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Abstract

Consider the Cauchy problem for a system of weakly coupleat keguations,
whose typical one is

U — Au = |v|P 1,

v —Av = |ul%tu, (t, x) e Ry xRN,
with p,q > 1, pq > 1. Whenp, q satisfy max(p +1)/(pg—1), (@ + 1)/(pgq—1)) <
N/2, the exponentp, q are supercritical. In this paper we assort the supercritica
exponent case to two cases. In one case Ipo#ind q are bigger than the Fujita ex-
ponentpe(N) = 1+2/N, while in the other caser(N) is betweenp andq. In both
cases we obtain the time-global and unique existence ofigntufor small data and

their asymptotic behaviors. These observation will be igdpto the corresponding
system of the damped wave equations in low dimensional space

1. Introduction
We consider the Cauchy problem for the weakly coupled sysieheat equations
Uy — Au = g(v),
(1.1 v — Av = f(u), (t,x) e R xRN,
(U, v)(0, X) = (Uo, vo)(x), x € RY,
and the Cauchy problem for the corresponding system of ddm@e equations
Uit — AU+ Uf = g(U)y
(1.2) vy — Av + v = f(u), (t,x) e Ry xRN,
(U, v, U, )0, X) = (Ug, vo, U, v1)(X), x e RN,

Here the typical examples off(g) are

1.3) (F(u), 9(v)) = (ul? u, [v]P ), (ul9, [v]P)  ete.
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for p,g > 1, pg > 1. For (1.1) and (1.2) there are many literatures [1, 3, 4,176,
and [12, 14, 15, 18, 19] etc. respectively. See also refeetizerein. Our final aim is
to consider (1.2), but, by the “diffusion phenomenon” it &sential to investigate (1.1).

In [3] Escobedo and Herrero showed that for nonnegativetimeous and bounded
data (1o, vo) and (f(u), g(v)) = (U9, vP) with p,q > 0, pq > 1, the exponent®, q
satisfying

(1.4) a:max(il q“):ﬂ
pg—1" pg—1

are critical and that

e if « > N/2, then any nontrivial, nonnegative solutions to (1.1) blops within a
finite time,

e if « < N/2, then both global solutions and blow-up solutions coexigten the
data are not restricted to be small.

In [18] Sun and Wang showed that, fof (1), g(v)) = (Ju|9,|v|P) and N = 1, 3, the so-
lutions to (1.2) with suitably small data globally exist whe < N/2, while the global
solutions do not exist for suitable data wher> N/2.

In this paper we discuss the precise behaviors of solutiortoth (1.1) and (1.2),
including the optimal decay rates and the asymptotic profile small data whenr <
N/2. Moreover, we observe the relation between the criticabegpts for the system
and the critical exponent

2
(1.5) pr = pe(N) =1+ N
for the scalar semilinear heat equation
(1.6) wy — Aw = |w|” tw, (t,X) € Ry xRN,

As well-known, any nontrivial and nonnegative solutimnblows up within a finite time
when p < pe(N), while the solution globally exists for small data when> pr(N)
([5, 6, 20]). The critical exponent is called the Fujita empat, named after Fujita’s
pioneering work [5].

Here and after we assume without loss of generality

(1.7) 1<p=<q, pg>1,

and consider the small data global existence of solutionglib) and (1.2). By (1.4)
and (1.7) the supercritical exponentsqg are given by

qg+1 N

1. :
(1.8) 0q—1 " 2
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Hence
2 2
(L.9) q(p—ﬁ) 142 or q(p+ 1 pe(N) > pe(N).
By (1.9)
2
(1.10) p > N or p+ 1> pe(N).

If both p andq are less than or equal te-(N), then

q(p— %) < pe(N)- (pF(N) - %) = pr(N),

which contradicts (1.9). Hence eith@ror g is greater tharpe(N) and, by (1.7),g >
pe(N). Thus, the supercritical exponengs g in (1.8) are decomposed to two cases:
Casel d=p=> pr(N),
Casell  g> pe(N) = p> pe(N)—1 andq > (p+ 1 — pr(N)) *or(N).
The casep < pe(N) happens in the supercritical case, which is a differenhtpfsom
the scalar heat equation. We also believe that the Cases Il @md more understand-
able than (1.8), related to the Fujita exponent.

The solution ¢, v) to (1.1) is obtained by those of the integral equations

t
u(t,x)=/G(t,x—y)uo(y)dy+//e(t—r,x—y)g(v(r,y»dy dr,
(1.11) 0

t
v(t,x)=/G(t,x—y)vo(y)dy+/0/G(t—r,x—y)f(u(r,y))dydr,

where the domaiRN of integration is often abbreviated and the Gauss kerndlengy
(1.12) G(t, X) = (4rt) N2e WY@ %2 =52 4. 4 X,

By (1.11) we can obtain a unique time-global solution andaggmptotic profile
for small data in Case I. In [15] the Case | is treated for muarergeneral system.
But, our system is simple, which helps us to understand muegdsting Case Il. So,
we first state the result in Case |I.

Denoting L" x L" = L" etc. simply without confusions, our first theorem is the
following.

Theorem 1.1 (Case I). Suppose that @ p > pe(N) and

(1) — F(U2)] < CQu1l"2 + Uzl DJus — U] (Ug, Uz € N(O)),

(1.13)
19(v1) — 9(2)] < C(lvalP ™ + [v2lP Hlvr —va|  (v1, v2 € N(0)),
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for small neighborhood K0) of 0 € R. If (Ug, vg) € L N L>® and ||ug, vol| 1nL~ =
[Uo, vollLt + ||Uo, vo|| L~ IS suitably smallthen there exists a unique time-global solution
(u, v) € [C([0, 00); Lt N L*)]? to (1.1), which satisfies forl <r < oo

(1.14) [(u, v)(t, )| < C(t + 1)"NAEYD -t >0,

Moreover as t — oo,

(1.15) [(U—61G, v—6G)(t, )|.r = o(t~(N/2A-1/r)),

where
(1.16)
(61, 62)

= (/ uo(x)dx+/ooo/ g(v(t, x)) dx dt,/vo(x)dx+/ooo/ f(u(t, x)) dx dt).

For the proofs below the following inequality plays an imiamt role.

Lemma 1.1 (Hausdorff and Young).Letl < p,q,r <ocowithl/r =1/p+1/q—1.
If f e LPand ge LY, then(f % g)(x) = [zv f(X—y)g(y)dy e L" and

(1.17) If gl < Cll fllLellgllLa

In the Case Il we heuristically observe the decay rates aitisols. Sinceq >
pe(N), we once assume

(1.18) iy e L'NL™ and /OOOH fQu(t, )L~ dt < C/OOOHU(t, M anL~ dt < co.
Then, by (1.17), (1.1%)(which implies the second equation of (1.11)) yields
(1.19) o) < C(t 4+ 1)~V 1 < ¢ < o0,

Here and after, byC denote a generic constant independent of timevhose value

is changed from a line to the next line. Therefore, denotirgN) simply by pf,
we have

t
[ /G(t—r,x—y)g(v(r,y»dydr
0

L}
t t

(1.20) <c / lo@)IP, dr < C / (r 1+ 1y (/2D g
0 0

< {C(t + 1)NAP=P) - pe —1 < p < pp,
~|Clog(t+2), P = pF,
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and

t
//G(t—r,x—y)g(v(r,y))dydr
0

Ly
t/2 t

(1.20) <C Q+t- T)_N/2||v(r)||,’_)pm_oo dr + / 1- ||v(1r)|||[_’oo dr
0 t/2

- C(t + l)*(N/Z)(pJFl*PF)' OF — 1< p < pF,
~|Ct+1)NM2logt+2), p=pk.

That is, L*-norm of u may grow up and_*-norm decays. Hence, whemr —1 < p <
pe(N), | f5 J Gt —7,x —y)g(u(z, y)) dy dr |, < C if r satisfies

P+ 1= pr) 1)+ S (or — ) =0

by interpolation. Then

-1
r= (p—ﬁ) =(p+1—pr) "

Therefore, defingq by

(P+1-pr) pr—1<p<opr,
1.21 rog=
( ) ° {1 + 8’ p = IOF1
and assume
(1.22) up € L™,

where§ > 0 is so small agy > pr(N) - (1 + §). Note that N/2rg)(g —ro) > 1 not
only for p = pg, ro =1+ § but also forp < pg sinceq > ropg in Case Il. Thus, by
(2.11) and (1.20),

1.23 u(t erCt—{—l* 0~ y rOSrSOO.
(1.23) Ju®llu: < C(t + 1) (A0
Then, by applying (1.23) to (1.14)we get

t
lo@®)lls < ol + C /0 Ju)I% de

t
(124)[ < ||UO||L1+C/ (T+1)—N/2fo(q—r0) dT
0

=C by (N/2ro)(q —ro) > 1,
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and
lo®)llL~ < C(t + 1)"V?[lvoll 1L
t/2 t
+C a+t- t)—N/2||u(r)||q,_qm_oo dr+C [ ||U(‘C)||q|_oo dr
0 t/2
t/2
(1.24). <Cit+1N?24+cC (14t —1) N2(g 4 1) (N/Z0)(a-T0) g
0

t
+ | (+1) NVZodr
t/2
<Ct+1)"2 by (N/2ro)(@—ro) > 1.

Hence we again obtain (1.18) which was once assumed. THigiaties the global ex-
istence of solutions to (1.11) in a suitable space. In faethave the following theorem.

Theorem 1.2(Case ll). Let > pr(N) > p > pe(N)—1land g> (p+ 1-—
pe(N))"1oe(N). Suppose thatfor ry defined by(1.21),

(1.25) @o, vo) € (L NL®) x (LN L®) and [uollLronie + llvollizn~ is small

Then there exists a unique soluti@m, v) € C([0, 00); L™ N L>®) x C([0,00); L1 NL>),
which satisfies

(1.26) lu(t) e < Ct + 1y VAW < < oo,

| Il = C(t+ 1) WA, 1 <r < oo,
More preciselyfor 6, defined in(1.16)and 1 <r < oo
(1.27) I(v = 626)(t, -)llir = ot™NAEHD) as t— oo,

and, though ut, -) is not necessarily in £, (u— G * ug)(t, -) is in L' and

Ct-(N/2Wro-1/r) p < pr(N),

(1.28) ||(U—G*Uo)(t,')||Lr§{Ct(N/Z)(ll/r)logt, P s 1o

for 1 <r < co. Moreovey if g(v) > C~|v|P in v € N(0), the estimate from below

C i (N\2AWr=/n) p < pe(N),
(1.28) [(u—G *ug)(t, -)Ir = {Clt(N/lel/r) logt, p=pr(N),

fort >t; > 1 and1 <r < oo holds too, provided that9; > 0.

Similar consideration to the system for heat equations eaagplied to the Cauchy
problem (1.2) for the system of damped wave equations in lomedsional space. By
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w = [Sy(t)h](x), denote the solution to

— = N
(1.29) {wn Aw +wy =0, t,x) €R, xRV,

(w, wy)(0,x) = (0, h)(x), x eRN,

then the solutiony, v) to (1.2) is given by the integral equations

t
u(t, -) = Sn(t)(Uo + uz) + 3 (Su(t)uo) +/ Su(t — 7)g(v(z, -))dr,
(1.30) 0

t
u(t, ) = Sl\l(t)(v0+vl)+3t(sl\l(t)v0)+/(; Su(t =) f(u(z, -))dz.

DerINITION 1.1. If (u, v)(t, X) is the solution to the integral equations (1.30),
then we call (, v) the weak solution to the system (1.2).

The solution for the damped wave equation has the diffusteenpmenon, that is,
the solution behaves like that for the corresponding diffusequation as time tends
to infinity. In fact, this is observed by the explicit formut# Sy(t)h in each space
dimensionN =1, 2, 3:

(1.31)
[S(Hh](x)

e t/2

= / Io(}\/tz— |z|2)h(x +2)dz
2 |z|<t 2
1 et/ 1
=e“/2-§/ h(x +2)dz+ — / (|0(_\/t2—|z|2)—1)h(x+z)dz,
|z|<t |z] <t

2
(1.31)
[S(Hh](X)
el cosh(/t2 — [z[?/2)
- h
2 /lzst N (x +2)dz
_ewe L[ hx+D) o el cosh@Po 221 g
n /Zlft vtz —|z? o Jus VEZ—|z]? 2 dz
(1.31)
[S(H)h](x)
—t/2
N Ejlm % /|z|5t '0(%\“2— IZIZ)h(x +2)dz

t e /2 1 h(x + 2)
:e‘t/z-—/ h(x + tw) dw + / [ (— t2—22)—dz.
4 Jiw=1 ( ) 8 Jiz<t "\2 12 t2— |22
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Herel, (v =0,1,2,...) is the modified Bessel function of order which is given by

°° 1 Yy 2m+v
b =2 m! (m + v)! (5) '

m=0

From the DAlembert, Poisson and Kirchhoff formulas for thave equations without
dissipation, denoted byWhy (t)h](x), (1.31) has the form

(1.32) Sv(h =e 2. Wy(t)h + Jon(t)h, N =1,2, 3,

together with its derivative

H(SO) = & 2 = SWh(Oh -+ AN |+ 3 (IO

(1.33)»
= e 2. Wy(t)h+ Iin(t)h, N=1,2,
(0n) = 2] (=5 + 5 )weon + acwacon |
(1.33) e '213((1/2)yt? - |z?)
“J. a‘[ v

= e 2. Wy(t)h + Jin()h, N =3.

For the solution formulas of damped wave equations, referHar the decompos-
ition and the following estimates on the operatdrg(t) (i = 1, 2) andWy(t), W (t),
see [10] forN =1, [8] for N = 2, and [13] forN = 3, where the properties of mod-
ified Bessel functions play an important role. See also [7149 for N = 2 and [11]
for general dimensiorN, where the method of Fourier transformation is applied.

Lemma 1.2. Let Jy (i = 1, 2) and Wy, Wy with N = 1, 2, 3 be defined in
(1.30H1.33), respectively. Then it holds thaffor 1 <q < p < c©

(1.34) [l don (®)h][Le < C(t + 1)"N/AWA=P K| 4, t>0,
(1.35) [(Jon(t) — €| < Ct-NVAWAVP=L)h) 4, t > 0,
(1.36) [ din(OhllLe < C(t + 1)~ (NVAWALPL R, t >0,

and for 1 <r < o0
(1.37) [WnOh[[e = C(t + )lIh][LinL=, t=0,
(1.38) [Wn(Oh|ir < C(t + D)|[h|lwivaiawivas, t >0,

where é*h = G(t, -) * h and W = {h; 9¢h € L' (Ja| < m)} with |[h||3m =
Y=ol hlE:.
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By (1.35) we call Jon(t)h the “diffusion part”, ande™/?Wy (t)h the “wave part”.
Thus, the solutior5y(t)h is decomposed to the wave part decaying rapidly and the dif-
fusion part, and so we expect that the solution for the dampace equation behaves
like that for the corresponding diffusion equation. Thus will have the global ex-
istence of solutions to (1.30) whed = 1, 2, 3, though suitable regularity assumptions
on the data are necessary.

However, whenN > 4, Wy (t)h includesVh etc. and (1.37) is not available. For
example, wher\ = 4, we have

IWa(Ohllee < C(t + 1P, Vhilangs.

Hence, it is difficult to obtain the solution to (1.30) by thteration method, because
the regularity problem happens.

Theorem 1.3(Case I). Supposg1.13)with g > p > p(N) with N =1,2,3and

(1.39) (Uo, Ua), (vo, v1) € (WAL A WINZL2) 5 (LI N L>) =1 vy
' with their norms ||uo, u1lly, + llvo, villy, < 1,

where ||uo, U1y, = [[Uollwinvainwinas + |Ui]lLinL~. Then there exists a unique global
weak solution(u, v) € [C([0, o0); LT N L*®)]? to (1.2), which satisfies(1.14) and
(1.15) with

(1.16)
(61, 62)

= (/(u0+u1)(x)dx+/:o/g(v(t,x))dx dt/(vo+v1)(x)dx+/ooo/f(u(t,x))dx dt).

Theorem 1.4(Case ll). Let > pe(N) > p> pe(N) -1l and g> (p+ 1 —
pe(N))1oe(N) with N = 1, 2, 3 Suppose thatfor ro defined by(1.21),

(Uo, ug) € (WIN/Aro q WIN/ZLeoy s (110 A L) =:Y,,  (vo, v1) € V1

with  [[uo, U1]ly, + [lvo, v1lly, € 1,

where ||ug, U1y, = ||Uollwinarawinvae + [UillLroni=<. Then there exists a unique weak
solution (u, v) € C([0, oo); L™ N L*®) x C([0, co); LT N L*®), which satisfies(1.26),
(1.27) and (1.28) with 6, in (1.16). Moreover if g(v) > C~1|v|P in N(0), then the
estimate(1.28) from below holds for & t; > 1 provided that9; > 0 in (1.16).

For more general systems the Case | is treated in [15], artd Toeéorem 1.1 and
Theorem 1.3 are essentially included in their results.

Our plan of this paper is simple. In the next section we carsitie system of
heat equations and prove Theorem 1.1 and Theorem 1.2. IioBeXtwe treat the
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system of damped wave equations on the same line as the sgétaeat equations,
using the decomposition of solution formula and Lemma 1.2.

2. System of heat equations

In this section we show the global existence of solutiojw] and its behavior for
small data.

Proof of Theorem 1.1. As stated above, the proof is esssntialuded in [15].
But, we sketch the proof for our simpler system, which helpdaiprove Theorem 1.2
in the Case Il.

Define the solution space

(2.1) X := [C([0, 00); L' N L®)*  with [, vllx = [ullx, + [v]|x,,
where X; = X, and fori =1, 2

(2.2) lwllx, = SUIC;{IIw(t)IIL1 +(t+ DV lwt)lle~).

The approximate sequengeu®™, v™)} (n=0,1,2,...) in X is defined by
@3 W00 = ( [ 6t x- ) ay, [ 6 x ) ay)

u™ (e, x) = uOt, x) + ft/ Gt —1, x—y)gw™(z, y)) dy dr,
(2.4) 0

t

v, x) = 0O, x) + [ [ G(t — 7, x —y) f(u(z, y)) dy dr.
0

We seek for the solution in

(2.5) Xoe = {(U, v) € X; |ullx, = 2e, [[v]x, = 2¢}

for sufficiently smalle > 0. It suffices to show the following three assertions:

(i) if [Juo, vo|lLinL~ < 1, then (@, v©) e X,,

(i) if (u™, v™) e Xy, then MY, (D) € X,

(i) [Ju®D —u® O+ ™y < (1/2)u™ —uD p™ D)y (n=1,2,..).

By (i), (i), (u™,v™) e X,, for all n, so that (iii) holds and(u™, v(™)} is the Cauchy

sequence inX. Thus, we have the desired global solution together witrageates.
It is easy to show

(t + DNAEEIN(G * )OI = CollUollzni~, t>0
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etc. for some constarty > 0 and 1=<r =< oo, which imply (i). For (ii),
t
WD)l < U9 +C / ™ (@)1 de
0

t
< [uOM): + C /O (v + 1y N2 gy 2
< UO@) L + ClL,,

and, whenN =1, 2 andN > 3 with p > 2,
t
V@) [~ < U@~ + C/ L+t —1) N2 O(@)|| Py dT
0

t
< JuO) |~ +C / (14t —7)™N2(1 + )= NVACD dr @) §
0
< [uO® I~ + Ct + 1) V2™,
since N/2)(p—1)> 1 and (N/2)(p—1)> N/2if p>2. WhenN >3, pe(N) <qg <2
and p' :=p/(p—1) > 1,

[u™ ()|~
t/2
< uOt)[~ + C i A+t —) 2P, . dT
t
+C [ @+t—z)y NP O(T)|P| Ly~ dT
t/2

t/2
< uO) [~ + c( (L+t—7) N1+ ) V2P D ge
0

t

+ | @+t—7)NAED 4 ) N2 d’) @)%,
t/2

< uO@) [~ + Ct + 1N .
Hence we have
[u™ By, < [u@]x, + Cll™|F,
< (1 + C1(25)P12)e,
and, similarly,
™%, < v x, + Clu®),
< (14 Cy(20)412)e.

Taking ¢ > 0 so small as

max{Cy(2¢)P712, Co(2¢)4712) < 1,
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we have (ii). By the assumption (1.13), (iii) holds similar @ii). Thus we obtain the
solution (), v) as a limit in X.
We now show the asymptotic behavior following [9]. First,

(Art)N/2

[ 6t x =yt dy- ( [ vt dy)G(t, X)

< (4t / 1G(t, x — y) — G(t, )] |uo(y)] dy

(2.6)

< / |e*‘X*y|2/(4t) _ ef|x\2/(4t)| |U0(y)| dy+/ 2|u0(y)| dy

lyl=t¥/4 ly|>tv/4

-0 as t— oo.

Secondly,
! o0
£N/2 / / Gt — 7, x—=y)9(v(z, y)) dy dr — (/ [ g(v(z, y)) dy dr)G(t, x)

0 0

t/2
< Ct“/Z/ Gt — 7, x — ) = G(t, )] [v(z, y)|P dy de
0
t [e%s)
27)  +CtV2 / lo()]IP dr +C / lo@)IPo(@) s de
t/2 t/2
SCtN/Z(/ - )|G(t—r,x—y)—e(t,x)||v(r,y)|'°dydr
Q1 Qo

N2 1 “Ee = ~(N/2)(p-1)
+CtV (S +1 +C | (¢+1yMN2C-Dgr
t/2

Here, the last two terms tend to zero tas> oo, and, for O< § < 1/2 the domain of
integration; (i = 1, 2) are defined as

Q1 =1[0,8t] x {y e RN: |y| < 6t3}, €, = ([0,t/2] x RN)\ Q.

Then, because of;” [|v(r, y)[P dy dr < oo,

tN/Z/ <CtN2 [ (t —)™N?u(z, y)|Pdy dr + c/ lu(z, y)|P dy dr
(2.8) @ 2 2
<C | |v(r,y)Pdydr -0 as t— oo.
Q)
In Qi, by settingr =ts andy = /tz,
tN/2_ Sup |G(t_TaX_Y)_G(tyX)|
(r.y)e€
— Sup |(47-[(1 _ S))7N/zef‘x/\/flez/(‘l(lfs)) _ (47T)*N/2e*‘x/«/f|2/4 .

0<s<$§, 0<|z|=<8
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Hence for any smalh > 0, there existsl, = 8o() independent oft( x) € R, x RN
such that, if 0< § < §g, then

(2.9) tN/2. sup |G(t -1, x—y) — G(t, X)| < 7.
(r.y)e

Thus, whenr = oo, by (2.6)—(2.9) we have (1.15) fau, and (1.15) forv samely.
Whenr =1, it is easier to show (1.15), which is omitted. O

Proof of Theorem 1.2. Define the solution space by

X' = C([0, 00); L™ N L>®) x C([0, o0); L1 N L>)
(2.10) _
with  [lu, vllx- = [[ullx; + [[v]lx,,

where || - ||x, is the same as in (2.2) and

(2.11) ullx; = [§UI?{||U(t)||Lro + (t+ DV ut) L~}
The approximate sequen¢@™, v™)} is defined by (2.3)—(2.4). The solution, @) to
(1.11) is sought in

(2.12) Xp, = (U, v) € X': ullx < 26, [lollx, < 2¢)

for suitably smalk > 0. It is almost the same as in Theorem 1.1 to show {hd®), v(M)}

is the Cauchy sequence X'. So, we omit the details. Once we obtain (1.26), then
Jo~ [ f(u(t, y)) dy dr < oo, and (1.27) follows from the same line as in (2.6)—(2.9). We
now estimate

t
(2.13) lu(t, X) := (u— G * ug)(t, X) = /O / Gt — 7, x—Yy)g(v(r, y)) dy dr.

For Ll-estimate we have

t t
M@l <C / @I P (@) dr < C / (v + 1y (V2D g
0 0

<{ca+n*WMWmﬁ P < pr(N),
~ |Clog (t + 2), p = pr(N),

(2.14)
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and, for L*°-estimate,
(2.14),
t t/2 )
[Tu@®)l[L= =C /t/zllv(f)llfoo dr +C A @+t =) V@IS (@) dr
(t + 1)~ N/AC=DFL - p < pe(N),
|Og (t +2)1 p= pF(N)!

_ JC(t + 1) (A=), p < pr(N),
“1Ct+ 1N 2log (t +2), p=pr(N).

< C(t + 1)y MWAPH L C(t + 1) (V2. {

Thus we have (1.28). Note that*-norm of 1,(t) decays sincep > pg(N) — 1.
Moreover, wheng(v) > C|v|P, we have the estimate (1.28jom below. In fact,
by (1.27)

(2.15) (t, X) — 6:,G(t, X) =: h(t, x), [|h(t)]|r = ot~ N2DEVy ¢ 5 o0,

for 1 <r < oo. Hence

t t
|||u(t)||u=/O/g(v(r,y»dydrzc-1/0/|v(r,y)|pdydr

t t
ZC’192pffG(r, y)Pdy dr—C[/h(r, y)Pdy dr
0 0

. {Clt(N/z)(p]-Hl, p < pe(N),

> 1
Ctlogt, p=pe(N), oL

provided thatd, > 0. Note that—(N/2)(p—1)+1=—(N/2)(p—pr) =—(N/2)(1/ro—1) >
0 andL*-norm of Iy(t) grows up. TheL>-estimate from below is similar to the above.
O

3. System of damped wave equations

Denote the solutionw = [Sy(t)h](x) to (1.29), then the weak solution,(v) to
(1.2) is the solution to the integral equation (1.30) by D&én 1.1. As we observe
in Introduction, whenN = 1, 2, 3, Sy(t)h and its derivative are decomposed in the
following forms:

(1.32) Su(t)h = e 2. Wy(t)h + Jon(t)h,
(1.33) 3 (Su(t)h) = e™2. Wy (t)h 4+ Jun(t)h.
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The LP-L9 estimates onWy (t)h, Wy (t)h, Jon(t)h, Jin(t)h are given in Lemma 1.2.
Therefore we rewrite (1.30) to

3.1y
u(t, -) = [&7/2(Wn(t)(Uo + u1) + W(t)uo) + Jon (t)(Uo + Us1) + Jin (t)uo]
t t
+ / e 2wy (t - 1)g(u(r, +))dr + / Jon(t — T)g(v(z, -))dr
0 0
=: Do(Uo, ug)(t, ) + Gw()(t, ) + Gy(u)(t, -),
3.1)
v(t, ) = [e’t/z(WN (t)(vo + Ul) + W(t)vo) + Jon (t)(vo + vl) + N (t)vo]
+/t e =2 Wit — 7) f (u(r, -))df+/t Jon(t = 7) f(u(z, -))dt
0 0
=: Do(vo, v1)(t, -) + Fw(u)(t, -) + F(u)(t, -).
The approximate solutiof(u™, v™M)} (n =0, 1, 2,...) is defined by

(3.2 (U, vO)(t, x) = (Do(Uo, us), Do(vo, v1))(t, X),
(3.2) u™ (e, x) = u0(t, x) + Gw™)(t, X) + G (), X),
' vt x) = vO(t, x) + Fw(U™)(t, X) + Fy(u™)(t, x).

Sketch of the proof of Theorem 1.3. As same as the proof of fEmeadl.1, we
define the solution spac¥ by (2.1) and (2.2), and seek for the solution to (3.1) in
Xo. defined in (2.5) for smalle > 0. To do so, it suffices to show the following
three assertions:

(i)’ If |Jug, uslly, + llvo, vally, < 1, then 0@, v©@) € X,.
and (i), (iii). By (1.34), (1.36)—(1.38) in Lemma 1.2, for= 1, co

WOl = Coft + 1) 2D lug, uslly,, t=0

Ol < Cot + 1) N2 jug, valy,, t =0,
for some positive constar,. Hence
(3.3) U@, v@|1x < Collluo, uslly, + llvo, villv,),
and so (i) holds. Since

t
IGwE™ M) =C / e 2 — v + DO @I V(@) de
0

t
<c / (z + 1) N20D dr L @2 < C(26)P,
0
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t
G ™)) x < C/ (v + 1) WA dr - o] < C(2e)P,
0
t
IGWE™ )L~ < C/ e 2t — 7 + D" (D)0~ de
0

t
<C / e D2t — v + 1)(x + 1) VAP gz o™ §
0
< C(t + 1)"N?(2¢)P,

and

1Gs ™ D)) L~
t/2

t
=C ) (t-r+ 1) N2 (@) [ P ()| dT + C ft/zllv(”’(r)u‘zw dr

< c( Ot/z(t — 7+ 1)V3(r 4 1) NAPD gr 4 t/tz(r + 1)=(N/2p dr) ™%
< C(t + 1)"V?(2¢)P,
we have the desired estimate
u® D = [uOllx + C(26)P = (1 + Ca(26)° *2)e.
We also have the estimate an and the assertion (ii) by taking > 0 as

max{Cy(2¢)P12, Co(2¢)47 12} < 1.

The assertion (iii) is almost similar. Thus we have the solufu, v) in X satisfying
(3.1), which decays with the rate (1.14).

For the asymptotic behavior the estimate (1.35) in Lemmaplags an important
role. For examples,

Jon (t)(Uo + ug) — (/(UO + u1)(y) dy)G(t, °)
(3.4)

= (Jon(t) — €2)(uo + ) + / (G(t, - —y)— G(t, -))(Uo + u)(y) dy,

and
(3.5)

/ Jon(t — 790 (r, -))dr—( /o / g(v(r,y))dydr)e(t, )

= /I(Jow(t —1) - e g(u(r, -))de
0

" [/Otfe(t—r, =y dydr - ([ [ ot dyr)ec )|
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Each first term in the right hand side of (3.4) and (3.5) deciags by (1.35) and
last terms in (3.4) and (3.5) decay fast, as shown in the pobcfFheorem 1.1. The
other terms in (3.14) decays fast. Estimates an are similar. Thus we have (1.15)
with (1.16). O

The proof of Theorem 1.4 is a little bit complicated compatedthat of The-

orem 1.3, but it is almost similar to that of Theorem 1.2 bylgimjg Lemma 1.2. So
we omit the details.

ACKNOWLEDGEMENT. This work was supported in part by Grant-in-Aid for Sci-

entific Research (C) 20540219 of Japan Society for the Piomatf Science.

(1]
g
(4]
(5]
(6]
(7]
(8]
Bl
(10]

[11]
(12]
(13]
[14]
[15]

[16]

References

D. Andreucci, M.A. Herrero and J.J.L. Velazqueziouville theorems and blow up behaviour
in semilinear reaction diffusion systemnn. Inst. H. Poincaré Anal. Non Linéairk4 (1997),
1-53.

R. Courant and D. Hilbert: Methods of Mathematical PhysitsWiley, New York, 1989.

M. Escobedo and M. A. Herrer®Boundedness and blow up for a semilinear reaction-diffusio
system J. Differential Equation89 (1991), 176—202.

M. Escobedo and H.A. LevineCritical blowup and global existence numbers for a weakly
coupled system of reaction-diffusion equatioAsch. Rational Mech. Anall29 (1995), 47-100.
H. Fujita: On the blowing up of solutions of the Cauchy problem fpruAu + u*, J. Fac.
Sci. Univ. Tokyo Sect. 113 (1966), 109-124.

K. Hayakawa: On nonexistence of global solutions of some semilinear lpaia differential
equations Proc. Japan Acadt9 (1973), 503-505.

T. Hosono and T. Ogawd:arge time behavior and R-L9% estimate of solutions &dimensional
nonlinear damped wave equatigrk Differential Equation203 (2004), 82-118.

R. lkehata, K. Nishihara and H. Zha&lobal asymptotics of solutions to the Cauchy problem
for the damped wave equation with absorptidn Differential Equation226 (2006), 1-29.

G. Karch: Selfsimilar profiles in large time asymptotics of solutitasdamped wave equatians
Studia Math.143 (2000), 175-197.

P. Marcati and K. Nishiharalhe LP-L9 estimates of solutions to one-dimensional damped wave
equations and their application to the compressible flovotigh porous medial. Differential
Equations191 (2003), 445-469.

T. Narazaki:LP-LY estimates for damped wave equations and their applicatiorsemi-linear
problem J. Math. Soc. Japab6 (2004), 585—626.

T. Narazaki:Global solutions to the Cauchy problem for the weakly codiggstem of damped
wave equationsDiscrete Contin. Dyn. Syst. Suppl. (2009), 592—-601.

K. Nishihara: LP-L9 estimates of solutions to the damped wave equatioB-dimensional
space and their applicatigrMath. Z. 244 (2003), 631-649.

T. Ogawa and H. Takeda3lobal existence of solutions for a system of nonlinear dainpave
equations Differential Integral Equation23 (2010), 635-657, in press.

T. Ogawa and H. Takedd:arge time behavior of solutions for a system of nonlineamgad
wave equationspreprint.

J. RenctawowiczBlow up global existence and growth rate estimates in nonlinearapalic
systemsCollog. Math.86 (2000), 43—-66.



348

(17]
(18]
(19]

(20]

K. NISHIHARA

S. Snoussi and S. Tayach&lobal existenceasymptotic behavior and self-similar solutions for
a class of semilinear parabolic systenionlinear Anal.48 (2002), 13-35.

F. Sun and M. WangExistence and nonexistence of global solutions for a nealirhyperbolic
system with dampingNonlinear Anal.66 (2007), 2889—-2910.

H. Takeda:Global existence and nonexistence of solutions for a systienonlinear damped
wave equationsJ. Math. Anal. Appl.360 (2009), 631-650.

F.B. Weissler:Existence and nonexistence of global solutions for a seedl heat equation
Israel J. Math.38 (1981), 29-40.

Faculty of Political Science and Economics
Waseda University

Tokyo, 169-8050

Japan

e-mail: kenji@waseda.jp



