m-2k+1} + 1\right) x^{m-2k+2} \n+ \sum_{k=1}^{m/2} \frac{\binom{m-k+1}{m-2k+2}}{2^{2k}} x^{m-2k+2} + \frac{1}{2^{m+2}} - \frac{x^m}{4} \n= x^{m+2} + \sum_{k=1}^{m/2} \frac{1}{2^{2k}} \left\{ \binom{m-k}{m-2k} \frac{m-k+1}{m-2k+1} + \binom{m-k+1}{m-2k+2} \right\} x^{m-2k+2} \n+ \frac{1}{2^{m+2}} \n= x^{m+2} + \sum_{k=1}^{m/2+1} \frac{1}{2^{2k}} \binom{m+2-k}{m-2k+2} x^{m-2k+2} \n= u_{m+2}(x),
$$

and similarly we have (21) for an odd integer *m*. Next, let us see (22). For even *m*, we have

$$
\left(\frac{x^2}{2} + \frac{1}{4}\right)p_m(x) + \frac{x}{2}(x^2 + 1)u_m(x) \n= \frac{x^{m+3}}{2} + \frac{m+1}{2} \sum_{k=1}^{m/2} \frac{\binom{m-k}{m-2k}}{2^{2k}(m-2k+1)} x^{m-2k+3} \n+ \frac{x^{m+1}}{4} + \frac{m+1}{4} \sum_{k=1}^{m/2} \frac{\binom{m-k}{m-2k}}{2^{2k}(m-2k+1)} x^{m-2k+1} \n+ \frac{x^{m+3}}{2} + \frac{1}{2} \sum_{k=1}^{m/2} \frac{\binom{m-k}{m-2k}}{2^{2k}} x^{m-2k+3} \n+ \frac{x^{m+1}}{2} + \frac{1}{2} \sum_{k=1}^{m/2} \frac{\binom{m-k}{m-2k}}{2^{2k}} x^{m-2k+1} \n= x^{m+3} + \frac{3x^{m+1}}{4} + \frac{1}{2} \sum_{k=1}^{m/2} \frac{\binom{m-k}{m-2k}}{2^{2k}} \left\{ \frac{m+1}{m-2k+1} + 1 \right\} x^{m-2k+3} \n+ \sum_{k=1}^{m/2} \frac{\binom{m-k}{m-2k}}{2^{2k}} \left\{ \frac{m+1}{4(m-2k+1)} + \frac{1}{2} \right\} x^{m-2k+1} \n= x^{m+3} + \frac{3x^{m+1}}{4} + \sum_{k=1}^{m/2} \frac{\binom{m-k}{m-2k}}{2^{2k}} \frac{m-k+1}{m-2k+1} x^{m-2k+3} \n+ \sum_{k=1}^{m/2} \frac{\binom{m-k+1}{m-2k}}{2^{2k}} \left\{ \frac{m+1}{m-2k+3} + 2 \right\} x^{m-2k+3} - \frac{3}{4} x^{m+1} + \frac{m+3}{2^{m+2}} x \n= x^{m+3} + \sum_{k=1}^{m/2} \frac{1}{2^{2k}} \left\{ \binom{m-k}{m-2k} \frac{m-k+1}{m-2k+3} + 2 \right\} x^{m-2k+3}
$$

 \Box

and similarly we have (22) for odd *m*.

We note $u_m(x) = p'_m(x)/(m+1)$.

Proposition 5. *If monic polynomials* $u(x)$ *,* $p(x)$ *satisfy*

(23)
$$
(x^2 + 1)u(x)^2 + c = p(x)^2 \quad (c \in \mathbb{C}),
$$

then we have, for $m = \deg(u(x))$

(24)
$$
u(x) = u_m(x), \quad p(x) = p_m(x), \quad c = c_m = \frac{(-1)^{m-1}}{2^{2m}}.
$$

Proof. We prove the assertion by induction on *m*.

The case of $m = 0$: In this case, $u(x) = 1$ and $p(x) = x + b$ for some $b \in \mathbb{C}$. The equation (23) implies

$$
x^2 + 1 + c = x^2 + 2bx + b^2,
$$

which means $b = 0$, $c = -1$. Since $u_0(x) = 1$, $p_0(x) = x$, $c_0 = -1$, the assertion is true for $m = 0$.

The case of $m = 1$: We put $u(x) = x + b$, $p(x) = x^2 + dx + e$; then we have

$$
(x2 + 1)u(x)2 + c = x4 + 2bx3 + (b2 + 1)x2 + 2bx + b2 + c,
$$

$$
p(x)2 = x4 + 2dx3 + (d2 + 2e)x2 + 2dex + e2,
$$

hence $b = d$, $b^2 + 1 = d^2 + 2e$, $b = de$, $b^2 + c = e^2$. Thus we have $b = d = 0$, $e = 1/2$, $c = 1/4$, which implies (24) for $m = 1$, since $u_1(x) = x$, $p_1(x) = x^2 + 1/2$.

The case of $m \ge 2$: Since $p(x)$, $u(x)$ are monic and deg($p(x)$) = deg($u(x)$) + 1 = $m + 1$, putting

$$
r(x) = p(x) - xu(x)
$$

we have $\deg(r(x)) \le m$. The equation (23) implies $(x^2 + 1)u(x)^2 + c = p(x)^2 = r(x)^2 + c$ $2xr(x)u(x) + x^2u(x)^2$ and so

(26)
$$
u(x)^{2} + c = r(x)^{2} + 2xr(x)u(x).
$$

Next, we will show

(27)
$$
r(x) = \frac{1}{2}x^{m-1} + O(x^{m-2}).
$$

As above, we know $\deg(r(x)) \leq m$. Suppose $\deg(r(x)) = m$; then the degree of the right-hand side of (26) is $2m + 1$, but the left-hand side is of degree $2m$. Hence we have a contradiction and so deg($r(x)$) $\lt m$. Suppose deg($r(x)$) $\le m-2$; the degree of

the right-hand side of (26) is less than $max(2(m - 2), 1 + (m - 2) + m) = 2m - 1$, which is less than the degree 2m of the left-hand side, which is a contradiction. Thus we have $deg(r(x)) = m - 1$, and then comparing the leading terms of the both sides of (26) , we have (27) . Next, we show

(28)
$$
u(x) = 2xr(x) + r_1(x), \quad \deg(r_1(x)) = m - 2.
$$

Write

$$
u(x) = (bx + d)r(x) + r_1(x), \quad \deg(r_1(x)) \le m - 2.
$$

Comparing the leading coefficients of the both sides, we have $b = 2$ easily. Substituting the above to (26) , we have

(29)
$$
(4dx + d^{2} - 1)r(x)^{2} + 2(x + d)r(x)r_{1}(x) + r_{1}(x)^{2} + c = 0.
$$

Since the degree of $2(x + d)r(x)r_1(x) + r_1(x)^2 + c$ is less than or equal to $2m - 2$, we have $\deg((4dx + d^2 - 1)r(x)^2) \le 2m - 2$, hence $d = 0$, and then (29) implies $0 =$ $r(x)^2 - 2xr(x)r_1(x) - r_1(x)^2 - c = (r(x) - xr_1(x))^2 - x^2r_1(x)^2 - r_1(x)^2 - c$, i.e.

(30)
$$
(r(x) - xr_1(x))^2 = (x^2 + 1)r_1(x)^2 + c.
$$

If deg($r_1(x)$) $\leq m-3$ holds, then the degree of the left-hand side of (30) is $2(m-1)$ and the right-hand side is of degree less than or equal to $2 + 2(m - 3)$, which is a contradiction. Thus we have proved deg $r_1(x) = m - 2$ and so (28).

Denote the leading coefficient of $r_1(x)$ by a ; then comparing the leading coefficients of (30) we have $(1/2 - a)^2 = a^2$ and so $a = 1/4$. Therefore we have

$$
r_1(x) = \frac{1}{4}x^{m-2} + O(x^{m-3})
$$

and then (27) implies

(31)
$$
r(x) - xr_1(x) = \frac{1}{4}x^{m-1} + O(x^{m-2}).
$$

Now, (30) is nothing but

$$
(x2 + 1)(4r1(x))2 + 16c = (4r(x) – 4xr1(x))2,
$$

and $4r_1(x)$, $4r(x) - 4xr_1(x)$ are monic polynomials of degree $m-2$, $m-1$, respectively. Hence by the induction assumption, we have

(32)
$$
4r_1(x) = u_{m-2}(x), \quad 16c = c_{m-2}, \quad 4r(x) - 4xr_1(x) = p_{m-2}(x).
$$

This implies $c = c_m$. We can show the assertion as follows:

$$
u(x) = 2xr(x) + r_1(x)
$$
 (by (28))
= $\frac{x}{2}p_{m-2}(x) + \left(\frac{x^2}{2} + \frac{1}{4}\right)u_{m-2}(x)$ (by (32))
= $u_m(x)$ (by Lemma 5)

and

$$
p(x) = r(x) + xu(x)
$$
 (by (25))
= $\frac{x}{4} \cdot u_{m-2}(x) + 4^{-1} p_{m-2}(x) + xu_m(x)$ (by (32))
= $\left(\frac{x^2}{2} + \frac{1}{4}\right) p_{m-2}(x) + \frac{x}{2} \cdot (x^2 + 1) u_{m-2}(x)$ (by Lemma 5)
= $p_m(x)$.

Proposition 6. *For a non-negative integer m*, *we have*

$$
p_m\left(\frac{t-t^{-1}}{2}\right) = 2^{-(m+1)}(t^{m+1} + (-t)^{-(m+1)}),
$$

$$
u_m\left(\frac{t-t^{-1}}{2}\right) = \frac{t^{m+2} + (-t)^{-m}}{2^m(t^2+1)}.
$$

Proof. By denoting the right-hand sides of p_m , u_m in the assertion by P_m , U_m , respectively, it is easy to see

$$
U_{m+2} = \frac{t - t^{-1}}{4} P_m + \frac{t^2 + t^{-2}}{8} U_m,
$$

\n
$$
P_{m+2} = \frac{t^2 + t^{-2}}{8} P_m + \frac{(t - t^{-1})(t + t^{-1})^2}{2^4} U_m.
$$

They coincide with the induction formula (21), (22) with $x = (t - t^{-1})/2$ in Lemma 5, noting that $x^2/2 + 1/4 = (t^2 + t^{-2})/8$ and $(x/2) \cdot (x^2 + 1) = 2^{-4}(t - t^{-1})(t + t^{-1})^2$. The definitions $p_0(x) = x$, $u_0(x) = 1$, $p_1(x) = x^2 + 1/2$ and $u_1(x) = x$ imply the assertion for $m = 0$, 1 easily. Thus we have the assertion of the proposition. \Box

Let us begin the proof of Theorem 7 with preparations above. We write

$$
h(x) = v_0(y) + v_1(y)x + v_2(y)x^2,
$$

and $a = 3D^2$. It is not hard to see with $y = x^3 + ax$

$$
f(x) = h(x)^3 + b_2h(x)^2 + b_1h(x)
$$

= {b₁v₂ + b₂(v₁² + 2v₀v₂ - av₂²) + 3v₁v₂²y + 3v₀²v₂ + 3v₀v₁² + a²v₂³
- 3av₀v₂² - 3av₁²v₂}x²
+ {b₁v₁ + b₂(v₂²y - 2v₁v₂a + 2v₀v₁) + 3v₀v₂²y + 3v₁²v₂y - 6av₀v₁v₂ - av₁³
+ 3v₀²v₁ - 2av₂³y + 3a²v₁v₂²}x
+ {v₀³ + b₂v₀² + b₁v₀ - 3av₁v₂²y + v₂³y² + (v₁³ + 2b₂v₁v₂ + 6v₀v₁v₂)y}
= c₂x² + c₁x + c₀ (say),

where we abbreviated $v_i(y)$ to v_i . Since $f(x)$ is a polynomial in $y = x^3 + ax$ by the assumption, the coefficients of x and x^2 vanish and so we have

$$
c_1=c_2=0.
$$

Then we have

$$
c_2v_1 - c_1v_2 = (v_1^3 + av_1v_2^2 - v_2^3y)(b_2 - 2av_2 + 3v_0) = 0.
$$

Suppose $v_1^3 + av_1v_2^2 - v_2^3y = 0$; if $v_1v_2 \neq 0$, the degree of the left-hand side is 3 deg v_1 , 3 deg $v_2 + 1$ according to deg $v_1 >$ deg v_2 , deg $v_1 \le$ deg v_2 , respectively. This is a contradiction and so we have $v_1 = v_2 = 0$. Thus in this case $h(x) = v_0(y)$ is a polynomial in *y*. Suppose $v_1^3 + av_1v_2^2 - v_2^3y \neq 0$ and so $b_2 - 2av_2 + 3v_0 = 0$. Since the determinant of the coefficients matrix of the simultaneous equations $c_1 = c_2 = 0$ with respect to b_1, b_2 is $-(v_1^3 + av_1v_2^2 - v_2^3y) \neq 0$, we have

(33)
$$
b_1 = -4av_0v_2 + 3v_0^2 + a^2v_2^2 - 3v_1v_2y + av_1^2,
$$

$$
(34) \t\t b_2 = 2av_2 - 3v_0.
$$

Substituting $v_0 = (2av_2 - b_2)/3$ to (33), we have

$$
b_1 = -\frac{a^2v_2^2}{3} + av_1^2 + \frac{b_2^2}{3} - 3v_1v_2y
$$

and so

$$
\left(\left(\frac{y}{2D^3} \right)^2 + 1 \right) v_2^2 + \frac{3}{a^2} \left(b_1 - \frac{b_2^2}{3} \right) = \left(\frac{v_1}{D} - \frac{y v_2}{2D^3} \right)^2
$$

Since v_1 , v_2 are polynomials in *y*, regarding them as a polynomial in $y/(2D^3)$, denote

the leading coefficient of v_2 by *A*, and put $m = \deg(v_2)$. Proposition 5 yields

$$
v_2 = Au_m \left(\frac{y}{2D^3}\right),
$$

\n
$$
\frac{3}{a^2} \left(b_1 - \frac{b_2^2}{3}\right) = A^2 c_m,
$$

\n
$$
\frac{v_1}{D} - \frac{yv_2}{2D^3} = B p_m \left(\frac{y}{2D^3}\right) \quad (B = \pm A),
$$

where u_m , p_m are polynomials in Lemma 5. Thus putting

$$
Y = \frac{y}{2D^3},
$$

we have

$$
v_2 = Au_m(Y),
$$

\n
$$
v_1 = D(AYu_m(Y) + Bp_m(Y)),
$$

\n
$$
b_1 = \frac{a^2c_mA^2 + b_2^2}{3},
$$

\n
$$
v_0 = \frac{2a}{3}Au_m(Y) - \frac{b_2}{3}.
$$

Therefore we have

$$
h(x) = v_0(y) + v_1(y)x + v_2(y)x^2
$$

=
$$
\frac{2aA}{3}u_m(Y) - \frac{b_2}{3} + D(AYu_m(Y) + Bp_m(Y))x + Au_m(Y)x^2
$$

and putting $\delta = A/B (= \pm 1)$,

(35)

$$
h(x) = A(2D^2 + DYx + x^2)u_m(Y) + DBp_m(Y)x - \frac{b_2}{3}
$$

$$
= \frac{A}{2D^2}\{(x^4 + 5D^2x^2 + 4D^4)u_m(Y) + 2D^3\delta p_m(Y)x\} - \frac{b_2}{3},
$$

noting $Y = (2D^3)^{-1}(x^3 + 3D^2x)$. The following is the last lemma necessary to prove Theorem 2.

Lemma 6. *Putting*

$$
g = (x^4 + 5D^2x^2 + 4D^4)u_m(Y) + 2D^3\delta p_m(Y)x,
$$

we have

$$
2^{m-1}D^{3m}g - h(x, 3m + 4, D^2) = (1 + (-1)^m)D^{3m+4} \text{ if } \delta = 1,
$$

$$
2^{m-1}D^{3m-2}g - h(x, 3m + 2, D^2) = (1 + (-1)^m)D^{3m+2} \text{ if } \delta = -1,
$$

and

$$
h(x) = \kappa_1 h(x, 3m + 3 + \delta, D^2) + \kappa_2,
$$

for some constants κ_1, κ_2 *.*

Proof. Put $x = D(t - t^{-1})$, we have

$$
Y = \frac{t^3 - t^{-3}}{2},
$$

$$
x^4 + 5D^2x^2 + 4D^4 = D^4(t^4 + t^{-4} + t^2 + t^{-2})
$$

and then, noting $(t^4 + t^{-4} + t^2 + t^{-2})/(t^6 + 1) = (t^2 + 1)/t^4$, Proposition 6 implies

$$
g = \begin{cases} \frac{D^4}{2^{m-1}}(t^{3m+4} + (-1)^m t^{-(3m+4)}) & \text{if } \delta = 1, \\ \frac{D^4}{2^{m-1}}(t^{3m+2} + (-1)^m t^{-(3m+2)}) & \text{if } \delta = -1. \end{cases}
$$

Proposition 1 implies easily the assertion in the lemma.

Since $h(x)$, $h(x, m, D^2)$ are monic without constant term, Lemma 6 implies $\kappa_1 = 1$, $\kappa_2 = 0$, i.e.

$$
h(x) = h(x, M, D^2)
$$
 for $M = 3m + 3 + \delta$.

Hence, in case of *m* being odd, Proposition 1 implies

$$
f(x) = (D^{M}(t^{M} - t^{-M}))^{3} + b_{2}(D^{M}(t^{M} - t^{-M}))^{2} + b_{1}(D^{M}(t^{M} - t^{-M}))
$$

= $D^{3M}(t^{3M} - t^{-3M}) + b_{2}D^{2M}(t^{2M} + t^{-2M} - 2)$
+ $(-3D^{3M} + b_{1}D^{M})(t^{M} - t^{-M}),$

which is a polynomial in $y = x^3 + 3D^2x = D^3(t^3 - t^{-3})$ ($x = D(t - t^{-1})$) by the assumption. Therefore we have $b_2 = 0$ and $b_1 = 3D^{2M}$, since $(3, M) = 1$ and *y* is invariant by $t \to \sqrt[3]{1}t$.

If *m* is even, then we have

$$
f(x)
$$

= $(D^{M}(t^{M} + t^{-M} - 2))^{3} + b_{2}(D^{M}(t^{M} + t^{-M} - 2))^{2} + b_{1}D^{M}(t^{M} + t^{-M} - 2)$
= $D^{3M}(t^{3M} + t^{-3M}) + (-6D^{3M} + b_{2}D^{2M})(t^{2M} + t^{-2M})$
+ $(-4b_{2}D^{2M} + 15D^{3M} + b_{1}D^{M})(t^{M} + t^{-M}) + 6b_{2}D^{2M} - 20D^{3M} - 2b_{1}D^{M}$

which is a polynomial in $t^3 - t^{-3}$ by the assumption. Similarly we have $b_2 = 6D^M$ and $b_1 = 9D^{2M}$. Thus we have completed a proof of Theorem 7. \Box

 \Box

5. Proof of Theorem 3

Put $X = X(x) = x^{j}G(x^{r})$, and suppose that $f = X^{r} - d$ is completely decomposable modulo a prime $p \left(\nmid D \right)$ without multiple roots; then there exists an integer *D* such that $D^r \equiv d \mod p$, consequently we have

$$
f \equiv X^{r} - D^{r} = (X - D)(X^{r-1} + X^{r-2}D + \cdots + D^{r-1}) \mod p.
$$

Then, the second leading term of $X - D$ being 0 implies that the sum of roots r_i (1 \leq $i \leq m := \deg X$ of $X(x) - D \equiv 0 \mod p$ vanishes, that is a linear relation

(36)
$$
\sum_{i=1}^{m} r_i \equiv 0 \mod p
$$

occurs. Let us see that $h(r_i) = r_i^r$ $(1 \le i \le m, h(x) = x^r)$ are different, and roots of $f(x) \equiv 0 \mod p$ are of the form $r_i \omega_0^k$ for a primitive *r*-th root ω_0 of unity in $\mathbb{Z}/p\mathbb{Z}$. First, suppose $r_i^r \equiv r_i^r \mod p$; then $r_i \equiv r_i \omega \mod p$ for an *r*-th root ω of unity and we have $D \equiv X(r_i) \equiv (r_i \omega)^j G(r_i^r) \equiv \omega^j X(r_i) \equiv \omega^j D \mod p$, which implies $\omega \equiv 1 \mod p$ by the assumption $(i, r) = 1$. Thus we have $r_i \equiv r_l \mod p$, i.e. $i = l$. Second, let R be a root of $f(x) \equiv 0 \text{ mod } p$; then $X(R)^r \equiv D^r \text{ mod } p$ and so $X(R) \equiv D\omega_1 \text{ mod } p$ for an *r*-th root ω_1 of unity in $\mathbb{Z}/p\mathbb{Z}$. By $(j, r) = 1$, $D \equiv \omega_1^{-1}X(R) \equiv X(\omega_2 R) \mod p$ for an *r*-th root ω_2 of unity. Thus roots of $f(x) \equiv 0 \mod p$ are of the form $r_i \omega$ for an *r*-th root ω of unity. Since the number of solutions of $f(x) \equiv 0 \mod p$ is *rm* by the assumption, the number of *r*-th roots of unity in $\mathbb{Z}/p\mathbb{Z}$ is *r*, and so there is a primitive *r*-th root ω_0 of unity.

Then a point

(37)
$$
(v_1, \ldots, v_{(r-1)m})
$$

$$
:= \left(\left(\frac{r_1 \omega_0}{p}, \ldots, \frac{r_1 \omega_0^{r-1}}{p} \right), \ldots, \left(\frac{r_m \omega_0}{p}, \ldots, \frac{r_m \omega_0^{r-1}}{p} \right) \right)
$$

in (5) for $g(x) = x^{j}G(x)^{r} - d$, $h(x) = x^{r}$ has a relation

(38)
$$
\sum_{i=1}^{m} v_{k+(i-1)(r-1)} \in \mathbb{Z} \quad (1 \leq k \leq r-1),
$$

which comes from (36). This breaks the uniformity of the distribution of points (5) when $p \to \infty$, since for a subset $\mathfrak{D} \subset [0, 1)^{m(r-1)}$ defined by

$$
\left|\sum_{i=1}^m v_{k+(i-1)(r-1)} - a\right| < \epsilon \quad (a \in \mathbb{Z}),
$$

the volume is arbitrarily small, but the point (37) is in $\mathcal D$ for every prime.

 \Box

6. Proof of Theorem 4

Suppose that for a prime $p \nmid D$, $f(x)$ mod p is completely decomposable without multiple roots. Since $h(x, m, D)$ is a polynomial in x, D with integer coefficients, (16) holds over $F_p = \mathbb{Z}/p\mathbb{Z}$. We consider all over the algebraic closure $\overline{F_p}$ of the prime field F_p . Put $D_1 = \sqrt{D} \in \overline{F_p}$, and for $x \in \overline{F_p}$, we take an element $t \in \overline{F_p}$ so that $x = D_1(t - t^{-1})$, i.e. $t^2 - D_1^{-1}xt - 1 = 0$. Then by (16), $f(x) = h(h(x, m, D), n, D^m) + c =$ $D_1^{mn}(t^{mn} - t^{-mn}) + c = 0$ is equivalent to $(t^{mn})^2 + cD_1^{-mn}t^{mn} - 1 = 0$. Taking a root $T_+ \in \overline{F_p}$ of $x^2 + cD_1^{-mn}x - 1 = 0$, we have $t = \sqrt[m]{T_+}\zeta$ or $t = -\sqrt[m]{T_+}^{-1}\zeta$ for an *mn*-th root of unity ζ in $\overline{F_p}$. Therefore, putting $T = \sqrt[m]{T_+}$, the root of $f(x) = 0$ is written as $D_1(T\zeta - T^{-1}\zeta^{-1})$ for an *mn*-th root ζ of unity in $\overline{F_p}$. Since $f(x)$ has *mn* different roots over F_p by the assumption, the field $\overline{F_p}$ has *mn* roots for an equation $x^{mn} = 1$,

Let η be a primitive *mn*-th root of unity in $\overline{F_p}$, and put

$$
x_k = D_1(T\eta^k - T^{-1}\eta^{-k}).
$$

Then the roots of $f(x) = 0$ are x_1, x_2, \ldots, x_{mn} . We have, for $1 \leq k \leq n$ and $0 \leq r \leq m-1$

$$
h(x_{k+nr}, m, D) = D_1^m((T \eta^{k+nr})^m - (T^{-1} \eta^{-k-nr})^m) \text{ (by (16))}
$$

= $D_1^m((T \eta^k)^m - (T^{-1} \eta^{-k})^m)$
= $h(x_k, m, D).$

Since, noting $f(x) = h(h(x, m, D), n, D^m) + c$, the equation $h(x, n, D^m) + c = 0$ has *n* distinct roots, $h(x_k, m, D)$ ($1 \le k \le n$) are distinct, that is $h(x_k, m, D) \ne h(x_l, m, D)$ if $k \neq l$ mod *n*. Based on these, let us show the non-uniformity. Put $d = (m, n)$ and $N = n/d$; then we are assuming $N > 1$ and $dm \nmid n$. Put

$$
S = \{x_l \mid l \equiv 0 \bmod dm\}.
$$

Then we have $\#S = N > 1$ and

$$
\sum_{x \in S} x = D_1 T \sum_{k \bmod N} \eta^{dmk} - D_1 T^{-1} \sum_{k \bmod N} \eta^{-dmk} = 0 \quad \text{in} \quad \overline{F_p}.
$$

Since we suppose that $f(x)$ mod p is completely decomposable, all roots x_k of $f(x) \equiv$ 0 mod *p* are in F_p , that is we may consider $x_k \in \mathbb{Z}$ with $0 \le x_k \le p$, and then the above means

$$
\sum_{x \in S} \frac{x}{p} \in \mathbb{Z}.
$$

Let us see

(40)
$$
S \not\supset \{x \mid h(x, m, D) = h(x_k, m, D)\} \text{ for } 1 \le \forall k \le mn.
$$

If $S \supset \{x \mid h(x, m, D) = h(x_k, m, D)\}$ for some integer *k*, then we have

$$
\{k + nr \mid r \in \mathbb{Z}\} \subset \{dml \mid l \in \mathbb{Z}\},\
$$

hence, $k = dml_0$ for an integer l_0 , and so $n \equiv 0 \mod dm$, which contradicts $dm \nmid n$.

By (40), we can arrange x/p for elements x in S into $r_k(id, id)$ in (5), changing numbering, and then (39) means that an appropriate sum of coordinates in (5) is an integer. Thus points (5) are not distributed uniformly. \Box

7. Proof of Theorem 5

We keep notations in Theorem 5. Since we assume that $f = x^3(x^3 + c)^3 - d$ mod *p* is completely decomposable, the existence of ω in the theorem is clear. Let *D* be an integer such that $D^3 \equiv d \mod p$. Since r_i are roots of $x(x^3 + c) - D \equiv 0 \mod p$, we have

(41)
$$
\prod_{i=1}^{4} (x - r_i) = x^4 + cx - D.
$$

Put

(42)
$$
(x - r_1)(x - r_2) = x^2 + a_1x + a_2,
$$

(43)
$$
(x - r_3)(x - r_4) = x^2 + b_1x + b_2.
$$

Hence equations (41) – (43) imply

$$
b_1 = -a_1
$$
, $b_2 = a_1^2 - a_2$, $c = a_1^3 - 2a_1a_2$

and so

$$
r_1 + r_2 = -a_1
$$
, $r_1r_2 = a_2$, $r_3 + r_4 = a_1$, $r_3r_4 = a_1^2 - a_2$, $D = a_2^2 - a_1^2 a_2$.

These imply

$$
S_1 = r_1 + r_2 + \omega(r_3 + r_4)
$$

= $a_1(\omega - 1)$,

$$
S_2 = r_1r_2 + (r_1 + r_2)(r_3 + r_4)\omega + r_3r_4\omega^2
$$

= $-a_1^2(2\omega + 1) + a_2(\omega + 2)$,

$$
S_3 = (r_1 + r_2)r_3r_4\omega^2 + r_1r_2(r_3 + r_4)\omega
$$

= $a_1^3(\omega + 1) - a_1a_2$,

$$
S_4 = r_1r_2r_3r_4\omega^2 = D(\omega + 1)
$$

and easily relations (11), noting $(\omega - 1)^3 = 6\omega + 3$.

References

- [1] Y. Kitaoka: *A statistical relation of roots of a polynomial in different local fields*, Math. Comp. **78** (2009), 523–536.
- [2] Y. Kitaoka: *A statistical relation of roots of a polynomial in different local fields* II; in Number Theory, Ser. Number Theory Appl. **6** World Sci. Publ., Hackensack, NJ., 106–126, 2010.

Department of Mathematics Meijo University Tenpaku, Nagoya, 468-8502 Japan e-mail: kitaoka@ccmfs.meijo-u.ac.jp

 \Box