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Abstract
In this paper we study geometric properties of the slownadaee of the system
of crystal acoustics for cubic crystals in the special cakemthe stiffness constants
satisfy the conditiora = —2b. The paper is a natural continuation of the paper [9]
in which related properties were studied for general canista andb, but assuming
that we were in the nearly isotropic case, in which caseb has to be small. We
also take this opportunity to correct a statement made in48¢ Remark 1.3.

1. Introduction

In this paper we study geometric properties of the slownestee S of the sys-
tem of crystal elasticity for cubic crystals in the speciake when the stiffness con-
stants of the crystal are related by the conditian=' —2b”. To some extent the paper
is a continuation of the paper [9] in which similar geometpioperties were studied
for cubic crystals in the nearly isotropic case. Informatin the terminology, the no-
tations and the conditiona“= —2b” shall be given in a moment. The geometric prop-
erties in which we are interested are related to the curegbuoperties in the smooth
part of S and the structure of the singularities at the singular oirBuch properties
are needed in order to understand the asymptotic behavioixfo— oo of integrals
of form

(1.1) () = /S & E)u(e) dor (&),

with do denoting the surface element & Estimates for integrals as in (1.1) in turn
are an essential ingredient in establishing estimatesecnimg the long-time behavior
of global solutions of the system of crystal elasticity fabec crystals (See e.g., [10]).
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We recall the exact form of the system to which we refer: it is

92 —adZ —cA —bay, dx, —bdy, O, Uz
(1.2) —bdg,dy,  92—adl —CA  —biy,dy, u | =0,
—bdy, dy, —bddy,  82—adl —cA )\ uz

and the “characteristic” surface associated with the systen be written in the follow-
ing form (due to Kelvin):

b2 bt 2 bt2

3) o GeP+(b—a2 PP+ (b-a8  P—cEf+ b

In these equationsg, b, c, are real constants which can be calculated in terms of the
stiffness constants of the crystal under considerationec@R that for cubic crystals
the number of essential stiffness constants is 3. For motalslen all this, see [3]
and also [6].) The fact that (1.3) defines the characteristidace of a cubic crys-
tal gives some restrictions on the constaatsb, c. Of these we mention that we
must havec > 0, a # 0,a+c¢c >0, & —b+ a=> 0 (see, e.qg., [6]. Some of these
restrictions simply come from the fact that the system ofstaly elasticity is hyper-
bolic, while others may have a deeper physical interpatatisee [3], [5]). As in
[3] we shall often assume th&t> 0 (for a physical justification, see [10]). The sur-
face {& € R3; &satisfies (1.3) with = 1} is called the “slowness surface” of the crystal
under consideration. It is essentially the intersectiorthef characteristic surface with
the hyperplane = 1.

In [9] the main assumption on the constamisb, ¢ was thata — b had to be
small compared witle. Sincea —b is a measure of the anisotropy of the crystal, this
assumption says that we are in a “nearly” isotropic casehénfirst main result in this
paper we shall now assume that= —2b, with no additional restrictions on the size
of the quantitya — b, whereas in the second main result the restrictions on te i
the constants are quantitatively more precise than in theegponding result in [9].

We know of no physical interpretation of the conditian= —2b, but from a math-
ematical point of view it leads to a significant simplificatiof the situation. Indeed,
(1.3) transforms fora = —2b to

bsf

2 —clE[2 + 3bg2

M

(1.4)

i=1

which holds trivially whent? = c|£|2. This shows that the factar? — c|&|? must split
off in the characteristic polynomial defined by (1.3) and attf (1.3) can in this case
equivalently be written as

(1.5) @2 —cl&AI(r? + (b— )£ [)? — b2(ET + &5 + &5 — 262 — 6762 — £262)] = 0.
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(See, e.g., [13].) Since the “geometry” of the sphere d£|?> = 0 is trivial from our
point of view, we may restrict attention in the sequel to thmrtjc surface defined by
the second factor in (1.5) when=1, i.e., toS= {& € R%; p(¢) = 0}, where

(1.6)  p) =L+ (b—C)E[)* — bP(&; + &5 + &5 — 765 — 6285 — £€2) = 0.

Note in particular, tha already contains all the essential singularities of thé diaw-
ness surface. In fact, it is known that the full slownessamefS for a cubic crys-

tal has 6 singular points of “uniplanar” type which lie on tbeordinate axes and 8
singular points of conical type which lie on the lines defingdthe condition|&;| =

|&2| = |&3]. (Cf. e.g., [3], [6].) However, the uniplanar singulargti@re very weak in
the special casa = —2b, in that they are just due to the fact that the sphéite=
1/./c is tangent toS at the points of the sphere which lie on the coordinate axes,
S itself being smooth at those points. As for the conicallygsiar points, they are
(£1/+/3(@c —b),+1/./3(c — b),£1/./3(c — b)), with all combinations of signs allowed.

When a = —2b, the conditiona + ¢ > 0 mentioned above is of course equivalent
to ¢ > 2b. Since, except for Section 9, we shall from now on always rassthat
a = —2b, there is no need for the constara” in the sequel, so we shall henceforth
formulate all conditions in terms df and c. (We also mention that despite of this
convention, we shall every now and then speak about the case “2b”, in order
to make it clear that our results refer to this case and notetoeal cubic crystals.)
We could in principle simplify notations further by normmfig to c = 1. In fact, if
we replaceb by b’ = b/c, and & by 5/./c, then (1.4) transforms to essentially the
same equation int( n) space with the constants, @) replaced by (1b/c). (All this
amounts to a re-normalization for the speed of elastic wavabe crystal.) We shall
however work with a general for most of the calculations, since then many relations
are homogeneous in the variablds ) and calculations are easier to check.

Our first remark on the geometry & is that it is a two-sheeted bounded surface
with an inner and an outer sheet which we shall &ll respectivelyS. By this we
mean that we can writ& in the form S= § U & where both surfaces are bounded
and are such tha§ lies in the closure of the bounded componentRSf\ S,. These
surfaces are clearly symmetric under a permutation of thieblas and under reflection
with respect to the coordinate plangs= 0. The &s-coordinates of the points on the
positive £ semi-axis are Av/c — 2b and ¥/ ,/c. The two surfaces have exactly 8 points
in common, which are the conically singular points mentabdove. It follows indeed
from the fact that the system of crystal elasticity is hypdidbthat the full slowness
surfaceS is a three sheeted surface aBds obtained from the full slowness surface
by removing the smooth sheés: |£|> = 1/c}. The inner shee§ is easily seen to be
strictly convex: if we could find a line which intersect&l in 3 or more points, then
this line would intersecS in at least five points. (For this to be true when one or two
of these points is a singular point, we have to take into aatooultiplicities: when
our line passes through a singular point, we count the iatgien “twice”.) SinceS
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is a quartic this is impossible, so any line which intersegtdas only two points of
intersection with§.
The main results of the paper are

Theorem 1.1. Assume a= —2b, b > 0. Then there are no non-trivial curves em-
bedded in S with a common tangent plane.

Theorem 1.2. Still under the assumption & —2b, there is a calculable constant
8 > 0 such that for0 < b < §c the surface §has no points where the Gaussian and
the mean curvature vanish simultaneously.

REMARK 1.3. In the nearly isotropic case (and for “generic” contstdn, c)) sim-
ilar results have already been established in [9]. Howewehat paper it was wrongly
stated that “the mean curvature of the slowness surfadees not vanish in the nearly
isotropic case”. The correct statement there should be“thdhe nearly isotropic case
the mean curvature and the total curvature can not vanishltsineously”. Our aim in
this paper is to remove the restriction to the nearly isdtraqase in the special case
whena = —2b in the case of Theorem 1.1 and to make the restrictions onitieeo$
what nearly isotropic means more precise in the case of hedr2. (The argument in
[9] does not allow for this.)

The reason why the Theorems 1.1, 1.2, are interesting fomatsts of integrals
as in (1.1) is explained (e.g.) in Proposition 1.2 in [9]. O tway to proving them
we shall also establish other results on the geometric @aifi'S and shall studyS
near the singular points. While we do so in this paper as rmetiry results for the
proof of Theorem 1.2 we should mention that the results refgrto singular points
are exactly in the form in which they are needed to establstayg estimates for the
associated system of crystal elasticity.

REMARK 1.4. We have not made any serious attempt to calculate amalpti
value foré$. The reason is that while most partial results are sharp, epe lthat The-
orem 1.2 itself can be improved by arguing in a different way.

REMARK 1.5. We recall here that Theorem 1.1 is in sharp contrast witlat
happens for Fresnel's surface in crystal optics for biagrghktals: it was discovered by
R.W. Hamilton that there are four circles embedded in Fr&siserface such that the
points on each circle admit a common tangent plane. (Cf, Rf) This is intimately
related to “conical refraction” in crystal optics. For sornemments on this and on
the fact that there is still some kind of conical refractioncirystal acoustics for cubic
crystals, see, e.g., [6].

As for Theorem 1.2, we restrict our attention $, since § is strictly convex and
it should be possible to prove much better results with othethods.
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We shall show in Section 2 that far> 0, S lies completely in the cubét; |&;| <
1/~/c—2b, j =1, 2,3. Since the point (0, 0,//c — 2b) (and similar ones on the
other axes) lies ir, this comes as no surprise, but a look at the only somewha¢ mor
general case of the slowness surface for general cubicatsystay convince us that
some argument is needed to check the statement.

We also mention that when we keepfixed and letb tend increasingly towards
c/2, then the points on the outer sheet on the axes will tendftoitinwhereas on the
inner sheet the non-zero component will have constant vallig,/c. Since the two
sheets are glued together at the conically singular poimitsch remain in the bounded
region sup|&j| = 1/+/3c, we see that withb  (c/2), the surface will look wilder
and wilder.

There is also another information about the surfaSeshich is quite easy to ob-
tain. We assume for simplicity, here (but also often in thquet when this leads to
simplifications) thatb > 0: it follows from (1.4) that

1
x.7) |&] > % when £ ¢S

Indeed, if|§| < 1/./C then |bg;|?/(1 — c|§|> + 3b&7) < 1/3, for every |, so (1.4) can-
not hold.

Acknowledgments written by the first author. The presentepagpves its existence
to a discussion the two authors had in September 2003 in KyBuwth of us were
then interested in the long-time behavior of global sohdido the system of crystal
acoustics in the cubic case, the first author for generallynésotropic crystals, the
second for the case whem= —2b. | myself was in that discussion more interested
in theorems of type Theorem 1.1, T. Sonobe in how the sinigiglsrof the slowness
surface bear on loss of decay of solutions for large timesneNof us had a strategy
to prove theorems of type Theorem 1.1, but T. Sonobe, at the & Ph.D. student
at Osaka University, with professor M. Sugimoto as an adyisgpressed his strong
belief, which for him was perhaps based on graphical evideartd preliminary calcu-
lations, that his insights were true and calculable. Soder dlfiis discussion, T. Sonobe
fell seriously ill and passed away in the Summer of 2004. At time, | still had no
idea of how to prove Theorem 1.1, neither in the nearly istrgeneral case, nor in
the casea = —2b. It was only much later that | understood what was going on for
the nearly isotropic case and then also how the special @ase-2b simplifies things
enough to study crystals away from the nearly isotropic dhsee assumea = —2b.
Since there were no further contacts between T. Sonobe anaftereSeptember 2003,
| am to blame alone for any shortcomings of the paper.
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2. Preliminary remarks

1. For later purpose we now introduce the notatighs= (&1, &2),

do(b, ¢) = (b—c)?> — b? = c(c — 2b),
(2.1) da(&', b, ©) = 2(1+ (b—©)[&'|?)(b — ©) + b2,
da(&', b, ©) = (1 + (b—0)|&'1%)? — bP(&7 + &) — £282),

and
(2.2) p(&, b, ) = do(b, C)&5 + da(&'b, C)E2 + da(£', b, ©).

In particular, S is then given by the conditiofé; p(&, b, ¢) = 0}. The coefficientdy
is strictly positive, since by assumptian> 2b, ¢ > 0.

We now first study the curvature @& at the pointP,. = (0, 0, 1/+/c — 2b).

For this purpose we parameterize the outer she&lojf &', i.e., we write this sheet
locally near (0, 0, 1/c — 2b) as the graph of some functigii — g(&’) which satisfies

1
Je—2b

(For notations, see (2.2).) Thysalso depends ob andc, but since we shall use the
notationg only in the present argument, we shall not make this depesderplicit in
the notation.

If we denote byH the Hessian in the variablés we must then have (since it is
clear by symmetry thaV: g(0) = 0) 4dy(b,c)g3(0)He e g(0)+ 2d,(0,b, c)g(0)He e g(0) +
9%(0)Hg£:02(0, b, €) + Hz£:dg(0, b, ¢) = 0. This gives

do(b, ©)g*(&") + da(€’, b, C)g?(E") + da(¢’, b, c) =0, g(0) =

(C— 2b)LH:2:0p(0, b, ©) + Heda(0, b, ©)
Ve T b 0/c—2) 1 0.0 0

(2.3) H¢9(0) =

Here 4ly(b, c)/(c — 2b) 4+ d»(0, b, ¢) = 4c + 2(b — c) = 2(c + b) is strictly positive, so
the Hessian will have a sign it 2b)™1H; ¢ d(0, b, €) + Hg¢ds(0, b, €) has one. A
trivial computation shows that

c—2b Hé'f'dZ(ov b, C) + Hg’g'd4(o, b, C)

2 [(2b-0c)P+Db? 0 4b — 4c 0
T c—2b 0 20 —c)? + b? 0 4b — 4c

(2.4)

and this is positive definite if & 2b < c. We see therefore that in the neighborhood of
the poles the surfac8 has non-vanishing Gaussian curvature. Moreover, it is dbsar c
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from these calculations that the value&fon S has locally a maximum &’ = 0. (We
shall see later on that the maximum is global.)

2. In the engineering literature it is customary to study ‘teéncipal sections” of
S, i.e., the curves which appear as intersection$ @fith the planes; =0, j =1,2,3.
Such a study may be regarded as a substitute for a full geions¢tidy of surfaces of
type S, which may be out of reach.

In this section we shall obtain, somewhat more generalljespreliminary infor-
mation on the section§, = SN {§ ¢ R3; &5 = ) wherep is a real number, which
we may assume nonnegative. With the notations

- ag=cc—2b), a;=2b-c)+Db% a =21+ (b-c)u’b-c)+b’u?
(29 ag = (1+ (b—o)u®)” —bu?,

(which are a variant of notations considered above) thetp@ih ) will lie on T',
precisely when

(2.6) Qu(E1, &) = ao(&f + £5) + 262 + ap(£2 + £2) + a3 = 0.

Thus in particularay > 0 for ¢ > 2b, and forb > 0 we haveag < 0 precisely when
1/./c < u < 1/4/c—2h, whereas forb < 0 we shall haveag < 0 precisely when
1/v/e—-2b<pu =<1/

To gain a first insight into the shape & and S, we start with some elementary
calculations referring to the curvds,. Qi is a fourth order polynomial equation of
a form which is (easily seen to be) precisely of the type whias been studied in
section 6 in [7]. We explicitly want to insist on the fact that what follows we are
interested only in real points of the quartics which we cdesi

As a preparation we mention the following trivial:

REMARK 2.1. Let
(2.7) t — Q(t) = bot* + bit? + by

be a fourth order polynomial with real coefficients. Assume thathy, > 0. Then
Q(t) = 0 admits exactly two real roots (one by necessity positilie, dther negative)
if and only if b, <0.

In the sequel of this section we shall assume (unless spkofieerwise) thab > 0.
Let us also consider the polynomials

Q(t) = ag(a*t? + BH?) + ara®Bt* + an(a® + B2 + a3 = 0,

which are obtained by restricting the polynomi@(¢’) to the linesé; = at, & = gt,
a? 4+ p? = 1 passing through the origin. These polynomials are of thenfm (2.7)
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with by = ag(a? + %) + a1?2 andb, = as. In particular,by > 0 for 2b < c. (In fact,
both ay and a; are then positive.) It follows that as long agc < u < 1/+/c—2b
we must have exactly two points of intersection of the line> («t, gt) with S, =
{&; (&', n) € S}, whatever value ofd, B) we consider. It is then clear thdt, is a
simple curve which, when regarded as a curve in ghelane, surrounds the origin
once and is symmetric with respect to the origin. Also wheh < 1/./c, the lines
considered a moment ago will intersdct, but the number of intersection points must
then be four. (By symmetry the number of points of intersettmust be even, and it
cannot be two, since two points of intersection occur onlyhi@ region ¥./c < |u| <
1/+~/c—2b.) T', must therefore consist of two connected curves which sadahe
origin. The inner curve must be strictly convex, since ithe tintersection of§ with
the plane&; = n. (Similar remarks hold whe < 0, but now of course the region
with exactly two points of intersection is/1/c —2b < |u| < 1/./C.)

The only u for which the two components have singularities are when=
+1//3(c—Db). In this case in fact the two curves have the pointsif(./3(c —Db),
+1/./3(C—Db), ©) in common.

We can sum up the results which we have obtained so far in fl@viog lemma:

Lemma 2.2. Assume k> 0. £ € S then impliegu| < 1/+/c— 2b. In particulag
I, # 0 precisely whenu| < 1/+/c—2b. Whenl/,/c < |u| < 1/¥/c—2b thenT,
consists of a simple smooth closed curve surrounding thgirorWwhen0 < |u| < 1/4/C
and |u| # 1/+/3c —3b thenT, consists of two connected componetusth of which
are simple smooth curves which surround the origin.

A similar result is true by the same argument for the daseO, in that thenl',
shall have a single component whepvic — 2b < |u| < 1/4/c and two components

for |u| < 1/+/c—2b.

3. Proof of Theorem 1.1

The proof of Theorem 1.1 is by elementary arguments. Sineeirther sheet is
strictly convex, it will suffice to show that there is no platangent to the outer sheet
along entire curves. We shall argue by contradiction. Wdl #has assume that there is
a plane, which we shall denote 1, which is tangent tdS along an entire curve and
shall show that this leads to a contradiction. We recall Herecompleteness some ar-
guments which are probably quite common when one studiesatue for low degree
algebraic surfaces. (Also see [2] for a related argument.)

Let thus X be a plane inR® and assume thaX is tangent toS along some non-
trivial curve G ¢ S. We also denotez N S by G. G is a bounded plane quartic and
we haveG c G. (When we speak abou® or G, we shall sometimes regard these
curves as curves iR and sometimes as plane curves in the plang The first thing
to show is:
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Proposition 3.1. Under the above assumptions G is an ellipse ang=G.

Proof. After an orthogonal change of coordinates and a laios we may as-
sume thaty = {£ € R3; &3 = 0}. Denote byQ the polynomial p restricted toX in
these new coordinates. We rega@das a polynomial in the variableg;( &), i.e., we
defineQ by Q(&1,&2) = p(&1,€2,0), keeping in mind that the notation of variables refers
to the new coordinates. We claim th& vanishes of order two oG. In fact, since
{&; &3 = 0} is tangent toS along G, we must have thato(a&)p(P) =0,i =1, 2, for
every P € G. This shows that the gradient @ in the variables &, &) must vanish
on G. We conclude with the aid of Proposition 8.6 in [9] th@ must be reducible,
i.e., that we can writeQ as Q;Q for two nontrivial polynomialsQ;, Q.. It is also
clear thatQ cannot have factors of degree one, since in the opposite Gaseuld
be unbounded. Thus, botQ; and Q, are of degree two and both must vanish @n
since otherwise the gradient @ could not vanish on the curv&. It follows that
G is a parabola, hyperbola or ellipse, but since it is boundegitist be an ellipse.
But then, G is the “complete” set of real zeros, both f@; and for Q,, and the two
polynomials must be proportional since they vanish on theesallipse. O

REMARK 3.2. Let G be the ellipse along whiclt is tangent toS. Also as-
sume that coordinates have been chosen as above. In partiEulis of form ¥ =
{€ € R3; & = 0}. Then for every pointP € G there is a neighborhootlV in = so
that the projection of§, to £ containsW. Moreover, if we choos&V small enough,
then we can find > O with the property that wherg{, &, 0) € W, then there is ex-
actly oneé&sz with |&3] < § such that &, &, &3) € . In fact, P must lie in the smooth
part of S, so gradp(P) # 0. SinceX is tangent toS, it follows that we must have
(0/0&3)p(P) # 0. The statement follows therefore from the implicit fuoctitheorem.
It follows from this that the orthogonal projection & onto the planex contains a
neighborhoodW of G. Moreover, if we choosaV small enough, then we can find
3 > 0 so that for every g, &, 0) € W, there is exactly onés with |&3] < § such that

(glr 521 53) € SZ)

We consider next a poinP in the smooth part ofS and let £, be the tangent
plane toS at P. To simplify notations we shall make again an affine changeaoi-
ables such thaP in the new coordinates is @ R® and the tangent plane & =
{¢ e R®; &3 = 0}. Locally nearP we can writeS, as the graph of some smooth func-
tion & — h(g"), i.e., if Q is a small neighborhood of the origin iR® then SN Q =
{£€ € Q; & = h(&’)}. The fact thatT is tangent toS at 0 means thaV: h(0) = 0. We
also consider some link in the planeX. After a further linear change of coordinates
we may assume that has the formL = {(£1,0,0); & € R}. The fact that: is tangent
to S at P implies that the order of contact of any linein the planex which passes
through P with S is at least two.
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We also observe that it intersectsS in the pointsP', i = 1,...,s, then the
sum of the orders of contact at these points witlean be at most four. In fact, if we
look at the intersection of with the plane&, = 0, then we obtain a quarti€ in the
variablesé;, &;. If we denote byq the defining equation of this quartic, then a point
P' = (&1, 0) € T which has contact of ordek, will give a root of multiplicity k; of
&1 — §(&1, 0) at&y;. It remains then to note that sinée — q(§1, 0) is a fourth order
polynomial, we can at most have 4 roots when multiplicities taken into account.

As a further preparation for the proof of Theorem 1.1 we prowe more “if"-
result. (But a particularity of our argument is that in thedeme shall see that in the
situations of interest to us, no planes as in the statemettteofollowing proposition
can exist!)

Proposition 3.3. If X is a plane which is tangent to S along a non-trivial cuive
then S must lie on one side Bf.

Proof. Since we already know that we may restrict attentmrihie outer sheet,
it will suffice to show that if some plan& is tangent to the outer sheet & along
an entire curvei, then S must lie on one side of.

We choose affine coordinates in the way done before suchXhat{&; & = 0}
and recall that under the assumptions of the proposit®n,{¢; & = 0} is an ellipse.
We also pick some open neighborho®d in the &, &)-plane of this ellipse as in
Remark 3.2 so that every point W is the orthogonal projection ontg of a uniquely
defined point (given in Remark 3.2), i&. Let furtherU,V C ¥ be the setdJ =
{'eW;Jg3>0st €,86)e S}, V={eW; 3 <0st €,8&) e S}, where in
both cases the poire; is given by Remark 3.2. By the definition ¥, we have then
thatW =U UV UT. If we assume that both setts andV are non-void (and this is the
exact meaning of the statement tHat lies on both sides o&), thendU N oV N'W
is a closed curve iV contained in the quarti¢s’ € R?; p(¢/, 0) = 0}. (Here p is
written in the new coordinates and, with notations intrasth@above,p(¢’, 0) = Q(&¢').)
We have seen above that as a curve the latter is the ellBs&ince G consists of
only one connected component, we must h&e= oU N aV N W. This means that
locally near any point ofG we must havel on one side ofG N ¥ andV on the
other. (“Sides” are now taken inside, whereas before they were “with respect” to
2. The argument is here as follows. We wrif¢ as W, UW_ U G, whereW, is the
intersection of the unbounded component3f G with W and W_ is the intersection
of the bounded component & \ G with W. If now for example bothW, N'U and
W, NV were non-void, thedU NoV would have points inV, \ G, which is not true.)
If we consider a lineL which passes through some poiRte G and is transversal to
G, and if we consider a functioh defined in a neighborhoo in R? of P such that
Sis nearP the graph oth, thenh must change sign along when we pass througR.

Now we change coordinates still further to have that {(£1, 0, 0); & € R}, SN
U={&eU; &=nh()}, h(¢1,0) < 0 for & < 0, |&] small, h(&1, 0) > O for & > O,
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& small. We can also assume, by rotatibaa little bit (if necessary) insid& around
the projection ofP to ¥, that L intersectsG in a second point. We now claim that
(8%h/3&2)(0) = 0, thus proving thal. has a contact of order 3 witB at P. In fact,
we know already thah(0) = (dh/d%;1)(0) = 0, so a change of sign &f — h(&;, 0) is
only possible whend?h/d&2)(0) = 0. This means that at 0 has a contact of order at
least 3 withS, which is not possible since we also have another point.am S with
contact of order at least two. We conclude that one of the et V must be void
and thereforeS lies on one side ot. O

We shall now use the exact form of our surface in a more diregt, Wwut we shall
still argue along traditional lines, by intersectiiggwith some specially chosen planes.
For suitable choices of these planes we shall see that thetHat there are tangent
planes toS along curves, imposes some strong restrictions. Thesgctests will in
the end be too strong to hold simultaneously.

The first family of planes with which we shall intersect {i5; & = u}, u € R,
thus obtaining the curve¥, introduced above. We have seen that these curves are
nontrivial precisely wherju| < 1/+/¢c— 2b.

We also observe that the equation (2.6) can be solved etkplfor &, or for &
and that it is symmetric ir§y, &. Elementary considerations, together with the results
established in [7] give, under the assumptlos 0, the following statements:

the outer component is not necessarily convex. Howevet,hiai$ inflection points,
the number of inflection points is precisely 8, two in eachdyaat of the plane. In
any given quadrant, the two inflection points are symmetitb wespect to the diagonal
of the respective quadrant. We do not show how this stateremtbe obtained from
the results in [7], since we shall prove a more precise stt¢nm Section 4 below.

In particular, lines which are tangent to the outer curvetiteast 2 distinct points
and for which the curve remains on one side of the line areguetlipular to the diag-
onal in the first and third quadrant and perpendicular to titediagonal in the second
and fourth quadrant. (See Fig. 1.)

We now return to our main goal, which is the proof of Theorerh. 1et us then
assume thak is tangent toS along an entire curv&. We assume that this curve has
a nontrivial portion in the first octant iR3. If we intersect withé&s = 1 with © > 0
chosen such thalf, N G is nontrivial, thenX N {£&3 = x} is a curve which is tangent
to SN {& = u} in at least two points.

By the above, this is only possible if the line of tangencyewlregarded in the
&'-plane, is perpendicular to the diagonal and has exactlypaints of tangency which
are symmetric with respect to the diagonal. If we now movepwards, then we will
have for a while at any moment two points of intersection,iltamtmoment when we
have only one point of intersection (remember that the cwiédangency is an el-
lipse, so the geometry of the situation is simple), which $ggmmetry reasons must
be of form €&, &, u) with & = &. (In every other situation we will have a pair
of points.) We conclude thaG has a nontrivial intersection with the plage = &;
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Fig. 1. Line is tangent to outer curve at two points. The two
inflection points must lie between the two points of contatt o
the tangent with the outer curve.

and by symmetry then also with the plangs= &;, & = &. If we now argue by
symmetry then we can see that the normal to the tangent pramgiéstion must be
(1/+/3, 1/4/3, 1/+/3). (For additional details see [9].) On the other hand, theve
SN {& € R®; & = &) is quite simple, since (1.6) reduces for= & to

(3.1) 1+ (b — )(287 + £3))* — b*(67 — £3)* = 0.
This can also be written as

[(1+ (b—c)(282 + £2)) — b(eZ — £2)]

(3.2)
x[(1 + (b—0)(2&f + &) + b7 — €5)] = 0,

which shows that the curvea = SN {& = &} is the union of the two ellipses

{(b—20)&f + (2b—c)ed + 1 =0, & = &)},

(3.3)

{B0—20)&7 —ctf +1=0, & = &).
We denote byA’, respectively byA”, the image of these ellipses under the projection
(€1, &0, &3) — (£1, &3). Thus A is a curve inR3, whereas theA’, A” are ellipses in the
(&1, &3)-plane. The two ellipses intersect in the poigs= &2 = 37Y(c — b)~L. If we
now denote byL the projection into the&, £3)-plane of the linex N{&; & = &}, then
L should be a common tangent to these two ellipses and shoutdfamal direction



CURVATURE PROPERTIES INCRYSTAL ACOUSTICS 369

v =(1,-1/2)/||(1, =1/2)|. It is however not difficult to find the common tangent of
two explicitly given ellipses and to show that for our twoigdles the common tangent
cannot have the direction, thus concluding the proof. (If the “common tangent” is
to have the given direction, then it must be of foem= —(1/2)é; + n for some con-
stantn. We need therefore show that there are no poRis= (&, &), respectively
P_ = (i1, 1), on this line at which the line is tangent W' at P, and tangent ta\”

at P_. The fact thatP,, P_ are on the line gives the conditions

1. . 1.
(3.4) f1=—3f+N m=—3ik+n
whereas the fact that they are on the ellipses gives
(3.5) b-—20)E2+(2b—0c)&>+1=0, (D—20)n2—cig®+1=0.

In addition we have two more conditions, which say that thee lis tangent to the
ellipses atP,, respectivelyP_. We can express the latter by requiring for example
that the gradient of the equation for the ellipses calcdlatthe corresponding points
is proportional to the vector (1/2). This gives us a mildly nonlinear system of 6
equations for the 5 unknowns, &, &, 71, ip: there are only five unknowns since we
have already inserted the information that we know what themal to the tangent
line must be. It is not difficult to see, by explicitly studgirthe system that it is not
compatible. For further details on how this is done, see [jp],206—207.)

4. Inflection points of the curvesT,

In this section we study the existence of inflection pointsto@ curvesT,, as-
sumingb > 0. Part of the results of this section do not have the samé tdvinter-
est for applications to decay estimates in crystal theognthave those in the other
sections, but Proposition 4.6 (which requires roughly kpephalf of the efforts we
make in the section) is needed in the proof of Theorem 1.2,vamdhave also referred
to this section in the proof of Theorem 1.1. Another possibkrit of the calculations
here is that we obtain a very explicit characterization & #hape of the curvel,, a
problem which has been studied in the engineering liteeasame time ago. (Cf. e.g.,
[11], [12].) As a preliminary remark we recall that fiy| < 1/+/c — 2b the curvesl’,
are nontrivial and consist of one or two closed connectedpoorants. More precisely,
when ¥./c < |u| < 1/+/c— 2b then we have one closed connected curve and when
0 < |u| < /¢, then we can writd", asT', =T,; UT,, where thel',; UT, o, are
closed connected curves which we shall call the “inner’peesively the “outer” com-
ponent. The terminology refers to the fact that if we regBjdas a curve inR?, by
identifying €', ) with &', thenI",; andI',, can be chosen so tha,; lies completely
in the bounded connected component®Sf\ T, ,: see Fig. 2 for an example.

As seen abovel, ; must be strictly convex. For this reason our arguments il r
fer almost exclusively td", ,. (For simplicity we shall speak about the outer component
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Fig. 2. T', consists of an inner and an outer component. It has a
number of symmetries.

also in cases wheilr,, consists of only one connected component. In this case the
“outer” component isl", itself.) Inflection points are interesting in that they camt n
appear if the Gaussian curvature 8fis strictly positive at the corresponding point
on S. Since the Gaussian curvature 8fis strictly positive at (0, 0, Av/c — 2b), the
curvesI', have no inflection points fop close to ¥+/c—2b. Geometric considera-
tions show that thé”, will have inflection points whem is near the conically singular
values, which aret1/./3(c — b). It is also interesting to note that for close to zero,
the situation will depend on the value bf for small values ofb the curvesl’, have
no inflection points, but for moderately large values, thell ¢as we shall see later
on in this section) have. We shall now make a quantitativebrarprecise analysis of
these statements.

Theorem 4.1. There is a calculable constari such that the plane sectiors,
can have inflection points for > 0 only when|u —1/+/3c — 3b| < €b.

REMARK 4.2. The value off can be calculated noticing that we shall have in-
flection points onl',, precisely when the sign of the quantityp* introduced later on
in this section is positive. For details when this is the cese Lemma 4.8 below.

Proof of Theorem 4.1 is based on the following theorem of HZ8uthen:

Theorem 4.3(1877. Cf. [14]. Also see [4].). A nonsingular quartic in the real
plane has at most eight real inflection points.
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This theorem has been used in a similar context already irafit] actually the
argument below shall be based on an idea used in that paperald®emention that
we could use that paper in a more direct way. However, caioaks would remain
tedious also if we did so, and we prefer a direct studyl"pfin order not to obscure
the simple ideas which are underlying our results. Moreoiremrder to obtain the
results in Lemma 4.8 later on we would need a considerable gfathe calculations
we shall perform in exactly the form in which we shall do thenmdaould not refer
to any corresponding part in [7].)

REMARK 4.4. The curvel', is singular exactly whemn? = (3c — 3b)~%. Since
we want to apply Zeuthen’s theorem, we shall therefore ebechhis case in the follow-
ing considerations.

We start with some calculations related to the north-polehm ¢, &2)-plane of
I',. By this we mean the point off, , with & = 0, & > 0. (The value ofé; will be
calculated in a moment.)

We shall now parameterizE, , locally near the pole by, — (&1, h(%1)), for some
suitable functionh. (Also see (4.1) below.)

As a preparation we consider the following trivial abstreesult:

REMARK 4.5. a) LetT(t) be a fourth degree polynomial with real coefficients
of form

T(t) = O(0t4 + 0l2t2 + o4,

with o > 0 such thatT(t) = 0 has a positive root. Denote byt = maxt;, where
the maximum is over the real roots of T. (There are at least two real roots.) Then
26(0%2 +ay > 0.

b) If the o;are functions oft and h is a C2-function defined in a neighborhood of 0
such thath’(0) = 0, then the coefficient of”(0) in (d/dt)?(coh*(t) + ax(t)h3(t) + o)
att = 0 is 2n(0)(2x0(0)h?(0) + a2(0)).

In fact, denote byT (o) the polynomialago? + azo + ay4. If Tis a real root ofT,
theno = 72 is a positive root ofT (¢). But then 272 + ap = 2000 + a2 = VA > 0
where A = a3 — dagay = ad(o1 — 0,)? is the discriminant ofT and o; are the two
roots of T. (We have to take the positive square root/of since 72 is the bigger of
the two roots ofT.) Note thatT has two real roots, since its coefficients are real and
it has one positive root by assumption. This gives a). b)iigatr

The first result we want to prove is

Proposition 4.6. h”(0) is negative for every admissible value (@, c, u), i.e.,
when b< c¢/2,u < 1/+/c—2b.
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The proof of this result is by completely straightforwardccgations. The reason
why we give it with details is that calculations are somewtetious. The value of
h”(0) can be calculated by derivating the equation

1+ (b= O)(E + h*(1) + %))

—b?(E + h*(6) + u* — §7h%(60) — €71 —h*(E)n?) = 0
twice in & and puttingé; = 0 in the end. The calculation is simplified by the fact
that we know beforehand (sinde is even) thath’(0) = 0 and that we need only the

values até; = 0. We then obtain (using (2.1), with the roles &f and &; inverted)
the equation

(4.1)

4.2) Ah(0)h”(0) + B = 0,
where

A = (—8bc + 4c®)h?(0) + 6b%u? — 8uu?be + 4b — 4c + 4u’c?,

4.3
(43) B = 4(1+ (b — ¢)(h?(0) + u?))(b — c) + 20%(h%(0) + 1?).

Here 1 and h(0) are related by the fact that we must haver({b — c)(h(0)? + 1?))? —
b?(h*(0) + u* — h?(0)u?) = 0, which gives forh?(0), as a first guess, the values
(4.4)
—2b + 2¢ — (2 + 3b? — 4bC)? + by/4 + (1262 — 24bc + 92 pé + 12(b — C)u2
2(c? — 2bc) '

Of course we are interested only in those triplbsc( 1)for which h?(0) is a positive
number, which means in particular that the expression

L(b, ¢, n) = 4 + (12¢? — 24bc + 9b?)u* + 12(p — c)u?

must be non-negative fob(c, n) satisfying u? < 1/(c — 2b). This is clear in that
we know from Section 2 that folu| < 1/+/c — 2b the equation (4.1) admits for every
& = 0 a positive solutiorh(0). We also mention for later use that

(4.5) L(b’ . ﬁ) - ((1b—_ 228)22’ L(b’ - J%’)

We further observe that (4.4) gives us two values, one for‘phes”-sign and one
for the “minus”-sign. However since the denominatoc?2{ 2bc) in (4.4) is positive
for the relevantb, ¢, and since we restrict attention to> 0, the bigger of the two
values defined by (4.4), which is the one which correspondbdmorth pole, is when
the sign is “plus”. We shall work therefore from now on withisttvalue ofh?(0).

We now return to the proof of Proposition 4.6. Sing@®) > O, it is clear that the
proposition follows from the following lemma.
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Lemma 4.7. The expression A defined {4.3) is always positiveand so is B.

Proof. The fact thatA is always positive follows from Remark 4.5. To establish
the sign of B, we have to evaluate 4@ (b — c)(h?(0) + 1?))(b — c) + 2b%(h?(0) +
©?) whenh?(0) is given by (4.4), the sign being agair-". We can also writeB as
4(b — c) + (6b? — 8bc + 4c?)(h?(0) + 2). When we insert the value df?(0) into this,
we obtain

(6b% 4 4c?—8bc)

1
——— _ (2c—2b+4bcu®—2cu® —3b%u?
X(Z(c2—2bc)( eSS

+ /42 4+ 12032 + 9b* 4 — 12622 — 24b3cpd + 1202c2u%) + uz)
+4b—4c.

We have to show that this quantity is positive. Our task wal (a little bit) simplified
if we replaceu? by t and study the quantity
(4.6)

N(b, c, t)

= (6b% + 4c? — 8bc)

1
——  (2c—2b + 4bct — 2¢°t — 3b%t
X (2(c2—2bc)( C + 4bct — 2¢

+ v/4b2 + 1203t + 9b%t2 — 12b2%ct — 24b3ct? + 1202¢2(2) + t)
+4b—4c

instead. The idea is to fik, ¢ and study the values of the functiohs— N(b, c, t)
for the appropriatet. The situation becomes notationally simpler if we assume
1. The value ofN for t = 0 is N(b, 1, 0) = 2b(2 — b)/(1 — 2b), which is positive
when 0< b < 1/2. As for the case wheh = 1/(1 — 2b), which is the biggest value
t can have for some giveh, we obtain, if we also take into account that by (4.5)
L(b,1,1/+/1— 2b) = (2—b)?/(1—2b)?, N(b,1,(1-2b)"%) = (6b>—8b+4)[(2—4b) 1 (2—
2b+4b/(1—2b)—2/(1—2b)—3b?/(1—2b) + b(—b+ 2)/(1—2b)) + 1/(1— 2b)] + 4b—4.
After some calculations this gives (again) théb, 1, (1—2b)~%) = 2b(2 —b)/(1— 2b).
The proof will now come to an end if we show that the functior> N(b, 1,t) is
positive when @/dt)N(b, 1,t) = 0. The zeros of the-derivative of N(b, 1,t) are the
same with the zeros of thiederivative of the function (2(% 2b))~[4bt — 2t — 3b%t +
(4b? + 12b3%t + 9b*t? — 12b%t — 24b%t2 + 12b%t%)Y/2] +t and are also equal to the zeros
of t-derivative of the function

P(t) = —3b%t + v/b2(4 + 12bt + 9b2t2 — 12t — 24bt2 + 1212).
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Clearly 8, P(t) = 0 comes to

(4.7)  DV4+ 12bt + 9b2t2 — 12t — 24bt2 + 122 = 6b + 9t — 6 — 24bt + 12t

We divide both sides by 3 and square the result to obtain

(16 — 64b + 9b* + 880% — 480°)t? + (12b° — 44b? + 480 — 16}t + 4 — 8b + 4b?
= b?(4 4+ 12bt + 9b%t? — 12t — 24bt? + 12t?).

This is a second order polynomial equation which has thetisolsit; = 1/(2 — 3b),

t, = 1/(2 —b). Of these, onlyt; is however also a solution of the equation (4.7), and
t, is due to the fact that we squared both sides of the equaléyethWe have thus
found the point where);N(b, 1,t) vanishes, namely at= 1/(2 — 3b). It remains to
calculate the value oN(b, 1,t) att = 1/(2— 3b) and to check that it is positive. We
obtain in fact thatN(b, 1, 1/(2 — 3b)) = 4b(1 — 2b)/((1 — 2b)(2 — 3b)) = 4b/(2 — 3b).
(The value ofL(b, 1, 1/(2—3b)) is 1 by (4.5).) ]

As a next step in our geometric study of the curfgswe now study the curva-
tures at the points of , lying on the diagonal, respectively on the anti-diagonaRf
We shall work out details for the diagon&’ € R?; & = &)}. We have already used
above thatSN {& € R®; & = &} is quite simple and also in the present calculations
this fact can be brought (in some partial calculations) tatifsn. (Recall that|u| #
1/+4/3c — 3b.) This seems easiest if we change variables seftjing s+1t,& =t —s.
(The diagonal corresponds thenge= 0.) The equation (2.6) transforms to

L+ b-0)((s+1t)?>+ (5—1)>+ u?))2=b*((s+t)* + (s—1t)*

4.8
“9 +ut =+ X st — (s +t)°u’ — (s - 1)*u?) =0,

which, when written in a more explicit way, is

(3b% — 8bc + 4c?)t?
(4.9) + (4b — 4c — 6b%s? — 16bcs’ + 8c?s? + 6b%1u? — 8bcu? + 4c2u?)t?
+ L+ (b—0)(25? + u?)? — b%(s* — 25°u? + u*) = 0.
To study curvature, we now writ€,, locally as the graph of some functi@— x(s),
which means that we have to replacdy x(s) in (4.9). The implicit equation fory
is therefore
(3b? — 8bc + 4c?)x (s)*
(4.10) 4+ (4b— 4c — 6b?s® — 16bcs + 8c?s” — 8bcu? + 6b%u? + 4c? ) x (s)?
+ (14 (b—0)(28? + u?)? —b%(s* — 28%u? + u*) = 0.
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Recall that hereucorresponds t&s and that|u| < 1/+/c — 2b.
The value of x(0) is easy to calculate in terms @fin that the equation (4.10)
factors fors = 0, as a consequence of (3.2), into

(4.11) (Dx2(0) + 1 —cu® — 2cx?(0))(bx *(0) + 2bu? + 1 — cu? — 2cx?(0)).
This gives

1—cu? 2 _l—l—(2b—C)y,2
23 O XO=—p

(4.12) x*(0) =

Since we are only interested in positive values §di0), this makes sense only
when the expressions in (4.12) are positive for thander consideration. This is trivial
for the second expression, but will only happen wheh < 1/./c in the case of the
first expression. (The geometric interpretation of thedeutations is clear: since the
inner sheet is symmetric and convex, only the hyperplanes pwith |u| < 1/./c
can have a nontrivial intersection with the interior shedternatively we may look at
the ellipses defined in (4.11).) We are also interested teenstand which of the two
values (4.12) is bigger. Again we may look at the ellipses4ril) but we may also
argue analytically. Since bothc2-b and Z — 3b are positive by the assumptions on
b, c, we have to evaluate the sign of {lcu?)(2c—b) — (1 + (2b—c)u?)(2c — 3b). The
sign of this is (since we assunie> 0) equal to the sign of & (3c — 3b)u?, which
shows that

l—cu? 14 (@2b-— 2 1
CK” + ( C)u when [u| < >
(4.13) 2c—3b 2c—b Jv3c—3b
. o I
1-cu - 1+ 2b—c)u when 1 <|ul < 1 .
2c—3b 2c—b v/3c—-3b c—2b

We shall denote byy;(0) the smaller of the two values and ky(0) the bigger one.
Note that the point (Ox1(0)) lies then on the inner curve and (g(0)) on the outer
curve. Since the inner curve is strictly convex, we are adamemost interested in
x2(0). According to the above,

1—cu? 1
2
0) = when <
1O = 573 ===
(4.14) Lt @b o2 L
. + —C)u
respectivel 20)= ——— 7" when >
p y x3(0) b Il = T

We can now calculatg”(0) by derivating (4.10) twice irs and settings = O after-
wards. After some calculations, we obtain the equation

(4.15) Cx(0)x"(0) + D =0,
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where
C = 4(30% — 8bc + 4c?) x?(0) + 2(4b — 4c + 6b%1u? — 8bcu? + 4c?u?),
D = 8(1+ (b—c)u?)(b —c) + 4b%u? + (8(2b — 2¢)(b — c) — 280%) x%(0).

Lemma 4.8. Whenu? = (3c — 3b)~%, then C vanishes. This corresponds to the
fact thatT", has singular points in that case. Wherd # (3c—3b)~?, then C is always
positive. The sign of,(0) will therefore be(—1)-times the sign of D when(0) =
x2(0). The sign ofy;(0) is:

I. In the caseu? < 1/(3c — 3h):

i) negative for b< 2c/9, when in additionu? < (2¢ — 9b)/(6¢® — 21bc + 9b?),

i) positive for b< 2c/9, when actually(2c — 9)/(6¢? — 21bc 4+ 9?) < u? <

1/(3c — 3h),

iii) positive for2c/9 < b <c/3,

iv) and positive also for £3 < b < c/2.

Il. In the caseu? > 1/(3c — 3b):

v) positive for1/(3c — 3b) < u? < (2c + 5b)/(6c? — 21bc + 90?),

vi) negative for(2c 4 5b)/(6¢? — 21bc + 9b?) < u? < 1/(c — 2b).

We also mention as case
ll. Whenu? = (2c — 9b)/(6c? — 21bc + 9b?), then x5(0) = O.

Proof. The statement o@ follows again from Remark 4.5. As fob, the prob-
lem is to study for a giverb the sign of

(4.16) 8(1+ (b — c)u?)(b — c) + 4b%u? + (8(2b — 2c)(b — c) — 280%) x5(0)
as a function ofu. The sign of this is the same with the sign of

21+ (b —c)u?)(b - c) + b?u? 4 (4(b — c)? — 7b?) x2(0)

(4.17)
= (—3b? — 8bc + 4¢?) x2(0) + 2b — 2¢ + 3b%u? — dbcu?® + 2c2 .

We now insert the value of,(0) into (4.17) and obtain

(—302 — 8bc + 4c?)(1 — cu?)
2c—3b

_ —b(9b — 21u2bc — 2¢ + 6u%c? + 9?u?)

B 2c—3b ’

+ (3b% — 4bc + 2¢®)u? + 2b — 2¢

(4.18)

in the first case in (4.14), respectively

(—3b2 — 8bc + 4c?)(L + 2bu? — cu?)
2c—b

_ —b(90?u? + 5b + 3bcu? + 2¢ — 6¢2u?)

N 2c—b ’

+ (3b? — 4bc + 2c?)u? 4+ 2b — 2¢

(4.19)
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in the second. The values @f? for which these expressions vanish are when
E = 9b — 2c — 21bcu® + 6¢2u? + 9b%u? = 9b — 2¢ + (6¢2 — 21bc + 9?)u? = 0
respectively when
F = 9b%u? + 5b + 3bcu? + 2¢ — 6c2u? = 2¢ + 5b + (9b? + 3bc— 6c2)u? = 0,
which gives formally

2c+5b
6c2 — 3bc— 9b2°

2 2-% respectively u? =

W T 6z _2lbct ope’ | CoPeeVEN =

Of course, and this is why we say “formally”, for this to makense, the quantities
(2c—9b)/(6c? — 21bc + 90b?) and (Z + 5b)(6¢? — 3bc—9b?) must be positive. We now

introduce the following quantities:
E' = 9b— 2c + (6¢® — 21bc + 9b?)v, F' = 2c+ 5b+ (9b? + 3bc—6c¢)v, v eR,

which correspond tE and F when we replace:? by v. We then have:

REMARK 4.9. The quantitie€’, F’ are linear inv. They vanish when = (2c—
9b)/(6c> — 21bc + 9b?), respectivelyy = (2¢ + 5b)/(6¢> — 3bc — 9b?) and there is
a change of sign at those values. (We assume here that théitigsa6e® — 21bc +
9b?, 6¢? — 3bc— 9b? do not vanish.) The sign of;(0) is that of E'(v) for v = u?),
respectivelyF’(v), again forv = u?).

Note that 8% — 21bc + 9b? vanishes forb = ¢/3, respectivelyb = 2c, whereas
6c2 — 3bc— 9b? vanishes forb = —c respectivelyb = 2¢/3.
This means that in the region®9b < c/2 (which is the region of interest for us)

c
(4.20) &> — 21bc+ 9b? is positive precisely whenb < 3
whereas
(4.21) ®? + 3bc—6¢? is always negative.

Moreover (again when & b < c¢/2), the following statements hold:
(2c — 9b)/(6¢? — 21bc + 9b?) is a positive number precisely fdr € (—oo, 2¢/9) U
(c/3, ),

2c—9b 1
<

for b<c/3,
62 2ot 02 ~3c_3 O P=¢
2c— 9 1
4.22 > f 3<b<c/2
(4.22) 62 21bct 02 — 3c_3p O ¢3=b<¢
1 2c45 1

<
3c—3b ~ 6c2—3bc—902 ~ c—2b°
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(Thus for example @+ 5b)/(6¢? — 3bc— 9b?) < 1/(c— 2b) is always true since 2+
5b)(c — 2b) — (6¢? — 3bc — 9b?) = —4c? + 4bc— b? is always negative.) O]

We now discuss the sign of, F, in a number of situations which correspond
exactly to the regions mentioned in the statement of LemrBa MNote that the sign
of E, F is —1 times the sign oD, so it is already the sign of,(0). We should keep
in mind thatv corresponds tq:2.) The “case” Ill in Lemma 4.8 is of course clear.

I) The caseu? < 1/(3c — 3b). The relevant quantity is.

a) b <2c/9. In this case & — 21bc+ 9b?, the coefficient ofv in E’, is positive and
E’ is negative forv = u? < # = (2c — 9b)/(6c? — 21bc + 9b?), respectively positive
whenf < v < 1/(3c — 3b).

b) 2c/9 < b < c/3. In this case & — 21bc + 9b? is still positive, andE’, changes
sign from— to + at v = (2c—9b)/(6c?—21bc+ 9b?), which is negative E is therefore
positive for all 0< u? = v < 1/(3c — 3h).

c) c¢/3 <b<c/2. In this case & —21bc+ 9b? is negative, whereas ¢2- 9b)/(6¢> —
21bc + 9b?) is larger than 1(3c — 3b). ThereforeE is positive for all 0< u? = v <
1/(3c — 3b).

) The caseu? > 1/(3c — 3b). We have to discuss the sign &. Sinced’ =
(2¢c + 5b)/(6¢? — 3bc — 9?) > 1/(3c — 3b), and since—6¢? + 3bc + 9b? is always
negative,F always has a change of sign from-"to “—”" at u? = 60'.

We can now return to the proof of Theorem 4.1. In fact, we shalle inflection
points precisely whery,(0) > 0. (Recall thatx,(0) refers to the coordinates, (),
in which (0, x2(0)) is a point on the diagonal in the initial variabl€§) This is a
consequence of Zeuthen’s theorem and can be proved withgamant used in a sim-
ilar situation in section 6 in [7]. We repeat the argument ttoe convenience of the
reader. In fact, by symmetry (under reflection with respect;t= 0, & = 0, & = &,

& = —&) we see that ifl", has some inflection point, then it also must have an in-
flection point in the region&’; 0 < & < &} and that, more generally, the number of
inflection points in each of the regiong’; 0 < +&, < +&}, {&'; 0 < +£& < +&},

is the same. Since all in all there are 8 such regions in theeplthe number of in-
flection points in{&’; 0 < & < &} must be zero or one: we use here the fact that
Zeuthen’s theorem limits the total number of inflection peito 8. Now, there is cer-
tainly one inflection point in this region whegy(0) > 0, since the sign oh”(0) is
negative. (We recall that (6(0)) corresponded to the “north pole”. On the other hand,
there can be no inflection points in this region whef(0) < 0, since in the opposite
case, we would have at least two inflection points in the megwhich is excluded by
the remark just made. Also the case whgf{0) = 0 is easy: there is then an inflection
point on&; = & and by Zeuthen's theorem there can be no further inflectiantpan
0<é&=é.

REMARK 4.10. We shall say thal', is of “type 1" if I',, has no inflection
points and that it is of “type II” in the opposite case. Furthere, we say thaj°
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is a critical value ifI", changes type au®. It is a consequence of Lemma 4.8 that
for 2c — 9b > 0 the critical values arg.®> = (2c — 9b)/(6¢® — 21bc + 9b?), respect-
ively 12 = (2c + 5b)/(6c? — 21bc + 9b?). At these valuesy;(0) = 0 and x,(0) #
Onearby, with a change of sign at the critical values. For—2b < 0 all x with
u? < (2c — 9b)/(6¢? — 21bc + 9b?) are of type Il.

Finally, if T, is of type Il and if x is not a critical value, then it has exactly one
inflection point in each of the sectof§’ € R?; 0 < & < &}, {§' e R?; 0 < & < &)}.

Proof of Theorem 4.1: end. It is a consequence of Lemma 4i8Tthacan have
inflection points only when:? lies in the interval with endpoints at the critical values.
The conclusion of the theorem will follow therefore if we caheck that the distance
of these critical values to/{3c — 3b) is of order~ b. We have indeed

2c—9% 1 2 b(—2c + 3b)

4.23 - == ,
(4.23) 6c2—21bc+9b2 3c—3b  3(2c2 — 7bc+ 3b2)(c —b)

respectively

2c + 5b 1 2
4.24 - ==
( ) 6c2—3bc—92 3c-3b 3

b(2c — b)
(2c2 —bc—3b?)(c—b)’

Both are of order B”, so the proof is complete.

5. The Hessian ofp; + p, at the conically singular points

In this section we shall use the notatidh for the conically singular point on
Sin the regionR3 = {£:& >0, j = 1,2, 3, i.e,, P = (P, P, P3) with P =
1/+4/3c —3b). We shall also writeP’ for (P;, P;) and denote, for the appropriatg,
by & — pi1(&), & — p2(&’) the positive roots ofp — p(¢’, p) ordered in such a
way that p1(¢") < p2(£). Our aim is to calculate curvature properties of the s@fac
Snean = {§: &3 = [p1(§) + p2(8))1/2, |§" — P’| < 4}, § small. Snean is thus a sur-
face which locally neaP lies betweenS, and §. There are two reasons why we are
interested in this study, one geometrical and one technida geometric reason is that
if we write pj, | = 1,2, asp;j(§') = [pa(§) + p2(§") + (1)) V(p2(§") — p1(§))?]/2, then

(02(8") — p1(€"))?]/2 describes (intuitively speaking) the conically singubehavior
of S near P, whereasp;(&’) + p2(¢") describes the underlying smooth structurePat
The curvature ofSyean thus shows us how mucB is bent if we disregard the con-
tribution of the conical singularity and we shall use theomfation we obtain in the
proof of Theorem 1.2. While this is for the moment only an itive assessment, it is
closely related to our technical interest in the curvatur&ga, In fact, the main mo-
tivation for a geometric study o8 is to understand the asymptotic behavior of Fourier
transforms of densities which live of as described in (1.1). Locally ne& we shall
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then have the two contributions
1i(x) = / g (a1 txea+xap) () py/ () de', j=1,2,
[£'—P|=8 .

for some functionsy|. After a linear change of variables and a translation, ambtiey
the new variables by = (', n3), we may assume th& = 0 and thatV,, (o1 + 02)(0) =
0. The next step in the argument, at least if one is to follogvdbneral line of argument
outlined in [1], is then to choose smooth coordinates (demh@igain byn’) in a neigh-
borhood of Oe R? in which [(o1 + 02)(n)]/2 = —|1’|?. This is possible by the Morse
lemma if we can show that the Hessian @f + p; in the initial variablest’ at P’ is
negative definite: it is this information we want to obtaintims section. We shall also
insist on explicit calculations, since we want to be ableleast in principle, to deter-
mine thresholds for certain statements to hold. (For sefiity smallb these properties
are obvious from the fact that the surface is then a smalugsation of a double sphere,
the perturbation being made of course within the class daeas of type S.)

The calculation of the Hessiakl of p; + p, at P’ leads to expressions which
are notationally complicated. We shall therefore prephemt by remaining as long as
possible in a more abstract setting. In the beginning of tiyeiraent we shall con-
sider three analytic functions’ — A(&’), & — B(§'), &€ — q(&), defined in complex
neighborhoods of some poiR’ € R?, respectivelyP = (P, P;) € R%. We shall as-
sume thatP; is a double root ofs; — &7 + A(§)é; + B(£) at & = P’ and denote
a(€)[E2 + A(E')Es + B(£))] by f. When we return to our original situatiorf, shall be
the defining functionp of S and P the conically singular point considered above. We
want to calculate the derivatives of order less or equal tinanof A and B at P’ in
terms of derivatives off . In fact, our main interest is for the Hessian Af but it turns
out that in order to calculate it, we also need the second/ateres of B. We can ob-
tain all this information by derivating the equalitf/(¢) = q(£)(&2 + A(§')&s + B(£'))
and putting in the end’ = P/, &3 = P;. We obtain:

e ((P)= 2*18523 f(P) (by derivating twice in&3),

o 0; A(P’) = 00 T (P)/q(P) (by derivating once irg; and once ings),

o 9,q(P) = 6*13533f(P) (by derivating three times igs),

o 9:,q(P)=2"1920, f(P)—0:q(P)d;, A(P’) for (by derivating twice int3 and once
in &),

o 050 (PsA(P’) + B(P')) = 05 9, f(P)/a(P) for i, j # 3 (by derivating once irg;
and once ing;),

o (Psd50(P)+a(P))oZ A(P') + d5,0(P)aZ B(P') = 8,92 T (P) — 23, q(P)d; A(P') for
i # 3 (by derivating twice in& and once ings),

° (P38§3C](P) + Q(P))aglang(P/) + 8§3q(P)8§1852 B(P) = O, 0%, O, f(P) —
95,9(P)d:, A(P") — 935,0(P)ds, A(P") (by derivating once in each of the variablés,
£, £3).
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The quantities; ds; A(P’), 9 9, B(P'), i = j = 1,2, respectively, j = 1, 2, there-
fore satisfy the systems:
(P30,q(P) + a(P))3Z A(P') + 3:,q(P)3Z B(P")
= 9,07 T(P) — 205, q(P)d; A(P"),
8§ f(P)
aP)
(P3dg,d(P) + a(P))dg, 05, A(P') + 9¢,0(P)dz, g, B(P')
= g, g, 0g, T (P) — 95,Q(P)ds, A(P") — 95,0(P)d, A(P"),
9, 0z, £ (P)
qP)

We can extract from the last two sets of relations the follmvformulas for the
second derivatives oA and B:

(5.1) Ps0Z A(P') + 9F B(P') =

(5.2) P3dg, 05, A(P’) + 05,05, B(P') =

2
0f A(P') = = [3533§ f(P) — 20 q(P)ds A(P) — w}

a(P) q(P)
, 1
P2B(P) = —W[Pa(a&a; £(P) — 20, q(P)3: A(P))
~ (Psdgq(P) + a(P))dz f(P)}
a(P) ’
3,0, A(P') = Flp) [351352353 f(P) — 3:,q(P)d:, A(P") — 8:,q(P)d:, A(P")
B 853q(P)851852f(P)}
a(P) ’
851352 B(P/) = _rjl;) |:P3(a§18§28§3 f(P) - 8§1q(P)8$2 A(P/) - 3§ZQ(P)351 A(P/))
_ (P305,q(P) + q(P))ds, 9, f(P)]
a(P) '

(The determinant of the two systems which determine theegabf d; 9, (A, B) is in
both casegi(P).)

We now apply this for the case wheh is the defining function ofS and when
P is the conically singular point ofs recalled at the beginning of the section. 3f
is given nearP by the graph of the two root functions — p1(¢'), &' — p2(&'), then
we have

(5:3) &) = aE)(E — pEN)(E — p2(8) = AE)(EF + AE)Es + B(E),

whereq, A = —p1 — p2, B = p1p», are analytic functions in their respective variables,
defined nearP, respectively nealP’ = (1/+/3c —3b, 1/+/3c — 3b). Since p1(P’) =
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p2(P") = P3 = 1/+/3c — 3b, we have that

1
" 3c-3b

(5.4) A(P) = — B(P)

2
J3c—-3b

We next give the expressions of the derivativespoheeded in the above calculations
for the case at hand:

2
d 8E(ZS) = 8(b— )22 + 41+ (b — O)(&2 + £2 + £2))(b — ©)
3
— bP(1252 — 267 — 2¢),
?p(E) 2 2
Ee " 8(b — €)%6182 + 4b6142,
3
0 p(f) — 24(b _ C)2§3 _ 24b2§>:3’
0E3
PBpE) _ op w2 2
Pe10E2 8(b — ¢)°&; + 4b%Eq,
3*p(P)
01082083

This leads to a complete knowledge of second and third ordevatives ofp at P if
we also use some obvious symmetry relations:

92p(P) _ 8(b— c)? 30— 8
962 -3 +4(1+ 3 —Sb)(b_c)_3c—3b
_8c(c—2b) .
= m, | = 1, 2, 3,
2p(P) 422 —dbc+30) . .
wog ~ se-p 7D

9°p(P)  4(c? — 4bc+ 3b?)
0505 3c—3p
9°p(P)  24c(c — 2b)

93 J3c-3b

We now obtain the following expressions for the values of dieeivatives ofg and A,
respectivelyB:

i E,

_ 4c(c—2b) _ 4c(c—2b)
q(P) = 3c_b) 9, q(P) = Wk

4(2¢° —4bc+3b?%) /4c(c—2b)  2¢? —4bc + 3b?
9, A(P') = 8, A(P) = =
b APY) = 95 AP) 3(c—b) 3(c—b) c(c — 2b)
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9.q(P) = 2(2¢% —4bc+ 3b%)  4c(c — 2b) 2¢” — 4bc - 3p?
' V3c—3b V3c—3b c(c—2b)
_ 2(2c? — 4bc + 30?)
T x-3
—3(—30b%c + 31b%c2 + 9b* — 16bc3 + 4c?)(b — ¢)
c2+/3c — 3b(2b — c)?
~ —3(—2c + b)(—2c + 3b)(30? — 2bc + c?)(b — )
B c2+/3c — 3b(2b — ¢)2 '
—3(3p% — 2bc + ¢2)(3b% — 4bc + 2¢2)(b — ¢)
c24/3¢c — 3b(2b — c)2 ’
9b* — 30b3c + 23b%c? — 8bc® + 2¢*
c2(2b — c)? '

9z APy = 02 A(P") =

3-’31 g, A( P/) =

IZB(P) = 02B(P) = —

3b?(3b? — 4bc + 2¢?)
c2(2b — ¢)?

(55) 851352 B(P/) = -

Proposition 5.1. The Hessian H op; + p2 at P is negative definite for k c/2.
Moreover if we fix 0 < ¢’ < 1/2, then we can find’c> 0, which in principle can be
effectively calculated in terms of,cso that H< —c”l when b< cc.

In fact, the Hessian ob1 + p» is proportional to the Hessian efA. Here 8§1 A(P)
is clearly positive and the determinant of the HessianAak d[(2¢c — b)?(2c — 3b)? —
(2¢? — 4bc + 3b?)?] = 12d(c — 2b)(c — b)’c, whered is a positive constant. This is
trivially positive whenb < ¢/2. The quantitative estimate follows looking at the ex-
pressions for the second derivatives Af

REMARK 5.2. It is an important feature of the Hessian that for srhatl is uni-
formly in b negative definite. This corresponds to the fact that thelgadp(o; + p2)/2
is a smooth perturbation of a piece of a sphere.

6. The Hessian of the discriminant of the second order polyruial v — dgt%+
dor +dsatP
With notations introduced in (2.1), the expression of thecdminant A of the
polynomial in the title of the section at the conically siteyupoint P is
A = (dy)? — 4dods = [(3b? + 2¢2 — 4bc)|£')? + 2b — 2¢)?

(6.1) _ _ _ N22 _ p2(sh | g4 £252
4c(c — 2b)[(1 + (b= ¢)[&"1)” — b (& + &3 — §163)].

If p1, 02, are the positive roots of(¢’, p), thenty = p?, 7, = p2, are the roots ot —
dot? + dot + ds. In particular, 7y — 7o = (01— p2)(p1 + p2). We are mostly interested in
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the Taylor expansion to second degree terms\oft P’ = (1/+/3c — 3b, 1/+/3c — 3b)
with respect to the variableg,( &). To simplify calculations we shift the origin to
(1/+/3c — 3b, 1/+4/3c — 3b), which can be done by performing the change of variables

(6.2) s=&—1/v/3c—3b, t=4& —1/+/3c— 3b.

Since |£;| < 1/+/c —2b we shall havels| + |t| < 1/+/c—2b+ 1/4/3c — 3b.
After some calculations we now have

(6.3)

A = [—420%cSt? + 36bc?s’t? — 120°S°t + 320c+/3c — 3bs® — 12b%+/3c — 3bst?

+ 32bcy/3c — 3bt® — 8c?+/3c — 3bs’t — 8c2v/3c — 3bst? + 180%st? — 33v%cs?
— 33?%ct* + 360c%t* + 32bcs? + 32bet? — 24b?st — 16¢%st — 12¢3s* — 12c%t*
+ 16b+/3c — 3bcst — 16¢%t3+/3c — 3b — 16¢%s°+/3¢ — 3b + 9b%t* + 9b%s?

— 120%s%/3c — 3b — 120%3+/3c — 3b + 16bcy/3c — 3bs?t 4 36bc%s’

b2
— 12b°s? — 12b%t? — 16c2s® — 16¢°t? + 32bsct— 12c352t2]b—

We see in particular that there are no terms of degree 0 or 5,if).(In fact, we
obtain thatA is equal to

b?(16c% — 32ch + 120%)
c—b

2 2 2 2 3
b7(16c° — 32cb + 240) . bO(I(5, V)

2 t2
S+ + c—b c—b

for |(s,t)] — O, i.e., we calculate modulo terms of order 3. (The terms,rsarized in
“O(|(s, 1)[3)", but explicitly known from (6.3), also depend dm) The HessiarH of
the discriminant is thus

~ b? [ 2(16c2 —32cb+ 12b%)  16¢% — 32ch 4 2402
(6.4) H=— 5 5 5 n |-

c—b\ 16¢c5—32cb+ 24b 2(16c® — 32cb + 12b7)
This is positively definite in the admissible regiém> 0, b < ¢/2 since both 16 —
32b + 12b% and the determinant ofl are positive there. (The determinant Bf is
25(b*/(c — b)?)(12c* — 480 + 60c?b? — 24ck®). It vanishes forc/b € {0, 1, 2.)

With the notation §, t)* = (f) we have proved:

Proposition 6.1. For every ¢ < 1/2 there is an explicitly computable constarit ¢
such that if b< c'c, then we have thafA — (1/2)(H - (s, t)*, (s, t)4)| < ¢’b?|(s, t)|? for
(s,t) in some previously fixed bounded regiditi - (s, t)* is the matrixH multiplied
with the vector(s, t)*.)
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The exact structure of\ — (1/2)(H - (s, t)*, (s, t)*) is interesting if we want to
obtain quantitatively sharp estimates. The following fesan be read off from the
explicit expression ofA:

REMARK 6.2. T(s,t) = ((c—b)/b?)(A—(1/2)(H (s, t)*, (s, 1)) has the follow-
ing form:

V3¢ — 3b[(—120% + 320c— 16¢?)(s® + t3) + (16bc — 120° — 8¢%)(s’t + st?)]
+ (9b® + 360 — 33ch? — 12¢%)(s* + t*) + (180% — 42b%c + 36bZ — 12¢%)s%t2,

This gives forc =1, 0< b < 1/2, the following (somewhat rough) estimate:
(6.5) IT| < 28V3(|s|® + s?|t| + |s|t? + [t°]) + 60(* + t* + s°t?).

We shall from now on not any more carry terms of order 4 andiexpiumerical
constants with us. They could be interesting if one wantsttaio sharp thresholds,
but we do not try to find these thresholds explicitly.

REMARK 6.3. It is an important feature here thet and the remainder term in
the right hand side of the preceding relation are unifornmals of orderb?.

7. Estimates nearP’

The results in the preceding two sections were mostly aldmitHessians op; +
p2 and of A, defined in section 6 aP’, with (P’, P;) the conically singular point 08
in Ri. We shall now look for similar information for points in a fuperhaps small,
neighborhood ofP’. Again we are interested in quantitative expressions, beitshall
not look for explicit sharp estimates. (In principle, sudiimates can be obtained, but
lead to complicated formulas.) It also seems justified tanadize acoustical constants
in such a way that = 1.

The estimates themselves will depend on the siz€.0iVe know already that on
S |&j] = 1/+/c—2b, which forc =1 comes to§j| < 1/+/1—2b. To keep Jv1—-2b
bounded by some constant we shall often assumelkihatc’ for some constant’ <
1/2. (A reasonable choice could be to work from the very begigrfor b < 1/3.)

Our first remark is that we can estimate derivatives of angodl p1 + p, starting
from p1+p2 = (0?2 + p3 +2p1p2)/? and noticing that with notations introduced in (2.1),
p2+p3 = —dy/do and pZp2 = da/do. In particular,p?+ p7 and p2p2 are polynomials in
&' with explicitly calculable coefficients. It follows that éhe is a (calculable) constant
x such that these coefficients can be estimated M{ 4 2b). From this we can now
estimate derivatives op; + p, of any previously fixed order, provided we remain in
a region wherep; > 8, po > § for some suitably fixedd > 0. Since we know from
(1.7) that|(&’, pi (")) > 1/4/C = 1, this will be the case if we remain in a fixed open
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convex conel’ containing the singular point imi which intersects the plang =0
only at 0. Clearly,§ can be calculated in terms &f.

REMARK 7.1. We assume that a closed convex cdheontaining the conically
singular point inR3 with I' N {§; & = 0} = {0} has been fixed. Then there is a con-
stantx such that forc = 1

K

7D P 10EenE) + ] = s

la|<5

whenever §',pj(E)el’, j=1,2

In view of this remark, we can now estimate second derivatvk (o1 + 02)(§')
using Taylor's formula atP’” and information about remainder terms. This is particu-
larly easy on the line4 (¢, 8) which pass throughP’ defined for some given direction

1 1
(72) T — (af-ﬁ-ﬁ,ﬂf—f‘ﬁ).

In fact we denote byM(«, B, t) the function

(7.3) M(a, B, T) =(/01+/02)(0”+ \/ﬁlﬂf+ \/ﬁ)

and notice that (withr € R and H again the Hessian g, + p, at P’)

d2

goatH - @r B0t (et Bo)t) = 2(H - (@, B) (@, B))-
Then we have, derivating Taylor's formula up to terms of éegtwo forM atz =0
twice, and using (7.1),

2
(7.4) Va,¥VB  with o?+p%=1, %M(a,ﬁ,r)—(H-(a,ﬁ)& (@, B)H) | <cit],

for somec; > 0.

We have now studieg; + o, and it remains to say a few words about the func-
tion p2 — p1. We have of course, — p1 = v/A/(p1 + p2)do, With “+/A” the positive
square root ofA. (Recall thatA = d3(p? — p3)2.) In this notation we have mixed the
coordinatest” with the coordinatess(t): the p; are functions of¢’, whereasA is in
Section 6 a function ofg t). However,&’ is just a translation ofg t), so we can ar-
gue for a moment using both coordinate systems simultaheoBsice A vanishes to
order two atP’ (in the coordinatess(t), P’ corresponds to the point (0, 0)), whereas
p1 + p2 does not vanish thereh/(p1 + p2)? is a C>® function which vanishes of or-
der two atP’. Moreover, its Hessian aP’ is the one ofA divided by the number
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(p1(P) + p2(P"))? = 4/(3— 3b). (When we calculate the Hessian, we work of course
in one fixed sets of coordinates.)
We observe next that we have in view of Section 6

Proposition 7.2. Fix ¢ < 1/2. There is d> 0 and for every b< € a positive
definite2 x 2 matrix H such that with(s,t) denoting(é; —1/+/3 — 3b, & —1/+/3— 3b),

(p2—p1)(E) = b\/("~| (8 1)+, (s ) + O((s, ) if [(s, )] = d.

The main idea in the following calculations is now that whestricted to the lines
L(«, B) (defined in (7.2)), the positive square rogtA of A is C* smooth up to the
singular point. (Here we use that when we consider a positivefunction h defined
on (=38, 8) which satisfiesh(0) = 0, h(t) > 0 for t # 0, then+/h is C* on [0, §).)

Corollary 7.3. Fix ¢ < 1/2. There are calculable constants ¢ 0,1 =1, 2, 3,
such that if0 < b < & and if«, 8 are real numbers chosen witl? + g2 = 1, then
the function Ha, B, 1) = (02 — p1)*(at + 1/4/3—3b, Bt + 1/4/3—3b) is of form
F(a, B, 7) = b2d(, B)72 + b?T(«, B, T) for some function T which i€ in t for t €
[0,c¢;) and vanishes of ordeB at t = 0. Here d«, B) is for fixedw, B a constant> ¢,
and |T(a, B,7)| < cs|t|3. It follows that(o, — p1)(at +1/+/3 —3b, Bt +1/+/3—30) =
b|z|[/d(e, B) + bv(c, B, 7)], wherev is a C* function for smallt >0 up tor =0
which is bounded uniformly i, 8) and vanishes at = 0.

8. Proof of Theorem 1.2

For the convenience of the reader, we prove explicitly tHeoviong simple

REMARK 8.1. LetX be aC?-surface given in a neighborhodd of some point
Q = (Q/, Q3) as a graph of a functiog’” — z(¢’) and assume that in thg-plane we
are given a lineL such that the plane curve = {(£§,z(¢")); &' € L, (¢/,z(§")) e U} has
no inflection point atQ. Then the Gaussian and mean curvatureZotannot vanish
simultaneously an.

To see why this is so, we may assume without loss of generldyQ = 0 and
that L is the &;-axis. Next, we consider, with notations which are standardiffer-
ential geometry (and are somewhat in conflict with the notegtiin the other parts of
the paper), the quantities:

2
Q) L _0Q YA

9%2(Q) f=322(Q)
G 38 &7 '

9E1982 133

p=
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The Gaussian curvaturk and the mean curvaturmean at Q are then given by the
guantities

(- a4+ &)-2pas+i(+ )
A+ p+@2 VIt P+ @) '

and we know that # 0. If K = 0 we must haveff = §2. We claim that then
fKmean # 0. In fact, the nominator ifKyean can be written asT = 2(1 + &) —
2pGsF + §%(1+ p?) and there are no reaf (3) # 0 for which T = 0.

We now turn to the proof of Theorem 1.2. We shall at first apply tesults from
Section 4. Since the statements there distinguish betweerdses 19 < 2c and ® >
2c, and since we intend to work with some relatively smallwe may assume that
9 < 2c.

We shall argue by contradiction and assume that for some filged) there are
points onS, at which the Gaussian and the mean curvature both vanishsyrametry
reasons, it is no loss of generality to assume that some eétpeints lie in the region
Ri ={£€8S;& >0, & >0, & > 0}. Actually, no such point can lie in one of
the planess; = 0. (This is a consequence of the results in Section 4: we singlle
for & = 0, the other cases being symmetrical. Consider then a pojigb,(1) € S
and denotel', = {¢§ € &: & = u} the curve associated with in Section 4. Then
we know from that section thdt, has no inflection point whe#; = 0 and therefore
(e.g., by Remark 8.1) the Gaussian and the mean curvaturetaanish at (0&,, i)
simultaneously.)

Actually, the same argument gives that points where the S&ausnd mean curva-
ture vanish simultaneously can only occur, if at all, whenhage|£; —1/+/3c — 3b| <
€b, j =1, 2, 3, where€ is the constant in Theorem 4.1. We recall that this constant
is calculable. We conclude that if we fix some closed convexedd which contains
the conically singular point irRi, then there can be no points dﬁﬁ \ I' where the
Gaussian and the mean curvature vanish simultaneouslydel is sufficiently small.
(Once we have fixed", we can calculaté in terms of ' and the constang.)

We must now exclude the possibility that there are pointsSpron which both
curvatures vanish in", wherel" is some closed convex cone which contains the sin-
gular direction inR? in its interior. Moreover, we are allowed to fix as we please in
the remaining part of the argument. We shall argue by chegcttiat the plane curves

N 1 1 1 1 .
G(a,ﬂ,c)_{(ar+m,ﬂr+m,pz(ar+ —S—Sb'ﬂH r_%))*

It] < C’}

(which lie in ) have no inflection points it is fixed small enough. Once this is
done, we can then apply Remark 8.1 and can then conclude genant with
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REMARK 8.2. Fix some smalt’ > 0. Then we can find a closed convex cdne
which contains the singular direction iR3 in its interior such thatl N & C
Ua.s Gla, B, €), the union being for? + g% = 1.

We are thus left with the study of inflection points of the @8G(«, 8, ¢/). We
shall now rely on the results in Section 7, assuming, as we afi@y a normalization,
thatc = 1, so the first condition ot shall beb < 2/9. SinceG(«, 8, ') is the graph
of the functionp, over (part of) the lineL(«, B) introduced in (7.2), it suffices then
to show that §/dt)?pa(at + 1/+/3—3b, Bt + 1/4/3—3b) # 0 if the point @t +
1/+/3—-3b, Bt +1/+v/3—3Db, pa(at +1/+/3—3b, B + 1/+/3—3b)) stays inT.

Here we writep, as [o2 + p1 + (02 — p1)]/2. Also recall the notatiorM(«, 8, 1)
for (p1+ p2)(et +1/4/3—3b, Bt +1/+/3—3b)) (see (7.3)). In view of (7.4) we shall
have that d/dt)*M(a, 8,7) = (H - (a, B)*, (@, B)*) + O(|z|) for T — O (with calculable
constants). It follows if we also use Proposition 5.1 thétdr)>M(«, B, T) < —c; for
some constant; > 0 if |7| < ¢, andb is sufficiently small. Heree;, ¢, are independent
of b onceb is small.

On the other hand, we can estimatg'dt)?(p2—p1) using Corollary 7.3. It is clear
in particular that §/dz)?(p2 — p1)(at + 1/4/3—3b, Bt 4+ 1/+/3—-30b)| < b if |7| <
cs3. This shows that ifc’ is sufficiently small, thend/dz)?po(at + 1/+/3—3b, 7 +
1/+/3— 3b) is strictly negative for smal|z| < c’. This concludes the argument.

9. Final comments

We write, using the notatiod for b—a, and dropping the assumptioa = —2b”,
(2.3) in the form

3 3
9.1) J]@?—clel? +de?) = > beA(x? — clg[* + d&F,,)(x? — clE[* + dEP,,) = O
j=1 j=1

(indices are counted modulo 3) and denotedothe polynomial in three variables ob-
tained when in (9.1) we put = 1:

3 3
(9.2) q(¢) =[[@—cl&®+d&?) = > b&A(1— cl&[® + d&7, (1 — cl&[* + d&7 ).

j=1 j=1

In the arguments of this paper we have used in an essentialtheyfor a = —2b,
g splits into the product of two factors of lower degree. Instlway our problems
reduced to studying algebraic surfaces defined by polyrisnsiadegree 4, rather than
of degree 6. There are two other cases whegiven by (9.2) is known to split into a
product of two simpler factors: whem= 0 and wherb = a. Indeed, wherb = 0, then
q is of form q(¢) = ]’[?21(1—C|$|2—asj2) and whenb = a, (which corresponds to the
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isotropic case) then(¢) = (1—cl€|?)?(1— (c+ b)|&|?). In these cases the geometry of
the slowness surface is of course trivial. We claim that tafram the above situations,
there are no other cases in whighdecomposes into factors of strictly lower degree.

To prove this, let us then start with a decompositiongoin the formq = g0,
whereq; andq, have degrees strictly smaller than 6 and which are with reefficients.
They cannot be of odd degree however, since real valued poliats of odd degree have
an unbounded set of real zeros. We may thus assume that theedsfgy; is two and
that that ofqg, is 4. We assume tha # b, b #£ 0, a # —2b, and restrictq to the
coordinate planés; = 0. It follows that we must havg(¢’, 0) = gi(¢/, 0)gz2(€’, 0).

As a consequence of (9.2) there is, on the other hand, a ha@camposition of
g(¢’, 0) into a product of two factors, namely

(9.3) q(€’, 0) = (1 —clg'’) x gs(¢"),
where

Ga(£') = bEZ(1— cl&'|? + d&2) + beZ(1— cl&'| + d&?)
— (1 —c|g')? + dEA) (L — clg'|? 4 d&2).

We next want to see how these two decompositiong(6f, 0) are related. We denote
(€ €eR?; qu(§',0)=0} by S, {&' € R?; 0p(§)) = 0} by S and {&’ € R?; gz(6') = O}

by S;. Here S is then an ellipse an&;, S, are quartics. We shall also assume for the
moment that, in addition t@ # b, b # 0, we havea # —b and claim that 1 c|&’|?
and g;(&’, 0) must be proportional.

In fact, otherwise the ellips&, and the circle 1- c|¢'|? = 0 could have only fi-
nitely many points in common and therefore, by density; d'|> = 0, would imply
gz(&") = 0. A particular point on the circle 4 ¢|¢'|?2 = 0 is £° = (1/+/2¢, 1/+4/2c) and
we haveqs(&'°) = —(1/4)(b?>—a?)/c. Since by our assumptions (which impd¢ # b?),
this does not vanish we have then proved thatlt’|> = 0 andS; have infinitely many
points in common and % c|&'|> and qi(&;, 0) must therefore be proportional. In par-
ticular, q;(&) contains no terms of typg &,. The same is then true for mixed terms of
form &&;, &%, and it follows easily that(¢) and 1—c|£|? are proportional, i.e., we
may assume that in (9.3),1c|£|? is qi(£). We can sum up what we have obtained
so far by saying that, whea # —b, then the assumptiong“= ;0" implies that the
sphere{; c|£]>—1 = 0} is contained in the slowness surface. This is in fact what hap
pens for the casa = —2b, and there are no other cases (with# b?) when it is true.
Indeed, for example the poit= (1/+/3c),1/+/3c,1/+/3c) satisfiesc|é|2—1 = 0, but is
not a point of the slowness surface: it is in fact a point ondpace diagona}, = &, =
&3, and we already have calculated all points of the slownedacion the space diag-
onals. They are£1/+/3c —d), +1/+/3c—d, £1/+4/3c — d) (which are double points)
and the points £1/+/3c—d + 3b), +1/+/3c—d + 3b, +1/+/3c — d + 3b), and none

of them is equal tog, since we have ruled out the casgs= 0, d — 3b = 0. This
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concludes the argument if we assume thag —b and it remains to see what hap-
pens whena = —b. This case is still more elementary since thg§’, 0) = (—1 +
clg’|?)?((b — ¢)|&'|> — 1). q; is then immediately seen to be one of the three factors in
this decomposition, and again it has no mixed terms of féréy, i # j. We can then
continue the argument as above.
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